

1 **Firefly genomes illuminate parallel origins of bioluminescence in beetles**

2 **Authors:**

3 Timothy R. Fallon^{1,2,*}, Sarah E. Lower^{3,*}, Ching-Ho Chang⁴, Manabu Bessho-Uehara^{5,6},
4 Gavin J. Martin⁷, Adam J. Bewick⁸, Megan Behringer⁹, Humberto J. Debat¹⁰, Isaac
5 Wong⁴, John C. Day¹¹, Anton Suvorov⁷, Christian J. Silva^{4,12}, Kathrin F. Stanger-Hall¹³,
6 David W. Hall⁸, Robert J. Schmitz⁸, David R. Nelson¹⁴, Sara M. Lewis¹⁵, Shuji
7 Shigenobu¹⁶, Seth M. Bybee⁷, Amanda M. Larracuente⁴, Yuichi Oba⁵, Jing-Ke Weng^{1,2,†}

8 **Affiliations:**

9 ¹Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.

10 ²Department of Biology, Massachusetts Institute of Technology, Cambridge,
11 Massachusetts 02139, USA.

12 ³Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York
13 14850, USA.

14 ⁴Department of Biology, University of Rochester, Rochester, New York 14627, USA.

15 ⁵Department of Environmental Biology, Chubu University, Kasugai, Aichi 487-8501,
16 Japan.

17 ⁶Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-
18 8601, Japan.

19 ⁷Department of Biology, Brigham Young University, Provo, Utah 84602, USA.

20 ⁸Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.

21 ⁹Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe,
22 Arizona 85287, USA.

23 ¹⁰Center of Agronomic Research National Institute of Agricultural Technology, Córdoba,
24 Argentina.

25 ¹¹Centre for Ecology and Hydrology (CEH) Wallingford, Wallingford, Oxfordshire, UK.

26 ¹²Department of Plant Sciences, University of California Davis, Davis, California, USA.

27 ¹³Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.

28 ¹⁴Department of Microbiology Immunology and Biochemistry, University of Tennessee
29 HSC, Memphis 38163, USA.

30 ¹⁵Department of Biology, Tufts University, Medford, Massachusetts 02155, USA.

31 ¹⁶NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-8585,
32 Japan.

33 [†]Corresponding author. Email: wengj@wi.mit.edu (J.K.W.)

34 *These authors contributed equally to this work.

35

37 **Abstract**

38 Fireflies and their luminous courtships have inspired centuries of scientific study. Today
39 firefly luciferase is widely used in biotechnology, but the evolutionary origin of
40 bioluminescence within beetles remains unclear. To shed light on this long-standing
41 question, we sequenced the genomes of two firefly species that diverged over 100
42 million-years-ago: the North American *Photinus pyralis* and Japanese *Aquatica lateralis*.
43 To compare bioluminescent origins, we also sequenced the genome of a related click
44 beetle, the Caribbean *Ignelater luminosus*, with bioluminescent biochemistry near-
45 identical to fireflies, but anatomically unique light organs, suggesting the intriguing
46 hypothesis of parallel gains of bioluminescence. Our analyses support independent
47 gains of bioluminescence in fireflies and click beetles, and provide new insights into the
48 genes, chemical defenses, and symbionts that evolved alongside their luminous
49 lifestyle.

50

51 **Introduction**

52 Fireflies (Coleoptera: Lampyridae) represent the best-studied case of bioluminescence.
53 The coded language of their luminous courtship displays (Fig. 1A; Video S1) has been
54 long studied for its role in mate recognition (Lloyd 1966; Lewis and Cratsley 2008;
55 Stanger-Hall and Lloyd 2015), while non-adult bioluminescence is likely a warning
56 signal of their unpalatable chemical defenses (De Cock and Matthysen 1999), such as
57 the cardiotoxic lucibufagins of *Photinus* fireflies (Meinwald, Wiemer, and Eisner 1979).
58 The biochemical understanding of firefly luminescence: an ATP, Mg²⁺, and O₂-
59 dependent luciferase-mediated oxidation of the substrate luciferin (Shimomura 2012),
60 along with the cloning of the luciferase gene (de Wet et al. 1985; Ow et al. 1986), led to
61 the widespread use of luciferase as a reporter with unique applications in biomedical
62 research and industry (Fraga 2008). With >2000 species globally, fireflies are
63 undoubtedly the most culturally-appreciated bioluminescent group, yet there are at least
64 three other beetle families with bioluminescent species: click beetles (Elateridae),
65 American railroad worms (Phengodidae) and Asian starworms (Rhagophthalmidae)
66 (Martin et al. 2017). These four closely related families (superfamily Elateroidea) have
67 homologous luciferases and structurally identical luciferins (Shimomura 2012), implying
68 a single origin of beetle bioluminescence. However, as Darwin recognized in his
69 “Difficulties on Theory” (Charles Darwin 1872), the light organs amongst the luminous
70 beetle families are clearly distinct (Fig. 1B), implying independent origins. Thus, whether
71 beetle bioluminescence is derived from a single or multiple origin(s) remains
72 unresolved.

73 To address this long-standing question, we sequenced and analyzed the
74 genomes of three bioluminescent beetle species. To represent the fireflies, we
75 sequenced the widespread North American “Big Dipper Firefly”, *Photinus pyralis* (Fig.
76 1A, C) and the Japanese “Heike-botaru” firefly *Aquatica lateralis* (Fig. 1B). *Photinus*
77 *pyralis* was used in classic studies of firefly bioluminescent biochemistry (Bitler and
78 McElroy 1957) and the cloning of luciferase (de Wet et al. 1985), while *A. lateralis*, a
79 species with specialized aquatic larvae, is one of the few fireflies that can be reliably
80 cultured in the laboratory (Yuichi Oba, Furuhashi, et al. 2013). These two fireflies
81 represent the two major firefly subfamilies, Lampyrinae and Luciolinae, which diverged
82 from a common ancestor over 100 Mya (Fig. 1B) (Misof et al. 2014; Mckenna et al.
83 2015). To facilitate evolutionary comparisons, we also sequenced the “Cucubano”,
84 *Ignelater luminosus* (Fig. 1B), a Caribbean bioluminescent click beetle, and member of
85 the “*Pyrophorus*” used by Raphaël Dubois to first establish the enzymatic basis of
86 bioluminescence in the late 1800s (Dubois 1885, 1886). Comparative analyses of the
87 genomes of these three species allowed us to reconstruct the origin(s) and evolution of
88 beetle bioluminescence.

89

90 **Results**

91 **Sequencing and assembly of firefly and click-beetle genomes**

92 *Photinus pyralis* adult males were collected from the Great Smoky Mountains National
93 Park, USA (GSMNP) and Mercer Meadows New Jersey, USA (MMNJ) (Fig. 1C), and
94 sequenced using short-insert, mate-pair, Hi-C, and long-read Pacific Biosciences
95 (PacBio) approaches (Table S4.1.1). These datasets were combined in a MaSuRCA

96 (Zimin et al. 2013) hybrid genome assembly (Supp. Text 1.5). The *Aquatica lateralis*
97 genome was derived from an ALL-PATHs (Butler et al. 2008) assembly of short insert
98 and mate-pair reads from a single adult female from laboratory-reared population,
99 whose lineage, dubbed “Ikeya-Y90”, was first collected 25 years ago from a now extinct
100 population in Yokohama, Japan (Supp. Text 2.5). A single *Ignelater luminosus* adult
101 male, collected in Mayagüez Puerto Rico, USA, was used to produce a high-coverage
102 Supernova (Weisenfeld et al. 2017) linked-read draft genome (Supp. Text 3.5), which
103 was further manually scaffolded using low-coverage long-read Oxford Nanopore
104 MinION sequencing (Supp. Text 3.5.4).

105 The gene completeness and contiguity statistics of our *P. pyralis* (Ppyr1.3) and
106 *A. lateralis* (Alat1.3) genome assemblies are comparable to the genome of the model
107 beetle *Tribolium castaneum* (Fig. 2F; Supp. Text 4.1). The *I. luminosus* genome
108 assembly (Ilumi1.2) is less complete, but is comparable to other published insect
109 genomes (Fig. 2F; Supp. Text 4.1). Protein-coding genesets for our study species were
110 produced via an EvidenceModeler-mediated combination of homology alignments, *ab*
111 *initio* predictions, and *de novo* and reference-guided RNA-seq assemblies followed by
112 manual gene curation for gene families of interest (Supp. Text 1.10; 2.8; 3.8). These
113 coding gene annotation sets for *P. pyralis*, *A. lateralis*, and *I. luminosus* are comprised
114 of 15,773, 14,285, and 27,557 genes containing 94.2%, 90.0%, and 91.8% of the
115 Endopterygota Benchmarking Universal Single-Copy Orthologs (BUSCOs)(Simão et al.
116 2015), respectively. Protein clustering via predicted orthology indicated 77% of genes
117 were found in a Orthogroups with at least 1 other species (Fig. 2E; Fig. S4.2.1.1). We
118 found the greatest orthogroup overlap between the *P. pyralis* and *A. lateralis* genesets,

119 as expected given the more recent phylogenetic divergence of these species.
120 Remaining redundancy in the *P. pyralis* assembly and annotation, as indicated by
121 duplicates of the BUSCOs and the assembly size (Fig. 2F; Supp. Table 4.1.2) is likely
122 due to the heterozygosity of the outbred input libraries (Supp. Text 1).

123 To enable the characterization of long-range genetic structure, we super-
124 scaffolded the *P. pyralis* genome assembly into 11 pseudo-chromosomal linkage groups
125 using a Hi-C proximity-ligation linkage approach (Fig. 2A; Supp. Text 1.5.3). These
126 linkage groups contain 95% of the assembly (448.8 Mbp). Linkage group LG3a
127 corresponds to the X-chromosome based on expected adult XO male read coverage
128 and gene content (Supp. Text 1.6.3) and its size (22.2 Mbp) is comparable to the
129 expected X-chromosome size based on sex-specific genome size estimates using flow
130 cytometry (~26 Mbp) (Lower et al. 2017). Homologs to *T. castaneum* X-chromosome
131 genes were enriched on LG3a, compared to every other linkage group, suggesting that
132 the X-chromosomes of these distantly related beetles are homologous, and that their
133 content has been reasonably conserved for >200 MY (Supp. Text 1.6.4) (Mckenna et al.
134 2015). We hypothesized that the *P. pyralis* orthologs of known bioluminescence genes,
135 including the canonical luciferase *Luc1* (de Wet et al. 1985) and the specialized luciferin
136 sulfotransferase *LST* (Fallon et al. 2016), would be located on the same linkage group
137 to facilitate chromosomal looping and enhancer assisted co-expression within the light
138 organ. We however found these genes on separate linkage groups (Fig. 2A), falsifying
139 that hypothesis.

140 In addition to nuclear genome assembly and coding gene annotation, we also
141 assembled the complete mitochondrial genomes (mtDNA) of *P. pyralis* (Fig. 2C; Supp.

142 Text 1.8) and *I. luminosus* (Supp. Text 3.10), while the mtDNA sequence of *A. lateralis*
143 was recently published (Maeda et al. 2017). These mtDNA assemblies show high
144 conservation of gene content and synteny, with the exception of the variable ~1 Kbp
145 tandem repeat unit (TRU) found in the firefly mtDNAs.

146 As repetitive elements are common participants and drivers of genome evolution
147 (Feschotte and Pritham 2007), we next sought to characterize the repeat content of our
148 genome assemblies. Overall, 42.6%, 19.8%, and 34.1% of the *P. pyralis*, *A. lateralis*,
149 and *I. luminosus* assemblies respectively were found to be repetitive (Supp. Text 1.11;
150 2.9; 3.9). Of these repeats, respectively 66.7%, 39.4%, and 55% could not be classified
151 as any known repetitive sequence. Helitrons, DNA transposons that transpose through
152 rolling circle replication (Kapitonov and Jurka 2001), are among the most abundant
153 individual repeat elements in the *P. pyralis* assembly. Via *in situ* hybridization, we
154 identified that *P. pyralis* chromosomes have canonical telomeres with telomeric repeats
155 (TTAGG) (Fig. 2B; Supp. Text 1.13).

156 DNA methylation is common in eukaryotes, but varies in degree across insects,
157 especially within Coleoptera (Bewick et al. 2017). Furthermore, the functions of DNA
158 methylation across insects remain obscure (Bewick et al. 2017; Glastad et al. 2017). To
159 examine firefly cytosine methylation, we characterized the methylation status of *P.*
160 *pyralis* DNA with whole genome bisulfite sequencing (WGBS). Methylation at CpGs
161 (mCG) was unambiguously detected at ~20% within the genic regions of *P. pyralis* and
162 its methylation levels were at least twice those reported from other holometabolous
163 insects (Fig. 2D; Supp. Text 1.12). Molecular evolution analyses of the DNA
164 methyltransferases (DNMTs) show that orthologs of both DNMT1 and DNMT3 were

165 conserved in *P. pyralis*, *A. lateralis*, and *I. luminosus* (Fig. S4.2.3.1; Supp. Text 4.2.3),
166 implying that our three study species, and inferentially likely most firefly lineages,
167 possess mCG. Corroborating this claim, $CpG_{IO/EJ}$ analysis of methylation indicated our
168 three study species had DNA methylation (Fig. S4.2.3.3).

169 **The genomic context of firefly luciferase evolution**

170 Two luciferase paralogs have been previously described in fireflies (Yuichi Oba,
171 Furuhashi, et al. 2013; Bessho-Uehara, Konishi, and Oba 2017). *P. pyralis* *Luc1* was
172 the first firefly luciferase cloned (de Wet et al. 1985), and its orthologs have been widely
173 identified from other fireflies (Y. Oba and Hoffmann 2014). The luciferase paralog *Luc2*
174 was previously known only from a handful of Asian taxa, including *A. lateralis* (Yuichi
175 Oba, Furuhashi, et al. 2013; Bessho-Uehara, Konishi, and Oba 2017). Previous
176 investigations of these Asian taxa have shown that *Luc1* is responsible for light
177 production from the lanterns of adults, larvae, prepupae and pupae, whereas *Luc2* is
178 responsible for the dim glow of eggs, ovaries, prepupae and the whole pupal body
179 (Bessho-Uehara, Konishi, and Oba 2017). From our curated genesets (Supp. Text 1.10;
180 2.8), we unequivocally identified two firefly luciferases, *Luc1* and *Luc2*, in both the *P.*
181 *pyralis* and *A. lateralis* genomes. Our RNA-Seq data further show that in both *P. pyralis*
182 and *A. lateralis* *Luc1* and *Luc2* display expression patterns consistent with previous
183 reports. While *Luc1* is the sole luciferase expressed in the lanterns of both larvae and
184 adults, regardless of sex, *Luc2* is expressed in other tissues and stages, such as eggs
185 (Fig. 3C). Notably, *Luc2* expression is detected in RNA libraries derived from adult
186 female bodies (no head or lantern), suggesting detection of ovary expression as
187 described in previous studies (Bessho-Uehara, Konishi, and Oba 2017). Together,

188 these results support that, since their divergence via gene duplication prior to the
189 divergence of Lampyrinae and Luciolinae, *Luc1* and *Luc2* have established different, but
190 conserved roles in bioluminescence throughout the firefly life cycle.

191 Firefly luciferase is hypothesized to be derived from an ancestral peroxisomal
192 fatty acyl-CoA synthetase (PACS) (Fig. 3A) (Yuichi Oba, Ojika, and Inouye 2003; Yuichi
193 Oba et al. 2006). We found that, in both firefly species, *Luc1* is genomically clustered
194 with its closely related homologs, including PACSs and non-peroxisomal acyl-CoA
195 synthetases (ACSs), enzymes which can be distinguished by the presence/absence of
196 a C-terminal peroxisomal-targeting-signal-1 (PTS1). We also found nearby microsomal
197 glutathione S-transferase (MGST) family genes (Fig. 3D) that are directly orthologous
198 between both species. Genome-wide phylogenetic analysis of the luciferases, PACSs
199 and ACSs genes indicates that *Luc1* and *Luc2* form two orthologous groups, and that
200 the neighboring PACS and ACS genes near *Luc1* form three major clades (Fig. 3C):
201 Clade A, whose common ancestor and most extant members are ACSs, and Clades B
202 and C whose common ancestors and most extant members are PACSs. *Luc1* and *Luc2*
203 are highly conserved at the level of gene structure—both are composed of seven exons
204 with completely conserved exon/intron boundaries (Fig. S4.3.1.1; S4.3.1.2), and most
205 members of Clades A, B, and C also have 7 exons. The exact synteny and orthology
206 relationships of the ACS and PACS genes adjacent to the *Luc1* locus remains unclear,
207 likely due to subsequent gene divergence and shuffling (Fig. 3C, D).

208 *Luc2* is located on a different linkage-group from *Luc1* in *P. pyralis* and on a
209 different scaffold from *Luc1* in *A. lateralis*, consistent with the interpretation that *Luc1*
210 and *Luc2* lie on different chromosomes in both firefly species. No PACS or ACS genes

211 were found in the vicinity of *Luc2* in either species. These data support that tandem
212 gene duplication in a firefly ancestor gave rise to several ancestral PACS paralogs, one
213 of which neofunctionalized in place to become the ancestral luciferase (*AncLuc*) (Fig.
214 3B). Prior to the divergence of the firefly subfamilies Lampyrinae and Luciolinae around
215 100 Mya (Supp. Text 4.3), this *AncLuc* duplicated, possibly via a long-range gene
216 duplication event (e.g. transposon mobilization), and then subfunctionalized in its
217 transcript expression pattern to give rise to *Luc2*, while the original *AncLuc*
218 subfunctionalized in place to give rise to *Luc1* (Fig. 3B). From the shared *Luc* gene
219 clustering in both fireflies, we infer the structure of the pre-duplication *AncLuc* locus
220 contained one or more ACS genes (Clade A), one or more PACS genes (Clade B/C),
221 and one or more MGST family genes (Fig. 3B).

222 **Independent origins of firefly and click beetle luciferase**

223 To resolve the number of origins of luciferase activity, and therefore bioluminescence,
224 between fireflies and click beetles, we first identified the luciferase of *I. luminosus*
225 luciferase (*IlumLuc*), and compared its genomic context to the luciferases of *P. pyralis*
226 and *A. lateralis* (Fig. 3D). Unlike some other described bioluminescent Elateridae, which
227 have separate luciferases expressed in the dorsal prothorax and ventral abdominal
228 lanterns (Yuichi Oba, Kumazaki, and Inouye 2010), we identified only a single luciferase
229 in the *I. luminosus* genome which was highly expressed in both of the lanterns (Fig. 3C;
230 Supp. Text 3.8). The exon number and exon-intron splice junctions of *IlumLuc* are
231 identical to those of firefly luciferases, but unlike the firefly luciferases which have short
232 introns less than <100 bp long, *IlumLuc* has two long introns (Fig. S4.3.1.1). We found
233 several PACS genes in the *I. luminosus* genome which were related to *IlumLuc* and

234 formed a clade (Clade D) specific to the Elateridae (Fig. 3C, D). *IlumLuc* lies on a 366
235 Kbp scaffold containing 18 other genes, including 3 related Clade D PACS genes
236 (Scaffold 13255; Fig. 3D; Fig. 4), however the Clade D genes that are most closely
237 related to *IlumLuc* are found on a separate 650 Kbp scaffold (Scaffold 9864; Fig 3D).
238 We infer that the *IlumLuc* locus is not orthologous to the extant firefly *Luc1* locus, as
239 *IlumLuc* is not physically clustered with Clade A, B or C ACS or PACS genes (Fig. 3C,
240 D). We instead identified a different scaffold in *I. luminosus* that is likely orthologous to
241 the firefly *Luc1* locus (Scaffold 9654; Fig. 3D). This assessment is based on the
242 presence of adjacent Clade A and B ACS and PACS genes, as well as orthologous
243 exoribonuclease family (PRNT) and inositol monophosphatase family (IMP) genes, both
244 of which were found adjacent to the *A. lateralis* *Luc1* locus, but not the *P. pyralis* *Luc1*
245 locus (Fig. 3D). Interestingly, *IlumPACS11*, the most basal member of Clade D, was
246 also found on Scaffold 9654 (Fig. 3D). This finding is consistent with an expansion of
247 Clade D following duplication from *IlumPACS11* to a distant site. Overall, these genomic
248 structures are consistent with independent origins of firefly and click beetle luciferases.

249 We then carried out targeted molecular evolution analyses including the known
250 beetle luciferases and their closely related homologs. Ancestral state reconstruction of
251 luminescent activity on the gene tree using Mesquite(Maddison and Maddison 2017)
252 recovered two independent gains of luminescence as the most parsimonious and likely
253 scenario: once in click beetles, and once in the common ancestor of firefly, phengodid,
254 and rhagophthalmid beetles (Fig. 4A; Supp. Text 4.3.3). In an independent molecular
255 adaptation analysis utilizing the coding nucleotide sequence of the elaterid luciferases
256 and their close homologs within Elateridae, 35% of the sites of the branch leading to the

257 ancestral click beetle luciferase showed a statistically significant signal of episodic
258 positive selection with $d_N/d_S > 1$ (ω or max $d_N/d_S = 3.98$) as compared to the evolution of
259 its paralogs using the aBSREL branch-site selection test (Smith et al. 2015) (Fig. 4B;
260 Supp. Text 4.3.4). This implies that the common ancestor of the click beetle luciferases
261 (*EAncLuc*) underwent a period of accelerated directional evolution. As the branch under
262 selection in the molecular adaptation analysis (Fig. 4B) is the same branch of luciferase
263 activity gain via ancestral reconstruction (Fig. 4A), we conclude that the identified
264 selection signal represents the relatively recent neofunctionalization of click beetle
265 luciferase from a non-luminous ancestral Clade D PACS gene, distinct from the more
266 ancient neofunctionalization of firefly luciferase. Based on the constraints from our tree,
267 we determine that this neofunctionalization of *EAncLuc* occurred after the divergence of
268 the elaterid subfamily Agrypninae. In contrast, we cannot determine if the original
269 neofunctionalization of *AncLuc* occurred in the ancestral firefly, or at some point during
270 the evolution of “cantharoid” beetles, an unofficial group of beetles including the
271 luminous Rhagophthalmidae, Phengodidae and Lampyridae among other non-luminous
272 groups, but not the Elateridae (Branham and Wenzel 2003). There is evidence for a
273 subsequent luciferase duplication event in phengodids, but not in rhagophthalmids, that
274 is independent of the duplication event that gave rise to *Luc1* and *Luc2* in fireflies (Figs.
275 3C, 4). Altogether, our results strongly support the independent neofunctionalization of
276 luciferase activity in click beetles and fireflies, and therefore at least two independent
277 gains of luciferin-utilizing luminescence in beetles.

278 **Metabolic adaptation of the firefly lantern**

279 Beyond luciferase, we sought to characterize other metabolic traits which might
280 have co-evolved in fireflies to support bioluminescence. Of particular importance, the
281 enzymes of the *de novo* biosynthetic pathway for firefly luciferin remain unknown (Yuichi
282 Oba, Yoshida, et al. 2013). We hypothesized that bioluminescent accessory enzymes,
283 either specialized enzymes with unique functions in luciferin metabolism or enzymes
284 with primary metabolic functions relevant to bioluminescence, would be highly
285 expressed (HE: 90th percentile; Supp. Text 4.2.2) in the adult lantern, and would be
286 differentially expressed (DE; Supp. Text 4.2.2) between luminescent and non-
287 luminescent tissues. To determine this, we performed RNA-Seq and expression
288 analysis of the dissected *P. pyralis* and *A. lateralis* adult male lantern tissue compared
289 with a non-luminescent tissue (Supp. Text 4.2.2). We identified a set of predicted
290 orthologous enzyme-encoding genes conserved in both *P. pyralis* and *A. lateralis* that
291 met our HE and DE criteria (Fig. 5). Both luciferase and luciferin sulfotransferase (LST),
292 a specialized enzyme recently implicated in luciferin storage in *P. pyralis* (Fallon et al.
293 2016), were recovered as candidate genes using four criteria (HE, DE, enzymes, direct
294 orthology across species), confirming the validity of our approach. While a direct
295 ortholog of LST is present in *A. lateralis*, it is absent from *I. luminosus*, suggesting that
296 LST, and the presumed luciferin storage it mediates, is an exclusive ancestral firefly or
297 cantharoid trait. This finding is consistent with previous hypotheses of the absence of
298 LST in Elateridae (Fallon et al. 2016), and with the overall hypothesis of independent
299 evolution of bioluminescence between the Lampyridae and Elateridae.

300 Moreover, we identified several additional enzyme-encoding HE and DE lantern
301 genes that are likely important in firefly lantern physiology (Fig. 5). For instance,
302 adenylate kinase likely plays a critical role in efficient recycling of AMP post-
303 luminescence, and cystathionine gamma-lyase supports a key role of cysteine in
304 luciferin biosynthesis (Yuichi Oba, Yoshida, et al. 2013) and recycling (Okada et al.
305 1974). We also detected a combined adenylyl-sulfate kinase and sulfate
306 adenylyltransferase enzyme (ASKSA) among the lantern-enriched gene list (Fig.
307 S4.4.2), implicating active biosynthesis of 3'-phosphoadenosine-5'-phosphosulfate
308 (PAPS), the cofactor of LST, in the lantern. This finding highlights the importance of
309 LST-catalyzed luciferin sulfonation for bioluminescence. These firefly orthologs of
310 ASKSA are the only members amongst their paralogs to contain a PTS1 (Fig. S4.4.2),
311 suggesting specialized localization to the peroxisome, the location of the luminescence
312 reaction. This suggests that the levels of sulfoluciferin and luciferin may be actively
313 regulated within the peroxisome of lantern cells in response to luminescence. Overall
314 our findings of directly orthologous enzymes that share expression patterns in the light
315 organs of both *P. pyralis* and *A. lateralis* indicates that the enzymatic physiology and/or
316 the gene expression patterns of the photocytes were already fixed in the Luciolinae-
317 Lampyrinae ancestor.

318 We also performed a similar expression analysis for genes not annotated as
319 enzymes, yielding several genes with predicted lysosomal function (Supp. Table 4.4.1;
320 Supp. Text 4.4). This indicates that the abundant but as yet unidentified “differentiated
321 zone granule” organelles of the firefly light organ (Ghiradella and Schmidt 2004) could
322 be lysosomes. Interestingly, we found a HE (TPM value ~300) and DE opsin, *Rh7*, in

323 the light organ of *A. lateralis*, but not *P. pyralis* (Fig. S4.5.1; Supp. Text 4.5), suggesting
324 a potential light perception role for *Rh7* in the *A. lateralis* lantern, akin to the light
325 perception role described for *Drosophila Rh7* (Ni et al. 2017).

326 **Genomic insights into firefly chemical defense**

327 Firefly bioluminescence is postulated to have first evolved as an aposematic
328 warning of larval chemical defenses (Branham and Wenzel 2003). Lucibufagins are
329 abundant unpalatable defense steroids described from certain North American firefly
330 species, most notably in the genera *Photinus* (Meinwald, Wiemer, and Eisner 1979),
331 *Lucidota* (Gronquist et al. 2005), and *Ellychnia* (Smedley et al. 2017), and hence are
332 candidates for ancestral firefly defense compounds. To test whether lucibufagins are
333 widespread among bioluminescent beetles, we assessed the presence of lucibufagins
334 in *P. pyralis*, *A. lateralis*, and *I. luminosus* by liquid-chromatography high-resolution
335 accurate-mass mass-spectrometry (LC-HRAM-MS). While lucibufagins were found in
336 high abundance in *P. pyralis* adult hemolymph, they were not observed in *A. lateralis*
337 adult hemolymph, nor in *I. luminosus* metathorax extract (Fig. 6B; Supp. Text 4.6).
338 Since chemical defense is presumably most critical in the long-lived larval stage, we
339 next tested whether lucibufagins are present in all firefly larvae even if they are not
340 present in the adults of certain species. We found lucibufagins in *P. pyralis* larval
341 extracts, however, they were not observed in *A. lateralis* larval extracts (Fig. 6B; Supp.
342 Text 4.6). Together, these results suggest that the lucibufagin biosynthetic pathway is
343 either a derived trait only found in particular firefly taxa (e.g. subfamily: Lampyrinae), or
344 that lucibufagin biosynthesis was an ancestral trait that was lost in *A. lateralis*.
345 Consistent with the former hypothesis, the presence of lucibufagins in non-North-

346 American Lampyrinae has been previously reported (Tyler et al. 2008), but to date there
347 are no reports of lucibufagins in the Luciolinae.

348 The lucibufagin biosynthetic pathway is currently unknown. However, their
349 chemical structure suggests a biosynthetic origin from cholesterol followed by a series
350 of hydroxylations, -OH acetylations, and the side-chain oxidative pyrone formation (Fig.
351 6A) (Meinwald, Wiemer, and Eisner 1979). We hypothesized that cytochrome P450s, an
352 enzyme family widely involved in metabolic diversification of organic substrates
353 (Hamberger and Bak 2013), could underlie several oxidative reactions in the proposed
354 lucibufagin biosynthetic pathway. We therefore inferred the P450 phylogeny among our
355 three bioluminescent beetle genomes to identify any lineage-specific genes correlated
356 with lucibufagin presence. Our analysis revealed a unique expansion of one P450
357 family, the CYP303 family, in *P. pyralis*. While 94/97 of currently sequenced winged-
358 insect genomes on OrthoDB (Zdobnov et al. 2017), as well as the *A. lateralis* and *I.*
359 *luminosus* genomes, contain only a single CYP303 family gene, the *P. pyralis* genome
360 contains 11 CYP303 genes and 2 pseudogenes (Fig. 6C), which expanded via tandem
361 duplication on the same linkage group (Fig. 6D). The CYP303 ortholog of *D.*
362 *melanogaster*, CYP303A1, has been shown to play a role in mechanosensory bristle
363 development (Willingham and Keil 2004). Although the exact biochemical function and
364 substrate of *D. melanogaster* CYP303A1 is unknown, its closely related P450 families
365 operate on an insect steroid hormone ecdysone (Willingham and Keil 2004). As
366 ecdysone and lucibufagins are structurally similar, CYP303 may operate on steroid-like
367 compounds. Therefore, the lineage-specific expansion of the CYP303 family in *P.*
368 *pyralis* is a compelling candidate in the metabolic evolution of lucibufagins as chemical

369 defenses associated with the aposematic role of bioluminescence. Alternatively, this
370 CYP303 expansion in *P. pyralis* may be associated with other lineage-specific chemical
371 traits, such as pheromone production.

372 **Symbionts of bioluminescent beetles**

373 Given the increasingly recognized contributions of symbionts to host metabolism
374 (Newman and Cragg 2015), we characterized the holobiomes of all three beetles as
375 potential contributors to metabolic processes related to bioluminescence. Whole
376 genome sequencing of our wild-caught and laboratory reared fireflies revealed a rich
377 microbiome. Amongst our firefly genomes, we found various bacterial genomes, viral
378 genomes, and the complete mtDNA for a phorid parasitoid fly, *Apocephalus antennatus*,
379 the first mtDNA reported for genus *Apocephalus*. This mtDNA was inadvertently
380 included in the *P. pyralis* PacBio library via undetected parasitization of the initial
381 specimens, and was assembled via a metagenomic approach (Supp. Text 5.2).
382 Independent collection of *A. antennatus* which emerged from field-collected *P. pyralis*
383 adults and targeted COI sequencing later confirmed the taxonomic origin of this mtDNA
384 (Supp. Text 5.3). We also sequenced and metagenomically assembled the complete
385 circular genome (1.29 Mbp, GC: 29.7%; ~50x coverage) for a *P. pyralis*-associated
386 mollicute (Phylum: Tenericutes), *Entomoplasma luminosum* subsp. *pyralis* (Supp. Text
387 5.1). *Entomoplasma* spp. were first isolated from the guts of North American fireflies
388 (Hackett et al. 1992) and our assembly provides the first complete genomic assembly of
389 any *Entomoplasma* species. Broad read coverage for the *E. luminosus* subsp. *pyralis*
390 genome was detected in 5/6 of our *P. pyralis* DNA libraries, suggesting that
391 *Entomoplasma* is a highly prevalent, possibly vertically inherited, *P. pyralis* symbiont. It

392 has been hypothesized that these *Entomoplasma* mollicutes could play a role in firefly
393 metabolism, specifically via contributing to cholesterol metabolism and lucibufagin
394 biosynthesis (Smedley et al. 2017).

395 Within our unfiltered *A. lateralis* genomic assembly (Alat1.2), we also found 43
396 scaffolds (2.3 Mbp; GC:29.8%, ~64x coverage), whose taxonomic annotation
397 corresponded to the Tenericutes (Supp. Text 2.5.2), suggesting that *A. lateralis* may
398 also harbor a mollicute symbiont. Alat1.2 also contains 2119 scaffolds (13.0 Mbp,
399 GC:63.7%, ~25x coverage) annotated as of Proteobacterial origin. Limited
400 Proteobacterial symbionts were detected in the *I. luminosus* assembly (0.4 Mbp; GC:30-
401 65% ~10x coverage) (Supp. Text 3.5.2), suggesting no stable symbiont is present in
402 adult *I. luminosus*. Lastly, we detected two species of novel orthomyxoviridae-like
403 ssRNA viruses, which we dub *Photinus pyralis* orthomyxo-like virus 1 and 2
404 (PpyrOMLV1/2), that were highly prevalent across our *P. pyralis* RNA-Seq datasets,
405 and showed multi-generational transovarial transmission in the laboratory (Supp. Text
406 5.4). We also found several endogenous viral elements (EVEs) for PpyrOMLV1/2 in *P.*
407 *pyralis* (Supp. Text 5.4.1). These viruses are the first reported in any firefly species, and
408 represent only the second report of transgenerational transfer of any *Orthomyxoviridae*
409 virus (Marshall et al. 2014), and the second report of *Orthomyxoviridae* derived EVEs
410 (Katzourakis and Gifford 2010). Together, these genomes from the firefly holobiont
411 provide valuable resources for the continued inquiry of the symbiotic associates of
412 fireflies and their biological and ecological significance.

413 **Discussion**

414 Here we generated genome assemblies, diverse tissue and life-stage RNA-Seq
415 data, and LC/MS data for three evolutionarily informative and historically well-studied
416 bioluminescent beetles, and used a series of comparative analyses to illuminate long-
417 standing questions on the origins and evolution of beetle bioluminescence. By analyzing
418 the genomic synteny and molecular evolution of the beetle luciferases and their extant
419 and inferred-ancestral homologs, we found strong support for the independent origins of
420 luciferase, and therefore bioluminescence, between fireflies and click beetles. Our
421 approaches and analyses lend molecular evidence to the previous morphology-
422 phylogeny based hypotheses of parallel gain proposed by Darwin and others (Charles
423 Darwin 1872; Costa 1975; Branham and Wenzel 2003; Sagegami-Oba, Oba, and Ohira
424 2007; Bocakova et al. 2007; Y. Oba 2009; Day 2013). While our elaterid luciferase
425 selection analysis strongly supports an independent gain, we did not perform an
426 analogous selection analysis of luciferase homologs across bioluminescent beetles, due
427 to the lack of genomic data from key related beetle families. Additional genomic
428 information from basal fireflies, other luminous beetle taxa (e.g. Phengodidae and
429 Rhagophthalmidae), and non-luminous elateroid taxa (e.g. Cantharidae and Lycidae),
430 will be useful to further develop and test models of luciferase evolution, including the
431 hypothesis that bioluminescence also originated independently in the Phengodidae
432 and/or Rhagophthalmidae. The recently published *Pyrocoelia pectoralis* Lampyrinae
433 firefly genome is an important advance which will contribute to future genomic studies
434 (Fu et al. 2017).

435 The independent origins of the firefly and click beetle luciferases provide an
436 exemplary natural model system to understand enzyme evolution through parallel
437 mutational trajectories, and for evolution of complex metabolic traits generally. The
438 abundance of gene duplication events of PACSs and ACSs at the ancestral luciferase
439 locus in both fireflies and *I. luminosus* suggests that ancestral promiscuous enzymatic
440 activities served as raw materials for the selection of new adaptive catalytic functions
441 (Weng 2014). But while parallel evolution of luciferase implies evolutionary
442 independence of bioluminescence overall, the reality may be more complex, and the
443 other subtraits of bioluminescence amongst the bioluminescent beetles likely possess
444 different evolutionary histories from luciferase. While subtraits such as specialized
445 tissues and neural control almost certainly arose after luciferase specialization, and thus
446 can be inferred to also have independent origins between fireflies and click beetles,
447 luciferin, which was presumably a prerequisite to luciferase neofunctionalization, may
448 have been present in their common ancestor. Microbial endosymbionts, such as the
449 tenericutes detected in our *P. pyralis* and *A. lateralis* datasets, are intriguing candidate
450 contributors to luciferin metabolism and biosynthesis. Alternatively, recent reports have
451 shown that firefly luciferin is readily produced non-enzymatically by mixing
452 benzoquinone and cysteine (Kanie et al. 2016), and that a compound resulting from the
453 spontaneous coupling of benzoquinone and cysteine acts as a luciferin biosynthetic
454 intermediate in *Aquatica lateralis* (Kanie et al. 2018). Benzoquinone is known to be a
455 defense compound of distantly related beetles (Dettner 1987) and other arthropods (e.g.
456 millipedes)(Shear 2015). Therefore, the evolutionary role of sporadic low-level luciferin
457 synthesis through spontaneous chemical reactions, either in the ancestral

458 bioluminescent taxa themselves, or in non-bioluminescent taxa, and dietary acquisition
459 of luciferin by either the ancestral or modern bioluminescent taxa, should be considered.
460 To decipher between these alternative evolutionary possibilities, the discovery of genes
461 involved in luciferin metabolism in fireflies and other bioluminescent beetles will be
462 essential. Here, as a first step towards that goal, we identified conserved, enriched and
463 highly expressed enzymes of the firefly lantern that are strong candidates in luciferin
464 metabolism and the elusive luciferin *de novo* biosynthetic pathway. Ultimately focused
465 experimentation will be needed to decipher the biochemical function of these enzymes.

466 The early evolution of firefly bioluminescence was likely associated with an
467 aposematic role. The chemical analysis of tissues across species and life stages
468 presented in this work provides new insights into the evolutionary occurrence of
469 lucibufagins, the most well-studied defense compounds associated with fireflies. Our
470 results reject lucibufagins as ancestral defense compounds of fireflies, but rather
471 suggest them as a derived metabolic trait associated with Lampyrinae. Furthermore, the
472 high sensitivity of our LC-HRAM-MS and MS² molecular networking-based lucibufagin
473 identification approach is particularly well suited to broadened sampling in the future,
474 including those of rare taxa and possibly museum specimens. Combined with genomic
475 data showing a concomitant expansion of the CYP303 gene family in *P. pyralis*, we
476 present a promising path towards elucidating the biosynthetic mechanism underlying
477 these potent firefly toxins.

478 Overall, the resources and analyses generated in this study shed valuable light
479 on the evolutionary questions Darwin first pondered, and will enable future studies of
480 the ecology, behavior, and evolution of bioluminescent beetles. These resources will

481 also accelerate the discovery of new enzymes from bioluminescent beetles that
482 enhance the biotechnological applications of bioluminescence. Finally, we hope that the
483 genomic resources shared here will facilitate the development of effective population
484 genomic tools to monitor and protect wild bioluminescent beetle populations in the face
485 of changing climate and habitats.

486 **Materials and Methods**

487 Detailed materials and methods are available in the Supplementary Materials.
488 References to relevant sections of the Supplementary Materials are placed in-line
489 throughout the maintext.

490 **Acknowledgments**

491 We thank Dr. Fu-Shuang Li, Mr. Geoffrey Liou, Dr. Tomáš Pluskal, Ms. Aska Pluskal,
492 Dr. Tina Udhwani, and Dr. Rob Unckless for their assistance with collection of *P. pyralis*.
493 We thank Dr. David Jenkins for collection of *I. lumninosus*. Collection permits and
494 permission from the Mercer County Parks Commission, the National Park Service, and
495 the Arlington Virginia Parks and Resources division are gratefully acknowledged. We
496 thank members of the Weng Laboratory and Dr. Stephen Deyrup for commenting on the
497 manuscript. We thank the Whitehead Institute Genome Technology Core, Whitehead
498 Institute high-performance-computing support, MIT BioMicroCenter, University of
499 Rochester Center for Integrated Research Computing, and the Georgia Advanced
500 Computing Resource Center (GACRC) for sequencing and computation resources. We
501 thank Mr. Nick A. Rohr for MethylC-Seq library preparation and the Georgia Genomics

502 Facility (GGF) for sequencing. We thank Beijing Genomics Institute for gratis library
503 prep and BGISEQ-500 RNA-Seq of *I. lumninosus*. We thank Dr. Katsushi Yamaguchi for
504 *A. lateralis* sequencing and data submission. We thank Mr. Haruyoshi Ikeya (Toin
505 Gakuen High School, Yokohama, Japan) for providing *A. lateralis* specimens and
506 advice on laboratory culture. We thank, Dr. Kota Ogawa, Ryosuke Nakai, and Takahiro
507 Bino for determining *A. lateralis* genome size. We thank Dr. D. Winston Bellot and R.N.
508 for useful discussions.

509

510 **Funding**

511 This work was supported by the Beckman Foundation (JKW), the Pew Scholar Program
512 in the Biomedical Sciences (JKW), the Searle Scholars Program (JKW), the National
513 Science Foundation (JKW, MCB-1818132; SES, Graduate Research Fellowship), the
514 National Institute of General Medical Sciences (AML, #5R35-GM119515-03), the
515 Georgia Research Alliance Lars G. Ljungdahl Distinguished Investigator award (RJS),
516 the NIBB Cooperative Research Program (SS, No. 12-202) and the Experiment.com
517 crowdfunding platform. The authors would like to thank crowdfunding contributors
518 (Table S6).

519 **Author contributions**

520 T.R.F., S.E.S.L., M.B.-U., S.S., Y.O., and J.K.W. conceived the project. T.R.F.
521 performed *P. pyralis* PacBio and Hi-C sequencing. S.E.S.L. performed *P. pyralis*
522 Illumina sequencing. C.H.C. performed *P. pyralis* genome assembly. S.S. performed *A.*
523 *lateralis* genome assembly. T.R.F. performed *I. lumninosus*, mitochondrial, and non-viral
524 symbiont genome assemblies. A.M.L. and C.J.S. performed repeat analysis. I.W.

525 performed in situ hybridizations. A.J.B. performed methylation analysis. M.B. performed
526 bacterial symbiont annotation and analysis. H.J.D. performed viral genome assembly
527 and analysis. M.B.-U. performed *A. lateralis* RNA-Seq, luciferase phylogenetic analysis,
528 and Rh7 phylogenetic analysis. D.N. performed manual annotation of P450s. T.R.F.,
529 S.E.S.L., K.S.H, M.B.-U., Y.O., and J.K.W. wrote the manuscript. All authors reviewed
530 the manuscript and discussed the work.

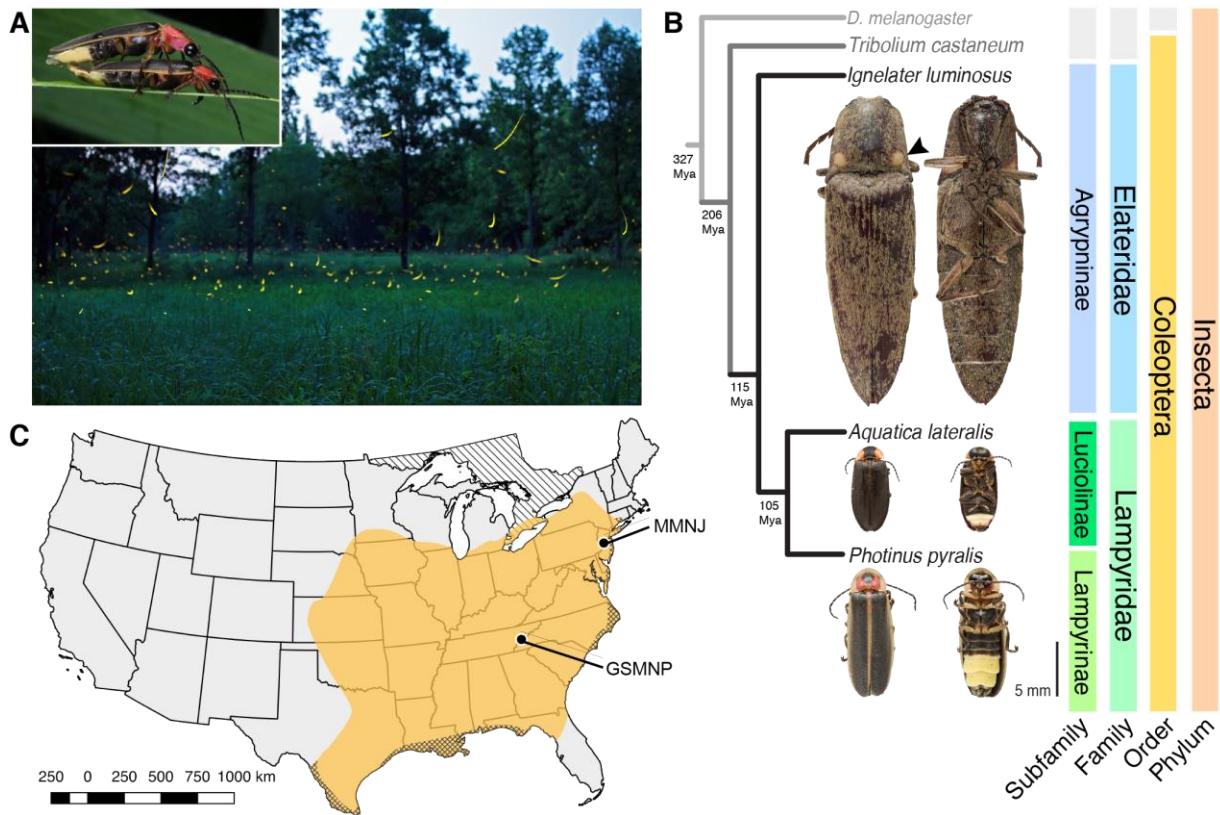
531

532 **Competing interests**

533 The authors declare no competing financial interests.

534

535 **Data and materials availability**


536 Genomic assemblies (Ppyr1.3, Alat1.3, and Ilumi1.2), associated official geneset data, a
537 BLAST server, and a genome browser are available at www.firebaseio.org. Raw
538 genomic and RNA-Seq reads for *P. pyralis*, *A. lateralis*, and *I. luminosus*, are available
539 under the NCBI/EBI/DDBJ BioProjects PRJNA378805, PRJDB6460, and
540 PRJNA418169 respectively. Raw WGBS reads can be found on the NCBI Gene Expression
541 Omnibus (GSE107177). Mitochondrial genomes for *P. pyralis* and *I. luminosus* and *A.*
542 *antennatus* are available on NCBI GenBank with accessions KY778696, MG242621,
543 and MG546669. The complete genome of *Entomoplasma luminosum* subsp. *pyralis* is
544 available on NCBI GenBank with accession CP027019. The viral genomes for *Photinus*
545 *pyralis* orthomyxo-like virus 1 & 2 are available on NCBI Genbank with accessions
546 MG972985-MG972994. LC-MS data is available on MetaboLights (Accession
547 MTBLS698). Other supporting datasets are available on FigShare (Supp. Text 7.1).

549 **Figures**

550

551

552
553 **Fig. 1. Geographic and phylogenetic context of the Big Dipper firefly, *Photinus***
554 ***pyralis*.**

555 (A) *P. pyralis* males emitting their characteristic swooping “J” patrol flashes over a field
556 in Homer Lake, Illinois. Females cue in on these species-specific flash patterns and
557 respond with their own species-specific flash (Lloyd 1966). Photo credit: Alex Wild.
558 Inset: male and female *P. pyralis* in early stages of mating. Photo credit: Terry Priest.
559 (B) Cladogram depicting the hypothetical phylogenetic relationship between *P. pyralis*
560 and related bioluminescent and non-bioluminescent taxa with *Tribolium castaneum* and

561 *Drosophila melanogaster* as outgroups. Numbers at nodes give approximate dates of
562 divergence in millions of years ago (mya) (Misof et al. 2014; Mckenna et al. 2015).
563 Right: Dorsal and ventral photos of adult male specimens. Note the well-developed
564 ventral light organs on the true abdominal segments 6 & 7 of *P. pyralis* and *A. lateralis*.
565 In contrast, the luminescent click beetle, *I. lumenosus*, has paired dorsal light organs at
566 the base of its prothorax (arrowhead) and a lantern on the anterior surface of the ventral
567 abdomen (not visible). (C) Empirical range of *P. pyralis* in North America, extrapolated
568 from 541 reported sightings (Supp. Text 1.2). Collection sites of individuals used for
569 genome assembly are denoted with circles and location codes. Cross hatches represent
570 areas which likely have *P. pyralis*, but were not sampled. Diagonal hashes represent
571 Ontario, Canada.

572

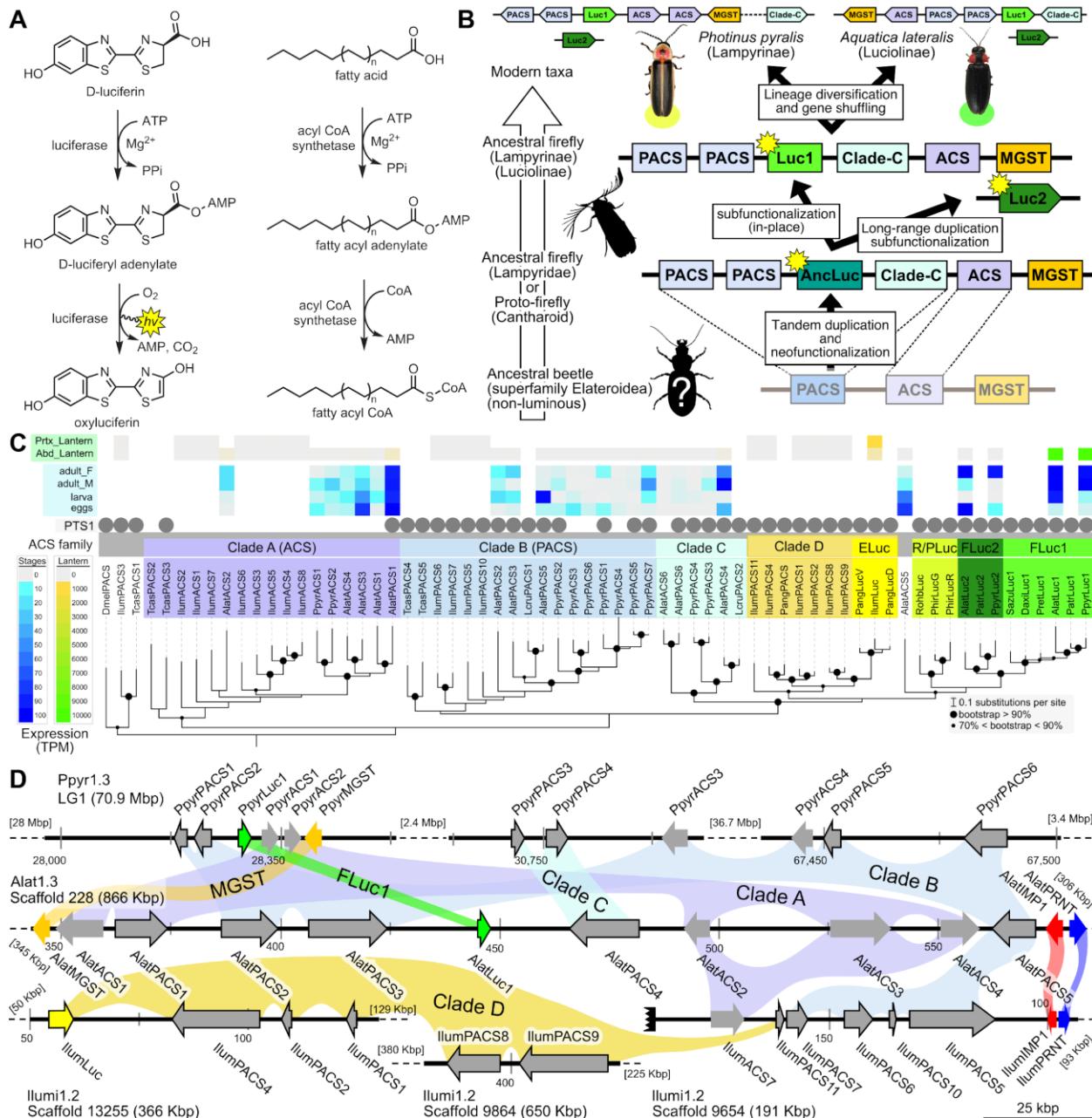

573
574

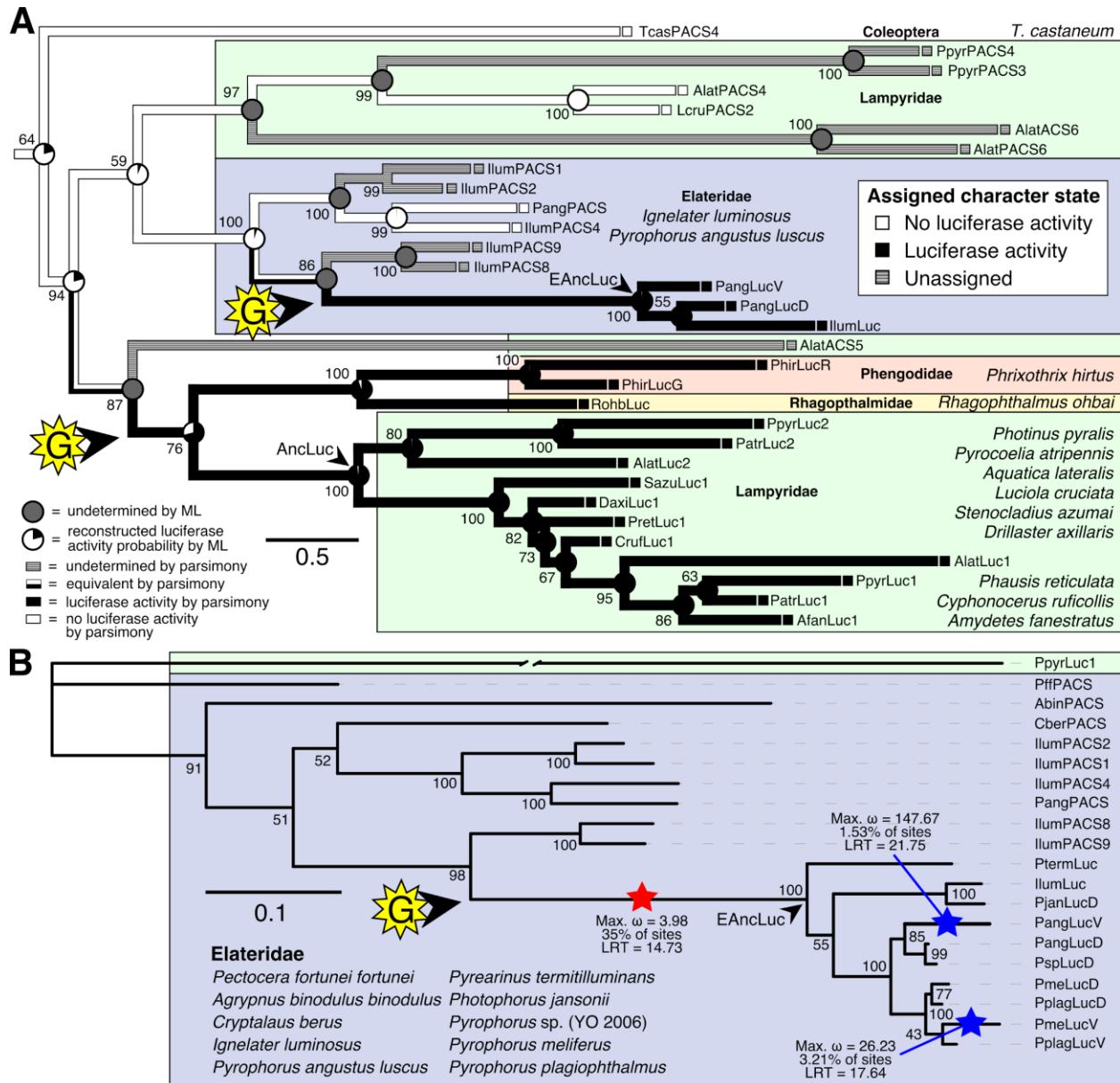
Fig. 2. *Photinus pyralis* genome assembly and analysis.

575 **(A)** Assembled Ppyr1.3 linkage groups with annotation of the location of known
576 luminescence related genes, combined with Hi-C linkage density maps. Linkage group
577 3a (box with black arrow) corresponds to the X chromosome (Supp. Text 1.6.4.1). **(B)**
578 Fluorescence *in situ* hybridization (FISH) on mitotic chromosomes of a *P. pyralis* larvae.
579 The telomeric repeats TTAGG (green) localize to the ends of chromosomes stained with
580 DAPI (blue). 20 paired chromosomes indicates that this individual was an XX female
581 (Supp. Text 1.13). **(C)** Genome schematic of *P. pyralis* mitochondrial genome (mtDNA).
582 Like other firefly mtDNAs, it has a tandem repetitive unit (TRU) (Supp. Text 1.8). **(D)**
583 mCG is enriched across gene bodies of *P. pyralis* and shows methylation levels that are
584 at least two times higher than other holometabolous insects (Supp. Text 1.12). **(E)**

585 Orthogroup (OGs) clustering analysis of genes with Orthofinder (Emms and Kelly 2015)
586 shows a high degree of overlap of the *P. pyralis*, *A. lateralis*, and *I. lumenosus* genesets
587 with the geneset of *Tribolium castaneum*. *=Not fully filtered to single isoform per gene.
588 See Supp. Text 4.2.1 for more detail. Intermediate scripts and species specific overlaps
589 are available on FigShare (DOI: [10.6084/m9.figshare.6671768](https://doi.org/10.6084/m9.figshare.6671768)). (F) Assembly statistics
590 for presented genomes. *=*Tribolium castaneum* model beetle genome assembly
591 (Tribolium Genome Sequencing Consortium et al. 2008) **=Genome size estimated by
592 FC: flow cytometry. *P. pyralis* n=5 females (SEM) *I. lumenosus* n=5 males (SEM), *A.*
593 *lateralis* n=3 technical-replicates of one female (SD). ***=Complete (C), and Duplicated
594 (D), percentages for the Endopterygota BUSCO (Simão et al. 2015) profile (Supp. Text
595 1.4, 2.4, 3.4, 4.1).

596

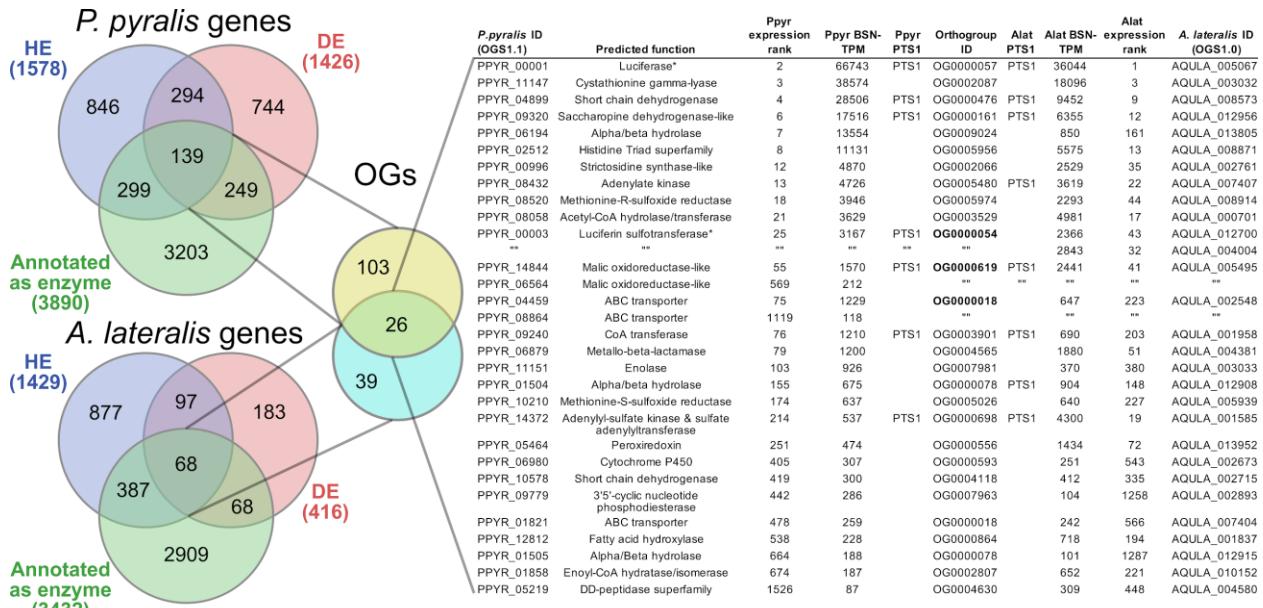
599 **Fig. 3. A genomic view of luciferase evolution**


600 **(A)** The reaction scheme of firefly luciferase is related to that of fatty acyl-CoA
 601 synthetases. **(B)** Model for genomic evolution of firefly luciferases. Ranging from
 602 genome structures of luciferase loci in extant fireflies (top), to inferred genomic
 603 structures in ancestral species (bottom). Arrow (left) represents ascending time. Not all

adjacent genes within the same clade are shown. **(C)** Maximum likelihood tree of luciferase homologs. Grey circles above gene names indicate the presence of peroxisomal targeting signal 1 (PTS1). Color gradients indicate the transcript per million (TPM) values of whole body in each sex/stage (grey to blue) and in the prothorax or abdominal lantern (grey to orange to green). Tree and annotation visualized using iTOL (Letunic and Bork 2016). Prothorax and abdominal lantern expression values for *I. luminosus* are from whole prothorax plus head, and metathorax plus the two most anterior abdominal segments. Fluc=firefly luciferases, Eluc=elaterid luciferases, R/PLuc=rhagophthalmid/phengodid luciferases. (Supp. Text 4.3.2) Gene accession numbers, annotation, and expression values are available on FigShare (DOI: [10.6084/m9.figshare.5725690](https://doi.org/10.6084/m9.figshare.5725690)). **(D)** Synteny analysis of beetle luciferase homologs. About ten PACS and ACS genes flank the *Luc1* gene in both firefly genomes. Although the *Luc1* loci in *P. pyralis* and *A. lateralis* are evidently derived from a common ancestor, the relative positions of the flanking PACS and ACS genes have diverged between the two species. *IlumLuc* was captured on a separate scaffold (Ilumi1.2_Scaffold13255) from its most closely related PACSs (*IlumPACS8*, *IlumPACS9*) on Ilumi1.2_Scaffold9864, although 3 more distantly related PACS genes (*IlumiPACS1*, *IlumiPACS2*, *IlumiPACS4*) are co-localized with *IlumLuc*. In contrast, a different scaffold (Ilumi1.2_Scaffold9654) shows orthology to the firefly *Luc1* locus. The full Ilumi1.2_Scaffold13255 was produced by a manual evidence-supported merge of two scaffolds (Supp. Text 3.5.4). Genes with a PTS1 are indicated by a dark outline. Co-orthologous genes are labeled in the same color in the phylogenetic tree and are connected with corresponding color bands in synteny diagram. Genes and genomic

627 regions are to scale (Scale bar = 25 Kbp). Gaps excluded from the figure are shown
628 with dotted lines and are annotated with their length in square brackets. Scaffold ends
629 are shown with rough black bars. MGST=Microsomal glutathione S-transferase, IMP=

630 Inositol monophosphatase, PRNT=Polyribonucleotide nucleotidyltransferase. Figure
631 produced with GenomeTools 'sketch' (v1.5.9) (Gremme, Steinbiss, and Kurtz 2013).


632

635 **(A)** Ancestral state reconstruction recovers at least two gains of luciferase activity in
636 bioluminescent beetles. Luciferase activity (black: luciferase activity, white: no luciferase
637 activity, shaded: undetermined) was annotated on extant firefly luciferase homologs via
638 literature review or inference via orthology. The ancestral states of luciferase activity
639 within the putative ancestral nodes were then reconstructed with an unordered
640 parsimony framework and a maximum likelihood (ML) framework (Supp. Text 4.3.3).

641 Two gains (“G”) of luciferase activity, annotated with black arrows and yellow stars, are
642 hypothesized. These hypothesized gains occurred once in a gene within the common
643 ancestor of fireflies, rhagophthalmid, and phengodid beetles, and once in a gene within
644 the common ancestor of bioluminescent elaterid beetles. Scale bar is substitutions per
645 site. Numbers adjacent to nodes represents node support. **(B)** Molecular adaptation
646 analysis supports independent neofunctionalization of click beetle luciferase. We tested
647 the molecular adaptation of elaterid luciferase using the adaptive branch-site REL test
648 for episodic diversification (aBSREL) method (Smith et al. 2015) (Supp. Text 4.3.4). The
649 branch leading to the common ancestor of elaterid luciferases (red star) was one of
650 three branches (red and blue stars) recovered with significant ($p < 0.01$) evidence of
651 positive selection, with 35% of sites showing strong directional selection (ω or max
652 $d_N/d_S = 3.98$), which we interpret as signal of the initial neofunctionalization of elaterid
653 ancestral luciferase (EAncLuc) from an ancestor without luciferase activity. Branches
654 with blue stars may represent the post-neofunctionalization selection of a few sites via
655 sexual selection of emission colors. Specific sites identified as under selection using
656 Mixed Effect Model of Evolution (MEME) and Phylogenetic Analysis by Maximum
657 Likelihood (PAML) methods are described in Supp. Text 4.3.4. The tree and results
658 from the full adaptive model are shown. Branch length, with the exception of the
659 PyrLuc1 branch which was shortened, reflects the number of substitutions per site.
660 Numbers adjacent to nodes represents node support. Figure was produced with iTOL
661 (Letunic and Bork 2016).

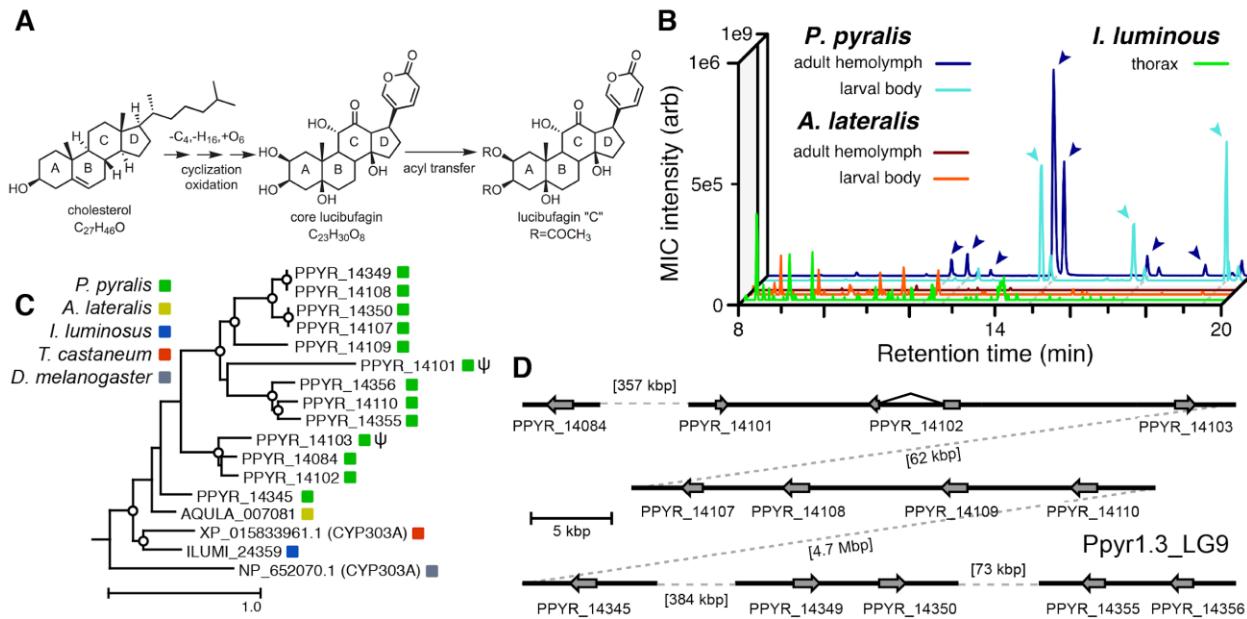

662

Fig. 5. Comparative analyses of firefly lantern expression highlight likely

metabolic adaptations to bioluminescence

Candidate enzymes of bioluminescent accessory metabolism. Enzymes which are highly expressed (HE), differentially expressed (DE), and annotated as enzymes via InterProScan are shown in the Venn diagrams for their respective species. Those genes in the intersection of the two sets which are within the same orthogroup (OGs) as determined by OrthoFinder are shown in the table. Many-to-one orthology relationships are represented by bold orthogroups and blank cells. See Supp. Text 4.2.2 for more detail. *=genes of previously described function)

676 content

677 **(A)** Hypothesized lucibufagin biosynthetic pathway, starting from cholesterol. **(B)** LC-
678 HRAM-MS multi-ion-chromatograms (MIC) showing the summation of exact mass
679 traces for the $[M+H]$ of 11 lucibufagin chemical formulas ± 5 ppm, calibrated for run-
680 specific systematic m/z error (Table S4.6.5.5). Y-axis upper limit for *P. pyralis* adult
681 hemolymph and larval body extract is 1000x larger than other traces. Arrows (blue/teal)
682 indicate features with high MS^2 spectral similarity to known lucibufagins. Sporadic peaks
683 in *A. lateralis* body, and *I. luminosus* thorax traces are not abundant, preventing MS^2
684 spectral acquisition and comparison, but do not match the m/z and RT of *P. pyralis*
685 lucibufagins. (Supp. Text 4.6) **(C)** Maximum likelihood tree of CYP303 family
686 cytochrome P450 enzymes from *P. pyralis*, *A. lateralis*, *T. castaneum*, and *D.*
687 *melanogaster*. *P. pyralis* shows a unique CYP303 family expansion, whereas the other
688 species only have a single CYP303. Circles represent node bootstrap support >60%.

689 Branch length measures substitutions per site. Pseudogenes are annotated with the
690 greek letter Ψ (Supp. Text 1.10.1; 4.2.4). **(D)** Genomic loci for *P. pyralis* CYP303 family
691 genes. These genes are found in multiple gene clusters on LG9, supporting origin via
692 tandem duplication. Introns >4 kbp are shown.

693

694 **References**

695 Bessho-Uehara, Manabu, Kaori Konishi, and Yuichi Oba. 2017. "Biochemical
696 Characteristics and Gene Expression Profiles of Two Paralogous Luciferases from
697 the Japanese Firefly *Pyrocoelia Atripennis* (Coleoptera, Lampyridae, Lampyrinae):
698 Insight into the Evolution of Firefly Luciferase Genes." *Photochemical &*
699 *Photobiological Sciences: Official Journal of the European Photochemistry*
700 *Association and the European Society for Photobiology* 16 (8): 1301–10.

701 Bewick, Adam J., Kevin J. Vogel, Allen J. Moore, and Robert J. Schmitz. 2017.
702 "Evolution of DNA Methylation across Insects." *Molecular Biology and Evolution* 34
703 (3): 654–65.

704 Bitler, B., and W. D. McElroy. 1957. "The Preparation and Properties of Crystalline
705 Firefly Luciferin." *Archives of Biochemistry and Biophysics* 72 (2): 358–68.

706 Bocakova, Milada, Ladislav Bocak, Toby Hunt, Marianna Teraväinen, and Alfried P.
707 Vogler. 2007. "Molecular Phylogenetics of Elateriformia (Coleoptera): Evolution of
708 Bioluminescence and Neoteny." *Cladistics: The International Journal of the Willi*
709 *Hennig Society* 23 (5): 477–96.

710 Branham, Marc A., and John W. Wenzel. 2003. "The Origin of Photic Behavior and the
711 Evolution of Sexual Communication in Fireflies (Coleoptera: Lampyridae)." *Cladistics: The International Journal of the Willi Hennig Society* 19 (1): 1–22.

712 Butler, Jonathan, Iain MacCallum, Michael Kleber, Ilya A. Shlyakhter, Matthew K.
713 Belmonte, Eric S. Lander, Chad Nusbaum, and David B. Jaffe. 2008. "ALLPATHS:
714 De Novo Assembly of Whole-Genome Shotgun Microreads." *Genome Research* 18
715 (5): 810–20.

716 Charles Darwin. 1872. *The Origin of Species*. 6th ed. PF Collier & Son, New York.

717 Costa, Cleide. 1975. "Systematics and Evolution of the Tribes Pyrophorini and
718 Heligmini, with Description of Campyloxeninae, New Subfamily (Coleoptera,
719 Elateridae)." *Arquivos de Zoologia* 26 (2): 49–190.

720 Day, John C. 2013. "The Role of Gene Duplication in the Evolution of Beetle
721 Bioluminescence." *Trends in Entomology* 9: 55–63.

722 De Cock, Raphaël, and Erik Matthysen. 1999. "Aposematism and Bioluminescence:
723 Experimental Evidence from Glow-Worm Larvae(Coleoptera: Lampyridae)." *Evolutionary Ecology* 13 (7-8): 619–39.

724 Dettner, K. 1987. "Chemosystematics and Evolution of Beetle Chemical Defenses."
725 *Annual Review of Entomology* 32 (1): 17–48.

726 Dubois, Raphaël. 1885. "Fonction Photogénique Des Pyrophores." *CR Seances Soc*
727 *Biol Fil* 37: 559–62.

728 ———. 1886. *Les Élatérides lumineux: contribution a l'étude de la production de la*
729 *lumière par les êtres vivants*. la Société zoologique de France.

730 Emms, David M., and Steven Kelly. 2015. "OrthoFinder: Solving Fundamental Biases in
731 Whole Genome Comparisons Dramatically Improves Orthogroup Inference
732 Accuracy." *Genome Biology* 16 (August): 157.

733 Fallon, Timothy R., Fu-Shuang Li, Maria A. Vicent, and Jing-Ke Weng. 2016.
734 "Sulfoluciferin Is Biosynthesized by a Specialized Luciferin Sulfotransferase in
735 Fireflies." *Biochemistry* 55 (24): 3341–44.

736 Feschotte, Cédric, and Ellen J. Pritham. 2007. "DNA Transposons and the Evolution of

739 Eukaryotic Genomes." *Annual Review of Genetics* 41 (1): 331–68.

740 Fraga, Hugo. 2008. "Firefly Luminescence: A Historical Perspective and Recent
741 Developments." *Photochemical & Photobiological Sciences: Official Journal of the
742 European Photochemistry Association and the European Society for Photobiology*
743 7 (2): 146–58.

744 Fu, Xinhua, Jingjing Li, Yu Tian, Weipeng Quan, Shu Zhang, Qian Liu, Fan Liang, et al.
745 2017. "Long-Read Sequence Assembly of the Firefly Pyrocoelia Pectoralis
746 Genome." *GigaScience*, November. <https://doi.org/10.1093/gigascience/gix112>.

747 Ghiradella, Helen, and John T. Schmidt. 2004. "Fireflies at One Hundred plus: A New
748 Look at Flash Control." *Integrative and Comparative Biology* 44 (3): 203–12.

749 Glastad, Karl M., Samuel V. Arsenault, Kim L. Vertacnik, Scott M. Geib, Sasha Kay,
750 Bryan N. Danforth, Sandra M. Rehan, Catherine R. Linnen, Sarah D. Kocher, and
751 Brendan G. Hunt. 2017. "Variation in DNA Methylation Is Not Consistently
752 Reflected by Sociality in Hymenoptera." *Genome Biology and Evolution* 9 (6):
753 1687–98.

754 Gremme, Gordon, Sascha Steinbiss, and Stefan Kurtz. 2013. "GenomeTools: A
755 Comprehensive Software Library for Efficient Processing of Structured Genome
756 Annotations." *IEEE/ACM Transactions on Computational Biology and
757 Bioinformatics / IEEE, ACM* 10 (3): 645–56.

758 Gronquist, Matthew, Jerrold Meinwald, Thomas Eisner, and Frank C. Schroeder. 2005.
759 "Exploring Uncharted Terrain in Nature's Structure Space Using Capillary NMR
760 Spectroscopy: 13 Steroids from 50 Fireflies." *Journal of the American Chemical
761 Society* 127 (31): 10810–11.

762 Hackett, K. J., R. F. Whitcomb, J. G. Tully, J. E. Lloyd, J. J. Anderson, T. B. Clark, R. B.
763 Henegar, D. L. Roset, E. A. Clark, and J. L. Vaughn. 1992. "Lampyridae
764 (Coleoptera): A Plethora of Mollicute Associations." *Microbial Ecology* 23 (2): 181–
765 93.

766 Hamberger, Björn, and Søren Bak. 2013. "Plant P450s as Versatile Drivers for Evolution
767 of Species-Specific Chemical Diversity." *Philosophical Transactions of the Royal
768 Society of London. Series B, Biological Sciences* 368 (1612): 20120426.

769 Kanie, Shusei, Ryosuke Nakai, Makoto Ojika, and Yuichi Oba. 2018. "2-S-
770 Cysteinylhydroquinone Is an Intermediate for the Firefly Luciferin Biosynthesis That
771 Occurs in the Pupal Stage of the Japanese Firefly, *Luciola Lateralis*." *Bioorganic
772 Chemistry*. <https://doi.org/10.1016/j.bioorg.2018.06.028>.

773 Kanie, Shusei, Toshio Nishikawa, Makoto Ojika, and Yuichi Oba. 2016. "One-Pot Non-
774 Enzymatic Formation of Firefly Luciferin in a Neutral Buffer from P-Benzoquinone
775 and Cysteine." *Scientific Reports* 6 (April): 24794.

776 Kapitonov, V. V., and J. Jurka. 2001. "Rolling-Circle Transposons in Eukaryotes."
777 *Proceedings of the National Academy of Sciences of the United States of America*
778 98 (15): 8714–19.

779 Katzourakis, Aris, and Robert J. Gifford. 2010. "Endogenous Viral Elements in Animal
780 Genomes." *PLoS Genetics* 6 (11): e1001191.

781 Letunic, Ivica, and Peer Bork. 2016. "Interactive Tree of Life (iTOL) v3: An Online Tool
782 for the Display and Annotation of Phylogenetic and Other Trees." *Nucleic Acids
783 Research* 44 (W1): W242–45.

784 Lewis, Sara M., and Christopher K. Cratsley. 2008. "Flash Signal Evolution, Mate

785 Choice, and Predation in Fireflies." *Annual Review of Entomology* 53: 293–321.
786 Lloyd, James E. 1966. "Studies on the Flash Communication System in *Photinus*
787 Fireflies." <https://deepblue.lib.umich.edu/bitstream/handle/2027.42/56374/MP130.pdf>.
788 Lower, Sarah Sander, J. Spencer Johnston, Kathrin F. Stanger-Hall, Carl E. Hjelmen,
789 Shawn J. Hanrahan, Katharine Korunes, and David Hall. 2017. "Genome Size in
790 North American Fireflies: Substantial Variation Likely Driven by Neutral Processes."
791 *Genome Biology and Evolution* 9 (6): 1499–1512.
792 Maddison, W. P., and D. R. Maddison. 2017. *Mesquite: A Modular System for*
793 *Evolutionary Analysis* (version 3.31). <http://mesquiteproject.org>.
794 Maeda, Juri, Dai-Ichiro Kato, Kazunari Arima, Yuji Ito, Atsushi Toyoda, and Hideki
795 Noguchi. 2017. "The Complete Mitochondrial Genome Sequence and Phylogenetic
796 Analysis of *Luciola Lateralis*, One of the Most Famous Firefly in Japan (Coleoptera:
797 Lampyridae)." *Mitochondrial DNA Part B* 2 (2): 546–47.
798 Marshall, Sergio H., Ramón Ramírez, Alvaro Labra, Marisela Carmona, and Cristián
799 Muñoz. 2014. "Bona Fide Evidence for Natural Vertical Transmission of Infectious
800 Salmon Anemia Virus in Freshwater Brood Stocks of Farmed Atlantic Salmon
801 (*Salmo Salar*) in Southern Chile." *Journal of Virology* 88 (11): 6012–18.
802 Martin, Gavin J., Marc A. Branham, Michael F. Whiting, and Seth M. Bybee. 2017.
803 "Total Evidence Phylogeny and the Evolution of Adult Bioluminescence in Fireflies
804 (Coleoptera: Lampyridae)." *Molecular Phylogenetics and Evolution* 107 (February):
805 564–75.
806 Mckenna, Duane D., Alexander L. Wild, Kojun Kanda, Charles L. Bellamy, Rolf G.
807 Beutel, Michael S. Caterino, Charles W. Farnum, et al. 2015. "The Beetle Tree of
808 Life Reveals That Coleoptera Survived End-Permian Mass Extinction to Diversify
809 during the Cretaceous Terrestrial Revolution." *Systematic Entomology* 40 (4): 835–
810 80.
811 Meinwald, Jerrold, David F. Wiemer, and Thomas Eisner. 1979. "Lucibufagins. 2. Esters
812 of 12-Oxo-2. β .,5. β .,11. α .-Trihydroxybufalin, the Major Defensive Steroids
813 of the Firefly *Photinus Pyralis* (Coleoptera: Lampyridae)." *Journal of the American
814 Chemical Society* 101 (11): 3055–60.
815 Misof, Bernhard, Shanlin Liu, Karen Meusemann, Ralph S. Peters, Alexander Donath,
816 Christoph Mayer, Paul B. Frandsen, et al. 2014. "Phylogenomics Resolves the
817 Timing and Pattern of Insect Evolution." *Science* 346 (6210): 763–67.
818 Newman, David J., and Gordon M. Cragg. 2015. "Endophytic and Epiphytic Microbes as
819 'Sources' of Bioactive Agents." *Frontiers in Chemistry* 3 (May): 34.
820 Ni, Jinfei D., Lisa S. Baik, Todd C. Holmes, and Craig Montell. 2017. "A Rhodopsin in
821 the Brain Functions in Circadian Photoentrainment in *Drosophila*." *Nature* 545
822 (7654): 340–44.
823 Oba, Y. 2009. "On the Origin of Beetle Luminescence." *Bioluminescence in Focus. Res
824 Signpost, India*, 277–90.
825 Oba, Y., and K. H. Hoffmann. 2014. "Insect Bioluminescence in the Post-Molecular
826 Biology Era." *Insect Molecular Biology and Ecology*, 94–120.
827 Oba, Yuichi, Mana Furuhashi, Manabu Bessho, Shingo Sagawa, Haruyoshi Ikeya, and
828 Satoshi Inouye. 2013. "Bioluminescence of a Firefly Pupa: Involvement of a
829 Luciferase Isozyme in the Dim Glow of Pupae and Eggs in the Japanese Firefly,
830

831 Luciola Lateralis." *Photochemical & Photobiological Sciences: Official Journal of the*
832 *European Photochemistry Association and the European Society for Photobiology*
833 12 (5): 854–63.

834 Oba, Yuichi, Mizuho Kumazaki, and Satoshi Inouye. 2010. "Characterization of
835 Luciferases and Its Paralogue in the Panamanian Luminous Click Beetle
836 Pyrophorus Angustus: A Click Beetle Luciferase Lacks the Fatty Acyl-CoA
837 Synthetic Activity." *Gene* 452 (1): 1–6.

838 Oba, Yuichi, Makoto Ojika, and Satoshi Inouye. 2003. "Firefly Luciferase Is a
839 Bifunctional Enzyme: ATP-Dependent Monooxygenase and a Long Chain Fatty
840 Acyl-CoA Synthetase." *FEBS Letters* 540 (1-3): 251–54.

841 Oba, Yuichi, Mitsunori Sato, Yuichiro Ohta, and Satoshi Inouye. 2006. "Identification of
842 Paralogous Genes of Firefly Luciferase in the Japanese Firefly, *Luciola Cruciata*."
843 *Gene* 368 (March): 53–60.

844 Oba, Yuichi, Naoki Yoshida, Shusei Kanie, Makoto Ojika, and Satoshi Inouye. 2013.
845 "Biosynthesis of Firefly Luciferin in Adult Lantern: Decarboxylation of L-Cysteine Is
846 a Key Step for Benzothiazole Ring Formation in Firefly Luciferin Synthesis." *PLoS*
847 *One* 8 (12): e84023.

848 Okada, Kunisuke, Hideo Iio, Ichiro Kubota, and Toshio Goto. 1974. "Firefly
849 Bioluminescence III. Conversion of Oxyluciferin to Luciferin in Firefly." *Tetrahedron*
850 Letters 15 (32): 2771–74.

851 Ow, D. W., J. R. DE Wet, D. R. Helinski, S. H. Howell, K. V. Wood, and M. Deluca.
852 1986. "Transient and Stable Expression of the Firefly Luciferase Gene in Plant
853 Cells and Transgenic Plants." *Science* 234 (4778): 856–59.

854 Sagegami-Oba, Reiko, Yuichi Oba, and Hitoo Ohira. 2007. "Phylogenetic Relationships
855 of Click Beetles (Coleoptera: Elateridae) Inferred from 28S Ribosomal DNA:
856 Insights into the Evolution of Bioluminescence in Elateridae." *Molecular*
857 *Phylogenetics and Evolution* 42 (2): 410–21.

858 Shear, William A. 2015. "The Chemical Defenses of Millipedes (diplopoda):
859 Biochemistry, Physiology and Ecology." *Biochemical Systematics and Ecology* 61
860 (August): 78–117.

861 Shimomura, Osamu. 2012. *Bioluminescence: Chemical Principles and Methods*. World
862 Scientific.

863 Simão, Felipe A., Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva,
864 and Evgeny M. Zdobnov. 2015. "BUSCO: Assessing Genome Assembly and
865 Annotation Completeness with Single-Copy Orthologs." *Bioinformatics* 31 (19):
866 3210–12.

867 Smedley, Scott R., Riley G. Risteen, Kathareeyya K. Tonyai, Julia C. Pitino, Yunming Hu,
868 Zenab B. Ahmed, Brian T. Christofel, et al. 2017. "Bufadienolides (lucibufagins)
869 from an Ecologically Aberrant Firefly (*Ellychnia Corrusca*)." *Chemoecology* 27 (4):
870 141–53.

871 Smith, Martin D., Joel O. Wertheim, Steven Weaver, Ben Murrell, Konrad Scheffler, and
872 Sergei L. Kosakovsky Pond. 2015. "Less Is More: An Adaptive Branch-Site
873 Random Effects Model for Efficient Detection of Episodic Diversifying Selection."
874 *Molecular Biology and Evolution* 32 (5): 1342–53.

875 Stanger-Hall, Kathrin F., and James E. Lloyd. 2015. "Flash Signal Evolution in *Photinus*
876 Fireflies: Character Displacement and Signal Exploitation in a Visual

877 Communication System." *Evolution; International Journal of Organic Evolution* 69
878 (3): 666–82.

879 Tribolium Genome Sequencing Consortium, Stephen Richards, Richard A. Gibbs,
880 George M. Weinstock, Susan J. Brown, Robin Denell, Richard W. Beeman, et al.
881 2008. "The Genome of the Model Beetle and Pest *Tribolium Castaneum*." *Nature*
882 452 (7190): 949–55.

883 Tyler, John, William Mckinnon, Gwyn A. Lord, and Philip J. Hilton. 2008. "A Defensive
884 Steroidal Pyrone in the Glow-Worm *Lampyris Noctiluca* L.(Coleoptera:
885 *Lampyridae*)." *Physiological Entomology* 33 (2): 167–70.

886 Weisenfeld, Neil I., Vijay Kumar, Preyas Shah, Deanna M. Church, and David B. Jaffe.
887 2017. "Direct Determination of Diploid Genome Sequences." *Genome Research* 27
888 (5): 757–67.

889 Weng, Jing-Ke. 2014. "The Evolutionary Paths towards Complexity: A Metabolic
890 Perspective." *The New Phytologist* 201 (4): 1141–49.

891 Wet, J. R. de, K. V. Wood, D. R. Helinski, and M. DeLuca. 1985. "Cloning of Firefly
892 Luciferase cDNA and the Expression of Active Luciferase in *Escherichia Coli*."
893 *Proceedings of the National Academy of Sciences of the United States of America*
894 82 (23): 7870–73.

895 Willingham, Aarron T., and Thomas Keil. 2004. "A Tissue Specific Cytochrome P450
896 Required for the Structure and Function of *Drosophila* Sensory Organs."
897 *Mechanisms of Development* 121 (10): 1289–97.

898 Zdobnov, Evgeny M., Fredrik Tegenfeldt, Dmitry Kuznetsov, Robert M. Waterhouse,
899 Felipe A. Simão, Panagiotis Ioannidis, Mathieu Seppey, Alexis Loetscher, and
900 Evgenia V. Kriventseva. 2017. "OrthoDB v9.1: Cataloging Evolutionary and
901 Functional Annotations for Animal, Fungal, Plant, Archaeal, Bacterial and Viral
902 Orthologs." *Nucleic Acids Research* 45 (D1): D744–49.

903 Zimin, Aleksey V., Guillaume Marçais, Daniela Puiu, Michael Roberts, Steven L.
904 Salzberg, and James A. Yorke. 2013. "The MaSuRCA Genome Assembler."
905 *Bioinformatics* 29 (21): 2669–77.

906

907

908

909

910

911

Supplementary Information for

Firefly genomes illuminate parallel origins of bioluminescence in beetles

Timothy R. Fallon*, Sarah E. Lower*, Ching-Ho Chang, Manabu Bessho-Uehara, Gavin J. Martin, Adam J. Bewick, Megan Behringer, Humberto J. Debat, Isaac Wong, John C. Day, Anton Suvorov, Christian J. Silva, Kathrin F. Stanger-Hall, David W. Hall, Robert J. Schmitz, David R. Nelson, Sara Lewis, Shuji Shigenobu, Seth M. Bybee, Amanda M. Larracuente, Yuichi Oba & Jing-Ke Weng[†]

*These authors contributed equally to this work.

[†]Corresponding author: wengj@wi.mit.edu

TABLE OF CONTENTS

13		
14		
15	SUPPLEMENTARY TEXT 1: <i>Photinus pyralis</i> additional information	6
16	1.1 Taxonomy, biology, and life history	6
17	Video S1: A <i>Photinus pyralis</i> courtship dialogue	7
18	1.2 Species distribution	7
19	Figure S1.2.1: Detailed geographic distribution map for <i>P. pyralis</i>	9
20	1.3 Specimen collection and identification	9
21	Figure S1.3.1: <i>P. pyralis</i> aedeagus (male genitalia)	10
22	1.3.2 Collection and rearing of <i>P. pyralis</i> larvae	10
23	Figure S1.3.2.1: Luminescence of <i>P. pyralis</i> eggs.	13
24	Figure S1.3.2.2: Gregarious predation of young <i>P. pyralis</i> larvae on live <i>Lumbricus</i>	
25	<i>terrestris</i>	14
26	1.4 Karyotype and genome size	14
27	1.5 Library preparation and sequencing	15
28	1.5.1 Illumina	15
29	Figure S1.5.1.1: Genome scope kmer analysis of the <i>P. pyralis</i> short read library.	15
30	1.5.2 PacBio	16
31	Figure S1.5.2.1: PFGE of <i>P. pyralis</i> HMW DNA used for PacBio sequencing	17
32	Figure S1.5.2.2: Subread length distribution for <i>P. pyralis</i> PacBio RSII sequencing.	18
33	1.5.3 Hi-C library preparation	18
34	1.6 Genome assembly	19
35	1.6.2 Ppyr1.1: MaSuRCA hybrid assembly	19
36	1.6.3 Ppyr1.2: Scaffolding with Hi-C	19
37	1.6.4 Ppyr1.3: Manual curation and taxonomic annotation filtering	20
38	1.6.4.1 Defining the X chromosome	20
39	1.6.4.2 Taxonomic annotation filtering	20
40	Figure S1.6.4.2.1: Blobplot of Illumina short-insert reads aligned against Ppyr1.222	
41	Figure S1.6.4.2.2: Blobplot of <i>P. pyralis</i> PacBio reads aligned against Ppyr1.2	23
42	Figure S1.6.4.2.3: Venn diagram representation of blobtools taxonomic	
43	annotation filtering approach for Ppyr1.2 scaffolds.	24
44	1.7 Ppyr0.1-PB: PacBio only genome assembly	24
45	1.8 Mitochondrial genome assembly and annotation	24
46	Figure S1.8.1: Mitochondrial genome of <i>P. pyralis</i>	26
47	1.9 Transcriptome analysis	27
48	1.9.1 RNA-extraction, library preparation and sequencing	27
49	1.9.2 De novo transcriptome assembly and genome alignment	29
50	1.9.3 Reference guided transcriptome assembly	29
51	1.9.4 Transcript expression analysis	30
52	1.10 Official coding geneset annotation (PPYR_OGS1.1)	30
53	1.10.1 P450 annotation	31

54	Figure S1.10.1.1: <i>P. pyralis</i> P450 gene phylogenetic tree	33
55	1.10.2 Virus annotation and analysis	33
56	1.11 Repeat annotation	36
57	Table S1.11.1: Annotated repetitive elements in <i>P. pyralis</i>	36
58	1.12 <i>P. pyralis</i> methylation analysis	37
59	1.13 Telomere FISH analysis	37
60	SUPPLEMENTARY TEXT 2: <i>Aquatica lateralis</i> additional information	39
61	2.1 Taxonomy, biology, and life history	39
62	2.2 Species distribution	39
63	2.3 Specimen collection	40
64	2.4 Karyotype and genome size	40
65	2.5 Genomic sequencing and assembly	41
66	Figure S2.5.1: Genome scope kmer analysis of the <i>A. lateralis</i> short-insert genomic library.	42
68	2.5.2 Taxonomic annotation filtering	42
69	Figure S2.5.2.1: Blobplot of <i>A. lateralis</i> Illumina reads aligned against Alat1.2	43
70	2.6 RNA-extraction, library preparation and sequencing	43
71	Table S2.6.1: <i>Aquatica lateralis</i> RNA sequencing	44
72	2.7 Transcriptome analysis	45
73	2.7.1 De novo transcriptome assembly and alignment	45
74	2.7.2 Reference guided transcriptome alignment and assembly	45
75	2.7.3 Transcript expression analysis	46
76	2.8 Official coding geneset annotation (AQUA_OGS1.0)	46
77	2.9 Repeat annotation	47
78	Table S2.9.1: Annotated repetitive elements in <i>A. lateralis</i>	47
79	SUPPLEMENTARY TEXT 3: <i>Ignelater luminosus</i> additional information	49
80	3.1 Taxonomy, biology, and life history	49
81	3.2 Species distribution	50
82	3.3 Collection	50
83	Figure S3.3.1: <i>I. luminosus</i> aedeagus (male genitalia)	51
84	3.4 Karyotype and genome size	51
85	3.5 Genomic sequencing and assembly	52
86	Figure S3.5.1: Genome scope kmer analysis of the <i>I. luminosus</i> linked-read genomic library.	53
88	3.5.2 Taxonomic annotation filtering	53
89	Figure S3.5.2.1: Blobtools plot of Ilumi1.0	55
90	3.5.3 Ilumi1.1: Indel polishing	55
91	3.5.4 Ilumi1.2: Manual long-read scaffolding	56
92	Figure S3.5.4.1: Self alignment of the Ilumi1.1_Scaffold13255 right-edge extending long MinION read.	58

94	Table S3.5.4.2: Sequence of the <i>I. luminosus</i> luciferase cluster splitting complex tandem repeat	58
95	Figure S3.5.4.3: Diagram of manual scaffold merges between Ilumi1.1 and Ilumi1.2	59
96	3.6 RNA extraction, library prep, and sequencing	59
97	3.6.1 HiSeq2500	59
98	3.6.2 BGISEQ-500	59
99	Table S3.6.3: <i>I. luminosus</i> RNA-Seq libraries	60
100	3.7 Transcriptome analysis	60
101	3.7.1 De novo transcriptome assembly and alignment	61
102	3.7.2 Reference guided transcriptome alignment and assembly	61
103	3.8 Official coding geneset annotation (ILUMI_OGS1.2)	62
104	3.9 Repeat annotation	63
105	3.10 Mitochondrial genome assembly and annotation	64
106	Figure S3.10.1: Mitochondrial genome of <i>I. luminosus</i>	65
107		
108	SUPPLEMENTARY TEXT 4: Comparative analyses	66
109	4.1 Assembly statistics and comparisons	66
110	Table S4.1.1: Genomic sequencing library statistics	66
111	Table S4.1.2: Assembly statistics	67
112	Table S4.1.3: Comparison of BUSCO conserved gene content with other insect genome assemblies	69
113		
114	4.2 Comparative analyses	69
115	4.2.1 Protein orthogroup clustering	69
116	Figure S4.2.1.1: Venn diagram of <i>P. pyralis</i> , <i>A. lateralis</i> , <i>I. luminosus</i> , <i>T. castaneum</i> , and <i>D. melanogaster</i> orthogroup relationships.	70
117		
118	4.2.3 Comparative methylation analyses	71
119	Figure S4.2.3.1: DNA and tRNA methyltransferase gene phylogeny	71
120	4.2.3.2: CpG[O/E] methylation analysis	72
121	Figure S4.2.3.3: Detection of DNA methylation using CpG[O/E]	73
122	4.2.4 CYP303 evolutionary analysis (Fig. 6C)	73
123	4.3 Luciferase evolution analyses	74
124	4.3.1 Luciferase genetics overview	74
125	Figure S4.3.1.1: Intron-exon structure of beetle luciferases.	75
126	Figure S4.3.1.2: Multiple sequence alignment of firefly luciferase genes	76
127	4.3.2 Luciferase homolog gene tree (Fig. 3C)	76
128	Figure S4.3.2.1: Preliminary maximum likelihood phylogeny of luciferase homologs	78
129	4.3.4 Testing for ancestral selection of elaterid ancestral luciferase (Fig. 4B)	79
130	4.4 Non-enzyme highly and differentially expressed genes of the firefly lantern	83
131	Table S4.4.1: Highly expressed (HE), differentially expressed (DE), non-enzyme annotated (NotE), lantern genes whose closest relative in the opposite species is also HE, DE, NotE. BSN-TPM = between sample normalized TPM	84
132		
133	Figure S4.4.2: Maximum likelihood gene tree of the combined adenylyl-sulfate kinase & sulfate adenylyltransferase (ASKSA) orthogroup.	87
134		
135		

136	4.5 Opsin analysis	87
137	Figure S4.5.1: ML tree and gene expression levels of opsin genes.	89
138	4.6 LC-HRAM-MS of lucibufagin content in <i>P. pyralis</i> , <i>A. lateralis</i> , and <i>I. luminosus</i>	90
139	Figure S4.6.1: Positive mode MS ¹ total-ion-chromatogram (TIC) of <i>P. pyralis</i> adult hemolymph LC-HRAM-MS data.	92
140	Figure S4.6.2: Negative mode MS ¹ total-ion-chromatogram (TIC) of <i>P. pyralis</i> adult hemolymph LC-HRAM-MS data.	93
141	Figure S4.6.3: Positive mode MS ¹ total-ion-chromatogram (TIC) of <i>P. pyralis</i> larval whole body minus 2 posterior segments LC-HRAM-MS data.	93
142	Figure S4.6.4: Negative mode MS ¹ total-ion-chromatogram (TIC) of <i>P. pyralis</i> larval whole body minus 2 posterior segments LC-HRAM-MS data.	94
143	Figure S4.6.5: Positive mode MS ¹ total-ion-chromatogram (TIC) of <i>A. lateralis</i> adult hemolymph LC-HRAM-MS data.	94
144	Figure S4.6.6: Negative mode MS ¹ total-ion-chromatogram (TIC) of <i>A. lateralis</i> adult hemolymph LC-HRAM-MS data.	95
145	Figure S4.6.7: Positive mode MS ¹ total-ion-chromatogram (TIC) of <i>A. lateralis</i> larval whole body LC-HRAM-MS data.	95
146	Figure S4.6.8: Negative mode MS ¹ total-ion-chromatogram (TIC) of <i>A. lateralis</i> larval whole body extract LC-HRAM-MS data.	96
147	Figure S4.6.9: Positive mode MS ¹ total-ion-chromatogram (TIC) of <i>I. luminosus</i> mesothorax+abdomen extract LC-HRAM-MS data.	96
148	Figure S4.6.10: Negative mode MS ¹ total-ion-chromatogram (TIC) of <i>I. luminosus</i> mesothorax+abdomen extract LC-HRAM-MS data.	97
149	4.6.5 MS ² similarity search for <i>P. pyralis</i> lucibufagins	97
150	Figure S4.6.5.2: MS ² spectral similarity network for <i>P. pyralis</i> adult hemolymph lucibufagins.	99
151	Table S4.6.5.3: Putative lucibufagin compounds from LC-HRAM-MS of <i>P. pyralis</i> adult hemolymph.	99
152	Table S4.6.5.4: Putative lucibufagin compounds from LC-HRAM-MS of <i>P. pyralis</i> larval partial body extracts.	100
153	Table S4.6.5.5: Putative lucibufagin [M+H] ⁺ exact masses adjusted for instrument run specific systematic m/z error (Fig. 6B).	101
154	4.6.7 MS2 similarity search for <i>A. lateralis</i> lucibufagins	102
155	Table S4.6.7.1: Relative quantification of features identified by lucibufagin MS ² similarity search	103
156	SUPPLEMENTARY TEXT 5: Holobiont analyses	104
157	5.1 Assembly and annotation of the complete <i>Entomoplasma luminosum</i> subsp. <i>pyralis</i> genome	104
158	5.2 Assembly and annotation of Phorid mitochondrial genome	104
159	Figure S5.2.1: Mitochondrial genome of <i>Apocephalus antennatus</i> .	106
160	5.3 Taxonomic identification of Phorid mitochondrial genome origin	106
161	5.4 <i>Photinus pyralis</i> orthomyxo-like viruses	107
162	Figure S5.4.1: <i>Photinus pyralis</i> viruses and endogenous viral-like elements.	116
163	Figure S5.4.2: Pairwise identity of OMLV viral proteins amongst identified OMLV viruses.	118

180	Table S5.4.3: Best hits from BLASTP of PpyrOMLV proteins against the NCBI database	119
181	Table S5.4.4: InterProScan domain annotation of PpyrOMLV proteins	120
182	Table S5.4.5: FPKM of reads mapped to PpyrOMLV genome segments from <i>P. pyralis</i>	
183	RNA-Seq datasets	122
184	Table S5.4.6: FPKM of reads mapped to PpyrOMLV genome segments from <i>P. pyralis</i>	
185	RNA-Seq datasets	123
186	5.5 <i>P. pyralis</i> Endogenous virus-like Elements (EVEs)	124
187	Table S5.5.1: FEVE hits from BLASTX of PpyrOMLV PB1	127
188	Table S5.5.2: FEVE hits from BLASTX of PpyrOMLV PB2	129
189	Table S5.5.3: FEVE hits from BLASTX of PpyrOMLV PA	129
190	Table S5.5.4: FEVE hits from BLASTX of PpyrOMLV HA	129
191	Table S5.5.5: FEVE hits from BLASTX of PpyrOMLV NP	130
192	Table S6: Experiment.com donors	131
193	SUPPLEMENTARY TEXT 7: Data availability	132
194	7.1 Files on FigShare:	132
195	7.2 Files on www.firebaseio.org / www.github.org:	133
196	7.2.1 <i>Photinus pyralis</i> genome and associated files	133
197	7.2.2 <i>Aquatica lateralis</i> genome and associated files	134
198	7.2.3 <i>Ignelater luminosus</i> genome and associated files	134
199	7.3 Tracks on www.firebaseio.org JBrowse genome browser:	135
200	Bibliography	136
201		

202 **SUPPLEMENTARY TEXT 1: *Photinus pyralis* additional information**

203 **1.1 Taxonomy, biology, and life history**

204 *Photinus pyralis* (Linnaeus 1767) is amongst the most widespread and abundant of all
205 U.S. fireflies[1,2]. It inspired extensive work on the biochemistry and physiology of firefly
206 bioluminescence in the early 20th century, and the first luciferase gene was cloned from this
207 species[3]. A habitat generalist, *P. pyralis* occurs in fields, meadows, suburban lawns, forests,
208 and woodland edges, and even urban environments. For example, the authors have observed
209 *P. pyralis* flashing in urban New York City and Washington D.C. Adults rest on vegetation during
210 the day and signaling begins as early as 20 minutes before sunset[1]. Male flashing is cued by
211 ambient light levels, thus shaded or unshaded habitats can show up to a 30 minute difference in
212 the initiation of male flashing[1]. Males can be cued to flash outside of true twilight if exposed to
213 light intensities simulating twilight[4]. *P. pyralis* were also reported to flash during totality of the
214 total solar eclipse of 2017 (Personal communication: L.F. Faust, M.A. Branham). Courtship
215 activity lasts for 30-45 minutes and both sexes participate in a bioluminescent flash dialog, as is
216 typical for *Photinus* fireflies.

217 Males initiate courtship by flying low above the ground while repeating a single ~300 ms
218 patrol flash at ~5-10 second intervals[4]. Males emit their patrol flash while dipping down and
219 then ascending vertically, creating a distinctive J-shaped flash gesture[1,4] (Fig. 1A). During
220 courtship, females perch on vegetation and respond to a male patrol flash by twisting their
221 abdomen towards the source of the flash and giving a single response flash given after a 2-3
222 sec delay ([Video S1](#)). Receptive females will readily respond to simulated male flashes, such as
223 those produced by an investigator's penlight. Females have fully developed wings and are
224 capable of flight. Both sexes are capable of mating several times during their adult lives. During
225 mating, males transfer to females a fitness-enhancing nuptial gift consisting of a spermatophore
226 manufactured by multiple accessory glands[5]; the molecular composition of this nuptial gift has
227 recently been elucidated for *P. pyralis*[6]. In other *Photinus* species, male gift size decreases
228 across sequential matings[7], and multiple matings are associated with increased female
229 fecundity[8].

230 Adult *P. pyralis* live 2-3 weeks, and although these adults are typically considered non-
231 feeding, both sexes have been reported drinking nectar from the flowers of the milkweed
232 *Asclepias syriaca*[9]. Mated females store sperm and lay ~30-50 eggs over the course of a few
233 days on moss or in moist soil. The eggs take 2-3 weeks to hatch. Larval bioluminescence is
234 thought to be universal for the Lampyridae, where it appears to function as an aposematic
235 warning signal. Like other *Photinus*, *P. pyralis* larvae are predatory, live on and beneath the soil,
236 and appear to be earthworm specialists[10]. In the northern parts of its range, slower
237 development likely requires *P. pyralis* to overwinter at least twice, most likely as larvae. Farther
238 south, *P. pyralis* may complete development within several months, achieving two generations
239 per year[11], which may be possibly be observed in the South as a "second wave" of signalling
240 *P. pyralis* in September.

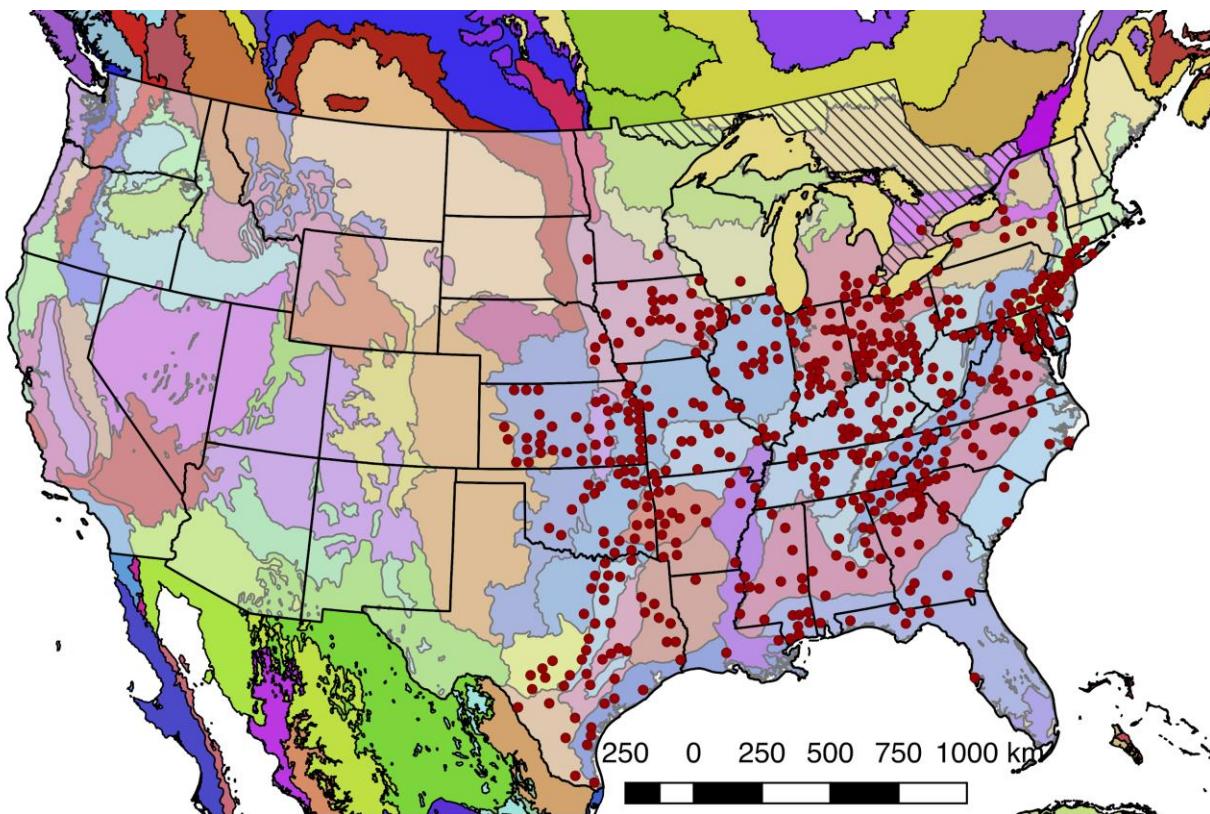
241 Anti-predator chemical defenses of male *P. pyralis* include several bufadienolides,
242 known as lucibufagins, that circulate in the hemolymph[12]. Pterins have also been reported to
243 be abundant in *P. pyralis*[13], however the potential defense role of these compounds has never
244 been tested (Personal communication: J. Meinwald). When attacked, *P. pyralis* males release
245 copious amounts of rapidly coagulating hemolymph and such “reflex-bleeding” may also provide
246 physical protection against small predators[14,15].

247

248

249 [**Video S1: A *Photinus pyralis* courtship dialogue**](#)

250 **1.2 Species distribution**


251 Although *Photinus pyralis* is widely distributed in the Eastern United States, published
252 descriptions of its range are limited, with the notable exception of Lloyd's 1966 monograph[1]
253 which addresses the range of many *Photinus* species. We therefore sought to characterize the
254 current distribution of *P. pyralis* in order to produce an updated map to inform our experimental
255 design and enable future population genetic studies. Four sources of data were used to produce

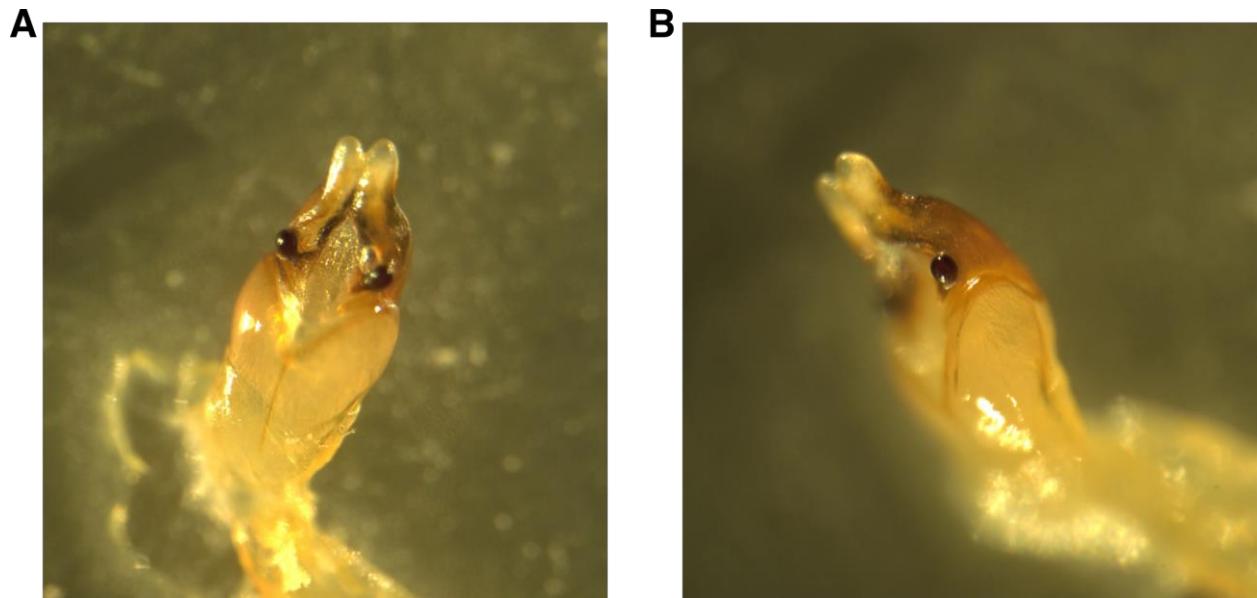
256 the presented range map of *P. pyralis*: (i) Field surveys by the authors (ii) Published[1,16] and
257 unpublished sightings of *P. pyralis* at county level resolution, provided by Dr. J. Lloyd (University
258 of Florida), (iii) coordinates and dates of *P. pyralis* sightings, obtained by targeted e-mail
259 surveys to firefly field biologists, (iv) citizen scientist reports of *P. pyralis* through the iNaturalist
260 platform[17]. iNaturalist sightings were manually curated to only include reports which could be
261 unambiguously identified as *P. pyralis* from the photos, and also that also included GPS
262 geotagging to <100 m accuracy. A spreadsheet of these sightings is available on FigShare
263 (DOI: [10.6084/m9.figshare.5688826](https://doi.org/10.6084/m9.figshare.5688826)).

264 QGIS (v2.18.9)[18] was used for data viewing and figure creation. A custom Python
265 script[19] within QGIS was used to link *P. pyralis* sightings to counties from the US census
266 shapefile[20]. Outlying points that were located in Desert Ecoregions of the World Wildlife Fund
267 (WWF) Terrestrial Ecoregions shapefile[21,22] or the westernmost edge of the range were
268 manually removed, as they are likely isolated populations not representative of the contiguous
269 range. For Fig. 1B, these points were converted to a polygonal range map using the “Concave
270 hull” QGIS plugin (“nearest neighbors = 19”) followed by smoothing with the Generalizer QGIS
271 plugin with Chaiken’s algorithm (Level=10, and Weight = 3.00). Below (Figure S1.2.1), red
272 circles indicate county-centroided presence records.

273 In our field surveys, we found that the range of *P. pyralis* was notably extended from the
274 range reported by Lloyd, specifically we found *P. pyralis* in abundance to the west of the Mill
275 river in Connecticut. *P. pyralis* is found with confidence roughly from Connecticut to Texas, and
276 possibly as far south as Guatemala (Personal communication: A. Catalán). These possible
277 southern populations require further study.

278
279

281
282 **Figure S1.2.1:** Detailed geographic distribution map for *P. pyralis*


283 *P. pyralis* sightings (red circles show county centroided reports) in the United States and
284 Ontario, Canada (diagonal hashes). The World Wildlife Fund Terrestrial Ecoregions[21,22] are
285 also shown (colored shapes). The *P. pyralis* sighting dataset shown is identical to that used to
286 prepare Fig. 1B.

287 **1.3 Specimen collection and identification**

288 Adult male *P. pyralis* specimens for Illumina short-insert and mate-pair sequencing were
289 collected at sunset on June 13th, 2011 near the Visitor's Center at Great Smoky Mountains
290 National Park (permit to Dr. Kathrin Stanger-Hall). Specimens were identified to species and sex
291 via morphology[23], flash pattern and behavior[1], and *cytochrome-oxidase I* (COI) similarity
292 (partial sequence: primers HCO, LCO[24]) when blasted against an in-house database of firefly
293 COI nucleotide sequences. Collected fireflies were stored in 95% ethanol at -80°C until DNA
294 extraction.

295 Adult male *P. pyralis* specimens for Pacific Biosciences (PacBio) RSII sequencing were
296 captured during flight at sunset on June 9th, 2016, from Mercer Meadows in Lawrenceville, NJ
297 (40.3065 N 74.74831 W), on the basis of the characteristic "rising J" flash pattern of *P. pyralis*
298 (permit to TRF via Mercer County Parks Commission). Collected fireflies were sorted, briefly
299 checked to be likely *P. pyralis* by the presence of the margin of ventral unpigmented abdominal

300 tissue anterior to the lanterns, flash frozen with liquid N₂, lyophilized, and stored at -80°C until
301 DNA extraction. A single aedeagus (male genitalia) was dissected from the stored specimens
302 and confirmed to match the *P. pyralis* taxonomic key[23] (Fig. S1.3.1).

303
304 **Figure S1.3.1: *P. pyralis* aedeagus (male genitalia)**

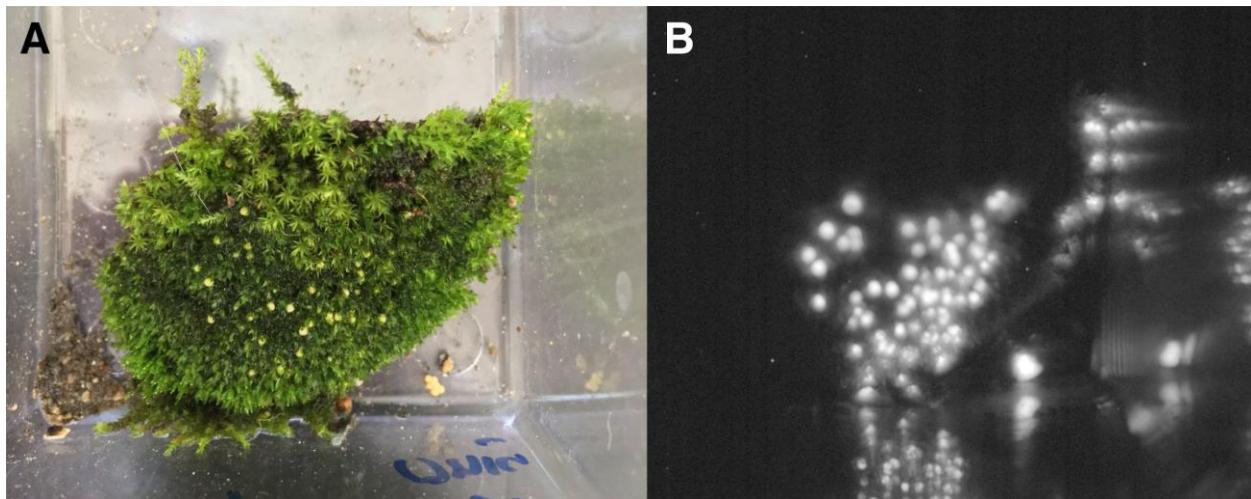
305 (A) Ventral and (B) side view of a *P. pyralis* aedeagus dissected from specimens
306 collected on the same date and locality as those used for PacBio sequencing. Note the strongly
307 sclerotized paired ventro-basal processes (“mickey mouse ears”) emerging from the median
308 process, characteristic of *P. pyralis* [23].

309 **1.3.2 Collection and rearing of *P. pyralis* larvae**

310 We intended to survey the lucibufagin content of *P. pyralis* larvae (Fig. 4B;
311 Supplementary Text 4.6), and as well as the transovarial transmission of *Photinus pyralis*
312 orthomyxo-like viruses from parent to larvae (Supplementary Text 5.4; 5.5), but as *P. pyralis*
313 larvae are subterranean and extremely difficult to collect from the wild, we reared *P. pyralis*
314 larvae from eggs laid from mated pairs. It is important to note that these *P. pyralis* larval rearing
315 experiments were unexpectedly successful. Although there has been some success in
316 laboratory rearing and domestication of Asian *Aquatica* spp.[25], including the *A. lateralis* Ikeya-
317 Y90 strain described in this manuscript, rearing of North American fireflies is considered
318 extremely difficult with numerous unpublished failures for unclear reasons [26], and limited
319 reports of successful rearing of mostly non-*Photinus* genera, including *Photuris* sp. [27],
320 *Pyractomena angulata* [28], and *Pyractomena borealis* (Personal communication: Scott
321 Smedley). The below protocol for *Photinus pyralis* larval rearing is presented in the context of
322 disclosure of the methods of this manuscript, and should be considered a preliminary,
323 unoptimized rearing protocol. A full description of the *P. pyralis* larvae and its life history and
324 behavior will be presented in a separate manuscript.

325 Four adult female *P. pyralis* were collected from the Bluemont Junction Trail in Arlington,
326 VA from June 12th through June 18th 2017 (collection permission obtained by TRF from

327 Arlington County Parks and Recreation department). The females were mated to *P. pyralis*
328 males collected either from the same locality and date, or to males collected from Kansas in late
329 June. Mating was performed by housing 1-2 males and 1 female in small plastic containers for
330 ~1-3 days with a wet kimwipe to maintain humidity. Mating pairs were periodically checked for
331 active mating, which in *Photinus* fireflies takes several hours. Successfully mated females were
332 transferred to Magenta GA-7 plastic boxes (Sigma-Aldrich, USA), and provided a ~4 cm x 4 cm
333 piece of locally collected moss (species diverse and unknown) as egg deposition substrate, and
334 allowed to deposit eggs until their death in ~1-4 days. Deceased females were removed,
335 artificial freshwater (AFW; 1:1000 diluted 32 PSU artificial seawater) was sprayed into the box to
336 maintain high humidity, and eggs were kept for 2-3 weeks at room temperature and periodically
337 checked until hatching. Like other firefly eggs, the eggs of *P. pyralis* were observed to be faintly
338 luminescent imaging using a cooled CCD camera (Figure S.1.3.2.1), however this luminescence
339 was not visible to the dark-adapted eye, indicating that this luminescence is less intense than
340 other firefly species such as *Luciola cruciata* [29].


341 Upon hatching, 1st instar larvae were mainly fed ~1 cm cut pieces of Canadian
342 Nightcrawler earthworms (*Lumbricus terrestris*; Windsor Wholesale Bait, Ontario, Canada), and
343 occasional live White Worms (*Enchytraeus albidus*; Angels Plus, Olean, NY). Although *P.
344 pyralis* 1st instar larvae were observed to attack live *Enchytraeus albidus*, an experiment to
345 determine if this would be suitable as a single food source was not performed. Uneaten and
346 putrefying earthworm pieces were removed after 1 day, and the container cleaned. Once the
347 larvae had been manually fed for ~2 weeks and deemed sufficiently strong, they were
348 transferred to plastic shoeboxes (P/N: S-15402, ULINE, USA) which were intended to mimic a
349 soil ecosystem. In personal discussions of unpublished firefly rearing attempts by various firefly
350 researchers, we noted that a common theme was the difficulty of preventing the uneaten prey of
351 these predatory larvae from putrefying. Therefore, we sought to create ecologically inspired “eco-
352 shoeboxes”, where fireflies would prey on live organisms, and other organisms would assist in
353 cleanup of uneaten or partially eaten prey that had been fed to the firefly larvae, to prevent the
354 growth of pathogenic microorganisms on uneaten prey.

355 First, these shoeboxes were filled with 1L of mixed 50% (v/v) potting soil, and 50%
356 coarse sand (Quikrete, USA) that had been washed several times with distilled water to remove
357 silt and dust. The soil-sand mix was wet well with AFW, and live *Enchytraeus albidus* (50+),
358 temperate springtails (50+; *Folsomia candida*; Ready Reptile Feeders, USA), and dwarf isopods
359 (50+; *Trichorhina tomentosa*; Ready Reptile Feeders, USA) were added to the box, and several
360 types of moss, coconut husk, and decaying leaves were sparingly added to the corners of the
361 box. The non-firefly organisms were included to mimic a primitive detritivore (*Enchytraeus
362 albidus* & *Trichorhina tomentosa*) and fungivore (*Folsomia candida*) system. About 50 firefly
363 larvae were included per box. No interactions between the *P. pyralis* larvae and the additional
364 organisms were observed. Predation on *Enchytraeus albidus* seems likely, but careful
365 observations were not made. Distilled water was sprayed into the box every ~2 days to maintain
366 a high humidity. Throughout this period, live *Lumbricus terrestris* (~10-15 cm) were added to the
367 box every 2-3 days as food. These earthworms were first prepared by washing with distilled
368 water several times to remove attached soil, weakened and stimulated to secrete coelomic fluid
369 and gut contents by spraying with 95% ethanol, washed several times in distilled water, and left
370 overnight in ~2 cm depth distilled water at 4°C. Anecdotally this cleaning and preparation

371 process reduced the rate and degree that dead earthworms putrefied. Young *P. pyralis* larvae
372 were observed to successfully kill and gregariously feed on these live earthworms (Figure
373 S1.3.2.2). The possibility that firefly larvae possess a paralytic venom used to stun or kill prey
374 has been noted by other researchers [10,30]. In our observations, an earthworm would
375 immediately react to the bite from a single *P. pyralis* larvae, thrashing about for several minutes,
376 but would then become seemingly paralyzed over time, supporting the role of a potent, possibly
377 neurotoxic, firefly venom. The *P. pyralis* larvae would then begin extra-oral digestion and
378 gregarious feeding on the liquified earthworm. Once the earthworm had been killed and broken
379 apart by firefly larvae, *Enchytraeus albidus* would enter through gaps in the cuticle and begin to
380 feed in large numbers throughout the interior of the earthworm. The other detritivores were
381 observed at later stages of feeding. Between the combined action of the *P. pyralis* larvae, and
382 the other detritivores, the live earthworm was completely consumed within 1-2 days, and no
383 manual cleanup was required.

384 Compared to the initial manual feeding and cleaning protocol for *P. pyralis* 1st instar
385 larvae, the “eco-shoebox” rearing method was low-input and convenient for large numbers of
386 larvae. The feeding and cleanup process was efficient for ~2 months (July -> September),
387 leading to a large number of healthy 3-4th instar larvae. However after that point, *P. pyralis*
388 larvae, possibly in preparation for a winter hibernation, seemingly became quiescent, and were
389 less frequently seen patrolling throughout the box. At the same time, the *Enchytraeus albidus*
390 earthworms were observed to become less abundant, either due to continual predation by *P.*
391 *pyralis*, or due to population collapse from insufficient fulfillment of nutritional requirements from
392 feeding of *Enchytraeus albidus* on *Lumbricus terrestris* alone.

393 At this point, earthworms were not consumed within 1-2 days, and became putrid, and *P.*
394 *pyralis* which had been feeding on these earthworms were frequently found dead nearby, and
395 themselves quickly putrefied. Generally after this point *P. pyralis* larvae were more frequently
396 found dead and partially decayed, indicating the possibility of pathogenesis from
397 microorganisms from putrefying earthworms. At this stage it was observed that mites (Acari),
398 probably from the soil contained in the guts of the fed earthworms, became abundant, and were
399 observed to act as ectoparasitic on *P. pyralis* larvae. An attempt to simulate hibernation of *P.*
400 *pyralis* larvae was made by storing them at 4°C for ~3 weeks, however a large proportion
401 (~30%) of larvae died during this hibernation to a seeming fungal infection. Other larvae revived
402 quickly when returned to room temperature, but all *Trichorhina tomentosa* were killed by even
403 transient exposure to 4°C. To date, a smaller number of 5th and 6th instar *P. larva*e have been
404 obtained, but pupation in the laboratory has not occurred. The lack of pupation is unsurprising as
405 it is likely occurs in the wild after 1-2 years of growth, is likely under temperature and
406 photoperiodic control, and may require a licensing stage of cold temperature hibernation for
407 several weeks. Overall, manual feeding of 1st instar larvae followed by the “eco-shoebox”
408 method was unexpectedly successful approach for the maintenance and growth of *P. pyralis*
409 larvae.

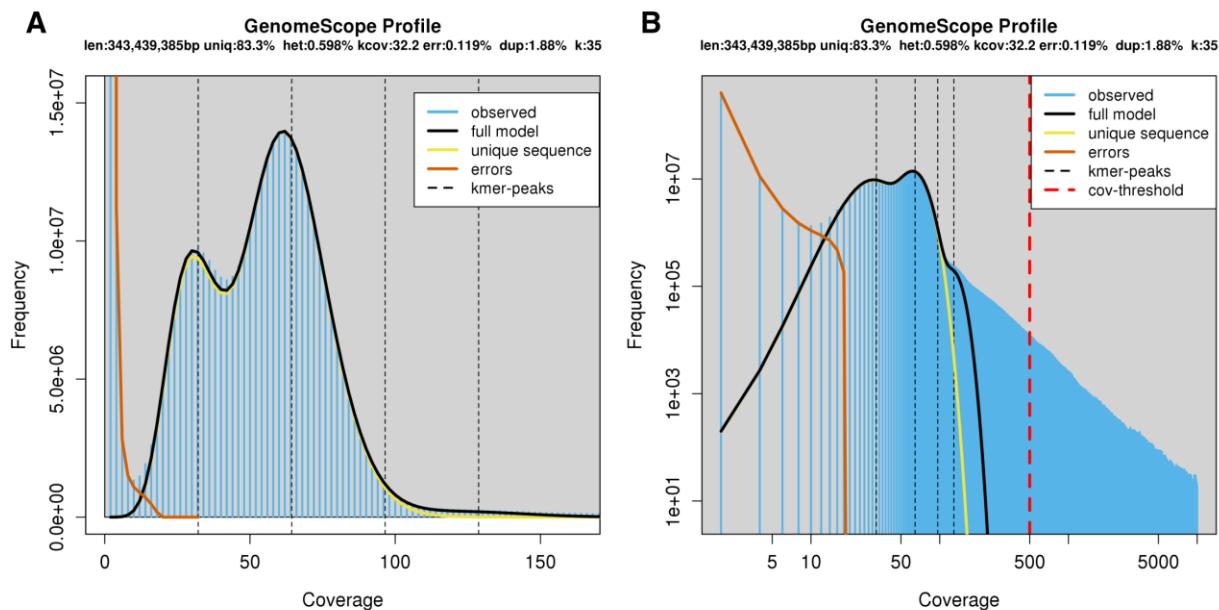
416
417 **Figure S1.3.2.2:** Gregarious predation of young *P. pyralis* larvae on live *Lumbricus*
418 *terrestris*

419 Both *P. pyralis* larvae (red arrows), and *Enchytraeus albidus* (yellow arrows), were observed to
420 feed on the paralyzed earthworms.

421 **1.4 Karyotype and genome size**

422 The karyotype of *P. pyralis* was previously reported to be 2n=20 with XO sex
423 determination (male, 18A+XO; female, 18A+XX)[31]. The genome sizes of four *P. pyralis* adult
424 males were previously determined to be 422 ± 9 Mbp (SEM, n=4), whereas the genome sizes of
425 five *P. pyralis* adult females were determined to be 448 ± 7 (SEM, n=5) by nuclear flow
426 cytometry analysis[32]. From these analyses, the size of the X-chromosome is inferred to be
427 ~ 26 Mbp. Genome size inference via kmer spectral analysis of the *P. pyralis* short-insert
428 Illumina data from a single adult *P. pyralis* male estimated a genome size of 343 Mbp (Figure
429 S1.5.1.1).

430
431
432


433 **1.5 Library preparation and sequencing**

434 See Table S4.1.1 for a overview of all sequence libraries. Library specific construction methods
435 are detailed below.

436

437 **1.5.1 Illumina**

438 DNA was extracted from sterile-water-washed thorax of Great Smoky Mountains
439 National Park collected specimens using phenol-chloroform extraction with RNase digestion,
440 checked for quality via gel electrophoresis, and quantified by Nanodrop or Qubit (Thermo
441 Scientific, USA). To obtain sufficient DNA for both short insert and mate-pair library
442 construction, libraries were constructed separately from DNA from each of two individual males
443 and pooled DNA of three males, all from the same population. Males were selected for
444 sequencing as they are more easily found in the field than females. In addition, as *P. pyralis*
445 males are XO[33], differences in sequencing coverage could inform localization of scaffolds to
446 the X chromosome. Illumina TruSeq short insert (average insert size: 300 bp) and Nextera
447 mate-pair libraries (insert size: 3 Kbp, 6 Kbp) were constructed at the Georgia Genomics Facility
448 (Athens, GA) and subsequently sequenced on two lanes of Illumina HiSeq2000 100x100 bp PE
449 reads (University of Texas; Table S4.1.1).

450
451 **Figure S1.5.1.1:** Genome scope kmer analysis of the *P. pyralis* short read library.

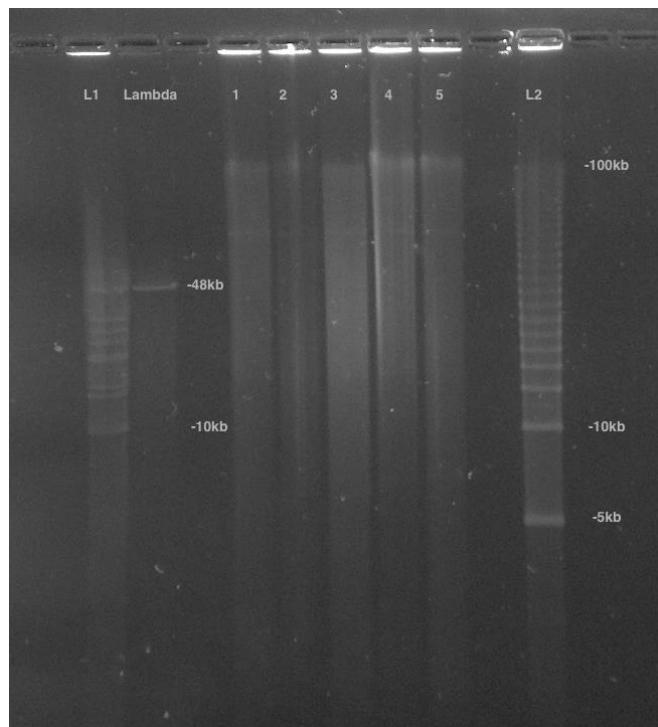
452 **(A)** linear and **(B)** log plot of a kmer spectral genome composition analysis of the "8369" *P.*
453 *pyralis* Illumina short-read library from a single *P. pyralis* XO adult male (Supp. Text 1.5.1; Table
454 S4.1.1) with jellyfish (v2.2.9; parameters: -C -k 35)[34] and GenomeScope (v1.0; parameters:
455 Kmer length=35, Read length=100, Max kmer coverage=1000)[35]. len=inferred haploid
456 genome length, uniq=percentage non-repetitive sequence, het=overall rate of genome
457 heterozygosity, kcov=mean kmer coverage for heterozygous bases, err=error rate of the reads,

458 dup: average rate of read duplications. These results are consistent with the genome size of a
459 XO male, when possible systematic error of kmer spectral analysis and flow cytometry genome
460 size estimates is considered. The heterozygosity is somewhat low when compared to some
461 other arthropods.

462 **1.5.2 PacBio**

463 High-molecular-weight DNA (HMW DNA) was extracted from four pooled lyophilized
464 adult male *P. pyralis* (dry mass 90.8 mg) from the MMNJ field site. These specimens were first
465 externally washed using 95% ethanol, after which DNA extraction proceeded with a 100/G
466 Genomic Tip plus Genomic Buffers kit (Qiagen, USA). DNA extraction followed the
467 manufacturer's protocol, with the exception of the final precipitation step, where HMW DNA was
468 pelleted with 40 µg RNA grade glycogen (Thermo Scientific, USA) and centrifugation (3000 x g,
469 30 min, 4°C) instead of spooling on a glass rod. Although increased genomic heterozygosity
470 from 4 pooled males and a resulting more complicated genome assembly was a concern for a
471 wild population like *P. pyralis*, four males were used in order to extract enough DNA for
472 workable coverage using 15 Kbp+ size-selected PacBio RSII sequencing. All extracted DNA
473 was used for library preparation, and all of the final library was used for sequencing. Adult
474 males, being XO, were chosen over the preferable XX females, as adult males are much more
475 easily captured because they signal during flight, whereas females are typically found in the
476 brush below and generally only flash in response to authentic male signals.

477 Precipitated HMW DNA was redissolved in 80 µL Qiagen QLE buffer (10 mM Tris-Cl, 0.1
478 mM EDTA, pH 8.5) yielding 17.1 µg of DNA (214 ng/µL) and glycogen (500 ng/µL). Final DNA
479 concentration was measured with a Qubit fluorometer (Thermo Scientific) using the Qubit Broad
480 Range kit. Manipulations hereafter, including HMW DNA size QC, fragmentation, size selection,
481 library construction, and PacBio RSII sequencing, were performed by the Broad Technology
482 Labs of the Broad Institute (Cambridge, MA, USA).

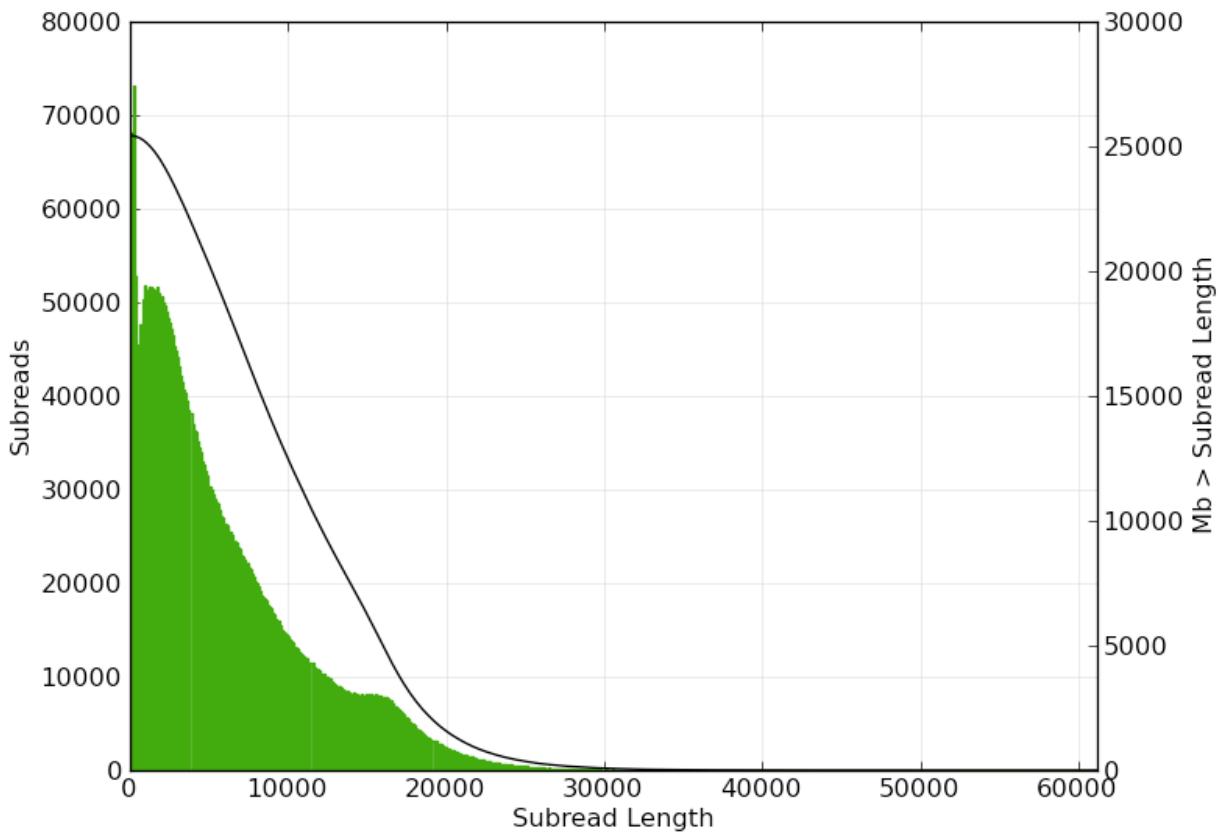

483 First, the size distribution of the HMW DNA was confirmed by pulsed-field-gel-
484 electrophoresis (PFGE). In brief, 100 ng of HMW DNA was run on a 1% agarose gel (in 0.5x
485 TBE) with the BioRad CHEF DRIII system. The sample was run out for 16 hours at 6 volts/cm
486 with an angle of 120 degrees with a running temperature of 14°C. The gel was stained with
487 SYBRgreen dye (Thermo Scientific - Part No. S75683). 1 µg of 5 Kbp ladder (BioRad, part no
488 170-3624) was used as a standard. These results demonstrated the HMW DNA had a mean
489 size of >48 Kbp (Fig. S1.5.2.1). This pool of HMW DNA is designated 1611_PpyrPB1 (NCBI
490 BioSample SAMN08132578).

491 Next, HMW DNA (17.1 µg) was sheared to a targeted average size of 20-30 Kbp by
492 centrifugation in a Covaris g-Tube (part no. 520079) at 2500 x g for 2 minutes. SMRTbell
493 libraries for sequencing on the PacBio platform were constructed according to the
494 manufacturer's recommended protocol for 20 Kbp inserts, which includes size selection of
495 library constructs larger than 15 Kbp using the BluePippin system (Sage Science, Beverly MA,
496 USA). Two separate cassettes were run. In each cassette, 2 lanes were used in which there
497 was 1362 ng/lane (PAC20kb kit). Constructs 15 Kbp and above were eluted over a period of

498 four hours. An additional damage repair step was carried out post size-selection. Insert size
499 range for the final library was determined using the Fragment Analyzer System (Advanced
500 Analytical, Ankeny IA, USA). The size-selected SMRTbell library was then sequenced over 61
501 SMRT cells on a PacBio RSII instrument of the Broad Technology Labs (Cambridge, MA), using
502 the P6 v.2 polymerase and the v.4 DNA Sequencing Reagent (P6-C4 chemistry; part numbers
503 100-372-700, 100-612-400). PacBio sequencing data is available on the NCBI Sequence Read
504 Archive (Bioproject PRJNA378805).

505

506


507

508 **Figure S1.5.2.1:** PFGE of *P. pyralis* HMW DNA used for PacBio sequencing

509 Lane 1 was used for further library prep and sequencing, Lanes 2-5 represent separate
510 batches of *P. pyralis* HMW DNA that was not used for PacBio sequencing. Lane 1 was used as
511 it had the highest DNA yield, and an equivalent DNA size distribution to the other samples.

512

513

514
515 **Figure S1.5.2.2:** Subread length distribution for *P. pyralis* PacBio RSII sequencing.

516 Figure produced with SMRTPortal (v2.3.0.140936)[36] by aligning all PacBio reads from data
517 from the 61 SMRT cells against Ppyr1.3 using the RS_Resequencing.1 protocol with default
518 parameters. Subread length unit is basepair (bp).

519 **1.5.3 Hi-C library preparation**

520 Two adult *P. pyralis* MMNJ males were flash frozen in liquid nitrogen, stored at -80°C,
521 and shipped on dry-ice to Phase Genomics (Seattle, WA). Manipulations hereafter occurred at
522 Phase Genomics, following previously published protocols[37–39]. Briefly, a streamlined version
523 of the standard Hi-C protocol[37] was used to perform a series of steps resulting in proximity-
524 ligated DNA fragments, in which physically proximate sequence fragments are joined into linear
525 chimeric molecules. First, *in vivo* chromatin was cross-linked with formaldehyde, fixing
526 physically proximate loci to each other. Chromatin was then extracted from cellular material and
527 digested with the *Sau*3AI restriction enzyme, which cuts at the GATC motif. The resulting
528 fragments were proximity ligated with biotinylated nucleotides and pulled down with streptavidin
529 beads. These chimeric sequences were then sequenced with 80 bp PE sequencing on the
530 Illumina NextSeq platform, resulting in Hi-C read pairs.

531 **1.6 Genome assembly**

532 The *P. pyralis* genome assembly followed three stages: (1) a hybrid assembly using
533 Illumina and PacBio reads, producing assembly Ppyr1.1 (Supplementary Text 1.6.2), (2)
534 Ppyr1.1 scaffolded using Hi-C data, producing assembly Ppyr1.2 (Supplementary Text 1.6.3),
535 and (3) Ppyr1.2 manually curation for proper X-chromosome assembly and removal of putative
536 non-firefly sequences, producing Ppyr1.3 (Supplementary Text 1.6.4).

537

538 **1.6.2 Ppyr1.1: MaSuRCA hybrid assembly**

539 Several genome assembly approaches were evaluated with the general goal of
540 maximizing conserved gene content and contiguity. The highest quality *P. pyralis* assembly was
541 generated by a hybrid assembly approach using a customized MaSuRCA
542 (v3.2.1_01032017)[40,41] pipeline that combined both Illumina-corrected PacBio reads (Mega-
543 reads) and synthetic long reads constructed from short-insert reads alone (Super-reads) using a
544 custom small overlap length (59 bp).

545 We first applied MaSuRCA (v3.2.1_01032017)[42,43] to correct our long reads (38x
546 coverage; Library ID 1611_PpyrPB1; Table S4.1.1) using our short-insert and mate-pair reads
547 (Libraries: 8369, 375_3K, 8375_6K, 83_3K, 83_6K; Table S4.1.1). No pre-filtering of reads was
548 performed, as Illumina adaptors are automatically removed within the MaSuRCA pipeline. We
549 modified the pipeline to assemble the genome using both corrected long reads (Mega-reads)
550 and synthetic long reads (Super-reads) with a custom smaller overlap length (59 bp). All reads
551 (short-insert, mate-pair and PacBio) were then used within the MaSuRCA pipeline to call a
552 genomic consensus.

553 To scaffold the contigs, we first filtered Illumina short-reads from the mate-pair libraries
554 (Libraries 8375_3K, 8375_6K, 83_3K, 83_6K) with Nxtrim (v0.4.1)[44] with parameters "--
555 separate --rf --justmp". We then manually integrated the MaSuRCA assembly by replacing the
556 incomplete mitochondrial contigs with complete mitochondrial assemblies from *P. pyralis* and
557 *Apocephalus antennatus* (Supplementary Text 5.2). We scaffolded and gap-filled the assembly
558 using the Illumina short-insert and filtered mate-pair reads (Libraries: 8369, 8375_3K, 8375_6K,
559 83_3K, 83_6K) via Redundans (v0.13a)[45] with default settings. After scaffolding with our
560 Illumina data, redundant sequences were removed by the MaSuRCA "deduplicate_contigs.sh"
561 script. We then applied PBjelly (v15.8.24)[46] and PacBio reads to scaffold and gap-fill the
562 assembly, and redundancy reduction with "deduplicate_contigs.sh" script was run again. Finally,
563 we replaced mitochondrial sequences which had been artificially extended by the scaffolding,
564 gap-filling and sequence extension process with the proper sequences. The resultant assembly
565 was dubbed Ppyr1.1.

566 **1.6.3 Ppyr1.2: Scaffolding with Hi-C**

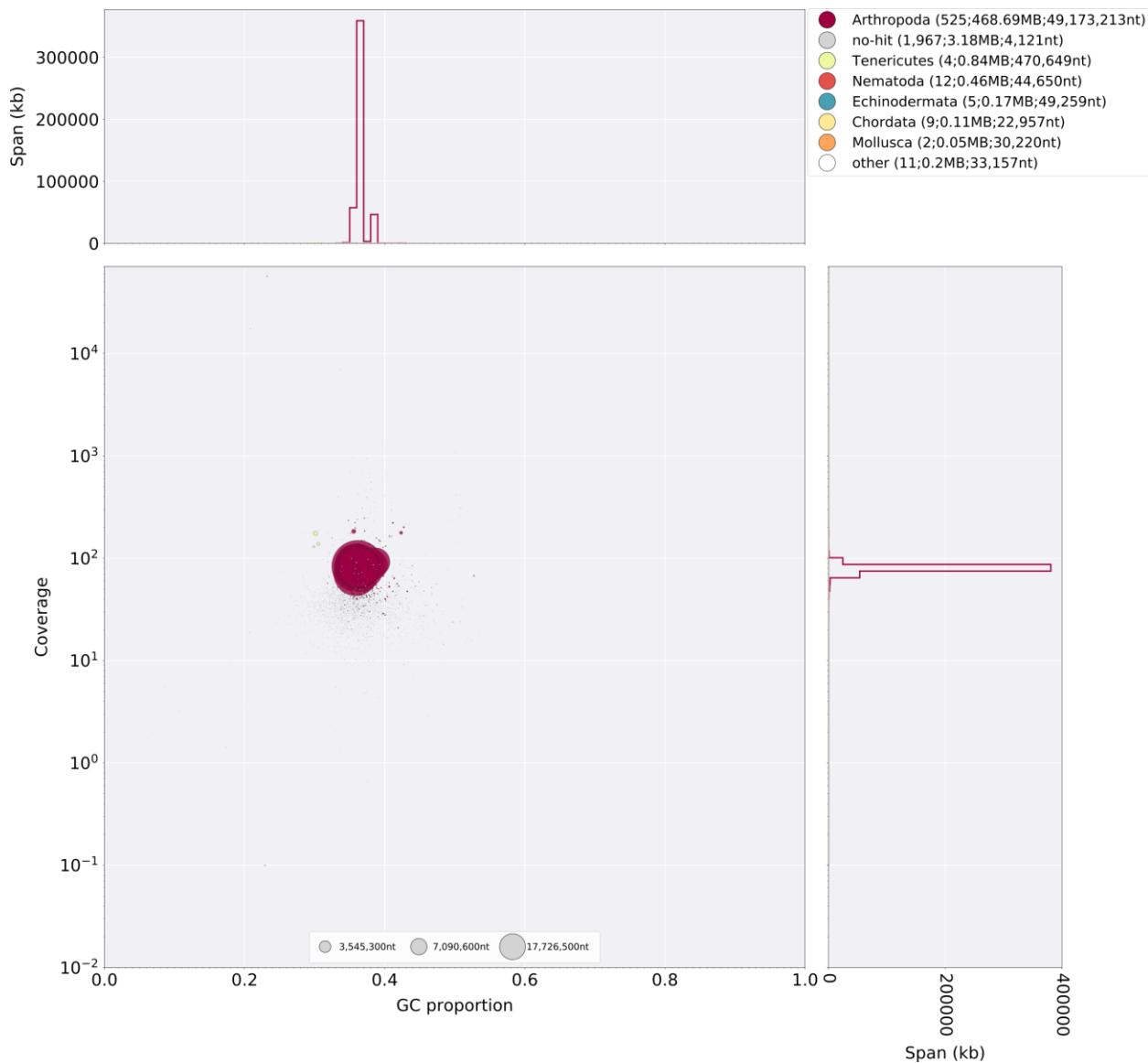
567 The Hi-C read pairs were applied in a manner similar to that originally described here[38]
568 and later expanded upon[39]. Briefly, Hi-C reads were mapped to Ppyr1.1 with BWA
569 (v1.7.13)[47], requiring perfect, unique mapping locations for a read pair to be considered

570 usable. The number of read pairs joining a given pair of contigs is referred to as the “link
571 frequency” between those contigs, and when normalized by the number of restriction sites in the
572 pair of contigs, is referred to as the “link density” between those contigs.

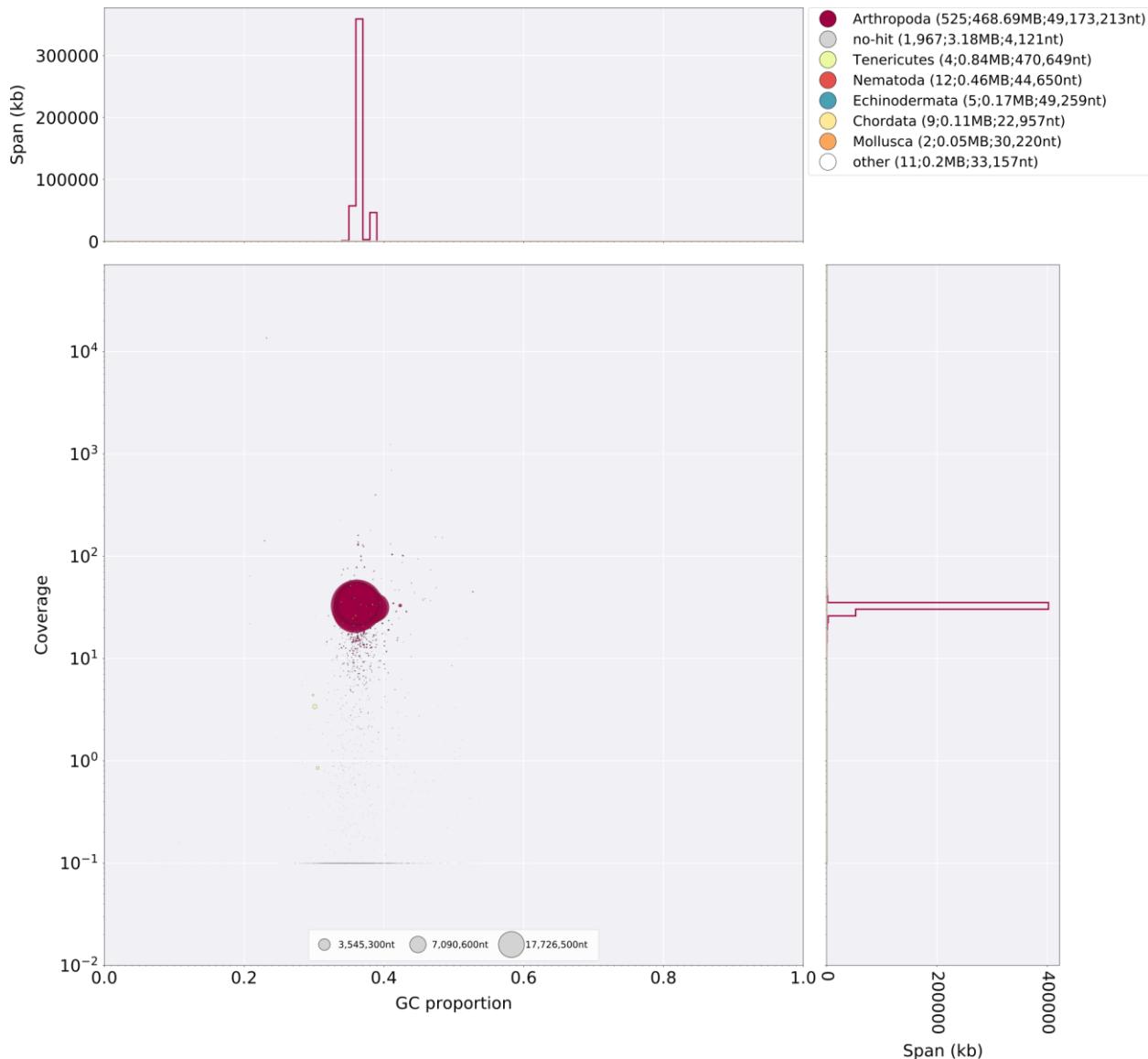
573 A three-stage scaffolding process was used to create the final scaffolds, with each stage
574 based upon previously described analysis of link density[38,39]. First, contigs were placed into
575 chromosomal groups. Second, contigs within each chromosomal group were placed into a linear
576 order. Third, the orientation of each contig is determined. Each scaffolding stage was performed
577 many times in order to optimize the scaffolds relative to expected Hi-C linkage characteristics.

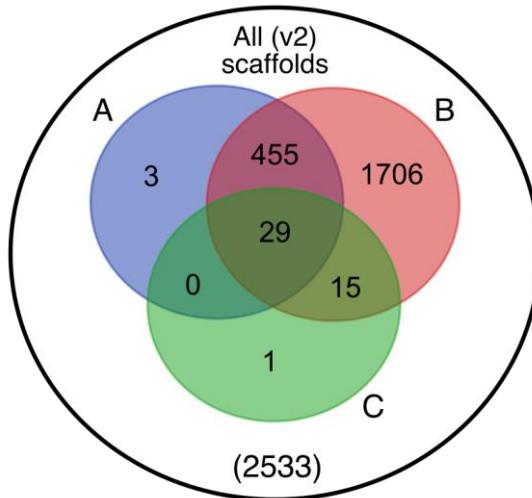
578 In keeping with previously described methods[38,39], the number of chromosomal
579 scaffolds to create—10—was an *a priori* input to the scaffolding process derived from the
580 previously published chromosome count of *P. pyralis* [31]. However, to verify the correctness of
581 this assumption, scaffolds were created for haploid chromosome numbers ranging from 5 to 15.
582 A scaffold number of 10 was found to be optimal for containing the largest proportion of Hi-C
583 linkages within scaffolds, which is an expected characteristic of actual Hi-C data.

584 **1.6.4 Ppyr1.3: Manual curation and taxonomic annotation filtering**


585 **1.6.4.1 Defining the X chromosome**

586 Hi-C data was mapped and converted to .hic format with the juicer pipeline (v1.5.6)[48],
587 and then visualized using juicebox (v1.5.2)[49]. This visualization revealed a clear breakpoint in
588 Hi-C linkage density on LG3 at ~22,220,000 bp. Mapping of Illumina short-insert and PacBio
589 reads with Bowtie2 (v2.3.1)[50] and SMRTPortal (v2.3.0.140893) with the “RS_Resequencing.1”
590 protocol, followed by visualization with Qualimap (v2.2.1)[51], revealed that the first section of
591 LG3 (1-22,220,000 bp), here termed LG3a, was present at roughly half the coverage of LG3b
592 (22,220,001-50,884,892 bp) in both the Illumina and PacBio libraries. Mapping of *Tribolium*
593 *castaneum* X chromosome proteins (NCBI Tcas 5.2) to the Ppyr1.2 assembly using both tblastn
594 (v2.6.0)[52] and Exonerate(v2.2.0)[53] based “protein2genome” alignment through the MAKER
595 pipeline revealed a relative enrichment on LG3a only. Taken together, this data suggested that
596 the half-coverage section of LG3 (LG3a) corresponded to the X-chromosome of *P. pyralis*, and
597 that it was misassembled onto an autosome. Therefore, we manually split LG3 into LG3a and
598 LG3b in the final assembly.


599 **1.6.4.2 Taxonomic annotation filtering**


600 Given the recognized importance of filtering genome assemblies to avoid
601 misinterpretation of the data[54], we sought to systematically remove assembled non-firefly
602 contaminant sequence from Ppyr1.2. Using the blobtools toolset (v1.0.1)[55], we taxonomically
603 annotated our scaffolds by performing a blastn (v2.6.0+) nucleotide sequence similarity search
604 against the NCBI nt database, and a diamond (v0.9.10.111)[56] translated nucleotide sequence
605 similarity search against the of Uniprot reference proteomes (July 2017). Using this similarity
606 information, we taxonomically annotated the scaffolds with blobtools using parameters “-x

607 bestsumorder --rank phylum". A tab delimited text file containing the results of this blobtools
608 annotation are available on FigShare (DOI: [10.6084/m9.figshare.5688982](https://doi.org/10.6084/m9.figshare.5688982)). We then generated
609 the final genome assembly by retaining scaffolds that either contained annotated features
610 (genes or non-simple/low-complexity repeats), had coverage > 10.0 in both the Illumina (Fig.
611 S1.6.3.2.1) and PacBio libraries (Fig. S1.6.3.2.2), and if the taxonomic phylum was annotated
612 as "Arthropod" or "no-hit" by the blobtools pipeline. This approach removed 374 scaffolds (2.1
613 Mbp), representing 15% of the scaffold number and 0.4% of the nucleotides of Ppyr1.2. Notably,
614 four tenericute scaffolds, likely corresponding to a partially assembled *Entomoplasma* sp.
615 genome, distinct from the *Entomoplasma luminosus* var. *pyralis* assembled from the PacBio
616 library (Supplementary Text 5) were removed. Furthermore we removed two contigs
617 representing the mitochondrial genome of *P. pyralis* (complete mtDNA available via Genbank:
618 KY778696). The final filtered assembly, Ppyr1.3, is available at www.firebaseio.org.
619

620
621 **Figure S1.6.4.2.1:** Blobplot of Illumina short-insert reads aligned against Ppyr1.2
622 Coverage shown represents mean coverage of reads from the Illumina short-insert library
623 (Sample name 8369; Table S4.1.1), aligned against Ppyr1.2 using Bowtie2 with parameters (–
624 local). Scaffolds were taxonomically annotated as described in Supplementary Text 1.6.3.2.

632

633 **Figure S1.6.4.2.3:** Venn diagram representation of blobtools taxonomic annotation
 634 filtering approach for Ppyr1.2 scaffolds.

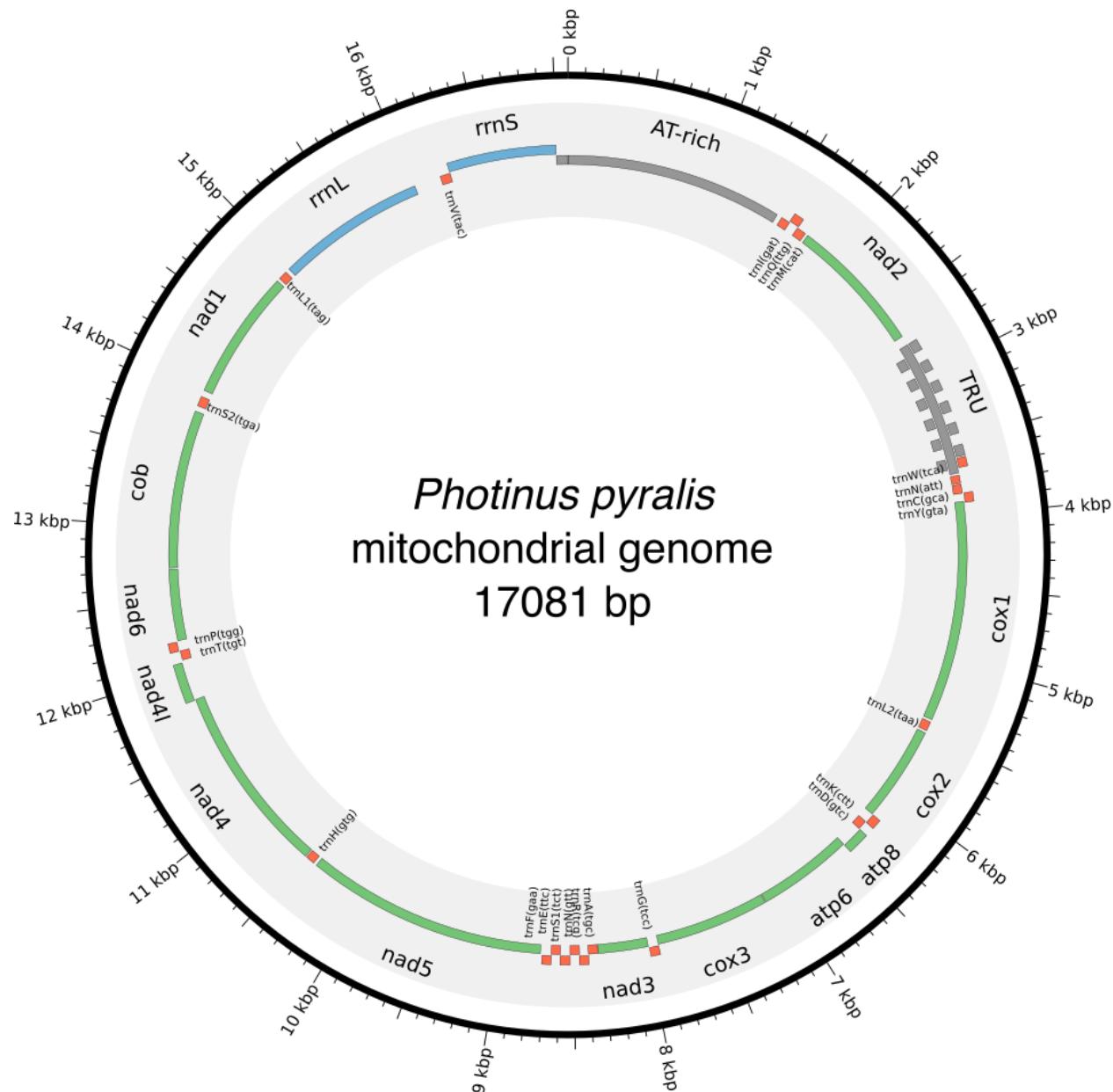
635 **(A)** The blue set represents scaffolds which have >10.0 coverage in both Illumina and PacBio
 636 libraries, **(B)** The red set represents scaffolds which had either genes on repeats (non simple or
 637 low-complexity) annotated, **(C)** The green set represents scaffolds with suspicious taxonomic
 638 assignment (Non 'Arthropod' or 'no-hit'). Outside A, B, and C, represents low-coverage,
 639 unannotated scaffolds. Ppyr1.3 consists of the intersection of A and B, minus the intersection of
 640 C. All linkage groups (LG1-LG10) were annotated as 'Arthropod' by blobtools, and captured in
 641 the intersection between A and B but not set C.

642 **1.7 Ppyr0.1-PB: PacBio only genome assembly**

643 In addition to our finalized genome assembly (Ppyr1.3), we sought to better understand the
 644 symbiont composition that varied between our *P. pyralis* PacBio and Illumina libraries. Therefore
 645 we produced a long-read only assembly of our PacBio data to assemble the sequence that
 646 might be unique to this library. To achieve this, we first filtered the HDF5 data from the 61
 647 sequence SMRT cells to .FASTQ format subreads using SMRTPortal (v2.3.0.140893)[36] with
 648 the "RS_Subreads.1" protocol with default parameters. These subreads were then input into
 649 Canu (Github commit 28ecea5 / v1.6)[57] with parameters "genomeSize=450m
 650 corOutCoverage=200 ovlErrorRate=0.15 obtErrorRate=0.15 -pacbio-raw". The unpolished
 651 contigs from this produced genome assembly are dubbed Ppyr0.1-PB.

652 **1.8 Mitochondrial genome assembly and annotation**

653 To achieve a full length mitochondrial genome (mtDNA) assembly of *P. pyralis*,
 654 sequences were assembled separately from the nuclear genome. Short insert Illumina reads
 655 from a single GSMNP individual (Sample 8369; Table S4.1.1) were mapped to the known
 656 mtDNA of the closest available relative, *Pyrocoelia rufa* (NC_003970.1[58]) using bowtie2 v2.3.1
 657 (parameters: --very-sensitive-local). All concordant read pairs were input to SPAdes (v3.8.0)[59]


658 (parameters: --plasmid --only-assembler -k35,55,77,90) for assembly. The resulting contigs
659 were then combined with the *P. rufa* mitochondrial reference genome for a second round of
660 read mapping and assembly. The longest resulting contig aligned well to the *P. rufa*
661 mitochondrial genome, however it was ~1 Kbp shorter than expected, with the unresolved
662 region appearing to be the tandem repetitive region (TRU)[58], previously described in the *P.*
663 *rufa* mitochondrial genome. To resolve this, all PacBio reads were mapped to the draft
664 mitochondrial genome, and a single high-quality PacBio circular-consensus-sequencing (CCS)
665 read that spanned the unresolved region was selected using manual inspection and manually
666 assembled with the contiguous sequence from the Illumina sequencing to produce a complete
667 circular assembly. The full assembly was confirmed by re-mapping the Illumina short-read data
668 using bowtie2 followed by consensus calling with Pilon v1.21[60]. Re-mapped PacBio long-read
669 data also confirmed the structure of the mtDNA, and indicated variability in the repeat unit copy
670 number of the TRU amongst the four sequenced *P. pyralis* individuals (Sample 1611_PpyrPB1;
671 Table S4.1.1). The *P. pyralis* mtDNA was then “restarted” using seqkit[61], such that the FASTA
672 record break occurred in the AT-rich region, and annotated using the MITOS2 annotation
673 server[62]. Low confidence and duplicate gene predictions were manually removed from the
674 MITOS2 annotation. The final *P. pyralis* mtDNA with annotations is available on GenBank
675 (KY778696).

676
677

678

679

680

681

682

Figure S1.8.1: Mitochondrial genome of *P. pyralis*

683

684

The mitochondrial genome of *P. pyralis* was assembled and annotated as described. Note the firefly specific tandem-repeat-unit (TRU) region. Figure produced with Circos[63].

685 **1.9 Transcriptome analysis**

686 **1.9.1 RNA-extraction, library preparation and sequencing**

687 In order to capture expression from diverse life stages, stranded RNA-Seq libraries were
688 prepared from whole bodies of four life stages/sexes (eggs, 1st instar larvae, adult male, and
689 adult female; Table S1.9.1.1). Eggs and larvae were derived from a laboratory mating of *P.*
690 *pyralis* (Collected MMNJ, July 2016). Briefly, live adult *P. pyralis* were transported to the lab and
691 allowed to mate in a plastic container over several days. The female, later sequenced, was
692 observed mating with two independent males on two separate nights. The female was then
693 transferred to a plastic container with moss, and allowed to oviposit over several days. Once no
694 more oviposition was observed, the female was removed, flash frozen with liquid N₂, and stored
695 at -80°C for RNA extraction. Resulting eggs were washed 3x with dilute bleach/ H₂O and reared
696 in aggregate in plastic containers on moist Whatman paper. ~13 days after the start of egg
697 oviposition, a subset of eggs were flash frozen for RNA extraction. The remaining eggs were
698 allowed to hatch and larvae were flash frozen the day after emergence (1st instar). Total RNA
699 was extracted from a single stored adult male (non-paternal to eggs/larvae), the adult female
700 (maternal to eggs/larvae), seven pooled eggs, and four pooled larvae using the RNeasy Lipid
701 Tissue Mini Kit (QIAGEN) with the optional on-column DNase treatment. Illumina sequencing
702 libraries were prepared by the Whitehead Genome Technology Core (WI-GTC) using the
703 TruSeq Stranded mRNA library prep kit (Illumina) and following the manufacturer's instructions
704 with modification to select for larger insert sizes (~300-350 bp). These samples were
705 multiplexed with unrelated plant RNA-Seq samples and sequenced 150x150 nt on one rapid
706 mode flowcell (2 lanes) of a HiSeq2500 (WI-GTC), to a depth of ~30M paired reads per library.

707 To examine gene expression in adult light organs, we generated non-strand specific
708 sequencing of polyA pulldown enriched mRNA from dissected photophore tissue (Table
709 S1.9.1.1). Photophores were dissected from the abdomens of adult *P. pyralis* males (Collected
710 MMNJ, July 2015) by Dr. Adam South (Harvard School of Public Health), using 3 individuals per
711 biological replicate. These tissues and libraries were co-prepared and sequenced with other
712 previously published libraries (full library preparation and sequencing details here[6]) at a depth
713 of ~10M paired reads per library.

714 To examine gene expression in larval light organs, we performed RNA-seq on dissected
715 larval light organs. We first extracted total RNA from a pool of 6 dissected larval photophores
716 from 3 individuals using the RNeasy Lipid Tissue Mini Kit (QIAGEN) with the optional on-column
717 DNase treatment. The larvae were the same larvae described in Supplementary Text. 1.3.2.
718 Total RNA was enriched to mRNA via polyA pulldown and prepared into a paired
719 unstranded Illumina sequencing using the Kapa HyperPrep kit (Kapa Biosystems, USA), and
720 sequenced to a depth of 43M 100x100 paired reads on a HiSeq2500 sequencer (Illumina,
721 USA).

722

723 All of these data were combined with previously published tissue, sex, and stage-specific
 724 libraries (Table S1.9.1.1) for reference-guided transcriptome assembly (Supp. Text 1.9.3).
 725 Strand-specific data was used for *de novo* transcriptome assembly (Supp. Text 1.9.2).
 726

727 **Table S1.9.1.1: *P. pyralis* RNA sequencing libraries**

728 **N:** number of individuals pooled for sequencing; **Sex/stage:** M = male, F = female, A = adult, L
 729 = larva, L1= larva 1st instar, L4= larvae 4th instar, E13=13 days post fertilization eggs; **Tissue:**
 730 H = head, PA = lantern abdominal segments, FB = abdominal fat body, T = thorax, OAG = other
 731 accessory glands, SD = spermatophore digesting gland/bursa, SG = spiral gland, SC =
 732 spermatheca, P = dissected photophore, E = egg, WB = whole body

733

Library name	Source ^a	SRA ID	N	Sex/stage	Tissue	Library type
8175 Photinus pyralis male head (adult) transcriptome	SRA1	SRR2103848	1	M/A	H	
8176 Photinus pyralis male light organ (adult) transcriptome	SRA1	SRR2103849	1	M/A	PA	
8819 Photinus pyralis light organ (larval) transcriptome	SRA1	SRR2103867	1	L	PA	
9_Photinus_sp_1_lantern	SRA2	SRR3521424	1	M/A	PA	Strand-specific. Ribo-zero
Ppyr_FatBody_1	SRA3	SRR3883756	6	M/A	FB	
Ppyr_FatBody_2	SRA3	SRR3883757	6	M/A	FB	
Ppyr_FatBody_3	SRA3	SRR3883766	6	M/A	FB	
Ppyr_FatBody_Mated	SRA3	SRR3883767	4	M/A	FB	
Ppyr_FThorax	SRA3	SRR3883768	3	F/A	T	
Ppyr_MThorax_1	SRA3	SRR3883769	6	M/A	T	
Ppyr_MThorax_2	SRA3	SRR3883770	6	M/A	T	
Ppyr_MThorax_3	SRA3	SRR3883771	6	M/A	T	
Ppyr_OAG_1A	SRA3	SRR3883772	6	M/A	AG	
Ppyr_OAG_1B	SRA3	SRR3883773	6	M/A	AG	
Ppyr_OAG_2	SRA3	SRR3883758	6	M/A	AG	
Ppyr_OAG_Mated	SRA3	SRR3883759	4	M/A	AG	
Ppyr_SDGBursa	SRA3	SRR3883760	3	F/A	SD	
Ppyr_SG_Mated	SRA3	SRR3883761	4	M/A	SG	
Ppyr_Spermatheca	SRA3	SRR3883762	3	F/A	SC	
Ppyr_SpiralGland_1	SRA3	SRR3883763	6	M/A	SG	
Ppyr_SpiralGland_2	SRA3	SRR3883764	6	M/A	SG	
Ppyr_SpiralGland_3	SRA3	SRR3883765	6	M/A	SG	
Ppyr_Lantern_1A	**	SRR6345453	6	M/A	P	
Ppyr_Lantern_2	**	SRR6345454	6	M/A	P	
Ppyr_Lantern_3	**	SRR6345446	6	M/A	P	
Ppyr_Eggs	**	SRR6345447	7	E13	E	Strand-specific
Ppyr_Larvae	**	SRR6345445	4	L1	WB	Strand-specific
Ppyr_wholeFemale*	**	SRR6345449	1	F/A	WB	Strand-specific
Ppyr_wholeMale	**	SRR6345452	1	M/A	WB	Strand-specific
TF_VA2017_3pooled_larval_lantern	**	SRR7345580	3	L4	P	

734 ^aSRA1= NCBI BioProject PRJNA289908 [64]; SRA2= NCBI BioProject PRJNA321737 [65]; SRA3= NCBI BioProject PRJNA328865
 735 [6]

736 * Parent of eggs and larvae with data from this study

737 ** This study

738 **1.9.2 *De novo* transcriptome assembly and genome alignment**

739 One strand-specific *de novo* transcriptome was produced from all available MMNJ
740 strand-specific reads (WholeMale, WholeFemale, eggs, larvae) and strand-specific reads from
741 SRA (SRR3521424)(Table S1.9.1.1). Reads from these 5 libraries were pooled (158.6M paired-
742 reads) as input for *de novo* transcriptome assembly. Transcripts were assembled using Trinity
743 (v2.4.0)[66] with default parameters except the following: (--SS_lib_type RF --trimmomatic --
744 min_glue 2 --min_kmer_cov 2 --jaccard_clip --no_normalize_reads). Gene structures were then
745 predicted from alignment of the *de novo* transcripts to the Ppyr1.3 genome using the PASA
746 pipeline (v2.1.0)[67] with the following steps: first, poly-A tails were trimmed from transcripts
747 using the internal seqclean component; next, transcript accessions were extracted using the
748 accession_extractor.pl component; finally, the trimmed transcripts were aligned to the genome
749 with modified parameters (--aligners blat,gmap --ALT_SPLICE --transcribed_is_aligned_orient --
750 tdn tdn.accs). Using both the blat (v. 36x2)[68] and gmap (v2017-09-11)[69] aligners was
751 required, as an appropriate gene model for Luc2 was not correctly produced using only a single
752 aligner. Importantly, it was also necessary to set (--
753 NUM_BP_PERFECT_SPLICE_BOUNDARY=0) for the validate_alignments_in_db.dbi step, to
754 ensure transcripts with natural variation near the splice sites were not discarded. Post
755 alignment, potentially spurious transcripts were filtered out using a custom script[70] that
756 removed extremely lowly-expressed transcripts (<1% of the expression of a given PASA
757 assembly cluster). Expression values used for filtering were calculated from the WholeMale
758 library reads using the Trinity align_and_estimate_abundance.pl utility script. The WholeMale
759 library was selected because it was the highest quality library - strand-specific, low
760 contamination, and many reads - thereby increasing the reliability of the transcript quantification.
761 Finally, the PASA pipeline was run again with this filtered transcript set to generate reliable
762 transcript structures. Peptides were predicted from the final transcript structures using
763 Transdecoder (v.5.0.2)[71] with default parameters. Direct coding gene models (DCGMs) were
764 then produced with the Transdecoder “cdna_alignment_orf_to_genome_orf.pl” utility script with
765 the PASA assembly GFF and transdecoder predicted peptide GFF as input. The unaligned *de*
766 *novo* transcriptome assembly is dubbed “PPYR_Trinity_stranded”, whereas the aligned direct
767 coding gene models are dubbed “Ppyr1.3_Trinity-PASA_stranded-DCGM”.
768

769 **1.9.3 Reference guided transcriptome assembly**

770 Two reference guided transcriptomes, one strand-specific and one non-strand-specific,
771 were produced from all available *P. pyralis* RNA-Seq reads (Table S1.9.1.1) using HISAT2
772 (v2.0.5)[72] and StringTie (v1.3.3b)[73]. For each library, reads were first mapped to the Ppyr1.3
773 genome assembly with HISAT2 (parameters: -X 2000 --dta --fr) and then assembled using
774 StringTie with default parameters except use of “--rf” for the strand-specific libraries. The
775 resulting library-specific assemblies were then merged into a final assembly using StringTie (--
776 merge), one for the strand-specific and one for the non-strand specific libraries, producing two

777 final assemblies. For each final assembly, a transcript fasta file was produced and peptides
778 predicted using Transdecoder with default parameters. Then, the StringTie .GTFs were
779 converted to GFF format with the Transdecoder “gtf_to_alignment_gff3.pl” utility script and
780 direct coding gene models (DCGMs) were produced with the Transdecoder
781 “cdna_alignment_orf_to_genome_orf.pl” utility script, with the StringTie GFF and transdecoder
782 predicted peptide GFF as input. The final GFFs were validated and sorted with genometools
783 (v1.5.9) with parameters (parameters: gff3 -tidy -sort -retainids), and then sorted again for IGV
784 format with igvtools (parameters: sort). The aligned direct coding gene models for the stranded
785 and unstranded reference guided transcriptomes are dubbed “Ppyr1.3_Stringtie_stranded-
786 DCGM” and “Ppyr1.3_Stringtie_unstranded-DCGM”.
787

788 **1.9.4 Transcript expression analysis**

789 *P. pyralis* RNA-Seq reads (Table S1.9.1.1) were pseudoaligned to the PPYR_OGS1.1
790 geneset CDS sequences using Kallisto (v0.44.0)[74] with 100 bootstraps (-b 100), producing
791 transcripts-per-million reads (TPM). Kallisto expression quantification analysis results are
792 available on FigShare (DOI: [10.6084/m9.figshare.5715139](https://doi.org/10.6084/m9.figshare.5715139)).

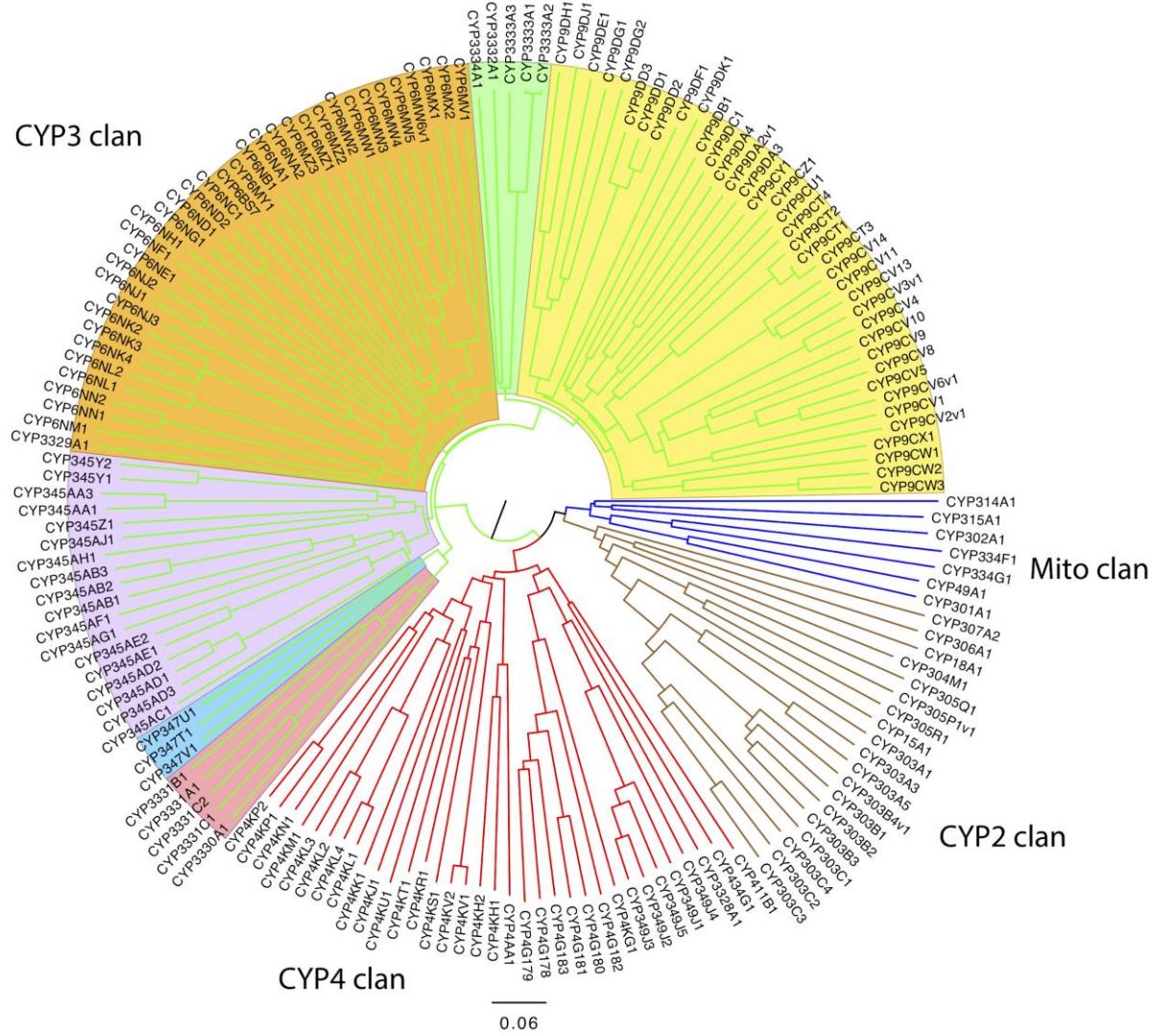
793 **1.10 Official coding geneset annotation (PPYR_OGS1.1)**

794 We annotated the coding gene structure of *P. pyralis* by integrating direct coding gene
795 models produced from the *de novo* transcriptome (Supplementary Text 1.9.2) and reference
796 guided transcriptome (Supplementary Node 1.9.3), with a lower weighted contribution of *ab*
797 *initio* gene predictions, using the Evidence Modeler (EVM) algorithm (v1.1.1)[67]. First,
798 Augustus (v3.2.2)[75] was trained against Ppyr1.2 with BUSCO (parameters: -l
799 endopterygota_odb9 --long --species tribolium2012). Next, preliminary gene models for
800 prediction training were produced by the alignment of the *P. pyralis* *de novo* transcriptome to
801 Ppyr1.2 with the MAKER pipeline (v3.0.0β)[76] in “est2genome” mode. Preliminary gene models
802 were used to train SNAP (v2006-07-28)[77] following the MAKER instructions[78]. Augustus and
803 SNAP gene predictions of Ppyr1.3 were then produced through the MAKER pipeline, with hints
804 derived from MAKER blastx/exonerate mediated protein alignments of peptides from *Drosophila*
805 *melanogaster* (NCBI GCF_000001215.4_Release_6_plus_ISO1_MT_protein.faa), *Tribolium*
806 *castaneum* (NCBI GCF_000002335.3_Tcas5.2_protein), and *Aquatica lateralis* (AlatOGS1.0;
807 this report), and MAKER blastn/exonerate transcript alignments of the *P. pyralis* *de novo*
808 transcriptome. These *ab initio* coding gene models are dubbed “Ppyr1.3_abinitio_Augustus-
809 SNAP-MAKER-GMs.gff3”

810 We then integrated the *ab initio* predictions with our *de novo* and reference guided direct
811 coding gene models, using EVM. A variety of evidence sources, and EVM evidence weights
812 were empirically tested and evaluated using a combination of inspection of known gene models
813 (e.g. Luc1/Luc2), and the BUSCO score of the geneset. In the final version, 6 sources of
814 evidence were used for EVM: *de novo* transcriptome direct coding gene models

815 (Ppyr1.3_Trinity-PASA_stranded-DCGM; weight=11), protein alignments (*D. melanogaster*, *T.*
816 *castaneum*, *A. lateralis*; weight = 8), GMAP and BLAT alignments of de novo transcriptome (via
817 PASA; weight = 5), reference guided transcriptome direct coding gene models
818 (Ppyr1.3_Stringtie_stranded-DCGM; weight = 3), Augustus and SNAP *ab initio* gene models
819 (via MAKER; weight = 2). A custom script[79] was necessary to convert MAKER GFF format to
820 an EVM compatible GFF format.

821 Lastly, gene models for luciferase homologs, P450s (Supp. Text 1.10.1), and de novo
822 methyltransferases (DNMTs) which were fragmented or were incorrect (e.g. fusions of adjacent
823 genes) were manually corrected based on the evidence of the *de novo* and reference guided
824 direct coding gene models. Manual correction was performed by performing TBLASTN
825 searches with known good genes from these gene families within
826 SequencerServer(v1.10.11)[80], converting the TBLASTN results to gff3 format with a custom
827 script[81], and viewing these alignments alongside the alternative direct coding gene models
828 (Supp. Text. 1.9.2; 1.9.3) in Integrative Genomics Viewer(v2.4.8)[82]. The official gene set
829 models gff3 file was manually modified in accordance with the evidence from the direct gene
830 models. Different revision numbers of the official geneset (e.g. PPYR_OGS1.0, PPYR_OGS1.1)
831 represent the improvement of the geneset over time due to these continuing manual gene
832 annotations.


833 1.10.1 P450 annotation

834 Translated *de novo* transcripts were formatted to be BLAST searchable with NCBI's
835 standalone software. The peptides were searched with 58 representative insect P450s in a
836 batch BLAST (evalue = 10). The query set was chosen to cover the diversity of insect P450s.
837 The top 100 hits from each search were retained. The resulting 5,837 hit IDs were filtered to
838 remove duplicates, leaving 472 unique hits. To reduce redundancy due to different isoforms, the
839 Trinity transcript IDs (style DNXXX_cX_gX_iX) were filtered down to the "DN" level, resulting in
840 136 unique IDs. All peptides with these IDs were retrieved and clustered with CD-Hit
841 (v4.5.4)[83] to 99% percent identity to remove short overlapping peptides. These 535 protein
842 sequences were batch BLAST compared to a database of all named insect P450s to identify
843 best hits. False positives were removed and about 30 fungal sequences were removed. These
844 fungal sequences could potentially be from endosymbiotic fungi in the gut. Overlapping
845 sequences were combined and the transcriptome sequences were BLAST searched against the
846 *P. pyralis* genome assembly to fill gaps and extend the sequences to the ends of the genes
847 were possible. This approach was very helpful with the CYP4G gene cluster, allowing fragments
848 to be assembled into whole sequences. When a new genome assembly and geneset became
849 available, the P450s were compared to the integrated gene models in PPYR_OGS1.0. Some
850 hybrid sequences were corrected. The final set contains 170 named cytochrome P450
851 sequences (166 genes, 2 pseudogenes).

852 The cytochrome P450s in insects belong to four established clans CYP2, CYP3, CYP4
853 and Mito (Fig. S1.10.1.1). *P. pyralis* has about twice as many P450s as *Drosophila*

854 *melanogaster* (86 genes, 4 pseudogenes) and slightly more than the red flour beetle *Tribolium*
855 *castaneum* (137 genes, 10 pseudogenes). Pseudogenes were determined by a lack of
856 conserved sites common to all P450s. The CYP3 clan is the largest, mostly due to three families:
857 CYP9 (40 sequences), CYP6 (36 sequences) and CYP345 (18 sequences). Insects have few
858 conserved sequences across species. These include the halloween genes for 20-
859 hydroxyecdysone synthesis and metabolism CYP302A1, CYP306A1, CYP307A2, CYP314A1
860 and CYP315A1[84] in the CYP2 and Mito clans. The CYP4G subfamily makes a hydrocarbon
861 waterproof coating for the exoskeleton[85]. Additional conserved P450s are CYP15A1 (juvenile
862 hormone[85]) and CYP18A1 (20-hydroxyecdysone degradation[86]) in the CYP2 clan. Most of
863 the other P450s are limited to a narrower phylogenetic range. Many are unique to a single
864 genus, though this may change as more sampling is done. It is common for P450s to expand
865 into gene blooms[87].

866
867
868

869
870 **Figure S1.10.1.1: *P. pyralis* P450 gene phylogenetic tree**

871 Neighbour-joining phylogenetic tree of 165 cytochrome P450s from *P. pyralis*. Four
872 pseudogenes and one short sequence were removed. The P450 clans have colored spokes
873 (CYP2 clan brown, CYP3 clan green, CYP4 clan red, Mito clan blue). Shading highlights
874 different families and family clusters within the CYP3 clan. The tree was made using Clustal
875 Omega at EBI[88] with default settings. The resulting multiple sequence alignment is available
876 on FigShare (DOI: [10.6084/m9.figshare.5697643](https://doi.org/10.6084/m9.figshare.5697643)). The tree was drawn with FigTree v1.3.1
877 using midpoint rooting.

878 **1.10.2 Virus annotation and analysis**

879 Viruses were discovered from analysis of published *P. pyralis* RNA sequencing libraries
880 (NCBI TSA: GEZM00000000.1) and the Ppyr1.2 genome assembly. 24 *P. pyralis* RNA
881 sequencing libraries were downloaded from SRA (taxid: 7054, date accessed: 15th June 2017).
882 RNA sequence reads were first *de novo* assembled using Trinity v2.4.0[66] with default
883 parameters. Resulting transcriptomes were assessed for similarity to known viral sequences by

884 TBLASTN searches (max e-value = 1×10^{-5}) using as probe the complete predicted non
885 redundant viral Refseq proteins retrieved from NCBI (date accessed: 15th June 2017).
886 Significant hits were explored manually and redundant contigs discarded. False-positives were
887 eliminated by comparing candidate viral contigs to the entire non-redundant nucleotide (nt) and
888 protein (nr) database to remove false-positives.

889 Candidate virus genome segment sequences were curated by iterative mapping of reads
890 using Bowtie 2 (v2.3.2)[50]. Special attention was taken with the segments' terminis -- an
891 arbitrary cut off of 10x coverage was used as threshold to support terminal base calls. The
892 complementarity and folded structure of untranslated ends, as would be expected for members
893 of the Orthomyxoviridae, was assessed by Mfold 2.3[89]. Further, conserved UTR sequences
894 were identified using ClustalW2[90] (support of >65% required to call a base). To identify/rule
895 out additional segments of no homology to the closely associated viruses we used diverse *in*
896 *silico* approaches based on RNA levels including: the sequencing depth of the transcript,
897 predicted gene product structure, or conserved genome termini, and significant co-expression
898 with the remaining viral segments.

899 After these filtering steps, putative viral sequences were annotated manually. First,
900 potential open reading frames (ORF) were predicted by ORFfinder[91] and manually inspected
901 by comparing predicted ORFS to those from the closest-related reference virus genome
902 sequence. Then, translated ORFs were blasted against the non-redundant protein sequences
903 NR database and best hits were retrieved. Predicted ORF protein sequences were also
904 subjected to a domain-based Blast search against the Conserved Domain Database (CDD)
905 (v3.16)[92] and integrated with SMART[93], Pfam[94], and PROSITE[95] results to characterize
906 the functional domains. Secondary structure was predicted with Garnier as implemented in
907 EMBOSS (v6.6)[96], signal and membrane cues were assessed with SignalP (v4.1)[97], and
908 transmembrane topology and signal peptides were predicted by Phobius[98]. Finally, the
909 potential functions of predicted ORF products were explored using these annotations as well as
910 similarity to viral proteins of known function.

911 To characterize *Orthomyxoviridae* viral diversity in *P. pyralis* in relation to known viruses,
912 predicted *P. pyralis* viral proteins were used as probes in TBLASTN (max e-value = 1×10^{-5})
913 searches of the complete 2,754 Transcriptome Shotgun Assembly (TSA) projects on NCBI (date
914 accessed: 15th June 2017). Significant hits were retrieved and the target TSA projects further
915 explored with the complete *Orthomyxoviridae* refseq collection to assess the presence of
916 additional similar viral segments. Obtained transcripts were extended/curated using the SRA
917 associated libraries for each TSA hit and then the curated virus sequences were characterized
918 and annotated as described above.

919 To identify *P. pyralis* viruses to family/genus/species, amino acid sequences of the
920 predicted viral polymerases, specifically the PB1 subunit, were used for phylogenetic analyses
921 with viruses of known taxonomy. To do this, multiple sequence alignment were generated using
922 MAFFT (v7.310) [99] and unrooted maximum-likelihood phylogenetic trees were constructed
923 using FastTree [100] with standard parameters. FastTree accounted for variable rates of
924 evolution across sites by assigning each site to one of 20 categories, with the rates

925 geometrically spaced from 0.05 to 20, and set each site to its most likely rate category using a
926 Bayesian approach with a gamma prior. Support for individual nodes was assessed using an
927 approximate likelihood ratio test with the Shimodaira-Hasegawa-like procedure. Tree topology,
928 support values and substitutions per site were based on 1,000 tree resamples.

929 To facilitate taxonomic identification we complemented BLASTP data with 2 levels of
930 phylogenetic insights: (i) Trees based on the complete refseq collection of ssRNA (-) viruses
931 which permitted a conclusive assignment at the virus family level. (ii) Phylogenetic trees based
932 on reported, proposed, and discovered *Orthomyxoviridae* viruses that allowed tentative species
933 demarcation and genera postulation. PB1-based trees were complemented independently with
934 phylogenetic studies derived from amino acids of predicted nucleoproteins, hemagglutinin
935 protein, PB2 protein, and PA protein which supported species, genera and family demarcation
936 based on solely on PB1, the standard in *Orthomyxoviridae*. In addition, sequence similarity of
937 concatenated gene products of International Committee on Taxonomy of Viruses (ICTV)
938 allowed demarcation to species and firefly viruses were assessed by Circoletto diagrams[101]
939 (e-value = 1e10-2). Where definitive identification was not easily assessed, protein Motif
940 signatures were determined by identification of region of high identity between divergent virus
941 species, visualized by Sequence Logo[102], and contrasted with related literature.
942 Heterotrimeric viral polymerase 3D structure prediction was generated with the SWISS-MODEL
943 automated protein structure homology-modelling server[103] with the best fit template 4WSB:
944 the crystal structure of Influenza A virus 4WSB. Predicted structures were visualized in UCSF
945 Chimera[104] and Needleman-Wunsch sequence alignments from structural superposition of
946 proteins were generated by MatchMaker and the Match->Align Chimera tool. Alternatively, 3D
947 structures were visualized in PyMOL (v1.8.6.0; Schrodinger).

948 Viral RNA levels in the transcriptome sequences were also examined. Virus transcripts
949 RNA levels were obtained by mapping the corresponding raw SRA FASTQ read pairs using
950 either Bowtie2[50] or the reference mapping tool of the Geneious 8.1.9 suite (Biomatters, Ltd.)
951 with standard parameters. Using the mapping results and retrieving library data, absolute levels,
952 TPMs and FPKM were calculated for each virus RNA segment. Curated genome segments and
953 coding annotation of the identified PpyrOMLV1 and 2 are available on FigShare at (DOI:
954 [10.6084/m9.figshare.5714806](https://doi.org/10.6084/m9.figshare.5714806)) and (DOI: [10.6084/m9.figshare.5714812](https://doi.org/10.6084/m9.figshare.5714812)) respectively, and
955 NCBI Genbank (accessions MG972985 through MG972994)

956 All curation, phylogeny construction, and visualization were conducted in Geneious 8.1.9
957 (Biomatters, Ltd.). Animal silhouettes in Fig. S5.4.1 were developed based on non-copyrighted
958 public domain images. Figure compositions were assembled using Photoshop CS5 (Adobe).
959 Bar graphs were generated with Excel 2007 software (Microsoft). RNA levels normalized as
960 mapped transcripts per million per library were visualized using Shinyheatmap[105].

961 Finally, to identify endogenous viral-like elements, tentative virus detections and the viral
962 refseq collection were contrasted to the *P. pyralis* genome assembly Ppyr1.2 by BLASTX
963 searches (e-value = 1e-6) and inspected by hand. Then 15 Kbp genome flanking regions were
964 retrieved and annotated. Lastly, transposable elements (TEs) were determined by the presence

965 of characteristic conserved domains (e.g. RNASE_H, RETROTRANSPOSON, INTEGRASE) on
966 predicted gene products and/or significant best BLASTP hits to reported TEs (e-value <1e-10).

967 **1.11 Repeat annotation**

968 Repeat prediction for *P. pyralis* was performed *de novo* using RepeatModeler
969 (v1.0.9)[106] and MITE-Hunter (v11-2011)[107]. RepeatModeler uses RECON[108] and
970 RepeatScout[109] to predict interspersed repeats, and then refines and classifies the consensus
971 repeat models to build a repeat library. MITE-Hunter detects candidate MITEs (miniature
972 inverted-repeat transposable elements) by scanning the assembly for terminal inverted repeats
973 and target site duplications <2 kb apart. To identify tandem repeats, we also ran Tandem
974 Repeat Finder (v4.09; parameters: 2 7 7 80 10)[110], and added repeats whose repeat block
975 length was >5 kb to the repeat library annotated as “complex tandem repeat”. The
976 RepeatModeler and MITE-Hunter libraries were combined and classified using RepeatClassifier
977 (RepeatModeler 1.0.9 distribution)[106]. The complex repeats identified by Tandem Repeat
978 Finder were added to this classified list to create the final library of 3118 repeats. This repeat
979 library is dubbed the *P. pyralis* Official Repeat Library 1.0 (PPYR_ORL1.0).

980 **Table S1.11.1:** Annotated repetitive elements in *P. pyralis*

Repeat class	family	counts	bases	% of assembly
DNA	All	122551	38364685	8.14
	Helitrons	35068	9308100	1.97
LTR	All	28860	11401648	2.42
Non-LTR	All	52107	17744320	3.76
	LINE	48983	16763499	3.56
	SINE	1241	139637	0.03
Unknown interspersed		696511	141970977	30.1
Complex tandem repeats		10395	2352796	0.50

Simple repeat	48224	2372183	0.50
rRNA	449	161517	0.034

981

982 **1.12 *P. pyralis* methylation analysis**

983 MethylC-seq libraries were prepared from HMW DNA prepared from four *P. pyralis*
 984 MMNJ males using a previously published protocol[111], and sequenced to ~36x expected
 985 depth on an Illumina NextSeq500. Methylation analysis was performed using methylpy[112]
 986 Methylpy calls programs for read processing and aligning: (i) reads were trimmed of sequencing
 987 adapters using Cutadapt[113], (ii) processed reads were mapped to both a converted forward
 988 strand (cytosines to thymines) and converted reverse strand (guanines to adenines) using
 989 bowtie (flags: -S, -k 1, -m 1, --chunkmbs 3072, --best, --strata, -o 4, -e 80, -l 20, -n 0 [114]), and
 990 (iii) PCR duplicates were removed using Picard[115]. In total, 49.4M reads were mapped
 991 corresponding to an actual sequencing depth of ~16x. A sodium bisulfite non-conversion rate of
 992 0.17% was estimated from Lambda phage genomic DNA. Raw WGBS data can be found on the
 993 NCBI Gene Expression Omnibus (GSE107177). Previously published whole genome bisulfite
 994 sequencing (WGBS)/MethylC-seq libraries for *Apis mellifera* [116], *Bombyx mori* [117],
 995 *Nicrophorus vespilloides* [118], and *Zootermopsis nevadensis* [119] were downloaded from the
 996 Short Read Archive (SRA) using accessions SRR445803–4, SRR027157–9, SRR2017555, and
 997 SRR3139749, respectively. Libraries were subjected to identical methylation analysis as *P.*
 998 *pyralis*.

999 Weighted DNA methylation was calculated for CG sites by dividing the total number of
 1000 aligned methylated reads by the total number of methylated plus un-methylated reads [120]. For
 1001 genic metaplots, the gene body (start to stop codon), 1000 base pairs (bp) upstream, and 1000
 1002 bp downstream was divided into 20 windows proportional windows based on sequence length
 1003 (bp). Weighted DNA methylation was calculated for each window and then plotted in R
 1004 (v3.2.4)[121].

1005

1006 **1.13 Telomere FISH analysis**

1007 We synthesized a 5' fluorescein-tagged (TTAGG)₅ oligo probe (FAM; Integrated DNA
 1008 Technologies) for fluorescence *in situ* hybridization (FISH). We conducted FISH on squashed
 1009 larval tissues according to previously published methods[122], with some modification. Briefly,
 1010 we dissected larvae in 1X PBS and treated tissues with a hypotonic solution (0.5% Sodium
 1011 citrate) for 7 minutes. We transferred treated larval tissues to 45% acetic acid for 30 seconds,
 1012 fixed in 2.5% paraformaldehyde in 45% acetic acid for 10 minutes, squashed, and dehydrated in
 1013 100% ethanol. We treated dehydrated slides with detergent (1% SDS), dehydrated again in
 1014 ethanol, and then stored until hybridization. We hybridized slides with probe overnight at 30°C,
 1015 washed in 4X SSCT and 0.1X SSC at 30°C for 15 minutes per wash. Slides were mounted in

1016 VectaShield with DAPI (Vector Laboratories), visualized on a Leica DM5500 upright
1017 fluorescence microscope at 100X, imaged with a Hamamatsu Orca R2 CCD camera. Images
1018 were captured and analyzed using Leica's LAX software.
1019

1020 **SUPPLEMENTARY TEXT 2: *Aquatica lateralis* additional information**

1021 **2.1 Taxonomy, biology, and life history**

1022 *Aquatica lateralis* (Motschulsky, 1860) (Japanese name, Heike-botaru / ヘイケボタル) is
1023 one of the most common and popular luminous insects in mainland Japan. This species is a
1024 member of the subfamily Luciolinae and had long belonged in the genus *Luciola*, but was
1025 recently moved to the new genus *Aquatica* with some other Asian aquatic fireflies[123].

1026 The life cycle of *A. lateralis* is usually one year. Aquatic larva possesses a pair of outer
1027 gills on each abdominal segment and live in still or slow streams near rice paddies, wetlands
1028 and ponds. Larvae mainly feed on freshwater snails. They pupate in a mud cocoon under the
1029 soil near the water. Adults emerge in early to end of summer. While both males and females are
1030 full-winged and can fly, there is sexual dimorphism in adult size: the body length is about 9 mm
1031 in males and 12 mm in females[124].

1032 Like other firefly larvae, *A. lateralis* larvae are bioluminescent. Larvae possess a pair of
1033 lanterns at the dorsal margin of the abdominal segment 8. Adults are also luminescent and
1034 possess lanterns at true abdominal segments 6 and 7 in males and at segment 6 in
1035 females[124–126]. The adult is dusk active. Male adults flash yellow-green for about 1.0 second
1036 in duration every 0.5-1.0 seconds while flying ~1 m above the ground. Female adults, located
1037 on low grass, respond to the male signal with flashes of 1-2 seconds in duration every 3-6 sec.
1038 Males immediately approach females and copulate on the grass[124,127]. Like many other
1039 fireflies, *A. lateralis* is likely toxic: both adults and larvae emit an unpleasant smell when
1040 disturbed and both invertebrate (dragonfly) and vertebrate (goby) predators vomit up the larva
1041 after biting[128]. *A. lateralis* larvae have eversible glands on each of the 8 abdominal
1042 segments[123]. The contents of the eversible glands is perhaps similar to that reported for *A. leii*
1043 [129].

1044 **2.2 Species distribution**

1045 The geographical range of *A. lateralis* includes Siberia, Northeast China, Kuril Isls,
1046 Korea, and Japan (Hokkaido, Honshu, Shikoku, Kyushu, Tsushima Isls.)[130]. Natural habitats
1047 of these Japanese fireflies have been gradually destroyed through human activity, and currently
1048 these species can be regarded as 'flagship species' for conservation[131]. For example, in
1049 2017, Japanese Ministry of Environment began efforts to protect the population of *A. lateralis* in
1050 the Imperial Palace, Tokyo, where 3,000 larvae cultured in an aquarium were released in the
1051 pond beside the Palace[132].

1052 **2.3 Specimen collection**

1053 Individuals used for genome sequencing, RNA sequencing, and LC-HRAM-MS were
1054 derived from a small population of laboratory-reared fireflies. This population was established
1055 from a few individuals collected from rice paddy in Kanagawa Prefecture of Japan in 1989 and
1056 1990[133] by Mr. Haruyoshi Ikeya, a highschool teacher in Yokohama, Japan. Mr. Ikeya
1057 collected adult *A. lateralis* specimens from their natural habitat in Yokohama and has
1058 propagated them for over 25 years (~25 generations) in a laboratory aquarium without any
1059 addition of wild individuals. This population has since been propagated in the laboratory of YO,
1060 and is dubbed the “Ikeya-Y90” cultivar. Because of the small number of individuals used to
1061 establish the population and the number of generations of propagation, this population likely
1062 represents a partially inbred strain. Larvae were kept in aquarium at 19-21°C and fed using
1063 freshwater snails (*Physella acuta* and *Indoplanorbis exustus*). Under laboratory rearing
1064 conditions, the life cycle is reduced to 7-8 months. The original habitat of this strain has been
1065 destroyed and the wild population which led to the laboratory strain is now extinct.

1066 **2.4 Karyotype and genome size**

1067 Unlike *P. pyralis*, the karyotype of *A. lateralis* is reported to be 2n=16 with XY sex
1068 determination (male, 14A+XY; female, 14A+XX)[134]. The Y chromosome is much smaller than
1069 X chromosome, and the typical behaviors of XY chromosomes, such as partial conjugation of
1070 X/Y at first meiotic metaphase and separation delay of X/Y at first meiotic anaphase, were
1071 observed in testis cells[134].

1072 We determined the genome size of *A. lateralis* using flow cytometry-mediated calibrated-
1073 fluorimetry of DNA content with propidium iodide stained nuclei. First, the head + prothorax of a
1074 single pupal female (gender identified by morphological differences in abdominal segment VIII)
1075 was homogenized in 100 µL PBS. These tissues were chosen to avoid the ovary tissue. Once
1076 homogenized, 900 µL PBS, 1 µL Triton X-100 (Sigma-Aldrich), and 4 µL 100 mg/mL RNase A
1077 (QIAGEN) were added. The homogenate was incubated at 4°C for 15 min, filtered with a 30 µm
1078 Cell Tries filter (Sysmex), and further diluted with 1 mL PBS. 20 µL of 0.5 mg/mL propidium
1079 iodide was added to the mixture and then average fluorescence of the 2C nuclei determined
1080 with a SH-800 flow cytometer (Sony, Japan). Three technical replicates of this sample were
1081 performed. Independent runs for extracted Aphid nuclei (*Acyrthosiphon pisum*; 517 Mbp), and
1082 fruit fly nuclei (*Drosophila melanogaster*; 175 Mbp) were performed as calibration standards.
1083 Genome size was estimated at 940 Mbp ± 1.4 (S.D.; technical replicates = 3).

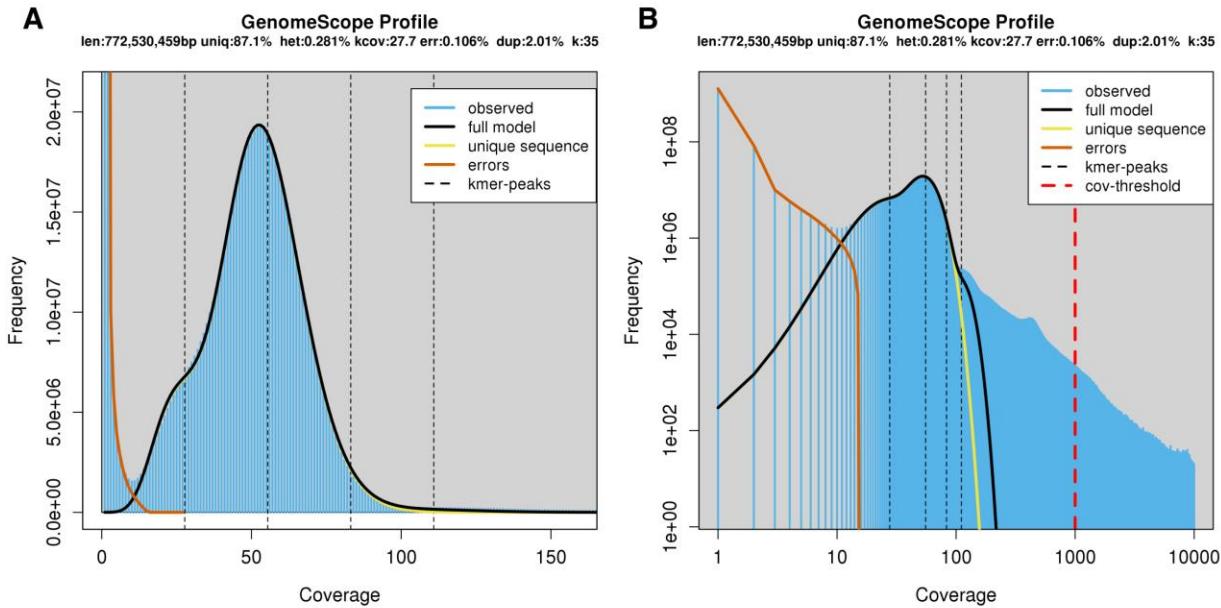
1084 Genome size inference via Kmer spectral analysis estimated a genome size of 772 Mbp
1085 (Figure S2.5.1).

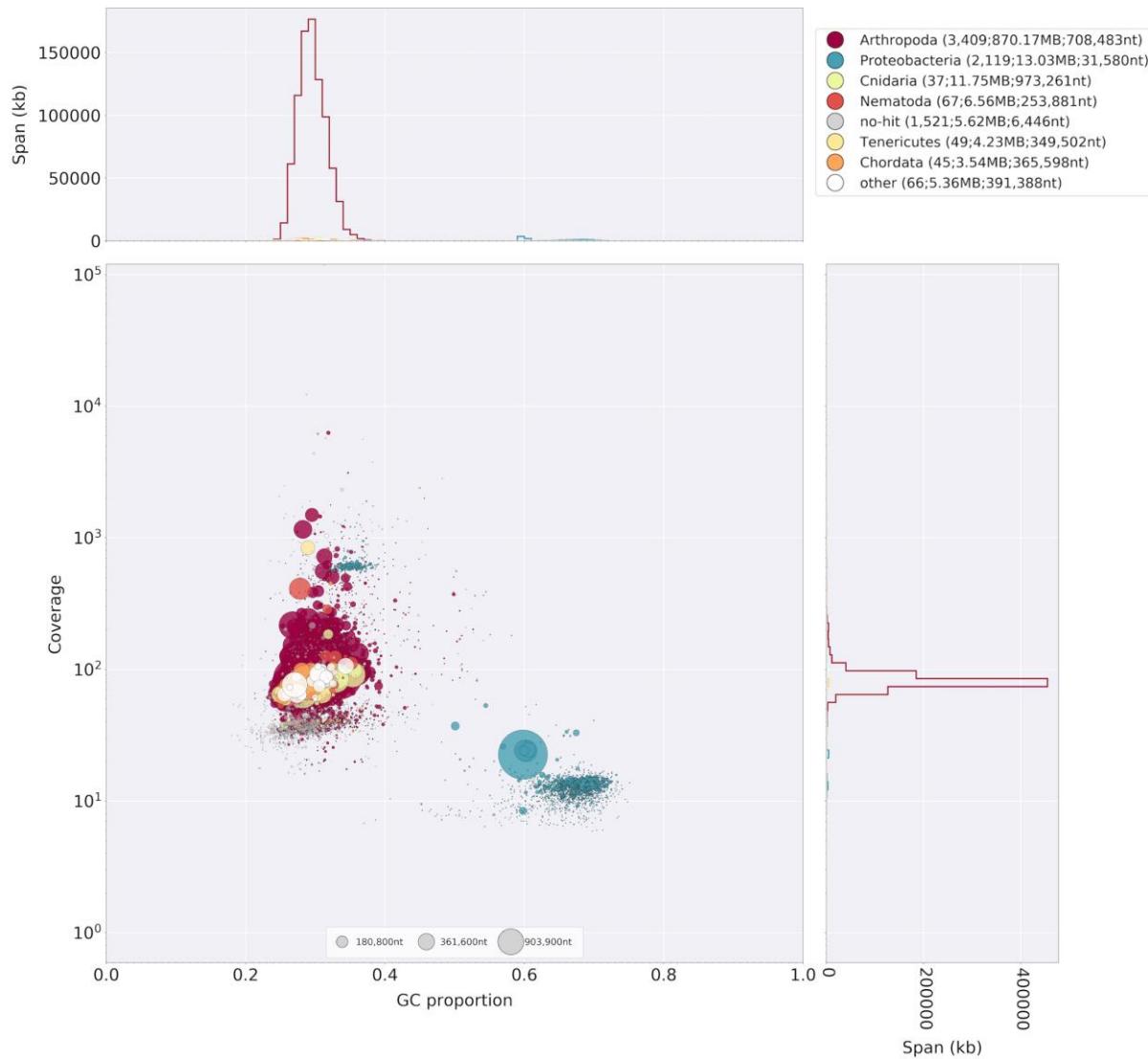
1086

1087 **2.5 Genomic sequencing and assembly**

1088 Genomic DNA was extracted from the whole body of a single laboratory-reared *A.*
1089 *lateralis* adult female (c.v. Ikeya-Y90) using the QIAamp Kit (Qiagen). Purified DNA was
1090 fragmented with a Covaris S2 sonicator (Covaris, Woburn, MA, USA), size-selected with a
1091 Pippin Prep (Sage Science, Beverly, MA, USA), and then used to create two paired-end
1092 libraries using the TruSeq Nano Sample Preparation Kit (Illumina) with insert sizes of ~200 and
1093 ~800 bp. These libraries were sequenced on an Illumina HiSeq1500 using a 125x125 paired-
1094 end sequencing protocol. Mate-pair libraries of 2–20 Kb with a peak at ~5 Kb were created from
1095 the same genomic DNA using the Nextera Mate Pair Sample Preparation Kit (FC-132-1001,
1096 Illumina), and sequenced on HiSeq 1500 using a 100x100 paired-end sequencing protocol at
1097 the NIBB Functional Genomics Facility (Aichi, Japan). In total, 133.3 Gb of sequence (159x)
1098 was generated.

1099 Reads were assembled using ALLPATHS-LG (build# 48546)[135], with default
1100 parameters and the “HAPLOIDIFY = True” option. Scaffolds were filtered to remove non-firefly
1101 contaminant sequences using blobtools[55], resulting in the final assembly (Alat1.3). The final
1102 assembly (Alat1.3) consists of 5,388 scaffolds totaling 908.5 Gbp with an N50 length of 693.0
1103 Kbp, corresponding to 96.6% of the predicted genome size of 940 Mbp based on flow cytometry
1104 (Supplementary Text 2.4). Genome sequencing library statistics are available in Table S4.1.1.
1105




Figure S2.5.1: Genome scope kmer analysis of the *A. lateralis* short-insert genomic library.

(A) linear and (B) log plot of a kmer spectral genome composition analysis of the "FFGPE_PE200" *A. lateralis* Illumina short-insert library (Supp. Text 2.5; Table S4.1.1) with jellyfish (v2.2.9; parameters: -C -k 35)[34] and GenomeScope (v1.0; parameters: Kmer length=35, Read length=100, Max kmer coverage=1000)[35]. len=inferred haploid genome length, uniq=percentage non-repetitive sequence, het=overall rate of genome heterozygosity, kcov=mean kmer coverage for heterozygous bases, err=error rate of the reads, dup: average rate of read duplications. These results are consistent when considering the possible systematic error of kmer spectral analysis and flow cytometry genome size estimates. The heterozygosity is lower than that measured for *P. pyralis*, possibly reflecting the long-term laboratory rearing in reduced population sizes of *A. lateralis* strain Ikeya-Y90.

2.5.2 Taxonomic annotation filtering

Potential contaminants in Alat1.2 were identified using the blobtools toolset (v1.0)[55]. First, scaffolds were compared to known sequences by performing a blastn (v2.5.0+) nucleotide sequence similarity search against the NCBI nt database and a diamond (v0.9.10)[56] translated nucleotide sequence similarity search against the of Uniprot reference proteomes (July 2017). Using this similarity information, scaffolds were annotated with blobtools (parameters "-x bestsumorder"). We also inspected the read coverage by mapping the paired-end reads (FFGPE_PE200) on the genome using bowtie2. A tab delimited text file containing the results of this blobtools annotation are available on FigShare (DOI: [10.6084/m9.figshare.5688928](https://doi.org/10.6084/m9.figshare.5688928)). The contigs derived from potential contaminants and/or poor quality contigs were then removed: contigs with higher %GC (>50%) with bacterial hits or no database hits and showing low read coverage (<30x) (see Fig. S2.5.2.1). This process removed

1131 1925 scaffolds (1.17 Mbp), representing 26.3% of the scaffold number and 1.3% of the
1132 nucleotides of Alat1.2, producing the final filtered assembly, dubbed Alat1.3.
1133

1134
1135 **Figure S2.5.2.1:** Blobplot of *A. lateralis* Illumina reads aligned against Alat1.2

1136 Coverage shown represents mean coverage of reads from the Illumina short-insert library
1137 (Sample name FFGPE_PE200; Table S4.1.1), aligned against Alat1.2 using Bowtie2. Scaffolds
1138 were taxonomically annotated as described in Supplementary Text 2.5.2.

1139

1140 **2.6 RNA-extraction, library preparation and sequencing**

1141 In order to capture transcripts from diverse life-stages and tissues, non-stranded RNA-
1142 Seq libraries were prepared from fresh specimens of nine life stages/sexes/tissues (eggs, 5th
1143 (the last) instar larvae, both sex of pupae, adult male head, male abdomen (prothorax-to-fifth

1144 segment), male lantern, adult female head, and female lantern (Table S2.6.1). Live specimens
 1145 were anesthetized on ice and dissected during the day. The lantern tissue was dissected from
 1146 the abdomen and contains the cuticle, photocyte layer and reflector layer. For eggs, larvae, and
 1147 pupae, total RNA was extracted using the RNeasy Mini Kit (QIAGEN) with the optional on-
 1148 column DNase treatment. For adult specimens, total RNA was extracted using TRIzol reagent
 1149 (Invitrogen) to avoid contamination of pigments and uric acid. These were then treated with
 1150 DNase in solution and then cleaned using a RNeasy Mini kit.

1151 cDNA libraries were generated from purified Total RNA (500 ng from each sample) using
 1152 a TruSeq RNA Sample Preparation Kit v2 (Illumina) according to the manufacturer's protocol
 1153 (Low Throughput Protocol), except that all reactions were carried out at half scale. The
 1154 fragmentation of mRNA was performed for 4 min. The enrichment PCR was done using 6
 1155 cycles. A subset of nine libraries (BdM1, HeF1, HeM1, LtF1, LtM1, Egg1, Lrv1, PpEF, PpLM;
 1156 Table S2.6.1) were multiplexed and sequenced in a single lane of Hiseq1500 101x101 bp
 1157 paired-end reads. The remaining 23 libraries (BdM2, BdM3, HeF2, HeF3, HeM2, HeM3, LtF2,
 1158 LtF3, LtM2, LtM3, WAF1, WAF2, WAF3, WAM1, WAM2, WAM3, Egg2, Lrv2, Lrv3, PpEM,
 1159 PpLF, PpMF, PpMM) were multiplexed and sequenced in two lanes of Hiseq1500 66 bp single-
 1160 end reads. Sequence quality was inspected with FastQC[136].

1161 **Table S2.6.1: *Aquatica lateralis* RNA sequencing**

1162 **N:** number of individuals pooled for sequencing; **Sex/stage:** M = male, F = female, A = adult, L
 1163 = larva, L = larvae, E = Eggs, P = Pupae, P-E = Pupae early, P-M = Pupae middle, P-L = Pupae
 1164 late; **Tissue:** H = head, La = dissected lantern containing cuticle, photocyte layer and reflector
 1165 layer, H = head, B = Thorax, plus abdomen excluding lantern containing segments. W = whole
 1166 specimen. AEL = After egg laying
 1167

Library name	Label	SRA ID	N	Sex/Stage	Tissue	Library type
R102L6_idx13	BdM1	DRR119264	1	M/A	B	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx25	BdM2	DRR119265	1	M/A	B	Illumina single-end, non-stranded specific, PolyA
R128L2_idx27	BdM3	DRR119266	1	M/A	B	Illumina single-end, non-stranded specific, PolyA
R102L6_idx15	HeF1	DRR119267	3	F/A	H	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx22	HeF2	DRR119268	3	F/A	H	Illumina single-end, non-stranded specific, PolyA
R128L2_idx23	HeF3	DRR119269	3	F/A	H	Illumina single-end, non-stranded specific, PolyA
R102L6_idx12	HeM1	DRR119270	2	M/A	H	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx20	HeM2	DRR119271	2	M/A	H	Illumina single-end, non-stranded specific, PolyA
R128L2_idx21	HeM3	DRR119272	2	M/A	H	Illumina single-end, non-stranded specific, PolyA
R102L6_idx16	LtF1	DRR119273	5	F/A	La	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx06	LtF2	DRR119274	5	F/A	La	Illumina single-end, non-stranded specific, PolyA
R128L2_idx12	LtF3	DRR119275	5	F/A	La	Illumina single-end, non-stranded specific, PolyA
R102L6_idx14	LtM1	DRR119276	5	M/A	La	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx05	LtM2	DRR119277	5	M/A	La	Illumina single-end, non-stranded specific, PolyA
R128L2_idx19	LtM3	DRR119278	5	M/A	La	Illumina single-end, non-stranded specific, PolyA
R128L2_idx15	WAF1	DRR119279	1	F/A	W	Illumina single-end, non-stranded specific, PolyA
R128L1_idx16	WAF2	DRR119280	1	F/A	W	Illumina single-end, non-stranded specific, PolyA
R128L2_idx18	WAF3	DRR119281	1	F/A	W	Illumina single-end, non-stranded specific, PolyA
R128L1_idx11	WAM1	DRR119282	1	M/A	W	Illumina single-end, non-stranded specific, PolyA
R128L2_idx13	WAM2	DRR119283	1	M/A	W	Illumina single-end, non-stranded specific, PolyA

R128L1_idx14	WAM3	DRR119284	1	M/A	W	Illumina single-end, non-stranded specific, PolyA
R102L6_idx4	Egg1	DRR119285	19.6 mg (~30-50)	E ~6h AEL	W	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx01	Egg2	DRR119286	21.6 mg (~30-50)	E ~7d AEL	W	Illumina single-end, non-stranded specific, PolyA
R102L6_idx5	Lrv1	DRR119287	1	L	W	Illumina paired-end, non-stranded specific, PolyA
R128L1_idx03	Lrv2	DRR119288	1	L	W	Illumina single-end, non-stranded specific, PolyA
R128L2_idx04	Lrv3	DRR119289	1	L	W	Illumina single-end, non-stranded specific, PolyA
R128L1_idx07	PpEM	DRR119290	1	M/P-E	W	Illumina single-end, non-stranded specific, PolyA
R128L2_idx10	PpLF	DRR119291	1	F/P-L	W	Illumina single-end, non-stranded specific, PolyA
R128L1_idx09	PpMF	DRR119292	1	F/P-M	W	Illumina single-end, non-stranded specific, PolyA
R128L2_idx08	PpMM	DRR119293	1	M/P-M	W	Illumina single-end, non-stranded specific, PolyA
R102L6_idx7	PpEF	DRR119294	1	F/P-E	W	Illumina paired-end, non-stranded specific, PolyA
R102L6_idx6	PpLM	DRR119295	1	M/P-L	W	Illumina paired-end, non-stranded specific, PolyA

1168

1169 **2.7 Transcriptome analysis**

1170 **2.7.1 De novo transcriptome assembly and alignment**

1171 To build a comprehensive set of reference transcript sequences, reads derived from the
 1172 pool of nine libraries (BdM1, HeF1, HeM1, LtF1, LtM1, Egg1, Lrv1, PpEF, PpLM; Table S2.6.1)
 1173 were pooled. These represent RNA prepared from various tissues (head, thorax+abdomen,
 1174 lantern) and stages (egg, pupae, adult) of both sexes. A non strand-specific *de novo*
 1175 transcriptome assembly was produced with Trinity (v2.6.6)[66] using default parameters
 1176 exception the following: (--min_glue 2 --min_kmer_cov 2 --jaccard_clip --no_normalize_reads --
 1177 trimmomatic). Peptides were predicted from the *de novo* transcripts via Transdecoder (v5.3.0;
 1178 default parameters). *De novo* transcripts were then aligned to the *A. lateralis* genome (Alat1.3)
 1179 using the PASA pipeline with blat (v36x2) and gmap (v2018-05-03) (--aligners blat,gmap),
 1180 parameters for alternative splice analysis and strand specificity (--ALT_SPLICE --
 1181 transcribed_is_aligned_orient), and input of the previously extracted Trinity accessions (--tdn
 1182 tdn.accs). Importantly, it was necessary to set (--
 1183 NUM_BP_PERFECT_SPLICE_BOUNDARY=0) for the validate_alignments_in_db.dbi step, to
 1184 ensure transcripts with natural variation near the splice sites were not discarded. Direct coding
 1185 gene models (DCGMs) were then produced with the Transdecoder
 1186 "cdna_alignment_orf_to_genome_orf.pl" utility script, with the PASA assembly GFF and
 1187 transdecoder predicted peptide GFF as input. The unaligned *de novo* transcriptome assembly
 1188 is dubbed "AQULA_Trinity_unstranded", whereas the aligned direct coding gene models are
 1189 dubbed "Alat1.3_Trinity_unstranded-DCGM".

1190 **2.7.2 Reference guided transcriptome alignment and assembly**

1191 A reference guided transcriptome was produced from all available *A.lateralis* RNA-seq
 1192 reads (Table S2.6.1) using HISAT2 (v2.1.0)[72] and StringTie (v1.3.3b)[73]. Reads were first
 1193 mapped to the *A. lateralis* genome (Alat1.3) with HISAT2 (parameters: -X 2000 --dta --fr). Then
 1194 StringTie assemblies were performed on each separate .bam file corresponding to the original
 1195 libraries using default parameters. Finally, the produced .GTF files were merged using StringTie

1196 (--merge). A transcript fasta file was produced from the StringTie GTF file with the transdecoder
1197 “gtf_genome_to_cdna.fasta.pl” utility script, and peptides were predicted for these transcripts
1198 using Transdecoder (v5.3.0) with default parameters. The StringTie .GTF was converted to GFF
1199 format with the Transdecoder “gtf_to_alignment_gff3.pl” utility script, and direct coding gene
1200 models (DCGMs) were then produced with the Transdecoder
1201 “cdna_alignment_orf_to_genome_orf.pl” utility script, with the StringTie-provided GFF and
1202 transdecoder predicted peptide GFF as input. The reference guided transcriptome assembly
1203 was dubbed “AQULA_Stringtie_unstranded”, whereas the aligned direct coding gene models
1204 were dubbed “Alat1.3_Stringtie_unstranded-DCGM”.

1205 **2.7.3 Transcript expression analysis**

1206 *A. lateralis* RNA-Seq reads (Table S2.6.1) were pseudoaligned to the AQULA_OGS1.0
1207 geneset mRNAs using Kallisto (v0.43.1)[74] with 100 bootstraps (-b 100), producing transcripts-
1208 per-million reads (TPM). Kallisto expression quantification analysis results are available on
1209 FigShare (DOI: [10.6084/m9.figshare.5715142](https://doi.org/10.6084/m9.figshare.5715142)).

1210 **2.8 Official coding geneset annotation (AQULA_OGS1.0)**

1211 A protein-coding gene reference set for *A. lateralis* was generated by Evidence Modeler
1212 (v1.1.1) using both aligned transcripts and aligned proteins. For transcripts, we combined
1213 reference guided and *de novo* transcriptome assembly approaches. Notably, these reference
1214 guided and *de novo* transcriptome assembly approaches differed from the current *de novo*
1215 (Supplementary Text 2.7.1) and reference guided (Supplementary Text 2.7.2) transcriptome
1216 assembly approaches. In the reference-guided approach applied here, RNA-Seq reads were
1217 mapped to the genome assembly with TopHat and assembled into transcripts with Cufflinks
1218 (parameters: --min-intron-length 30)[137]. The Cufflinks transcripts were subjected to the
1219 TransDecoder program to extract ORFs. In the *de novo* transcriptome approach applied here,
1220 RNA-seq reads were assembled *de novo* by Trinity and ORFs were predicted using
1221 TransDecoder. We used CD-HIT-EST[83] to reduce the redundancy of the predicted ORFs. The
1222 ORF sequences were mapped to the genome using Exonerate in est2genome mode for splice-
1223 aware alignment. We processed homology evidence at the protein level using the reference
1224 proteomes of *D. melanogaster* and *T. castaneum*. These reference proteins were split-mapped
1225 to the *A. lateralis* genome in two steps: first with BLASTX to find approximate loci, and then with
1226 Exonerate in protein2genome mode to obtain more refined alignments. These gene models
1227 derived from multiple evidence were merged by the EVM program to obtain the reference
1228 annotation for the genomes. We also predicted *ab initio* gene models using Augustus, but we
1229 didn’t include Augustus models for the EVM integration because our preliminary analysis
1230 showed the *ab initio* gene models had no positive impact on gene prediction.

1231 Lastly, gene models for luciferase homologs, P450s, and *de novo* methyltransferases
1232 (DNMTs) which were fragmented or were incorrect (e.g. fusions of adjacent genes) were
1233 manually corrected based on the evidence of the *de novo* and reference guided direct coding

1234 gene models. Manual correction was performed by performing TBLASTN searches with known
1235 good genes from these gene families within SequencerServer(v1.10.11)[80], converting the
1236 TBLASTN results to gff3 format with a custom script[81], and viewing these alignments
1237 alongside the alternative direct coding gene models (Supp. Text. 2.7.1; 2.7.2) in Integrative
1238 Genomics Viewer(v2.4.8)[82]. The official gene set .gff3 file was manually modified in
1239 accordance with the alternative gene models. Different revision numbers of the official geneset
1240 (e.g. AQULA_OGS1.0, AQULA_OGS1.1) represent the improvement of the geneset over time
1241 due to these continuing manual gene annotations.

1242 **2.9 Repeat annotation**

1243 A *de novo* species-specific repeat library for *A. lateralis* was constructed using
1244 RepeatModeler (v1.0.9), and Tandem Repeat Finder (v4.09; settings: 2 7 7 80 10)[110]. Only
1245 tandem repeats from Tandem Repeat Finder with a repeat block length >5 kb (annotated as
1246 “complex tandem repeat”) were added to the RepeatModeler library. This process yielded a
1247 final library of 1695 interspersed repeats. We then used this library and RepeatMasker
1248 (v4.0.5)[138] to identify and mask interspersed and tandem repeats in the genome assembly.
1249 This repeat library is dubbed the *Aquatica lateralis* Official Repeat Library 1.0
1250 (AQULA_ORL1.0).

1251

1252 **Table S2.9.1:** Annotated repetitive elements in *A. lateralis*

1253

Repeat class	family	counts	bases	% of assembly
DNA	All	229064	73263593	8.06
	Helitrons	930	466679	0.051
LTR	All	59499	23391956	2.57
Non-LTR	All	151788	50394853	5.55
	LINE	151788	50394853	5.55
Unknown interspersed	SINE	0	0	0
		450934	99998958	11.01

Complex tandem repeats	295	33237	0.004
Simple repeat	155265	6656757	0.73
rRNA	0	0	0
1254			
1255			

1256 **SUPPLEMENTARY TEXT 3: *Ignelater luminosus* additional information**

1257 **3.1 Taxonomy, biology, and life history**

1258 *Ignelater luminosus* is a member of the beetle family Elateridae (“click beetles”), related
1259 to Lampyridae within the superfamily Elateroidea. The Elateridae includes about 10,000
1260 species[139] (17 subfamilies)[140], which are widespread throughout the globe. Unlike in
1261 fireflies, where bioluminescence is universal, only ~200 described elaterid species are luminous.
1262 These luminous species are recorded only from tropical and subtropical regions of Americas
1263 and some small Melanesian islands, such as Fiji and Vanuatu [140,141]. For instance, the
1264 tropical American *Pyrophorus noctilucus* is considered the largest (~30 mm) and brightest
1265 bioluminescent insect [142,143]. All luminous species are closely related - luminous click
1266 beetles belong to the tribes Pyrophorini and Euplinthini[141,144] of the subfamily Agrypninae,
1267 with the single exception of *Campyloxenus pyrothorax* (Chile) in the related subfamily
1268 Campyloxeninae[145]. The luminescence of a pair of pronotal ‘light organs’ of the adult *Balgus*
1269 *schnusei* [146], a species that has now been assigned to the Thylacosterninae of the
1270 Elateridae[140], has not been confirmed by later observation. This near-monophyly of
1271 bioluminescent elaterid taxa is supported by both morphological[147] and molecular
1272 phylogenetic analysis[148–150], though early morphological phylogenies were
1273 inconsistent[145,151–154]. This suggests a single origin of bioluminescence in this family.

1274 The genus *Ignelater* was established by Costa in 1975 and *I. luminosus* was included in
1275 this genus[141]. Often this species is called *Pyrophorus luminosus* as an ‘auctorum’, a name
1276 used to describe a variety of taxa[155]. This use of “*Pyrophorus*” as an auctorum may be due to
1277 the heightened difficulty of classifying Elateridae[141]. The genus *Ignelater* is characterized by
1278 the presence of both dorsal and ventral photophores[141,156]. An unreviewed report suggested
1279 that the adult *I. luminosus* has a ventral light organ only in males [157]. Phylogenetic analyses
1280 based on the morphological characters suggested that the genera *Ignelater* and *Photophorus*
1281 (which contain only two species from Fiji and Vanuatu) are the most closely related genera in
1282 the tribe Pyrophorini [156]. The earliest fossil of an Elateridae species was recorded from the
1283 Middle Jurassic of Inner Mongolia, China [158]. McKenna and Farrell suggested that, based on
1284 molecular analyses, the family Elateridae originated in the Early Cretaceous (130 Mya) [159]. It
1285 is expected that many recent genera in Elateroidea were established by the Early Tertiary (<65
1286 Mya) [160].

1287 The exact function of bioluminescence across different life stages remains unknown for
1288 many luminous elaterid species. Bioluminescent elaterid beetles typically have 2 paired lanterns
1289 on the dorsal surface of the prothorax, and a single lantern on the ventral abdomen which is
1290 only exposed during flight. Several bioluminescent Elateridae produce different colored
1291 luminescence from their prothorax and abdominal lanterns [161,162]. Harvey reported that there
1292 was not a marked difference in the luminescence color of the dorsal and ventral lanterns of
1293 Puerto Rican *I. luminosus* [29]. Like fireflies, elaterid larvae often produce light, with the glowing
1294 termite mounds of Brazil that contain the predatory larvae of *Pyrearinus termitilluminans* being a

1295 striking example [163]. A description of the anatomy of the larval light organ of *Pyrophorus* is
1296 provided by Harvey[29], and a more modern photograph of the larval light organ is provided by
1297 Bechara and Stevani[164]. *I. luminosus* larvae likely also produce light, though it has not been
1298 specifically reported in the literature. *I. luminosus* are subterranean predators, and are
1299 enthusiastic predator of the white grub (*Ancylonycha* spp.), reportedly consuming 50+ to reach
1300 full size [165]. Adult *I. luminosus* are luminescent and a bioluminescent courtship behavior was
1301 described in an unreviewed study [166]. Reportedly, males search during flight with their
1302 prothorax lanterns illuminated steadily, while females stay on the ground modulating the
1303 intensity of their prothorax lanterns in ~2 second intervals. Once a female is observed, the
1304 prothorax lanterns of the male go dark, the ventral lantern becomes illuminated, and the male
1305 approaches the female via a circular search pattern. Mating is brief, reportedly taking only 5
1306 seconds. It is unclear if the male ventral lantern response represents a direct control of light
1307 production from the ventral lantern, or simply the beetle exposing a constitutively luminescent
1308 ventral lantern which is normally obscured from view.

1309 Unlike fireflies, bioluminescent elaterid species are not known to have potent chemical
1310 defenses. For example, the Jamaican bioluminescent elaterid beetle *Pyrophorus*
1311 *plagiophthalmus*, does not appear to be strongly unpalatable, as bats were observed to
1312 regularly capture the beetles during their flying bioluminescent displays [167]. A defense role
1313 for *I. luminosus* luminescence to startle predators is possible.

1314 **3.2 Species distribution**

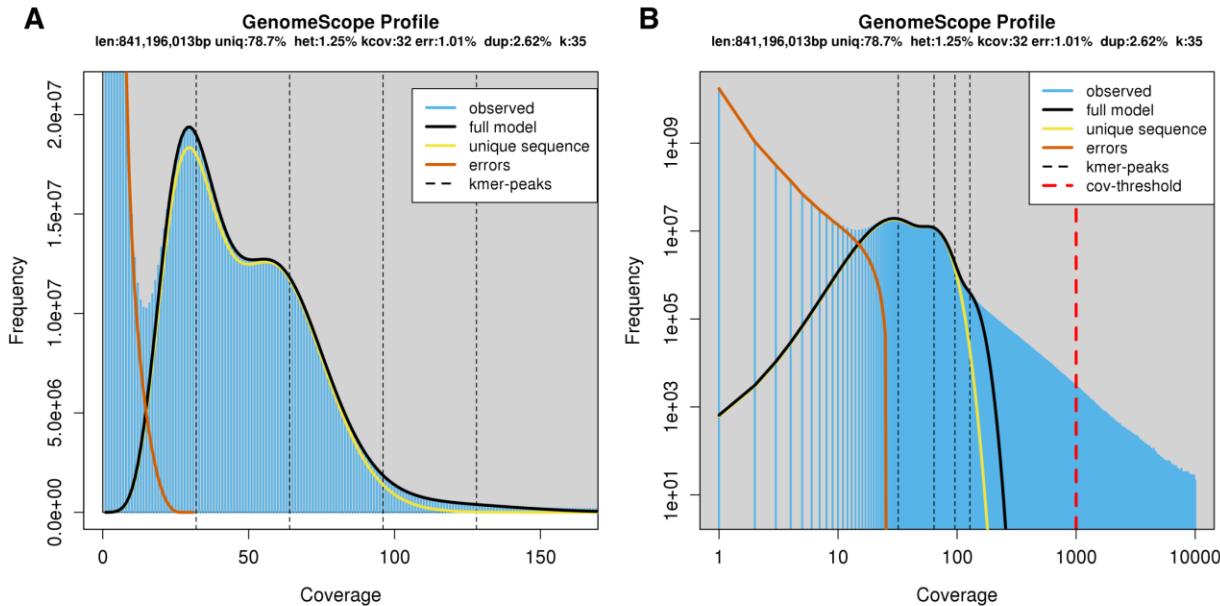
1315 *I. luminosus* is often considered to be endemic to Puerto Rico[168], however the genus
1316 *Ignelater* is reported in Florida (USA), Vera Cruz (Mexico), the Bahamas, Cuba, Isla de la
1317 Juventud, Hispaniola (Haiti+Dominican Republic), Puerto Rico, and the Lesser Antilles [141].
1318 Similarly, *I. luminosus* itself has been reported on the island of Hispaniola [166,169], indicating *I.*
1319 *luminosus* is not restricted to Puerto Rico. This geographic distribution of *Ignelater* suggests that
1320 Puerto Rico likely contains multiple *Ignelater* species and, given the difficulty of distinguishing
1321 different species of bioluminescent Elateridae by morphological characters, a definitive species
1322 distribution for *I. luminosus* cannot be stated, other than this species is seemingly not endemic
1323 to Puerto Rico.

1324 **3.3 Collection**

1325 *I. luminosus* (Illiger, 1807) adult specimens were collected from private land in
1326 Mayagüez, Puerto Rico (18° 13' 12.1974" N, 67° 6' 31.6866" W) with permission of the
1327 landowner by Dr. David Jenkins (USDA-ARS). Individuals were captured at night on April 20th
1328 and April 28th 2015 during flight on the basis of light production. The *I. luminosus* specimens
1329 were frozen in a -80°C freezer, lyophilized, shipped to the laboratory (MIT) on dry ice, and
1330 stored at -80°C. Full collection metadata is available from the NCBI BioSample records of these
1331 specimens (NCBI Bioproject PRJNA418169). Identification to species was performed by
1332 comparing antenna and dissected genitalia morphology to published keys [141,156,170] (Fig.

1333 S3.3.1). All inspected specimens were male (3/3). Separate specimens were used for
1334 sequencing. Although the genitalia morphology of the sequenced specimens was not inspected
1335 to confirm their sex, sequenced specimens were inferred to be male, based on the fact that
1336 female bioluminescent elaterid beetles are rarely seen in flight (Personal communication: S.
1337 Velez) and the dissected specimens collected in the same batch as the sequenced specimens
1338 were confirmed to be male.

1339
1340 **Figure S3.3.1: *I. luminosus* aedeagus (male genitalia)**


1341 (A) dorsal and (B) ventral view of an *Igneater luminosus* aedeagus, dissected from the same
1342 batch of specimens used for linked-read sequencing and genome assembly. The species
1343 identity of this specimen was confirmed as *I. luminosus* by comparison of the aedeagus to the
1344 keys of Costa and Rosa [141,156,170].

1345 **3.4 Karyotype and genome size**

1346 The karyotype of Puerto Rican *I. luminosus* (as *Pyrophorus luminosus*) was reported as
1347 $2n=14A + X_1X_2Y$ [168]. The genome sizes of 5 male *I. luminosus* were determined by flow
1348 cytometry-mediated calibrated-fluorimetry of DNA content with propidium iodide stained nuclei
1349 by Dr. J. Spencer Johnston (Texas A&M University). The frozen head of each individual was
1350 placed into 1 mL of cold Galbraith buffer in a 1 mL Kontes Dounce Tissue Grinder along with the
1351 head of a female *Drosophila virilis* standard (1C = 328 Mbp). The nuclei from the sample and
1352 standard were released with 15 strokes of the “B” (loose) pestle, filtered through 40 μ m Nylon
1353 mesh, and stained with 25 mg/mL Propidium Iodide (PI). After a minimum of 30 min staining in
1354 the dark and cold, the average fluorescence channel number for the PI (red) fluorescence of the
1355 2C (diploid) nuclei of the sample and standard were determined using a CytoFlex Flow
1356 Cytometer (Beckman-Coulter). The 1C amount of DNA in each sample was determined as the
1357 ratio of the 2C channel number of the sample and standard times 328 Mbp. The genome size of
1358 these *I. luminosus* males was determined to be 764 ± 7 Mbp (SEM, n=5). Genome size
1359 inference via Kmer spectral analysis of the *I. luminosus* linked-read data estimated a genome
1360 size of 841 Mbp (Figure S3.5.1).

1361 **3.5 Genomic sequencing and assembly**

1362 HMW DNA (25 µg) was extracted from a single male specimen of *I. lumenosus* using a
1363 100/G Genomic Tip with the Genomic buffers kit (Qiagen, USA). The *I. lumenosus* specimen
1364 was first washed with 95% ethanol, and DNA was extracted following the manufacturer's
1365 protocol, with the exception of the final precipitation step, where HMW DNA was pelleted with
1366 40 µg RNA grade glycogen (Thermo Scientific, USA) and centrifugation (3000 x g, 30 min, 4°C)
1367 instead of spooling on a glass rod. HMW DNA was sent on dry-ice to the Hudson Alpha Institute
1368 of Biotechnology Genomic Services Lab (HAIB-GSL), where pulsed-field-gel-electrophoresis
1369 (PFGE) quality control and 10x Genomics Chromium Genome v1 library construction was
1370 performed. PFGE quality control indicated the mean size of the input DNA was >35 kbp+. The
1371 resulting library was then sequenced on one HiSeqX lane. 408,838,927 paired reads (150x150
1372 PE) were produced, corresponding to a genomic coverage of 153x. To evaluate the effect of
1373 different Illumina instruments on data and assembly quality, the library was also sequenced on
1374 one HiSeq2500 lane, where 145,250,480 reads (150x150 PE) were produced, corresponding to
1375 a genomic coverage of 54x. A summary of the library statistics for the genomic sequencing is
1376 available in Table S4.1.1. The draft genome of *I. lumenosus* (Ilumi1.0) was assembled from the
1377 obtained HiSeqX genomic sequencing reads using the Supernova assembler (v1.1.1)[171], on a
1378 40 core 1 TB RAM server at the Whitehead Institute for Biomedical Research. The reported
1379 mean molecule size was 12.23 kbp. The assembly was exported to FASTA format using
1380 Supernova mkoutput (parameters: --style=pseudohap), and modified by taxonomic annotation
1381 filtering (Supplementary Text 3.5.2) and polishing (Supplementary Text 3.5.3) to form Ilumi1.1.
1382 A Supernova (v2.0.0) assembly was also produced from combined HiSeqX and HiSeq2500
1383 reads, but on a brief inspection the quality was equivalent to Ilumi1.1, so the new assembly was
1384 not used for further analyses. Manual long-read based scaffolding was then applied to produce
1385 a final assembly Ilumi1.2 (Supplementary Text 3.5.4).
1386

1387
1388 **Figure S3.5.1:** Genome scope kmer analysis of the *I. luminosus* linked-read genomic
1389 library.

1390 **(A)** linear and **(B)** log plot of a kmer spectral genome composition analysis of the
1391 "1610_llumiHiSeqX" *I. luminosus* Illumina linked-read library (Supp. Text 2.5; Table S4.1.1) with
1392 jellyfish (v2.2.9; parameters: -C -k 35)[34] and GenomeScope (v1.0; parameters: Kmer
1393 length=35, Read length=138, Max kmer coverage=1000)[35]. Before analysis, 10x Chromium
1394 barcodes were trimmed off Read1 using cutadapt (v1.8; parameters: -u 23)[113]. vlen=inferred
1395 haploid genome length, uniq=percentage non-repetitive sequence, het=overall rate of genome
1396 heterozygosity, kcov=mean kmer coverage for heterozygous bases, err=error rate of the reads,
1397 dup: average rate of read duplications. These results are consistent when considering the
1398 possible systematic error of kmer spectral analysis and flow cytometry genome size estimates.
1399 The heterozygosity is higher than that measured for *P. pyralis* and *A. lateralis*. The read error
1400 rate for this library is also significantly higher than the *P. pyralis* and *A. lateralis* results,
1401 highlighting the difference in raw read error rate between HiSeq2500 and HiSeqX sequencing.

1402 **3.5.2 Taxonomic annotation filtering**

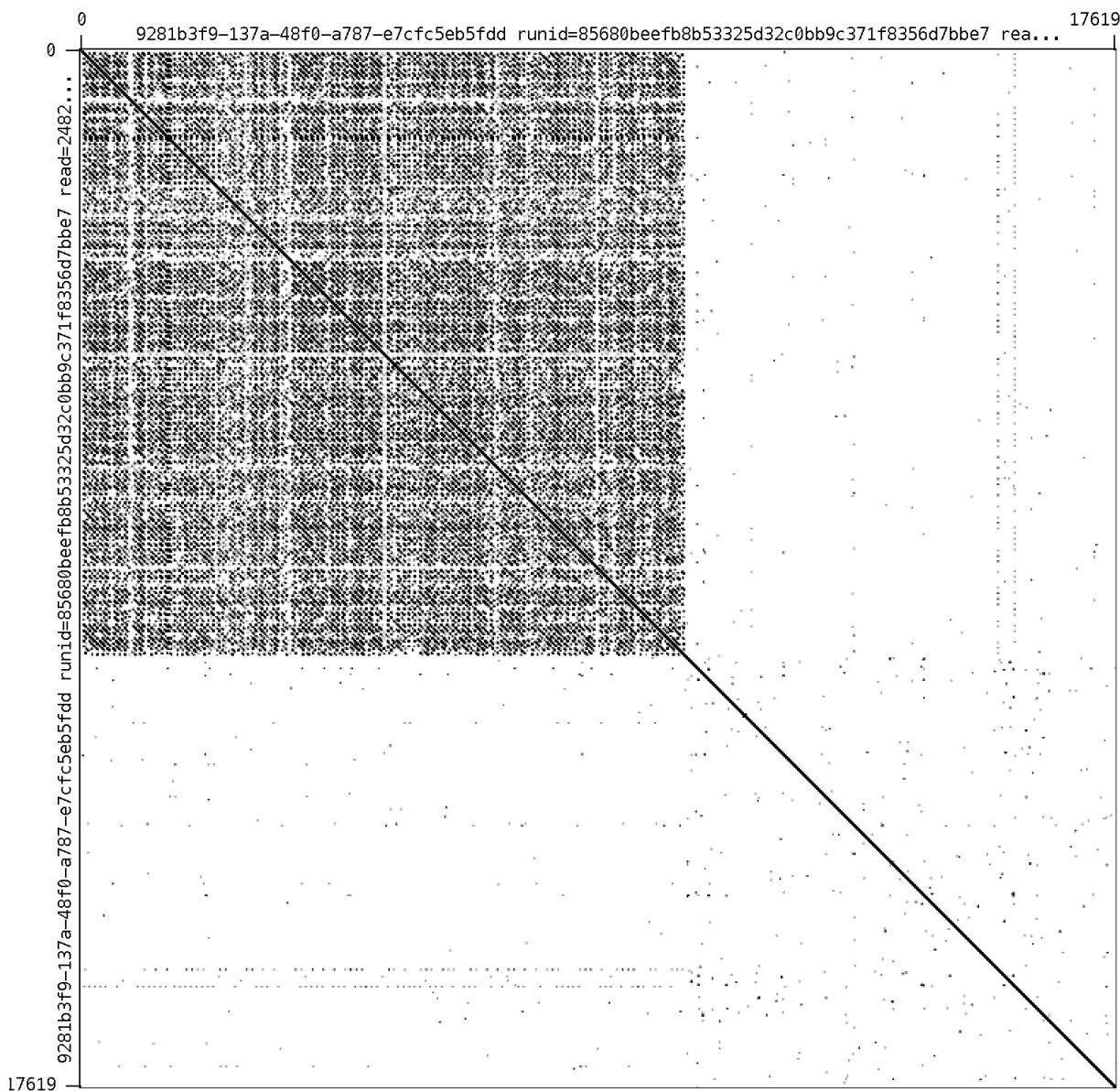
1403 We sought to systematically remove assembled non-elaterid contaminant sequence
1404 from llumi1.0. Using the blobtools toolset (v1.0.1),[55] we taxonomically annotated our scaffolds
1405 by performing a blastn (v2.6.0+) nucleotide sequence similarity search against the NCBI nt
1406 database, and a diamond (v0.9.10.111)[56] translated nucleotide sequence similarity search
1407 against the of Uniprot reference proteomes (July 2017). Using this similarity information, we
1408 taxonomically annotated the scaffolds with blobtools using parameters "-x bestsumorder --rank
1409 phylum" (Fig. S3.5.2.1). A tab delimited text file containing the results of this blobtools
1410 annotation are available on FigShare (DOI: [10.6084/m9.figshare.5688952](https://doi.org/10.6084/m9.figshare.5688952)). We then generated
1411 the final genome assembly by retaining scaffolds that had coverage > 10.0 in the
1412 1610_llumiHiSeqX library, and did not have a high scoring (score > 5000) taxonomic

1413 assignment for “Proteobacteria”, and polishing indels and gap-filling with Pilon (Supplementary
1414 Text 3.5.3). This approach removed 235 scaffolds (330 Kbp), representing 0.2% of the scaffold
1415 number and 0.03% of the nucleotides of Ilumi1.0. While filtering the Ilumi1.0 assembly, we
1416 noted a large contribution of scaffolds taxonomically annotated as Platyhelminthes (1740
1417 scaffolds; 119.56 Mbp). Upon closer inspection, we found conflicting information as to the most
1418 likely taxonomic source of these scaffolds. Diamond searches of these scaffolds had hits in
1419 Coleoptera, whereas blastn searches showed these scaffold had confident hits (nucleotide
1420 identity >90%, evalue = 0) against the Rat Tapeworm *Hymenolepis diminuta* genome (NCBI
1421 BioProject PRJEB507). Removal of these scaffolds decreased the endopterygota BUSCO
1422 score, from C:97% D:1.3% to C:76.0% D:1.1%. This loss of the endopterygota BUSCOs led us
1423 to conclude that the Platyhelminthes annotated scaffolds were authentic scaffolds of *I.*
1424 *luminosus*, but sequences of *Hymenolepis* sp. may have been transferred into the *I. luminosus*
1425 genome via horizontal-gene-transfer (HGT). Although *Hymenolepis diminuta* infects mammals,
1426 it also spends a period of its life cycle in intermediate insect hosts, including beetles, as
1427 cysticercoids [172,173]. For a beetle like *I. luminosus*, which has a extended predatory larval
1428 stage, the accidental ingestion and harboring of a *Hymenolepis* sp. is plausible, potentially
1429 enabling HGT between *Hymenolepis* sp. and *I. luminosus* over evolutionary timescales.

1430
1431 **Figure S3.5.2.1: Blobtools plot of Ilumi1.0**
1432 Coverage shown represents mean coverage of reads from the HiSeqX Chromium library
1433 sequencing (Sample name 1610_IlumiHiSeqX; Table S4.1.1), aligned against Ilumi1.0 using
1434 Bowtie2 with parameters (--local). Scaffolds were taxonomically annotated as described in
1435 Supplementary Text 3.5.2.

1436 **3.5.3 Ilumi1.1: Indel polishing**

1437 Manual inspection of the initial gene-models for Ilumi1.0 revealed a key luciferase
1438 homolog had an unlikely frameshift occurring after a polynucleotide run. Mapping of the
1439 1610_IlumiHiSeqX and 1706_IlumiHiSeq2500 reads (Table S4.1.1) with Bowtie2 using
1440 parameters (--local), revealed that this indel was not supported by the majority of the data, and
1441 that indels were present at a notable frequency after polynucleotide runs. As a greatly increased
1442 indel rate after polynucleotide runs (~10% error) is a known systematic error of Illumina
1443 sequencing, and has been noted as the major error type in Supernova assemblies[171], we


1444 therefore sought to correct these errors globally through the use of Pilon (v1.2.2)[60]. In order
1445 to run Pilon efficiently, we split the taxonomically filtered Ilumi1.0 reference (dubbed Ilumi1.0b;
1446 Supplementary Text 3.5.2) using Kirill Kryukov's *fasta_splitter.pl* script (v0.2.6)[174], partitioned
1447 the previously mapped 1610_IlumiHiSeqX paired-end reads to these references using *samtools*,
1448 and ran Pilon in parallel on the partitioned reads and records with parameters (*--fix gaps,indels -*
1449 *-changes --vcf --diploid*). The final consensus FASTAs produced by Pilon were merged to
1450 produce the polished assembly (Ilumi1.1). Ilumi1.1 (842,900,589 nt; 91,325 scaffolds) was
1451 slightly smaller than Ilumi1.0b (845,332,796 nt; 91,325 scaffolds), indicating the gaps filled by
1452 Pilon were smaller than their predicted size. The BUSCO score increased modestly after
1453 polishing (C:93.3% to C:94.8%), suggesting that indel polishing and gap filling had a net positive
1454 effect.

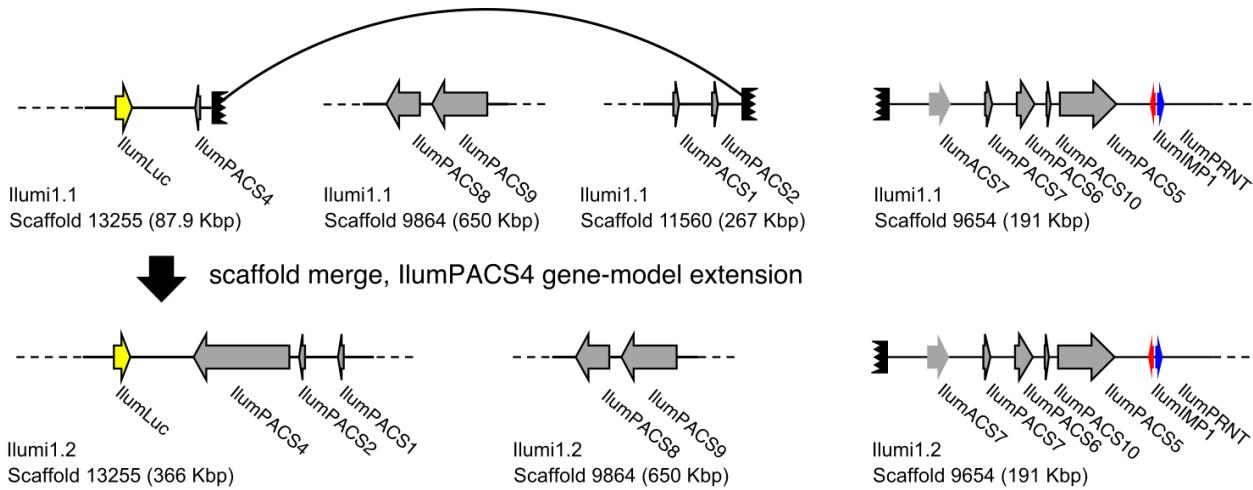
1455 **3.5.4 Ilumi1.2: Manual long-read scaffolding**

1456 We determined via manual gene-model annotation of Ilumi1.1 (Supplementary Text 3.8),
1457 that the 2nd through 7th exon of IlumPACS4 (ILUMI_06433-PA) were present on
1458 Ilumi1.1_Scaffold13255, but that the 1st exon was missing from this scaffold. Targeted *tblastn*
1459 using PangPACS (AB479114.1)[161], the most closely related gene sequence to IlumPACS4,
1460 indicated that the most similar region in the *I. luminosus* genome to the predicted PangPACS
1461 1st exon was a right-pointing region on Ilumi1.1_Scaffold11560, not captured in any gene
1462 model, but downstream of the existing luciferase homolog genes IlumPACS1 and IlumPACS2.
1463 We surmised that this region was the correct 1st exon for IlumPACS4, and that the IlumPACS4
1464 gene model spanned Ilumi1.1_Scaffold13255 and Ilumi1.1_Scaffold11560, and thus that the
1465 right edge of Ilumi1.1_Scaffold13255 and the left edge of the reverse complement of
1466 Ilumi1.1_Scaffold11560 should be joined. To substantiate this, we performed long-read Oxford
1467 Nanopore MinION sequencing at the MIT BioMicroCenter. The HMW DNA used was the same
1468 DNA used for Chromium library prep, and had been stored at -80°C since extraction. Thawing
1469 of DNA and size distribution QC on a FEMTO Pulse capillary electrophoresis instrument
1470 (Advanced Analytical Technologies Inc, USA) indicated the DNA had a mean size distribution
1471 peak of ~17 kbp. A 1D Nanopore library was prepared from this DNA using the standard kit and
1472 protocol (Part #: SQK-LSK108). The resulting library was sequenced for 48 hours on a MinION
1473 sequencer using a R9.4 flow cell (Part #:FLO-MIN106). Raw trace data was basecalled live
1474 within the MinKNOW software (v18.01.6). 824,248 reads (2.4 Gbp; ~1-2x of the *I. luminosus*
1475 genome) were obtained. Reads were mapped to Ilumi1.1 with *minimap2* (v2.8-r686-dirty)[175]
1476 using parameters (*-ax map-ont*). Inspection of mapped reads with Integrative Genomics
1477 Viewer(v2.4.8)[82] revealed a 17.6 kbp read with 7 kbp antiparallel alignment to the right edge
1478 of Scaffold13255. Inspection of the extension of this read off Scaffold13255 revealed it
1479 contained 10 kbp+ of a non-palindromic complex tandem repeat DNA with an ~100 bp repeat
1480 unit (Figure S3.5.4.1). The repeat unit of this complex tandem repeat DNA (Table S3.5.4.2) is
1481 annotated in our de novo repeat library construction as "Ilumi.complex.repeat.1" (Supplementary
1482 Text 3.9), and via *blastn* is clearly interspersed at low copy numbers throughout the Ilumi1.1

1483 genome assembly. Notably, this repeat unit was present the right edge of
1484 Ilumi1.1_Scaffold13255, while the reverse complement of this repeat unit was present on the
1485 right edge of Ilumi1.1_Scaffold11560, supporting that these scaffolds were adjacent to one
1486 another, but the assembly had been broken by this large stretch of tandem repetitive DNA.
1487 Although our Nanopore sequencing did not unambiguously span this repetitive element and
1488 bridge the two scaffolds, we surmised that this information was sufficient to manually merge
1489 these scaffolds (Figure S3.5.4.3). The long Ilumi1.1_Scaffold13255 extending read was adaptor
1490 trimmed with porechop (v0.2.3)[176], removing 35 bp from the start of the read. Next, the 3' end
1491 of the read which aligned up to the last nucleotide of Ilumi1.1_Scaffold13255 was trimmed.
1492 Finally, the remaining read was reverse complemented, and concatenated to the right edge of
1493 Ilumi1.1_Scaffold13255. 1337 Ns were concatenated to the right edge of the extended
1494 Ilumi1.1_Scaffold13255 to indicate an uncertainty in the repeat copy number, and
1495 Ilumi1.1_Scaffold11560 was reverse complemented and concatenated to
1496 Ilumi1.1_Scaffold13255 to produce the final version of Ilumi1.2_Scaffold13255 (Figure
1497 S3.5.4.3). Further whole genome scaffolding using this Nanopore data and the LINKS pipeline
1498 (v1.8.5)[177] with parameters (-d 4000,8000,10000,14000,16000,20000 -t 2,3,5,9 -l 2 -a 0.75)
1499 was attempted, but only a single additional pair of scaffolds was merged, so this whole-genome
1500 scaffolding was not used further.

1501

1502


1503 **Figure S3.5.4.1:** Self alignment of the Ilumi1.1_Scaffold13255 right-edge extending
 1504 long MinION read.

1505 Alignment performed in in Gepard[178]. Note the large (10 kbp+) tandem repetitive region.

1506 **Table S3.5.4.2:** Sequence of the *I. luminosus* luciferase cluster splitting complex tandem repeat

Repeat name	Repeat unit length	Repeat unit sequence
Ilumi.complex.repeat.1	~ 100 bp	TGGTACGAAC TATA CACGTATA CTAAATCTAATTGTGATA CAGCAAAG TAATAATGCAGCATTGTTGCCGCTCTATACTGCGATT TATAGTGGT

1507

1508
1509

Figure S3.5.4.3: Diagram of manual scaffold merges between Ilumi1.1 and Ilumi1.2

1510 Diagram of the manual merge of Ilumi1.1_Scaffold13255 with Ilumi1.1_Scaffold11560 between
1511 *I. luminosus* genome assembly versions Ilumi1.1 and Ilumi1.2. This merge was supported by:
1512 (1) The putative missing 1st exon of IlumPACS4 being present on the right edge of
1513 Ilumi1.2_Scaffold11560 (2) The right edge of Ilumi1.1_Scaffold13255, and the right edge of
1514 Ilumi1.1_Scaffold11560, having anti-parallel versions of a homologous complex tandem repeat.
1515 See Figure 3 in the maintext for explanation of presented genes.

1516 **3.6 RNA extraction, library prep, and sequencing**

1517 **3.6.1 HiSeq2500**

1518 Total RNA was extracted from the head + prothorax of an *I. luminosus* presumed male
1519 using the RNeasy Lipid Tissue Mini Kit (Qiagen, USA). Illumina sequencing libraries were
1520 prepared from total RNA enriched to mRNA with a polyA pulldown using the TruSeq RNA
1521 Library Prep Kit v2 (Illumina, San Diego, CA). The library was sequenced at the Whitehead
1522 Institute Genome Technology Core (Cambridge, MA) on two lanes of an Illumina HiSeq 2500
1523 using rapid mode 100x100 bp PE. This library was multiplexed with the *P. pyralis* RNA-Seq
1524 libraries of Al-Wathiqui and colleagues [6], and thus, *P. pyralis* reads arising from index
1525 misassignment were present in this library which necessitated downstream filtering to avoid
1526 misinterpretation.

1527 **3.6.2 BGISEQ-500**

1528 Total RNA was extracted from the head + prothorax, mesothorax + metathorax, and
1529 abdomen of presumed *I. luminosus* males using the RNeasy Lipid Tissue Mini Kit (Qiagen,
1530 USA), and sent on dry-ice to Beijing Genomics Institute (BGI, China). Transcriptome libraries for
1531 RNA each sample were prepared from total RNA using the BGISEQ-500 (BGI, China) RNA
1532 sample prep protocol. Briefly, poly-A mRNA was purified using oligo (dT) primed magnetic

1533 beads and chemically fragmented into smaller pieces. Cleaved fragments were converted to
1534 double-stranded cDNA by using N6 primers. After gel purification and end-repair, an "A" base
1535 was added at the 3'-end of each strand. The Ad153-2B adapters with barcode was ligated to
1536 both ends of the end repaired/dA tailed DNA fragments, then amplification by ligation-mediated
1537 PCR. Following this, a single strand DNA was separated at a high temperature and then a Splint
1538 oligo sequence was used as bridge for DNA cyclization to obtain the final library. Then rolling
1539 circle amplification (RCA) was performed to produce DNA Nanoballs (DNBs). The qualified
1540 DNBs were loaded into the patterned nanoarrays and the libraries were sequenced as 50x50 bp
1541 (PE-50) read through on the BGISEQ-500 platform. Sequencing-derived raw image files were
1542 processed by BGISEQ-500 base-calling software with the default parameters, generating the
1543 "raw data" for each sample stored in FASTQ format. This library preparation and sequencing
1544 was provided free of charge as an evaluation of the BGISEQ-500 platform.

1545 **Table S3.6.3: *I. luminous* RNA-Seq libraries**

Library name	SRA ID	N	Sex	Tissue	Notes
Pyrophorus_luminosus_head	SRR6339835	1	M*	Prothorax and head (lantern containing)	Illumina RNA-Seq
Prothorax_A3	SRR6339834	1	M*	Prothorax and head (lantern containing)	BGISEQ-500 RNA-Seq
Thorax_A3	SRR6339833	1	M*	Mesothorax and metathorax	BGISEQ-500 RNA-Seq
Abdomen_A3	SRR6339832	1	M*	Abdomen (lantern containing)	BGISEQ-500 RNA-Seq
Prothorax_A4	SRR6339831	1	M*	Prothorax and head (lantern containing)	BGISEQ-500 RNA-Seq
Thorax_A4	SRR6339830	1	M*	Mesothorax and metathorax	BGISEQ-500 RNA-Seq
Abdomen_A4	SRR6339838	1	M*	Abdomen (lantern containing)	BGISEQ-500 RNA-Seq

1546 * Gender inferred. See Supplementary Text 3.3 for a discussion on this inference.

1547 **3.7 Transcriptome analysis**

1548 Both *de novo* (Supplementary Text 3.7.1) and reference guided (Supplementary Text
1549 3.7.2) transcriptome assembly approaches using Trinity and Stringtie respectively were used.

1550 **3.7.1 De novo transcriptome assembly and alignment**

1551 For the *de novo* transcriptome approach, all available *I. luminosus* RNA-Seq reads
1552 (head+prothorax,metathorax+mesothorax, abdomen - both Illumina and BGISEQ-500) were
1553 pooled and input into Trinity. A non strand-specific *de novo* transcriptome assembly was
1554 produced with Trinity (v2.4.0)[66] using default parameters exception the following: (--min_glue
1555 2 --min_kmer_cov 2 --jaccard_clip --no_normalize_reads --trimomatic). Peptides were
1556 predicted from the *de novo* transcripts via Transdecoder (v5.0.2; default parameters). *De novo*
1557 transcripts were then aligned to the *I. luminosus* genome (Ilumi1.1) using the PASA pipeline
1558 with blat (v36x2) and gmap (v2017-09-11) (--aligners blat,gmap), parameters for alternative
1559 splice analysis and strand specificity (--ALT_SPLICE --transcribed_is_aligned_orient), and input
1560 of the previously extracted Trinity accessions (--tdn tdn.accs). Importantly, it was necessary to
1561 set (--NUM_BP_PERFECT_SPLICE_BOUNDARY=0) for the validate_alignments_in_db.dbi
1562 step, to ensure transcripts with natural variation near the splice sites were not discarded. Direct
1563 coding gene models (DCGMs) were then produced with the Transdecoder
1564 "cdna_alignment_orf_to_genome_orf.pl" utility script, with the PASA assembly GFF and
1565 transdecoder predicted peptide GFF as input. The resulting DCGM GFF3 file was manually
1566 lifted over to the Ilumi1.2 assembly. The unaligned *de novo* transcriptome assembly is dubbed
1567 "ILUMI_Trinity_unstranded", whereas the aligned direct coding gene models are dubbed
1568 "Ilumi1.2_Trinity_unstranded-DCGM".

1569 **3.7.2 Reference guided transcriptome alignment and assembly**

1570 A reference guided transcriptome was produced from all available *I. luminosus* RNA-seq
1571 reads (head+prothorax, mesothorax+metathorax, abdomen - both Illumina and BGISEQ-500)
1572 using HISAT2 (v2.0.5)[72] and StringTie (v1.3.3b)[73]. Reads were first mapped to the *I.*
1573 *luminosus* draft genome with HISAT2 (parameters: -X 2000 --dta --fr). Then StringTie
1574 assemblies were performed on each separate .bam file corresponding to the original libraries
1575 using default parameters. Finally, the produced .GTF files were merged using StringTie (--
1576 merge). A transcript fasta file was produced from the StringTie GTF file with the transdecoder
1577 "gtf_genome_to_cdna.fasta.pl" utility script, and peptides were predicted for these transcripts
1578 using Transdecoder (v5.0.2) with default parameters. The StringTie .GTF was converted to GFF
1579 format with the Transdecoder "gtf_to_alignment_gff3.pl" utility script, and direct coding gene
1580 models (DCGMs) were then produced with the Transdecoder
1581 "cdna_alignment_orf_to_genome_orf.pl" utility script, with the StringTie-provided GFF and
1582 transdecoder predicted peptide GFF as input. The resulting DCGM GFF3 file was manually
1583 lifted over to the Ilumi1.2 assembly. The reference guided transcriptome assembled was
1584 dubbed "ILUMI_Stringtie_unstranded", whereas the aligned direct coding gene models were
1585 dubbed "Ilumi1.2_Stringtie_unstranded-DCGM"

1586
1587 **3.7.3 Transcript expression analysis**

1588 *I. luminosus* RNA-Seq reads (Table S3.5.3) were pseudoaligned to the ILUMI_OGS1.2
1589 geneset CDS sequences using Kallisto (v0.44.0)[74] with 100 bootstraps (-b 100), producing
1590 transcripts-per-million reads (TPM). Kallisto expression quantification analysis results are
1591 available on FigShare ([10.6084/m9.figshare.5715157](https://doi.org/10.6084/m9.figshare.5715157)).

1592 **3.8 Official coding geneset annotation (ILUMI_OGS1.2)**

1593 We annotated the coding gene structure of *I. luminosus* by integrating direct coding gene
1594 models produced from the *de novo* transcriptome (Supplementary Text 3.7.1) and reference
1595 guided transcriptome (Supplementary Text 3.7.2), with a lower weighted contribution of *ab initio*
1596 gene predictions, using the Evidence Modeler (EVM) algorithm (v1.1.1)[67]. First, Augustus
1597 (v3.2.2)[75] was trained against Ilumi1.0 with BUSCO (parameters: -l endopterygota_odb9
1598 --long --species tribolium2012). Augustus predictions of Ilumi1.0 were then produced through
1599 the MAKER pipeline, with hints derived from MAKER blastx/exonerate mediated protein
1600 alignments of peptides from *Drosophila melanogaster* (NCBI
1601 GCF_000001215.4_Release_6_plus_ISO1_MT_protein.faa), *Tribolium castaneum* (NCBI
1602 GCF_000002335.3_Tcas5.2_protein), *Photinus pyralis* (PPYR_OGS1.0; this report), *Aquatica*
1603 *lateralis* (AlatOGS1.0; this report), the *I. luminosus* *de novo* transcriptome translated peptides,
1604 and MAKER blastn/exonerate transcript alignments of the *I. luminosus* *de novo* transcriptome
1605 transcripts.

1606 We then integrated the *ab initio* predictions with our *de novo* and reference guided direct
1607 coding gene models, using EVM. In the final version, eight sources of evidence were used for
1608 EVM: *de novo* transcriptome direct coding gene models (Ilumi1.1_Trinity_unstranded-DCGM;
1609 weight=8), reference guided transcriptome direct coding gene models
(Ilumi1.1_Stringtie_unstranded-DCGM; weight=4), MAKER/Augustus *ab initio* predictions
1611 (Ilumi1.1_maker_augustus_ab-initio; weight=1), protein alignments (*P. pyralis*, *A. lateralis*, *D.*
1612 *melanogaster*, *T. castaneum*, *I. luminosus*; weight=1 each). A custom script[79] was used to
1613 convert the input MAKER GFF to an EVM compatible GFF format.

1614 Lastly, gene models for luciferase homologs, P450s, and *de novo* methyltransferases
1615 (DNMTs) which were fragmented or were incorrectly assembled (e.g. adjacent gene fusions)
1616 were manually corrected based on the evidence of the *de novo* and reference guided direct
1617 coding gene models (Supp. Text 3.7.1; 3.7.2). Manual correction was performed by performing
1618 TBLASTN searches with known good genes from these gene families within
1619 SequencerServer(v1.10.11)[80], converting the TBLASTN results to gff3 format with a custom
1620 script[81], and viewing these TBLASTN alignments alongside the alternative direct coding gene
1621 models and the official geneset in Integrative Genomics Viewer (v2.4.8)[82]. The official gene
1622 set models .gff3 file was then manually modified based on the observed evidence. Different
1623 revision numbers of the official geneset (e.g. ILUMI_OGS1.0, ILUMI_OGS1.1) represent the
1624 improvement of the geneset over time due to these continuing manual gene annotations.

1625

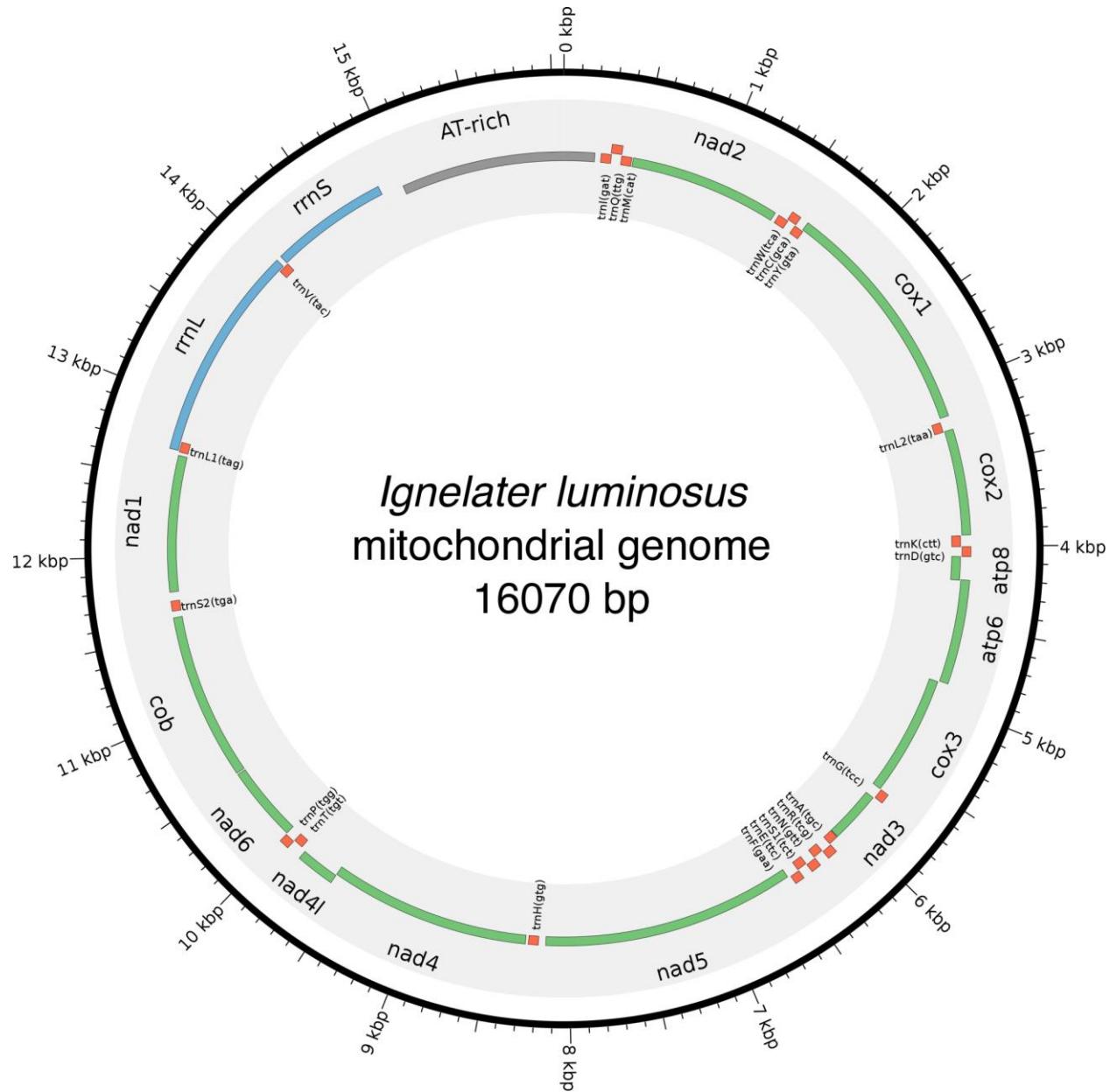
1626 **3.9 Repeat annotation**

1627 A *de novo* species-specific repeat library for *I. lumenosus* was constructed using
 1628 RepeatModeler (v1.0.9), and Tandem Repeat Finder (v4.09; settings: 2 7 7 80 10)[110]. Only
 1629 tandem repeats from Tandem Repeat Finder with a repeat block length >5 kb (annotated as
 1630 “complex tandem repeat”) were added to the RepeatModeler library. This process yielded a
 1631 final library of 2259 interspersed repeats. We then used this library and RepeatMasker
 1632 (v4.0.5)[138] to identify and mask interspersed and tandem repeats in the genome assembly.
 1633 This repeat library is dubbed the *Ignelater lumenosus* Official Repeat Library 1.0
 1634 (ILUMI_ORL1.0).

1635

1636

1637 **Table S3.9.1:** Annotated repetitive elements in *I. lumenosus*


1638

Repeat class	family	counts	bases	% of assembly
DNA	All	158853	71221843	8.45
	Helitrons	344	139863	0.016
LTR	All	23433	11341577	1.35
Non-LTR	All	151788	50394853	4.75
	LINE	97703	40052840	4.75
	SINE	0	0	0
Unknown interspersed		757206	159587269	18.93
Complex tandem repeats		4976	848992	0.1
Simple repeat		108914	4439967	0.52
rRNA		0	0	0

1639 **3.10 Mitochondrial genome assembly and annotation**

1640 The mitochondrial genome sequence of *I. luminosus* was assembled by a targeted sub-
1641 assembly approach. First, Chromium linked-reads were mapped to the previously sequenced
1642 mitochondrial genome of the Brazilian elaterid beetle *Pyrophorus divergens* (NCBI ID:
1643 NC_009964.1)[179], using Bowtie2 (v2.3.1; parameters: --very-sensitive-local)[114]. Although
1644 these reads still contain the 16 bp Chromium library barcode on read 1 (R1), Bowtie2 in local
1645 mapping mode can accurately map these reads. Mitochondrial mapping R1 reads with a
1646 mapping read 2 (R2) pair were extracted with "samtools view -bh -F 4 -f 8", whereas mapping
1647 R2 reads with a mapping R1 pair were extracted with "samtools view -bh -F 8 -f 4". R1 & R2
1648 singleton mapping reads were extracted with "samtools view -bh -F 12" for diagnostic purposes,
1649 but were not used further in the assembly. The R1, R2, and singleton reads in .BAM format
1650 were merged, sorted, and converted to FASTQ format with samtools and "bedtools bamtofastq"
1651 respectively. The resultant R1 and R2 FASTQ files containing only the paired mapped reads
1652 (995523 pairs, 298 Mbp) were assembled with SPAdes[180] without error correction and with
1653 the plasmidSPAdes module[181] enabled (parameters: -t 16 --plasmid -k55,127 --cov-cutoff
1654 1000 --only-assembler). The resulting "assembly_graph.fastg" file was viewed in Bandage[182],
1655 revealing a 16,088 bp node with 1119x average coverage that circularized through two possible
1656 paths: a 246 bp node with 252x average coverage, or a 245 bp node with 1690x coverage. The
1657 lower coverage path was observed to differ only in a "T" insertion after a 10-nucleotide poly-T
1658 stretch when compared to the higher coverage path. Given that increased levels of insertions
1659 after polynucleotide stretches are a known systematic error of Illumina sequencing, it was
1660 concluded that the lower coverage path represented technical error rather than an authentic
1661 genetic variant and was deleted. This produced a single 16,070 bp circular contig. This contig
1662 was "restarted" with seqkit(v0.7.0)[61] to place the FASTA record break in the AT-rich region,
1663 and was submitted to the MITOSv2 mitochondrial genome annotation web server. Small mis-
1664 annotations (e.g. low scoring additional predictions of already annotated mitochondrial genes)
1665 were manually inspected and removed. This annotation indicated that all expected features
1666 were present on the contig, including subunits of the NAD⁺ dehydrogenase complex (NAD1,
1667 NAD2, NAD3, NAD4, NAD4I, NAD5, NAD6), the large and small ribosomal RNAs (rrnL, rrnS),
1668 subunits of the cytochrome c oxidase complex (COX1, COX2, COX3), cytochrome b oxidase
1669 (COB), ATP synthase (atp6, atp8), and tRNAs. BLASTN of the *Ignelater luminosus*
1670 mitochondrial genome against published complete mitochondrial genomes from beetles
1671 indicated 96-89% alignment with 86-73% nucleotide identity, with poor or no sequence level
1672 alignment in the A-T rich region. Like other reported elaterid beetle genomes, the *I. luminosus*
1673 mitochondrial genome does not contain the tandem repeat unit (TRU) previously reported in
1674 Lampyridae[183].

1675
1676

1677

1678 **Figure S3.10.1:** Mitochondrial genome of *I. luminosus*

1679 The mitochondrial genome of *I. luminosus* was assembled and annotated as described. in the
1680 Supplementary Text 3.10. Figure produced with Circos[63].

1681

1682

1683 **SUPPLEMENTARY TEXT 4: Comparative analyses**

1684 **4.1 Assembly statistics and comparisons**

1685 The level of non-eukaryote contamination of the raw read data for each *P. pyralis* library
1686 was assessed using kraken v1.0[184] using a dust-masked minikraken database to eliminate
1687 comparison with repetitive sequences. Overall contamination levels were low (Table S4.1.1), in
1688 agreement with a low level of contamination in our final assembly (Fig S1.6.4.2.1, Fig S2.5.2.1,
1689 Fig S.3.5.2.1). On average, contamination was 3.5% in the PacBio reads (whole body) and
1690 1.6% in the Illumina reads (only thorax) (Table S4.1.1). There was no support for Wolbachia in
1691 any of the *P. pyralis* libraries, with the exception of a single read from a single library which had
1692 a kraken hit to Wolbachia. QUAST version 4.3[185], was used to calculate genome quality
1693 statistics for comparison and optimization of assembly methods (Table S4.1.2). BUSCO
1694 (v3.0.2)[186] was used to estimate the percentage of expected single copy conserved orthologs
1695 captured in our assemblies and a subset of previously published beetle genome assemblies
1696 (Table S4.1.3). The endopterygota_odb9 (metamorphosing insects) BUSCO set was used. The
1697 bacteria_odb9 gene set was used to identify potential contaminants by screening contigs and
1698 scaffolds for conserved bacterial genes. For genome predictions from beetles, the parameter “--
1699 species tribolium2012” was used to improve the BUSCO internal Augustus gene predictions.
1700 For non-beetle insect genome predictions, “--species=fly” was used.

1701 **Table S4.1.1: Genomic sequencing library statistics**

1702 **ID:** NCBI BioProject or Gene Expression Omnibus (GEO) ID. **N:** Number of individuals used for sequencing. **Date:** collection date for wild-caught
 1703 individuals. **Locality:** GSMNP: Great Smoky Mountains National Park, TN, USA; MMNJ: Mercer Meadows, Lawrenceville, NJ, USA; IY90:
 1704 laboratory strain Ikeya-Y90; MAPR: Mayagüez, Puerto Rico. **Tissue:** Thr: thorax; WB: whole-body; **Type:** SI: Illumina short insert; MP: Illumina
 1705 mate pair; PB: Pacific Biosciences, RSII P6-C4; HC: Hi-C; BS: Bisulfite; CH: 10x Chromium; ONT: Oxford Nanopore MinION R9.4. Reads: PE:
 1706 paired-end, CLR: continuous long read. **Number:** number of reads. **Cov:** Mode of autosomal coverage (mode of putative X chromosome, LG3a,
 1707 coverage), determined from mapped reads with QualiMap (v2.2). ND: Not Determined. **Insert size:** Mode of insert size after alignment (orientation:
 1708 FR: forward, RF: reverse), determined from mapped reads with QualiMap. **Contamination:** Percent contamination as estimated by kraken v1.0.

Library	SRA ID	N	Date	Locality	Sex	Tissue	Type	Reads	Number	Cov	Insert size (Ori)	Contamination
<i>Photinus pyralis</i>												
8369 ^a	SRR6345451/ SRR2127932	1	6/13/11	GSMNP	M	Thr	SI	101x101 PE	203,074,230	98 (49)	354 bp (FR)	0.28
8375_3K ^b	SRR6345448	1	6/13/11	GSMNP	M	Thr	MP	101x101 PE	101,624,630	21	2155 bp (RF)	2.63
8375_6K ^b	SRR6345457	1	6/13/11	GSMNP	M	Thr	MP	101x101 PE	23,564,456	5	4889 bp (RF)	3.36
83_3K ^b	SRR6345450	3	6/13/11	GSMNP	M	Thr	MP	101x101 PE	121,757,858	13	2247 bp (RF)	0.79
83_6K ^b	SRR6345455	3	6/13/11	GSMNP	M	Thr	MP	101x101 PE	17,905,700	1	4877 bp (RF)	1.38
1611_PpyrPB1	SRX3444870	4	7/9/16	MMNJ	M	WB	PB	CLR-PB	3,558,201	38 (21)	7 Kbp ^c	3.5
1704	SRR6345456	2	7/9/16	MMNJ	M	WB	HC	80x80 PE	93,850,923	ND	ND	ND
1705	GSE107177	1	7/9/16	MMNJ	M	WB	BS	150 SE	113,761,746	~16x ^d	ND	ND
<i>Aquatica lateralis</i>												
FFGPE_PE200	DRR119296	1	N/A	IY90	F	WB	SI	126x126 PE	561,450,686	72	180 bp (FR)	ND
FFGPE_PE800	DRR119297					WB	SI	126x126 PE	218,830,950	20	476 bp (FR)	ND
FFGMP_MPWF	DRR119298					WB	MP	101x101 PE	358,601,808	31	2300 bp (RF)	ND
<i>Ignelater luminosus</i>												
1610_IllumiHiSeqX ^e	SRR6339837	1		MAPR	M ^f	WB	CH	151x151 PE	408,838,927	99	339 bp (FR)	ND
1706_IllumiHiSeq2500 ^e	SRR6339836					WB	CH	150x150 PE	145,250,480	48	334 bp (FR)	ND
18_lib1	SRR6760567					ONT	CLR		824,248	~2x	2984 ^c	

1710 ^a: Mean of 3 sequencing lanes1711 ^b: Mean of 2 sequencing lanes1712 ^c: Mean subread (PacBio) or read (Oxford Nanopore) length after alignment1713 ^d: Estimate from quantity of mapped reads1714 ^e: Same library, different instruments1715 ^f: Inferred from specimens collected at the same time and locality

1716

Table S4.1.2: Assembly statistics

Assembly	Libraries	Assembly scheme	Assembly*/ measured** genome size (Gbp)	Scaffold/ Contig (#)	Contig NG50*** (Kbp)	Scaffold NG50*** (Kbp)	BUSCO statistics
Ppyr0.1-PB	PacBio (61 RSII SMRT cells)	Canu (no polishing)	721/422	25986/ 25986	86	86	C:93.8% [S:65.2%, D:28.6%], F:3.3%, M:2.9%
Ppyr1.1	Short read Mate Pair PacBio	MaSuRCA + redundancy reduction	473/422	8065/ 8285	193.4	202	C:97.2% [S:88.8%, D:8.4%], F:1.9%, M:0.9%
Ppyr1.2	Short	Ppyr1.1 + Phase Genomics scaffolder (in-house)	473/422	2535/ 7823	193.4	50,607	C:97.2% [S:88.8%, D:8.4%], F:1.9%, M:0.9%
	PacBio						
	Hi-C						
Ppyr1.3	Short read Mate Pair PacBio	Ppyr1.2 + Blobtools + manual filtering	472/422	2160/ 7533	192.5	49,173	C:97.2% [S:88.8%, D:8.4%], F:1.9%, M:0.9%
Alat1.2	Short read Mate Pair	ALLPATHS-LG	920/940	7313/ 36467	38	673	C:97.4% [S:96.2%, D:1.2%], F:1.8%, M:0.8%
Alat1.3	Short read Mate Pair	Alat1.2 + Blobtools + manual filtering	909/940	5388/ 34298	38	670	C:97.4% [S:96.2%, D:1.2%], F:1.8%, M:0.8%
Ilumi1.0	Linked-read	Supernova	845/764	91560/ 105589	31.6	116.5	C:93.7% [S:92.3%, D:1.4%], F:4.3%, M:2.0%,
Ilumi1.2	Linked read + nanopore	Ilumi1.0 + Blobtools + Pilon indel & gap polishing. Manual scaffolding	842/764	91305/ 105262	34.5	115.8	C:94.8% [S:93.4%, D:1.4%], F:3.5%, M:1.7%

1717 * Calculated from genome assembly file with "seqkit stat"

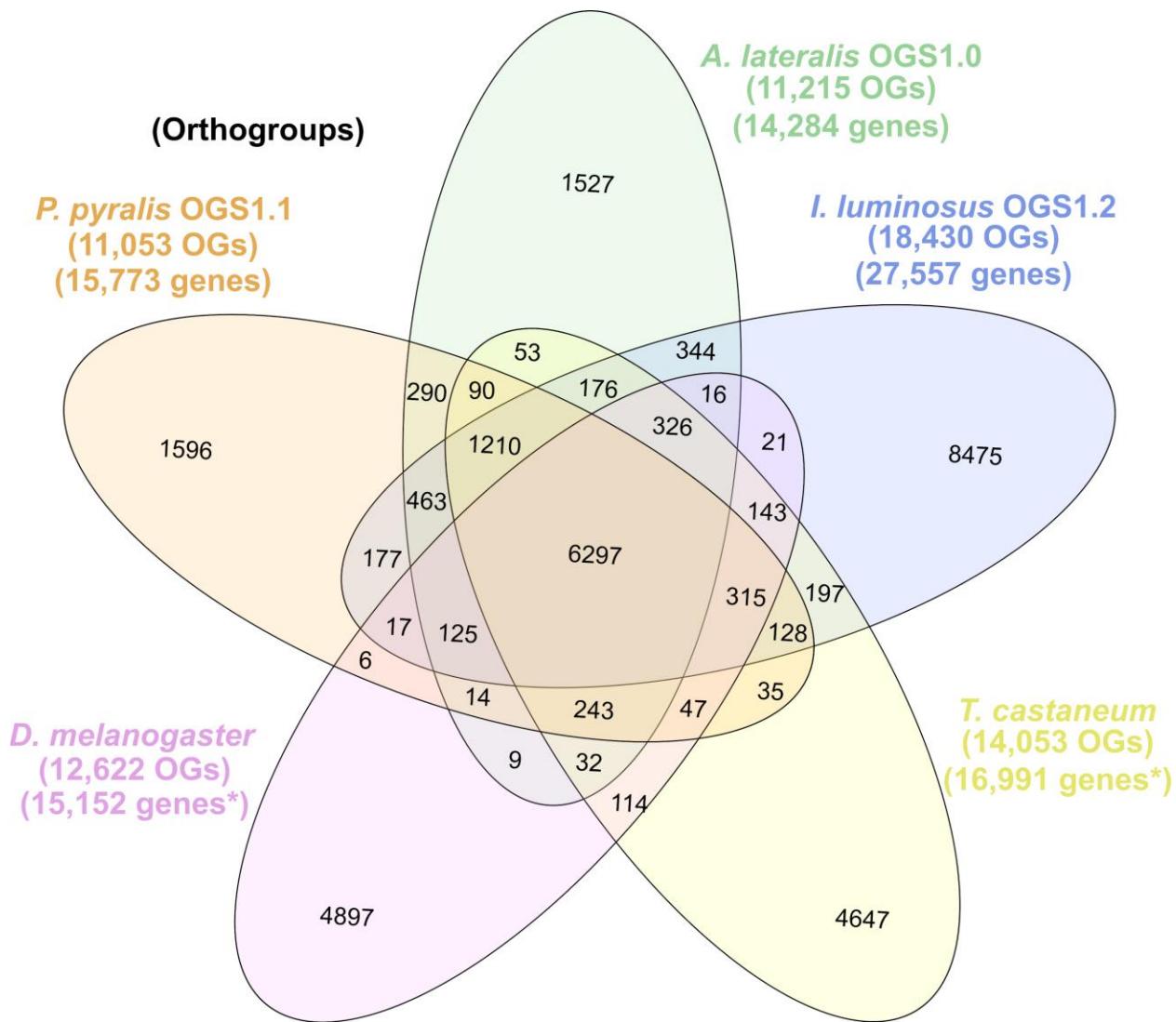
1718 ** Measured via flow cytometry of propidium iodide stained nuclei. See Supplementary Text 1.4, 2.4, 3.4.

1719 *** Calculated with QUAST (v4.5)[185], parameters “-e --scaffolds --est-ref-size X --min-contig 0” and the measured genome size for “est-ref-size”

1720

1721 **Table S4.1.3:** Comparison of BUSCO conserved gene content with other insect
 1722 genome assemblies

Species	Genome version (NCBI assemblies)	Note	Genome BUSCO (endopterygota_odb9)	Protein geneset BUSCO (endopterygota_odb9)**
<i>Drosophila melanogaster</i>	GCA_000001215.4 Release 6	Model insect	C:99.4%[S:98.7%,D:0.7%], F:0.4%,M:0.2%,n:2442	C:99.6%[S:92.8%,D:6.8%], F:0.3%,M:0.1%,n:2442
<i>Tribolium castaneum</i>	GCF_000002335.3 Release 5.2	Model beetle	C:98.4%[S:97.9%,D:0.5%], F:1.2%,M:0.4%,n:2442	C:98.0%[S:95.8%,D:2.2%], F:1.6%,M:0.4%,n:2442
<i>Photinus pyralis</i> *	Ppyr1.3*	North American firefly	C:97.2%[S:88.8%,D:8.4%], F:1.8%,M:1.0%,n:2442	C:94.2%[S:84.0%,D:10.2%], F:1.2%,M:4.6%,n:2442
<i>Aquatica lateralis</i> *	Alat1.3*	Japanese firefly	C:97.4%[S:96.2%,D:1.2%], F:1.8%,M:0.8%	C:90.0%[S:89.1%,D:0.9%], F:3.2%,M:6.8%,n:2442
<i>Nicrophorus vespilloides</i> [118]	GCF_001412225.1 Release 1.0	Burying beetle	C:96.8%[S:95.3%,D:1.5%], F:2.1%,M:1.1%,n:2442	C:98.7%[S:69.4%,D:29.3%], F:0.8%,M:0.5%,n:2442
<i>Agrilus planipennis</i> [187]	GCF_000699045.1 Release 1.0	Emerald Ash Borer beetle	C:92.7%[S:91.8%,D:0.9%], F:4.6%,M:2.7%,n:2442	C:92.1%[S:64.1%,D:28.0%], F:4.5%,M:3.4%,n:2442
<i>Ignelater luminosus</i> *	Ilumi1.2	Puerto Rican bioluminescent click beetle	C:94.8%[S:93.4%,D:1.4%], F:3.5%,M:1.7%,n:2442	C:91.8%[S:89.8%,D:2.0%], F:4.4%,M:3.8%,n:2442

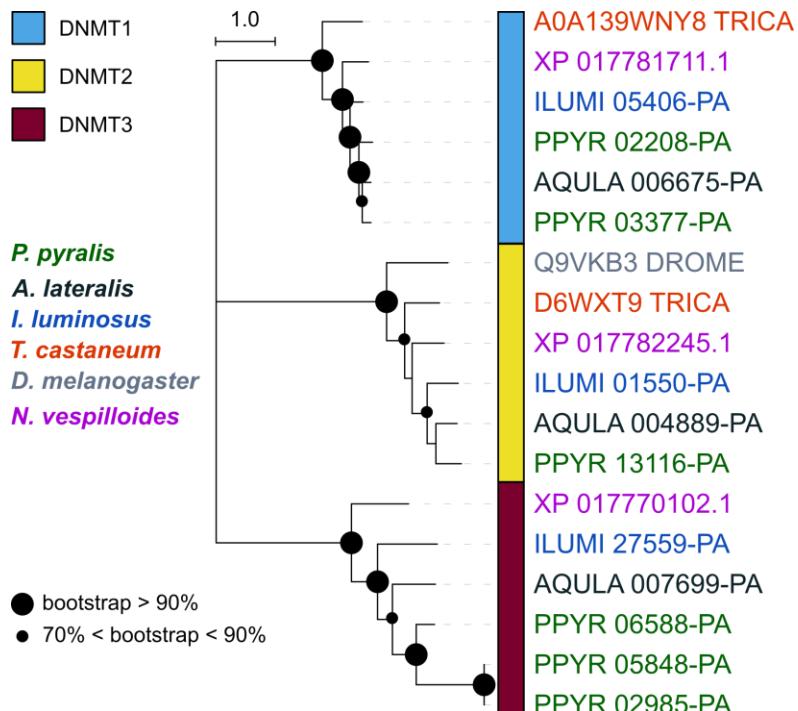

1723 * = This report, ** = Protein genesets downloaded from the NCBI Genome resource associated with the mentioned assembly in the
 1724 2nd column, or in the case of *D. melanogaster*, and *T. castaneum*, protein genesets were produced from Uniprot Reference
 1725 Proteomes which had been heuristically filtered down to “canonical” isoforms with a custom script and BLASTP against the *D.*
 1726 *melanogaster*, *T. castaneum*, *Apis mellifera*, *Bombyx mori*, *Caenorhabditis elegans*, and *Anopheles gambiae* protein genesets
 1727 associated with their more recent genome assembly on NCBI. See Supplementary Text 4.1.2 for more detail.
 1728
 1729

1730 4.2 Comparative analyses

1731 4.2.1 Protein orthogroup clustering

1732 Orthologs were identified by clustering the *P. pyralis*, *A. lateralis*, and *I. luminosus* geneset
 1733 peptides with the *D. melanogaster* (UP000007266) and *T. castaneum* (UP000000803)
 1734 reference Uniprot protein genesets using the OrthoFinder (v2.2.6)[188] pipeline with parameters
 1735 “-M msa -A mafft -T fasttree -I 1.5”. The pipeline was executed with NCBI blastp+ v.2.7.1, mafft
 1736 7.313, and FastTree v2.1.10 with Double precision (No SSE3). The Uniprot reference
 1737 proteomes were first filtered using a custom script to remove multiple isoforms-per-gene using a
 1738 custom script[189], which utilized blastp evidence against either the *Drosophila melanogaster* or
 1739 *Tribolium castaneum* NCBI datasets (whichever species was not being filtered), and the *Apis*
 1740 *mellifera*, *Bombyx mori*, *Caenorhabditis elegans*, *Anopheles gambiae* NCBI peptide genesets.
 1741 Not all redundant isoforms are removed as there may not have been sufficient evidence to

1742 support a particular isoform as the canonical isoform, or there were unusual annotation
1743 situations (alternative splice variants annotated as separate genes). OrthoFinder clustering
1744 results are available on FigShare (DOI: [10.6084/m9.figshare.5715136](https://doi.org/10.6084/m9.figshare.5715136)). Species specific
1745 overlaps are shown in Fig S4.2.1.1.


Figure S4.2.1.1: Venn diagram of *P. pyralis*, *A. lateralis*, *I. lumenosus*, *T. castaneum*, and *D. melanogaster* orthogroup relationships.

1749 Orthogroups were calculated between the PPYR_OGS1.1, AQULA_OGS1.0, ILUMI_OGS1.2,
1750 genesets, and the *T. castaneum* and *D. melanogaster* filtered Uniprot reference proteomes
1751 using OrthoFinder[188]. See Supplementary Text 4.2.1 for description of clustering method.
1752 *=Not completely filtered to single peptide per gene. Figure produced with InteractiVenn [190].
1753 Intermediate scripts and species specific overlaps are available on FigShare
1754 ([10.6084/m9.figshare.6671768](https://doi.org/10.6084/m9.figshare.6671768)).

4.2.2 Comparative RNA-Seq differential expression analysis (Fig 5.)

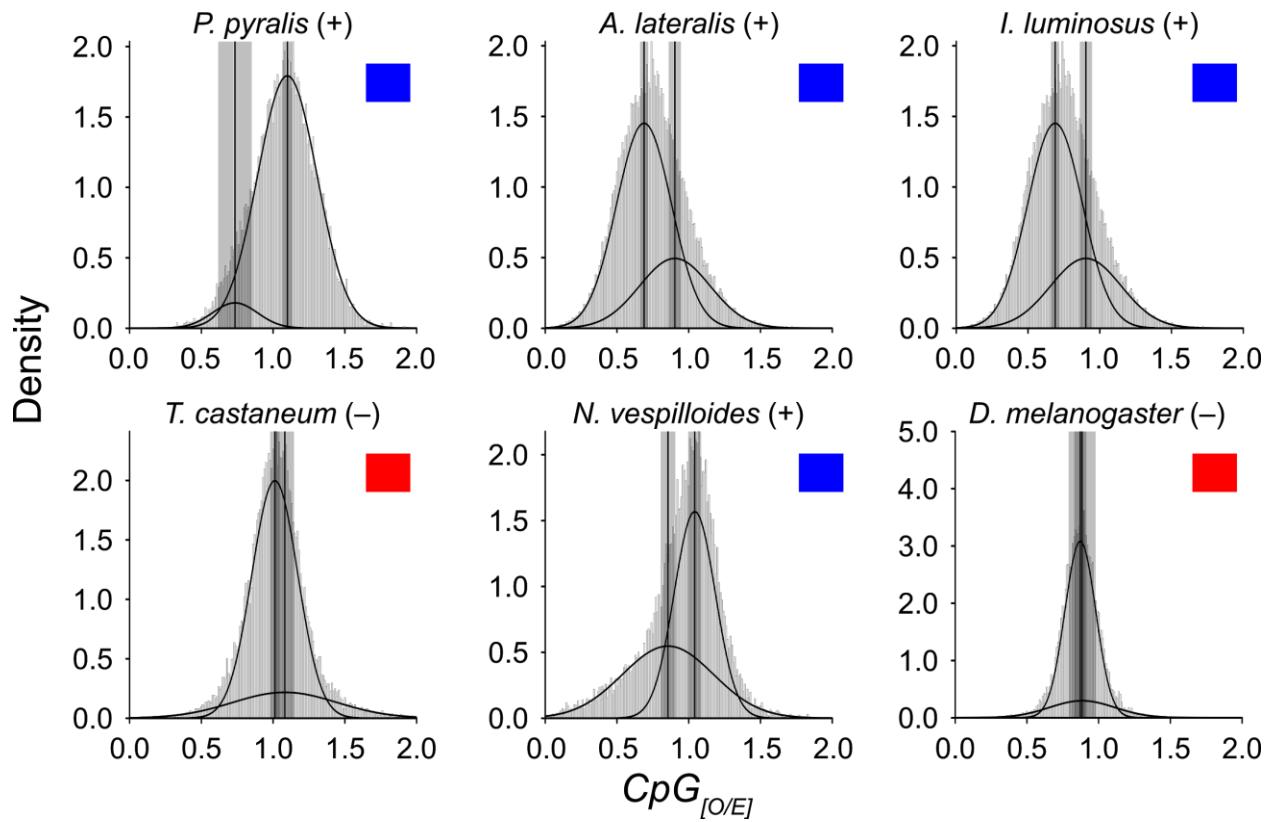
1757 For differential expression testing, Kallisto transcript expression results for *P. pyralis*
 1758 (Supp. Text 1.9.4) and *A. lateralis* (Supp. Text 2.7.3) were independently between-sample
 1759 normalized using Sleuth (v0.30.0)[191] with default parameters, producing between-sample-
 1760 normalized transcripts-per-million reads (BSN-TPM). Differential expression (DE) tests for *P.*
 1761 *pyralis* (adult male dissected fatbody vs. adult male dissected lantern - 3 biological replicates
 1762 per condition), and for *A. lateralis* (adult male thorax + abdominal segments 1-5 vs. adult male
 1763 dissected lantern - 3 biological replicates per condition), were performed using the Wald test
 1764 within Sleuth. Genes whose mean BSN-TPM across bioreplicates was above the 90th
 1765 percentile were annotated as “highly expressed” (HE). Genes with a Sleuth DE q-value < 0.05
 1766 were annotated as “differentially expressed.” (DE). Enzyme encoding (E/NotE) genes were
 1767 predicted from the InterProScan functional annotations using a custom script[192] and
 1768 GOAtools[193], with the modification that the enzymatic activity GO term was manually added to
 1769 select InterPro annotations: IPR029058, IPR036291, and IPR001279. These enzyme lists are
 1770 available as supporting files associated with the official geneset filesets. Orthogroup
 1771 membership was determined from the OrthoFinder analysis (Supp. Text 4.2.1). The enzyme
 1772 HE/DE/E+NotE gene filtering and overlaps (Fig 5) were performed using custom scripts. These
 1773 custom scripts and results of the differential expression testing are available on FigShare
 1774 ([10.6084/m9.figshare.5715151](https://doi.org/10.6084/m9.figshare.5715151)).

1775 **4.2.3 Comparative methylation analyses**

1776

1777 **Figure S4.2.3.1: DNA and tRNA methyltransferase gene phylogeny**

1778 Levels and patterns of mCG in *P. pyralis* are corroborated by the presence of *de novo* and
 1779 maintenance DNMTs (DNMT3 and DNMT1, respectively). Notably, *P. pyralis* possesses two


1780 copies of DNMT1, and 3 copies of DNMT3, in contrast to a single copy of DNMT1 and DNMT3
1781 in the firefly *Aquatica lateralis*. The evolutionary history was inferred by using the Maximum
1782 Likelihood method with the LG+G (5 gamma categories)[194]. Evolutionary analyses were
1783 conducted in MEGA7 [195]. Size of circles at nodes corresponds to bootstrap support (100
1784 bootstrap replicates). Branch lengths are in amino acid substitutions per site. *T. castaneum*=
1785 *Tribolium castaneum*, *D. melanogaster*= *Drosophila melanogaster*, *N. vespilloides*= *Nicrophorus*
1786 *vespilloides*. The multiple sequence alignment and phylogenetic topology are available on
1787 FigShare ([10.6084/m9.figshare.6531311](https://doi.org/10.6084/m9.figshare.6531311))

1788 **4.2.3.2: $CpG_{IO/E}$ methylation analysis**

1789 $CpG_{IO/E}$ is a non-bisulfite sequencing metric that captures spontaneous deamination of
1790 methylated cytosines [196], and confidently recovers the presence/absence of DNA methylation
1791 in insects [197]. In a mixture of loci that are DNA methylated and low to un-methylated, a
1792 bimodal distribution of $CpG_{IO/E}$ values is expected. Conversely, a unimodal distribution is
1793 suggestive of a set of loci that are mostly low to un-methylated.

1794 $CpG_{IO/E}$ was estimated for each annotated gene in the official gene set of *A. lateralis*, *I.*
1795 *luminosus*, and *P. pyralis*. Additionally, $CpG_{IO/E}$ was estimated for each annotated gene for a
1796 true positive and negative coleopteran (*Nicrophorus vespilloides*
1797 [<https://i5k.nal.usda.gov/nicrophorus-vespilloides>]) and *Tribolium castaneum*
1798 [<https://i5k.nal.usda.gov/tribolium-castaneum>], respectively), and a true negative dipteran
1799 (*Drosophila melanogaster* [<http://flybase.org/>]).

1800 The modality of $CpG_{IO/E}$ distributions was tested using Gaussian mixture modeling in R
1801 (<https://www.r-project.org/>: mclust v5.4 and mixtools v1.0.4). Two modes were modeled for each
1802 $CpG_{IO/E}$ distribution, and the subsequent means and 95% confidence interval (CI) of the means
1803 were compared with overlapping or nonoverlapping CI's signifying unimodality or bimodality,
1804 respectively.

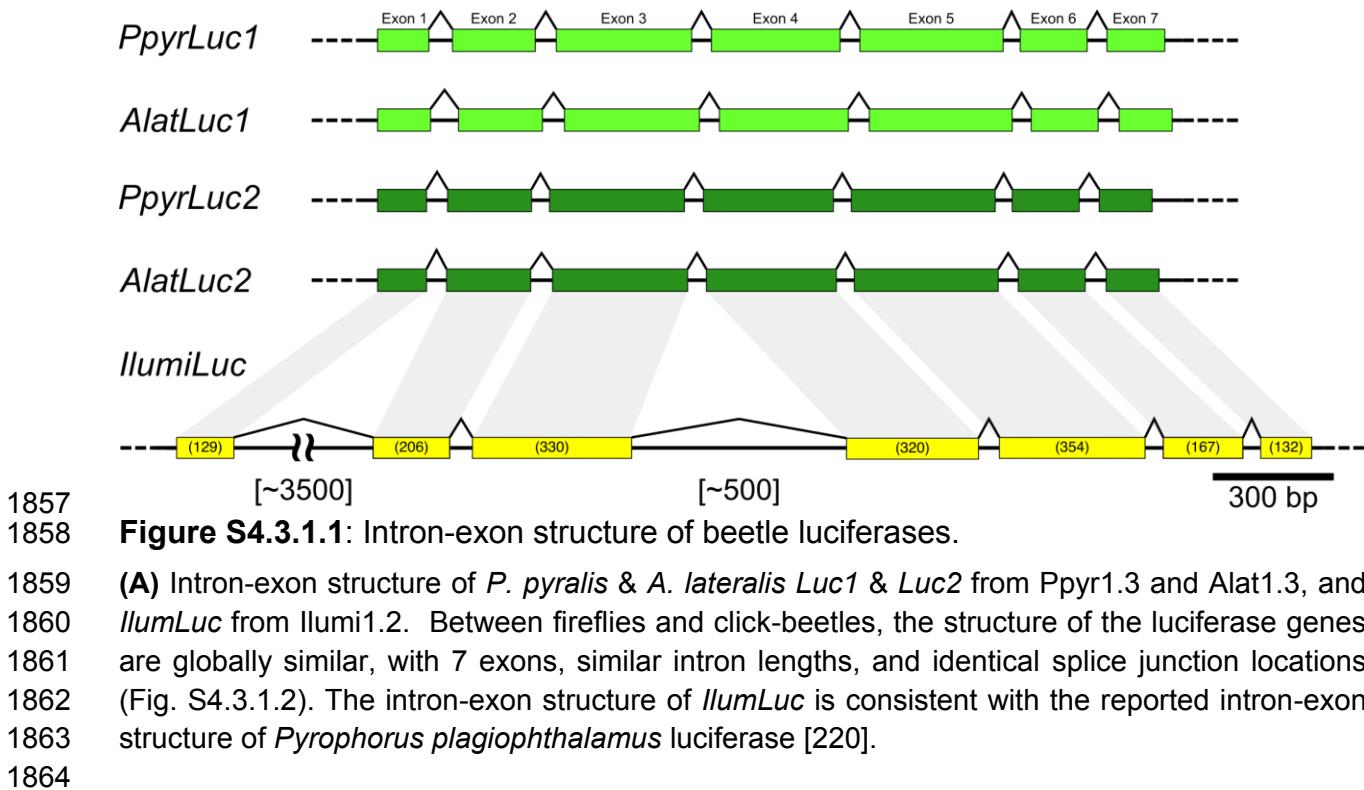
Figure S4.2.3.3: Detection of DNA methylation using $CpG_{O/E}$

Distributions of $CpG_{O/E}$ (Supp. Text 4.2.3.2) within sequenced species (*P. pyralis*, *A. lateralis*, and *I. luminosus*), other coleopterans (*N. vespilloides* and *T. castaneum*), and the dipteran *D. melanogaster*. Curves represent two independently modeled Gaussian distributions, and the solid vertical lines and shaded areas represent the mean and 95% confidence interval (CI) of the mean of each distribution. Modality of the distributions accurately predicts presence (+)/blue square or absence (-)/red square of DNA methylation in each species.

4.2.4 CYP303 evolutionary analysis (Fig. 6C)

Candidate P450s were identified using BLASTP (e-value: 1×10^{-20}) of a *P. pyralis* CYP303 family member (PPYR_OGS1.0: PPYR_14345-PA) against the *P. pyralis*, *A. lateralis*, and *I. luminosus* reference set of peptides, and the *D. melanogaster* (NCBI GCF_000001215.4) and *T. castaneum* (NCBI GCF_000002335.3) geneset peptides. Resulting hits were merged, aligned with MAFFT E-INS-i (v7.243)[198], and a preliminary neighbor-joining (NJ) tree was generated using MEGA7[195]. Genes descending from the common ancestor of the CYP303 and CYP304 genes were selected from this NJ tree, and the peptides within this subset re-aligned with MAFFT using the L-INS-i algorithm. Then the maximum likelihood evolutionary history of these genes was inferred within MEGA7 using the LG+G model (5 gamma categories (+G, parameter = 2.4805). Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT

1826 model, and then selecting the topology with the best log likelihood value. The resulting tree was
1827 rooted using *D. melanogaster* *Cyp6a17* (NP_652018.1). The tree shown in Figure 6C was
1828 truncated in Dendroscope (v3.5.9)[199] to display only the *CYP303* clade. The multiple
1829 sequence alignment FASTA files and newick files of the full and truncated tree are available on
1830 FigShare (DOI: [10.6084/m9.figshare.5716045](https://doi.org/10.6084/m9.figshare.5716045)).


1831 **4.3 Luciferase evolution analyses**

1832 **4.3.1 Luciferase genetics overview**

1833 The gene for firefly luciferase was first isolated from the North American firefly *P. pyralis*
1834 [3,200,201] and then identified from the Japanese fireflies *Luciola cruciata* [202] and *Aquatica*
1835 *lateralis* [203]. To date, firefly luciferase genes have been isolated from more than 30 lampyrid
1836 species in the world. Two different types of luciferase genes, *Luc1* and *Luc2*, have been
1837 reported from *Photuris pennsylvanica* [204] (Photurinae), *L. cruciata* [205] (Luciolinae), *A.*
1838 *lateralis* [206] (Luciolinae), *Luciola parvula* [207] (Luciolinae), and *Pyrocoelia atripennis* [208]
1839 (Lampyrinae).

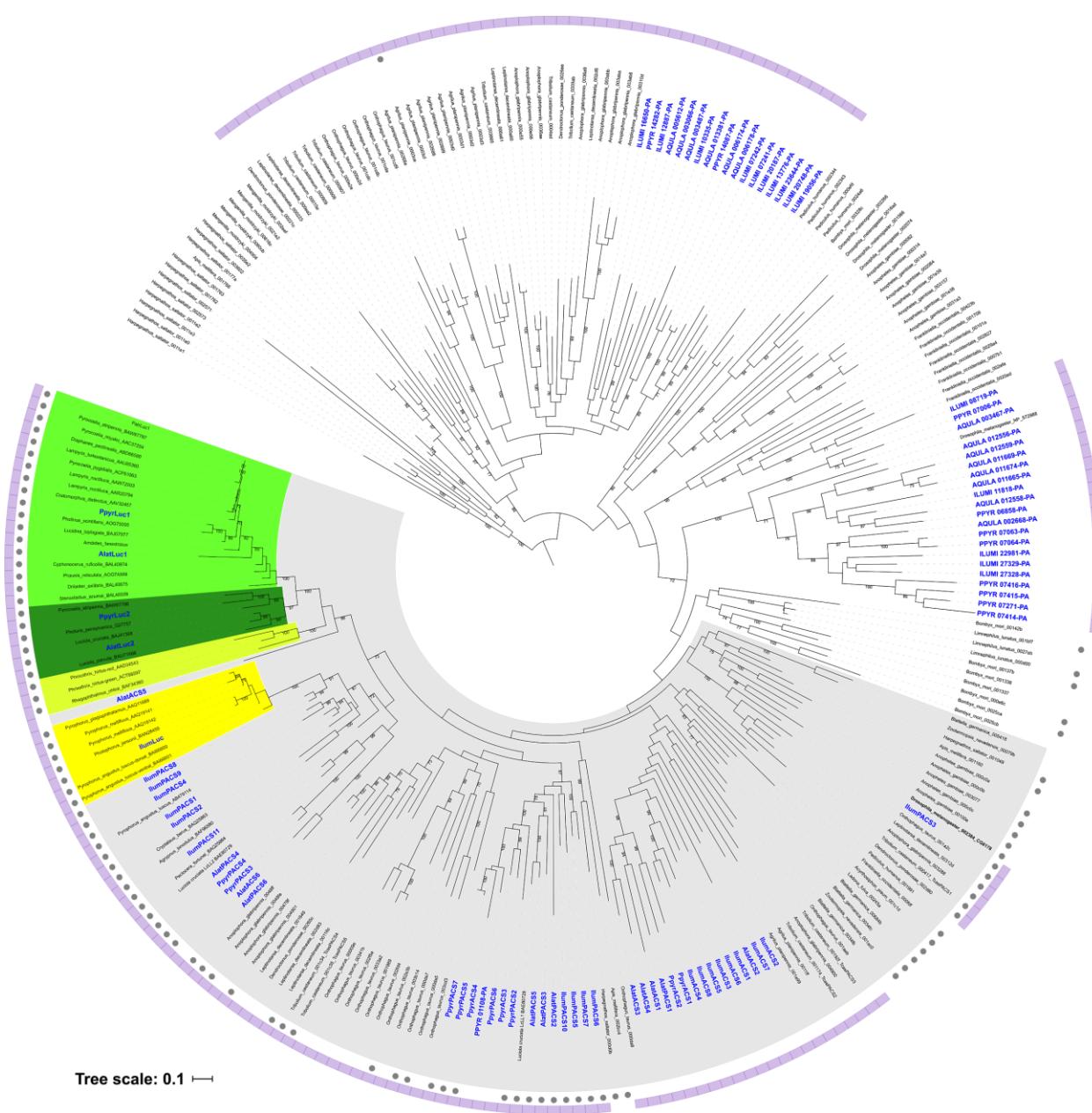
1840 Luciferase genes have also been isolated from members of the other luminous beetles
1841 families: Phengodidae, Rhagophthalmidae, and Elateridae [209–212] with amino acid identities
1842 to firefly luciferases at >48%[213]. The chemical structures of the substrates for these enzymes
1843 are identical to firefly luciferin. These results that the bioluminescence systems of luminous
1844 beetles are essentially the same, supports a single origin of the bioluminescence in elateroid
1845 beetles. Recent molecular analyses based on the mitochondrial genome sequences strongly
1846 support a sister relationship between the three luminous families: Lampyridae, Phengodidae,
1847 and Rhagophthalmidae[214] [215], suggesting the monophyly of Elateroidea and a single origin
1848 of the luminescence in the ancestor of these three lineages [213]. However, ambiguity in the
1849 evolutionary relationships among luminous beetles, including luminous Elaterids, does not yet
1850 exclude multiple origins.

1851 Molecular analyses have suggested that the origin of Lampyridae was dated back to late
1852 Jurassic [159] or mid-Cretaceous periods [216]. Luciolinae and Lampyrinae was diverged at the
1853 basal position of the Lampyridae [217] and the fossil of the Luciolinae firefly dated at
1854 Cretaceous period was discovered in Burmese amber [218,219]. Taken together, the
1855 divergence of *Luciola* and Lampyridae is dated back at least 100 Mya.
1856

Figure S4.3.1.2: Multiple sequence alignment of firefly luciferase genes

1867 MAFFT[99] L-INS-i multiple sequence alignment of luciferase gene nucleotide sequences from
1868 PpyrOGS1.1 and AlatOGS1.0 demonstrates the location of intron-exon junctions (bolded blue
1869 text) is completely conserved amongst the 4 luciferases. Exonic sequence is capitalized,
1870 whereas intronic sequence is lowercase.

1871 4.3.2 Luciferase homolog gene tree (Fig. 3C)


1872 From our reference genesets, a protein BLAST search detected 24, 20, 32, and 2
1873 luciferase homologs (E-value < 1×10^{-60}) to *P. pyralis* luciferase (PpyrLuc1; Genbank accession
1874 AAA29795) from the *P. pyralis*, *A. lateralis*, *I. lumninosus* genesets, and *Drosophila*

1875 *melanogaster* respectively. We defined the luciferase co-orthology as followings; (1) shows an
1876 BLASTP E-value lower than 1.0×10^{-60} towards *DmelPACS* (CG6178), (2) phylogenetically sister
1877 to *DmelPACS*, which is the most similar gene to firefly luciferase in *D. melanogaster*, based on
1878 a preliminary maximum likelihood (ML) phylogenetic reconstruction (Fig. S4.3.2.1). Preliminary
1879 ML phylogenetic reconstruction was performed as follows: The sequences of luciferase
1880 homologs from *Mengenilla moldrzyki*, *Pediculus humanus*, *Limnephilus lunatus*, *Ladona fulva*,
1881 *Frankliniella occidentalis*, *Zootermopsis nevadensis*, *Onthophagus taurus*, *Anoplophora*
1882 *glabripennis*, *Agrilus planipennis*, *Harpegnathos saltator*, *Blattella germanica*, *Acyrtosiphon*
1883 *pisum*, *Tribolium castaneum*, *Bombyx mori*, *Anopheles gambiae*, *Apis mellifera*, *Leptinotarsa*
1884 *decemlineata*, and *Dendroctonus ponderosae* were obtained from OrthoDB
1885 (<https://www.orthodb.org>)[221]. The sequences which show 99% similarity were filtered by CD-
1886 HIT (v4.7)[222]. The resulting sequences and beetle luciferases were aligned using (MAFFT
1887 v7.309)[198] using the BLOSUM62 matrix and filtered for spurious sequences and poorly
1888 aligned regions using trimAI (v.1.2rev59)[223] (parameters: -strict). The final alignment was 385
1889 blocks and 264 sequences. Then, the best fit amino acid substitution model, LG+F Gamma,
1890 was estimated by Aminosan (v1.0.2016.11.07)[224] using the Akaike Information Criterion.
1891 Finally, a maximum likelihood gene phylogeny was estimated using RAxML (v8.2.9; 100
1892 bootstrap replicates)[225]. Supporting files such as multiple sequence alignment, gene
1893 accession numbers, and other annotations are available on FigShare (DOI:
1894 [10.6084/m9.figshare.6687086](https://doi.org/10.6084/m9.figshare.6687086)).

1895 To more closely examine luciferase evolution, an independent maximum likelihood gene
1896 tree was constructed for luciferase co-orthologous genes defined above (highlighted clade as
1897 grey in Fig. S4.3.2.1) with well important genes: non-luminescent luciferase homolog from two
1898 model insect *D. melanogaster* (*DmelPACS* and *DmelACS* as outgroup) and *T. castaneum*
1899 (*TcasPACSS* and *TcasACSs*), biochemically characterized non-luminescent PACS
1900 (*LcruPACS1&2* from *Luciola cruciata*, *DmelPACS*, and *PangPACS* from *Pyrophorus angustus*)
1901 and biochemically characterized luciferases from Lampyrinae (PatrLuc1&2: *Pyrocoelia*
1902 *atripennis*), Ototretinae (*DaxiLuc1* and *SazuLuc1*: *Drilaster axillaris* and *Stenocladius azumai*),
1903 *Phausis* (PretLuc1: *Phausis reticulata*) from Lampyridae, Rhagophthalmidae (RohbLuc:
1904 *Rhagophthalmus ohbai*), Phengodeidae (PhirLucG&R: *Phrixothrix hirtus*), and Elateridae
1905 (PangLucD&V: *P. angustus*). Then co-orthologous genes were confirmed to be phylogenetically
1906 sister to *DmelPACS* (CG6178) and their evolution examined using a maximum likelihood (ML)
1907 gene phylogeny approach. First, amino acid sequences were aligned using (MAFFT
1908 v7.308)[198] using the BLOSUM62 matrix (parameters: gap open penalty = 1.53, offset value =
1909 0.123) and filtered for spurious sequences and poorly aligned regions using trimAI[223]
1910 (parameters: gt = 0.8). The final alignment was 533 blocks and 67 sequences. Then, the best fit
1911 amino acid substitution model, LG+F Gamma, was estimated by Aminosan
1912 (v1.0.2016.11.07)[224] using the Akaike Information Criterion. Finally, a maximum likelihood
1913 gene phylogeny was estimated using RAxML (v8.2.9; 100 bootstrap replicates)[225]. The tree
1914 was rooted using *DmelACS* as an outgroup. The peroxisomal targeting signal 1 (PST1) was
1915 predicted using the regular expressions provided by the Eukaryotic Linear Motif database[226]

1916 and verified using the mendel PTS1 prediction server[227,228]. Supporting files such as
1917 multiple sequence alignment, gene accession numbers, and other annotation and expression
1918 values are available on FigShare (DOI: [10.6084/m9.figshare.5725690](https://doi.org/10.6084/m9.figshare.5725690)).

1919

1920
1921

Figure S4.3.2.1: Preliminary maximum likelihood phylogeny of luciferase homologs

1922 A preliminary maximum likelihood tree was reconstructed from a 385 amino acid multiple
1923 sequence alignment, generated via a BLASTP and orthoDB search using *P. pyralis* luciferase
1924 as query (e-value: 1.0 x 10⁻⁶⁰). Members of the clade that includes both known firefly
1925 luciferase and CG6178 of *D. melanogaster* (bold) are defined as luciferase co-orthologous

1926 genes (highlighted in gray), and were selected and used for the independent maximum
1927 likelihood analysis in Figure 3C (Supp. Text 4.3.2). Branch length represents substitutions per
1928 site. Genes found from this study are indicated in blue. Lampyridae Luc1-type and Luc2-type
1929 luciferases are highlighted in yellow-green and green. Rhagophthalmidae and Phengodidae
1930 luciferases are highlighted in lime-green. Elateridae luciferases are highlighted in yellow.
1931 Genbank accession numbers of luciferase orthologs genes are indicated after the species
1932 name. OrthoDB taxon and protein IDs of luciferase co-orthologs are indicated after species
1933 name. Bootstrap values are indicated on the nodes. The genes from Coleoptera are indicated
1934 as purple strip. Grey closed circles indicate genes that have PTS1.

1935

1936 **4.3.3 Ancestral state reconstruction of luciferase activity (Fig. 4A)**

1937 We performed an ancestral character state reconstruction of luciferase activity on the
1938 luciferase homolog gene tree within Mesquite (v3.31)[229], using an unordered parsimony
1939 analysis, and maximum likelihood (ML) analyses. First, the gene tree from Fig. 3C in Newick
1940 format was filtered using Dendroscope(v3.5.9)[199] to include only the clade descending from
1941 the common ancestor of TcasPACS4 and PpyrLuc1. TcasPACS4 was set as the rooting
1942 outgroup. Luciferase activity of these extant genes was coded as a character state within
1943 Mesquite with: (0=no luciferase activity, 1=luciferase activity, ?=undetermined). A gene was
1944 given the 1-state if it had been previously characterized as having luciferase activity, or was
1945 orthologous to a gene with previously characterized luciferase activity against firefly D-luciferin.
1946 A gene was given the 0-state if it had been previously characterized as a non-luciferase, or was
1947 orthologous to a gene previously characterized to not have luciferase activity towards firefly D-
1948 luciferin. The non-luciferase activity determination for TcasPACS4 was inferred via orthology to
1949 the previously characterized non-luciferase *Tenebrio molitor* enzyme Tm-LL2[230]. The non-
1950 luciferase activity of AlatPACS4 (AQULA_005073-PA) was inferred via orthology to the non-
1951 luciferase enzyme LcruPACS2[231]. The non-luciferase activity of IlumPACS4 (ILUMI_06433-
1952 PA) was inferred via orthology to the non-luciferase *Pyrophorus angustus* enzyme PangPACS
1953 [161,232]. IlumLuc luciferase activity was inferred via orthology to the P. angustus dorsal and
1954 ventral luciferases[161]. The luciferase activity of PpyrLuc2 (PPYR_00002-PA) was inferred
1955 via orthology to other Luc2s, e.g. *A. lateralis* Luc2[206]. The luciferase activity of the included
1956 phengodid[210,233,234], rhagophthalmid [212,235], and firefly luciferases[236–238] were
1957 annotated from the literature. We then reconstructed the ancestral luciferase activity character
1958 state over the tree, using an unordered parsimony model, and a maximum likelihood (ML)
1959 model. ML analyses were performed under the AsymmMk model with default parameters (i.e.
1960 Root State Frequencies Same as Equilibrium). NEXUS files with presented parsimony and ML
1961 reconstructions are available on FigShare (DOI: [10.6084/m9.figshare.6020063](https://doi.org/10.6084/m9.figshare.6020063)).

1962

1963 **4.3.4 Testing for ancestral selection of elaterid ancestral luciferase (Fig. 4B)**

1964 *Discovery*

1965 Peptide sequences for elaterid luciferase homologs descending from the putative
1966 common ancestor of firefly and elaterid luciferase as determined by a preliminary maximum
1967 likelihood molecular evolution analysis of luciferase homologs (not shown), were selected from
1968 Uniprot, whereas their respective CDS sequences were selected from the European Nucleotide
1969 Archive (ENA) or National Center for Biotechnology Information (NCBI). These sequences
1970 include: The dorsal (PangLucD; ENA ID=BAI66600.1) and ventral (PangLucV; ENA ID=
1971 BAI66601.1) luciferases, and a luciferase-like homolog without luciferase-activity (PangPACS;
1972 ENA ID=BAI66602.1) from *Pyrophorus angustus* [161], and two unpublished but database
1973 deposited luciferase homologs without luciferase-activity (data not shown) from *Cryptalaus*
1974 *berus* (CberPACS; ENA ID =BAQ25863.1) and *Pectocera fortunei fortunei* (PffPACS; ENA
1975 ID=BAQ25864.1). The peptide and CDS sequence of the *Pyrearinus termitilluminans* luciferase
1976 (PtermLuc) were manually transcribed from the literature[211], as these sequences were
1977 seemingly never deposited in a publically accessible sequence database. The dorsal
1978 (PmeLucD; NCBI ID=AF545854.1) and ventral (PmeLucV; NCBI ID=AF545853.1) luciferases of
1979 *Pyrophorus mellifluus* [239]. The dorsal (AF543412.1) and ventral (AF543401.1) luciferase
1980 alleles of *Pyrophorus plagiophthalmus* [239], which were most similar to that of *Pyrophorus*
1981 *mellifluus* in a maximum likelihood analysis (data not shown). The CDS sequence of the
1982 complete *I. luminosus* luciferase (IlumLuc; ILUMI_00001-PA), two closely related paralogs
1983 (IlumPACS9: ILUMI_26849-PA, IlumPACS8: ILUMI_26848-PA), and 2 other paralogs
1984 (IlumPACS2: ILUMI_02534-PA; IlumPACS1: ILUMI_06433-PA), and the CDS for *Photinus*
1985 *pyralis* luciferase (PyrLuc1: PPYR_00001-PA) was added as an outgroup sequence.
1986

1987 *Alignment and Gene Phylogeny*

1988 The 20 merged CDS sequences were multiple-sequenced-aligned with MUSCLE [240]
1989 in “codon” mode within MEGA7[195], using parameters (Gap Open = -.2.9; Gap Extend = 0;
1990 Hydrophobicity Multiplier 1.2, Clustering Method= UPGMB, Min Diag Length (lambda)=24,
1991 Genetic Code = Standard), producing a nucleotide multiple-sequence-alignment (MSA). A
1992 maximum likelihood gene tree was produced from the nucleotide MSA within MEGA7 using the
1993 General Time Reversible model[241], with 5 gamma categories (+G, parameter = 0.8692). The
1994 analysis involved 20 nucleotide sequences. Codon positions included were
1995 1st+2nd+3rd+Noncoding. There were a total of 1659 positions in the final dataset. Initial tree(s)
1996 for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ
1997 algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood
1998 (MCL) approach, and then selecting the topology with the superior log likelihood value. The tree
1999 with the highest log likelihood (-16392.22) was selected. 1000 bootstrap replicates were
2000 performed to evaluate the topology, and the percentage of trees in which the associated taxa
2001 clustered together is shown next to the branches in Fig 4B.
2002

2003 *Tests of selection: aBSREL*

2004 An adaptive branch-site REL test for episodic diversification was performed on the
2005 previously mentioned gene-tree and nucleotide MSA using the adaptive branch-site REL test for

2006 episodic diversification (aBSREL) method[242] within the HyPhy program (v2.3.11)[243]. The
2007 input MSA contained 20 sequences with 553 sites (codons). All 37 branches of the gene
2008 phylogeny were formally tested for diversifying selection. The aBSREL analysis found evidence
2009 of episodic diversifying selection on 3 out of 37 branches in the phylogeny. Significance was
2010 assessed using the Likelihood Ratio Test at a threshold of $p \leq 0.01$, after the Holm-Bonferroni
2011 correction for multiple hypothesis testing. The intermediate files and results of this analysis,
2012 including the nucleotide MSA, GTR based gene-tree, and aBSREL produced adaptive rate class
2013 model gene tree are available on FigShare (DOI: [10.6084/m9.figshare.5691277](https://doi.org/10.6084/m9.figshare.5691277)).

2014
2015 *Tests of selection: MEME*

2016 After identification of the selected branch via the aBSREL method, we turned to the
2017 MEME method within the HyPhy program (v2.3.11)[243], to identify those sites which may have
2018 adaptively evolved. We tested the branch leading to EAncLuc, which was previously identified
2019 as under selection in the aBSREL analysis. A single partition was recovered with 28 sites under
2020 episodic diversifying positive selection at $p \leq 0.1$. Input files and full results are available on
2021 FigShare ([10.6084/m9.figshare.6626651](https://doi.org/10.6084/m9.figshare.6626651)).

2022
2023 *Tests of selection: PAML*

2024 To validate our findings from aBSREL and MEME using a different method, we applied
2025 Phylogenetic Analysis by Maximum Likelihood (PAML) branch by site analysis to the luciferase
2026 sequences. We tested the alternative hypothesis, that there is a class of sites under selection
2027 ($\omega > 1$) on the branches identified as under selection in the aBSREL analysis (EAncLuc,
2028 PmeLucV, PangLucV) against the null hypotheses, that all classes of sites on all branches are
2029 evolving either under constraint ($\omega < 1$) or neutrality ($\omega = 1$). A likelihood ratio test supported the
2030 alternative hypothesis, that 20% of sites in luciferase were in a positively selected class ($\omega =$
2031 3.08). Subsequent Bayes Empirical Bayes estimation identified 72 sites with evidence of
2032 selection on these branches, 25 of which were significant. Full results are available on FigShare
2033 ([10.6084/m9.figshare.6725081](https://doi.org/10.6084/m9.figshare.6725081)).

2034
2035 *Tests of selection: Overlap*

2036 19 of the overall sites were shared between the MEME analysis, and are shown in Table
2037 4.3.4.2. The extant amino acids at these sites are shown in Figure 4.3.4.3.

2038
2039 **Table 4.3.4.1** Results of PAML branch x sites analysis

2040 Proportion indicates the proportion of sites in each site class (0, 1, 2a, 2b). Site classes
2041 0 and 1 are those in the constrained and neutral classes, respectively. 2a are sites that were
2042 constrained on the background branches, but are either neutral (H_0) or in the selective class

2043 (HA) on the foreground branches. 2b are sites that were neutral on the background branches,
 2044 but are either neutral (H0) or in the selective class (HA) on the foreground branches.

Hypothesis	Site class:	0	1	2a	2b	InL
H0: no selection	proportion	0.62	0.10	0.24	0.04	-15850.97
	background ω	0.12	1	0.12	1	
	foreground ω	0.12	1	1	1	
HA: selection	proportion	0.69	0.11	0.17	0.03	-15833.50*
	background ω	0.12	1	0.12	1	
	foreground ω	0.12	1	3.08	3.08	

2045 * significant (LRT: 34.94, df = 1)

2046

2047 **Table 4.3.4.2** Sites identified as under selection on foreground branches using both Bayes
 2048 Empirical Bayes (BEB) and Mixed Effects Model of Evolution (MEME). ¹ = amino acid. ²=All
 2049 recovered sites in a single partition.

Site numbering			MEME ²						PAML	
MSA	<i>lIumLuc</i>	site AA ¹	α	$\beta+$	p+	LRT	Episodic selection p-value	# branches	BEB site class probability	BEB significance
49	47	I	0.93	792.4	1.000	3.8	0.0692	0	0.95	
50	48	G	0.57	3332.3	1.000	4.8	0.0427	0	1.00	**
72	70	N	0.55	3333.1	1.000	3.1	0.0998	0	0.61	
105	103	V	0.44	6.8	1.000	4.3	0.0549	0	0.69	
118	116	C	0.30	3333.1	1.000	7.4	0.0109	1	0.51	
226	222	T	1.44	29.6	1.000	4.8	0.0427	0	0.92	
234	230	I	1.13	9.6	1.000	3.1	0.0991	0	1.00	**
315	311	L	0.69	29.5	1.000	5.1	0.0362	0	0.88	
337	333	P	0.26	13.3	1.000	6.3	0.0198	0	0.83	
365	361	L	0.58	7.6	1.000	4.4	0.0520	0	0.87	

369	365	T	0.21	6.8	1.000	6.6	0.0169	0	0.99	*
383	379	E	0.00	2.8	1.000	4.1	0.0594	0	0.74	
398	394	P	0.96	1999.2	1.000	4.5	0.0500	0	0.96	*
406	402	N	0.58	5.5	1.000	3.7	0.0745	0	1.00	**
441	437	Y	1.43	39.3	1.000	4.2	0.0573	0	0.93	
478	474	V	0.00	10.3	1.000	6.9	0.0139	1	1.00	**
502	498	Y	0.50	1790.4	1.000	4.9	0.0393	0	0.59	
541	537	Q	0.00	1999.2	1.000	10.4	0.0024	1	0.54	
550	542	T	0.74	3332.9	1.000	4.3	0.0541	0	0.70	

2050

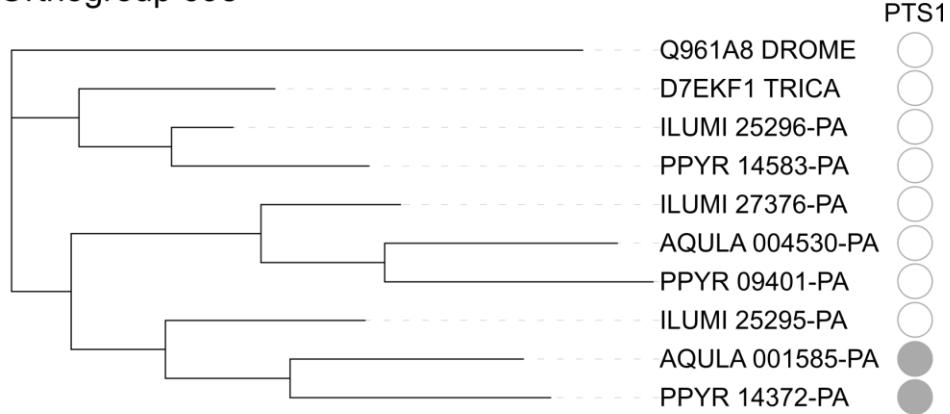
2051 **4.4 Non-enzyme highly and differentially expressed genes of the firefly lantern**

2052 PPYR_04589, a predicted fatty acid binding protein is almost certainly orthologous to the
 2053 light organ fatty acid binding protein reported from *Luciola cerata* [244]. This fatty acid binding
 2054 protein was previously reported to bind strongly to fatty acids, and weakly to luciferin. Notably,
 2055 PPYR_04589 is the most highly expressed gene in the *P. pyralis* adult lantern, ahead of firefly
 2056 luciferase. Three G-coupled protein receptors (GPCRs) with similarity to annotated
 2057 octopamine/tyramine receptors were also detected to be highly and differentially expressed in
 2058 the *P. pyralis* light organ (PPYR_11673-PA, PPYR_11364-PA, PPYR_12266-PA). Octopamine
 2059 is known to be the key effector neurotransmitter of the adult and larval firefly lantern and this
 2060 identified GPCR likely serves as the upstream receptor of octopamine activated adenylate
 2061 cyclase, previously reported as abundant in *P. pyralis* lanterns[245].

2062 The neurobiology of flash control, including regulation of flash pattern and intensity, is a
 2063 fascinating area of behavioral research. Our data generate new hypotheses regarding the
 2064 molecular players in flash control. A particularly interesting highly and differentially expressed
 2065 gene in both *P. pyralis* and *A. lateralis* is the full length “octopamine binding secreted
 2066 hemocyanin”(PPYR_14966; AQULA_008529; Table S4.4.1) previously identified from *P. pyralis*
 2067 light organ extracts via photoaffinity labeling with an octopamine analog and partial N-terminal
 2068 Edman degradation[245]. This protein is intriguing as hemocyanins are typically thought to be
 2069 oxygen binding. We speculate that this octopamine binding secreted hemocyanin, previous
 2070 demonstrated to be abundant, octopamine binding, and secreted from the lantern (presumably
 2071 into the hemolymph of the light organ), could be triggered to release oxygen upon octopamine
 2072 binding, thereby providing a triggerable O₂ store within the light organ under control of
 2073 neurotransmitter involved in flash control. As O₂ is believed to be limiting in the light reaction,

2074 such a release of O₂ could enhance flash intensity or accelerate flash kinetics. Further research
 2075 is required to test this hypothesis.

2076 **Table S4.4.1:** Highly expressed (HE), differentially expressed (DE), non-enzyme
 2077 annotated (NotE), lantern genes whose closest relative in the opposite species is also
 2078 HE, DE, NotE. BSN-TPM = between sample normalized TPM


2079
 2080

P. pyralis ID (OGS1.1)	Predicted function	Ppyr expression rank	Ppyr BSN-TPM	Orthogroup	Alat expression rank	Alat BSN-TPM	A. lateralis ID (OGS1.0)
PPYR_04589	Fatty-acid binding protein	1	70912	OG0000524	2	31943	AQULA_005253
PPYR_04589	Fatty-acid binding protein	1	70912	OG0000524	8	10464	AQULA_005257
PPYR_04589	Fatty-acid binding protein	1	70912	OG0000524	10	8520	AQULA_005259
PPYR_05098	Peroxisomal biogenesis factor 11 (PEX11)	15	4005	OG0001490	26	3294	AQULA_005466
PPYR_14966	Octopamine binding secreted hemocyanin	34	2353	OG0000369	21	3658	AQULA_008529
PPYR_11733	MFS transporter superfamily	42	1853	OG0000980	84	1335	AQULA_012209
PPYR_07633	Reticulon	56	1556	OG0004764	109	1123	AQULA_005090
PPYR_09394	lysosomal Cystine Transporter	87	1098	OG0000847	69	1494	AQULA_009474
PPYR_08979	PF03670 Uncharacterised protein family	114	860	OG0003009	340	411	AQULA_012099
PPYR_05852	Vacuolar ATP synthase 16kDa subunit	118	836	OG0001039	287	475	AQULA_001418
PPYR_11443	RNA-binding domain superfamily	134	782	OG0004268	1221	108	AQULA_003174
PPYR_02465	Peroxin 13	189	581	OG0001667	196	710	AQULA_010288

PPYR_06160	V-type ATPase, V0 complex	209	543	OG0000381	541	251	AQULA_000400
PPYR_11300	Mitochondrial outer membrane translocase complex	232	509	OG0004557	402	349	AQULA_004355
PPYR_08174	PF03650 Uncharacterised protein family	249	475	OG0000647	163	836	AQULA_009867
PPYR_04602	Leucine-rich repeat domain superfamily	262	459	OG0004508	378	373	AQULA_004134
PPYR_01678	MFS transporter superfamily	264	458	OG0000347	455	302	AQULA_002485
PPYR_08192	PF03650 Uncharacterised protein family	271	453	OG0000647	163	836	AQULA_009867
PPYR_13497	Mitochondrial substrate/solute carrier	285	438	OG0004402	379	372	AQULA_003680
PPYR_08917	LysM domain superfamily	315	398	OG0002035	483	278	AQULA_002396
PPYR_04424	Domain of unknown function (DUF4782)	332	379	OG0007447	1296	101	AQULA_013946
PPYR_08278	Protein of unknown function DUF1151	348	365	OG0001306	430	325	AQULA_000628
PPYR_13261	Major facilitator superfamily	404	309	OG0000410	158	862	AQULA_007558
PPYR_14848	Homeobox-like domain superfamily - Abdominal-B-like	413	304	OG0001849	737	186	AQULA_000483
PPYR_11623	GNS1/SUR4 family	446	281	OG0008603	308	449	AQULA_009341
PPYR_01828	TLDc domain	490	250	OG0002035	483	278	AQULA_002396
PPYR_03449	Innixin	533	230	OG0000992	619	219	AQULA_013430
PPYR_05702	Sulfate permease family	543	225	OG0007205	396	357	AQULA_013064

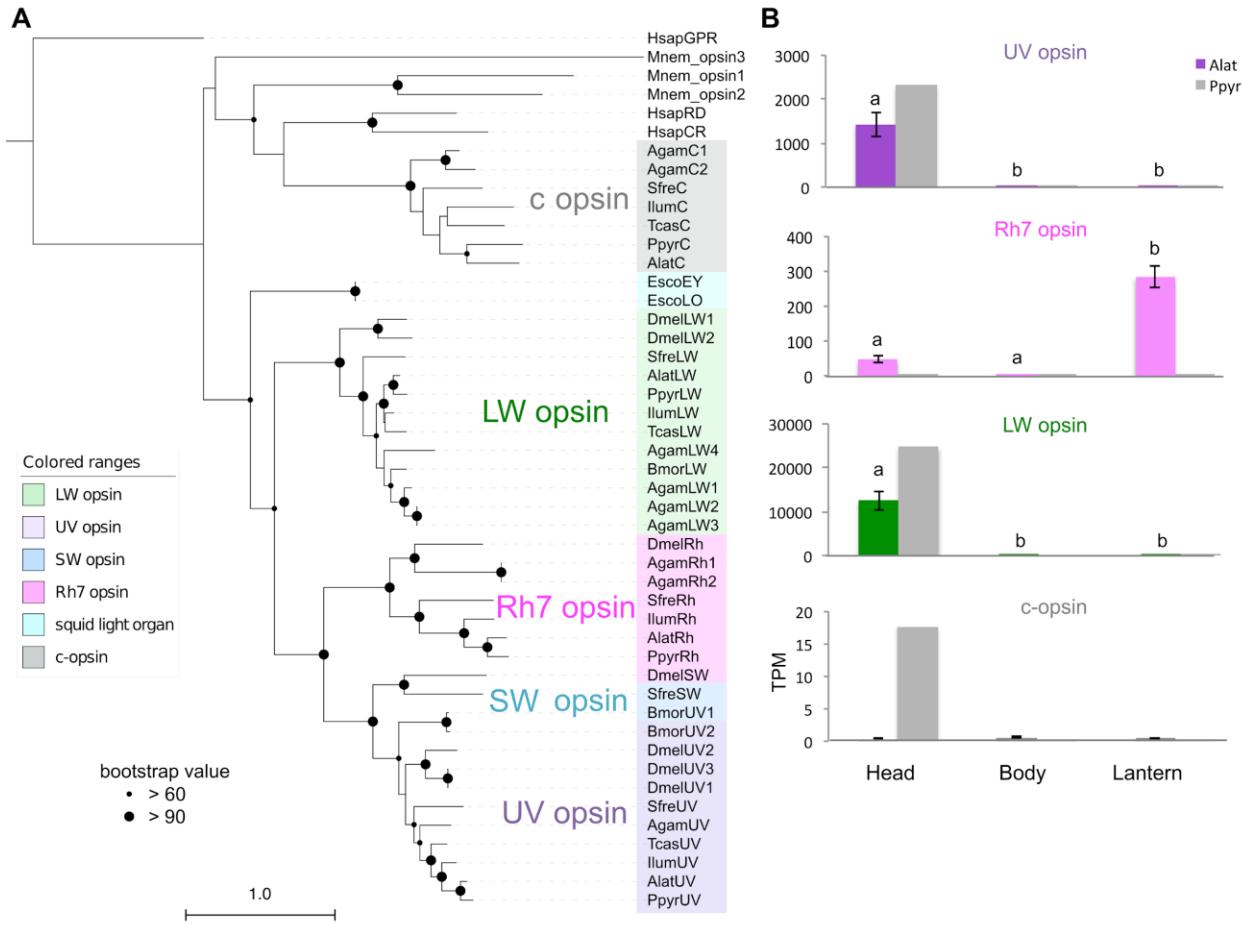
PPYR_05993	V-type ATPase, V0 complex, 116kDa subunit family	579	210	OG0000381	541	251	AQULA_000400
PPYR_04179	Haemolymph juvenile hormone binding protein	606	202	OG0002916	879	152	AQULA_011187
PPYR_08298	Peroxisomal membrane protein (Pex16)	623	198	OG0007339	395	358	AQULA_013536
PPYR_06294	Homeobox-like domain superfamily - Abdominal-B-like	627	197	OG0001849	737	186	AQULA_000483
PPYR_05397	PDZ superfamily	773	164	OG0006975	367	379	AQULA_012321
PPYR_12625	Homeobox domain	796	160	OG0002661	1395	95	AQULA_008665
PPYR_08494	Armadillo-type fold	846	152	OG0001600	986	133	AQULA_008183
PPYR_09217	Haemolymph juvenile hormone binding protein	853	151	OG0001089	441	316	AQULA_003304
PPYR_01677	MFS transporter superfamily	1234	108	OG0000347	455	302	AQULA_002485

Orthogroup 698

2082 Tree scale: 0.1

2083 **Figure S4.4.2:** Maximum likelihood gene tree of the combined adenylyl-sulfate kinase & sulfate
2084 adenylyltransferase (ASKSA) orthogroup.

2085 Peptide sequences from *P. pyralis*, *A. lateralis*, *I. lumninosus*, *T. castaneum*, and *D.*
2086 *melanogaster* were clustered (orthogroup # 698), multiple sequence aligned, and refactored into
2087 a species rooted maximum likelihood tree, via the OrthoFinder pipeline (Supplementary Text
2088 4.2.1). As this is a genome-wide analysis where bootstrap replicates would be computationally
2089 prohibitive, no bootstrap replicates were performed to evaluate the support of the tree topology.
2090 PTS1 sequences were predicted from the peptide sequence using the PTS1 predictor server
2091 [228]. Figure produced with iTOL [246].
2092


2093 **4.5 Opsin analysis**

2094 Opsins are G-protein-coupled receptors that, together with a bound chromophore, form
2095 visual pigments that detect light, reviewed here [247]. While opsin genes are known for their
2096 expression in photoreceptors and function in vision, they have also been found to be expressed
2097 in other tissues, suggesting non-visual functions in some cases. Insects generally use
2098 rhabdomeric opsins (r-opsins) for vision, while mammals generally use ciliary opsins (c-opsins)
2099 for vision, products of an ancient gene duplication [247,248]. Both insects and mammals may
2100 retain the alternate opsin type, generally in a non-visual capacity. The ancestral insect is
2101 hypothesized to have 3 visual opsins - one sensitive to long-wavelengths of light (LW), one to
2102 blue-wavelengths (B), and one to ultraviolet light (UV). Previously, two opsins, one with
2103 sequence similarity to other insect LW opsins and one with similarity to other insect UV opsins,
2104 were identified as highly expressed in firefly heads [64,249]. A likely non-visual c-opsin was also
2105 detected, though not highly expressed [64,249].

2106 To confirm the previously documented opsin presence and expression patterns, we
2107 collected candidate opsin genes via BLASTP searches (e-value threshold: 1×10^{-20}) of the

2108 PPYR_OGS1.0, AQLA_OGS1.0 and ILUMI_OGS1.0 reference genesets against UV opsin of
2109 *P. pyralis* (Genbank Accession: ALB48839.1), as well as collected non-firefly opsin sequences
2110 via literature searches, followed by maximum likelihood phylogenetic reconstruction (Fig.
2111 S4.5.1A), and expression analyses of the opsins (Fig. S4.5.1.B). The amino acid sequences of
2112 opsin were multiple aligned using MAFFT and trimmed using trimAL (parameters: -gt 0.5). The
2113 amino acid substitution model for ML analysis was estimated using Aminosan
2114 (v1.0.2016.11.07)[224]. In *P. pyralis*, *A. lateralis*, and *I. lumenosus*, we detected three r-opsins,
2115 including LW, UV, and an r-opsin homologous to *Drosophila* *Rh7* opsin, and one c-opsin. While
2116 LW and UV opsins were highly and differentially expressed in heads of both fireflies, c-opsin
2117 was lowly expressed, in *P. pyralis* head tissue only (Figure S4.5.1.B). In contrast, *Rh7* was not
2118 expressed in the *P. pyralis* light organ, but was differentially expressed in the light organ of *A.*
2119 *lateralis* (Fig. S4.5.1B). The detection of *Rh7* in our genomes is unusual in beetles[250], though
2120 emerging genomic resources across the order have detected it in two taxa: *Anoplophora*
2121 *glabripennis* [251] and *Leptinotarsa decemlineata* [252]. *Rh7* has an enigmatic function - a
2122 recent study in *Drosophila melanogaster* showed that *Rh7* is expressed in the brain, functions in
2123 circadian photoentrainment, and has broad UV-to-visible spectrum sensitivity [253,254].
2124 Extraocular opsin expression has been detected in other eukaryotes: a photosensory organ is
2125 located in the genitalia at the posterior abdominal segments in butterfly (Lepidoptera)[255]. In
2126 the bioluminescent Ctenophore *Mnemiopsis leidyi*, three c-opsins are co-expressed with the
2127 luminous photoprotein in the photophores[256]. In the bobtail squid, *Euprymna scolopes*, one of
2128 the c-opsin isoforms is expressed in the bacterial symbiotic light organ[257,258]. Thus, it is
2129 possible that *Rh7* has a photo sensory function in the lantern of *A. lateralis*, though this putative
2130 function is seemingly not conserved in *P. pyralis*. Future study will confirm and further explore
2131 the biological, physiological, and evolutionary significance of *Rh7* expression in the light organ
2132 across firefly taxa.

2133

2134
2135 **Figure S4.5.1: ML tree and gene expression levels of opsin genes.**

2136 **a**, Opsin Maximum likelihood (ML) tree. Collected opsin sequences were multiple sequence
2137 aligned with MAFFT L-INS-i[99] with default parameters. Gaps and ambiguous sequences were
2138 filtered with trimAL software[259] (parameter: -gt =0.5), and the ML tree reconstructed with
2139 MEGA7[195] with LG+G (5 gamma categories (+G, parameter = 1.3856) substitution model
2140 using 362 aa of multiple amino acid alignment. 100 bootstrap replicates were performed.
2141 HsapGPR was used as the outgroup sequence. Black circles on each node indicate bootstrap
2142 values. Scale bar equals substitutions per site. Taxon abbreviation: **Hsap**: *Homo sapiens*,
2143 **Mnem**: *Mnemiopsis leidyi* **Agam**: *Anopheles gambiae*, **Sfre**: *Sympetrum frequens*, **Illum**:
2144 *Ignelater luminosus*, **Bmor**: *Bombyx mori*, **Ppyr**: *Photinus pyralis*, **Tcas**: *Tribolium castaneum*,
2145 **Dmel**: *Drosophila melanogaster*. The tree in Newick format, multiple sequence alignment files,
2146 and an excel document linking the provided gene names to the original sequence accession IDs
2147 and species name is available on FigShare (DOI: [10.6084/m9.figshare.5723005](https://doi.org/10.6084/m9.figshare.5723005)) **b**, Bar graphs
2148 indicate the gene expression levels in each body parts of averaged both male and female adult.
2149 The gene expressions in *A. lateralis* are tested with Tukey-Kramer method (three experimental
2150 replicates). UV and LW opsin are significantly highly expressed in the head ($p < 0.005$). On the
2151 other hand, Rh7 was significantly highly expressed in the lantern ($p < 0.001$). No significance
2152 was detected in c-opsin expression between all three body parts ($p > 0.5 - 0.9$) Error bar
2153 represents standard error.

2154 **4.6 LC-HRAM-MS of lucibufagin content in *P. pyralis*, *A. lateralis*, and *I. luminosus***

2155 We assayed the hemolymph of adult *P. pyralis* and *A. lateralis*, as well as body extracts
2156 from *P. pyralis* and *A. lateralis* larvae, and *I. luminosus* adult male thorax, for lucibufagin content
2157 using liquid-chromatography high-resolution accurate-mass mass-spectrometry (LC-HRAM-MS)
2158 and MS² spectral similarity networking approaches. We chose to analyze extracted hemolymph
2159 from both *P. pyralis*, and *A. lateralis* for lucibufagin content, as lucibufagins are known to
2160 accumulate in the adult hemolymph and hemolymph samples give less complex extracts than
2161 tissue extracts. For *P. pyralis* and *A. lateralis* larvae, and *I. luminosus* thorax, tissue extracts
2162 were sampled as we do not have a reliable hemolymph extraction protocol for these life stages
2163 and species. Specific tissues were chosen for extracts to enable a smaller quantity of tissue to
2164 go into the metabolite extraction, and to explore possible difference in compound abundance
2165 across tissues, but we expected that defense compounds like lucibufagins would be roughly
2166 equally abundant present in all tissues.

2167 Adult male *P. pyralis* and *A. lateralis* hemolymph was extracted by the following
2168 methods: A single live adult *P. pyralis* male was placed in a 1.5 mL microcentrifuge tube with a
2169 5 mm glass bead underneath the specimen, and centrifuged at maximum speed (~20,000xg) for
2170 30 seconds in a benchtop centrifuge. This centrifugation crushed the specimen on top of the
2171 bead, and allowed the hemolymph to collect at the bottom of the tube. Approximately 5 μ L was
2172 obtained. The extracted hemolymph was diluted with 50 μ L methanol to precipitate proteins and
2173 other macromolecules. For *A. lateralis* adult hemolymph, three adult male individuals were
2174 placed in individual 1.5 mL microcentrifuge tubes with 5 mm glass beads, and spun at 5000
2175 RPM for 1 minute in a benchtop centrifuge. The pooled extracted hemolymph (~5 μ L), was
2176 diluted with 50 μ L MeOH, and air dried. The *P. pyralis* extracted hemolymph was filtered
2177 through a 0.2 μ m PTFE filter (Filter Vial, P/No. 15530-100, Thomson Instrument Company),
2178 whereas the *A. lateralis* hemolymph residue was redissolved in 100 μ L 50% MeOH, and then
2179 filtered through the filter vial.

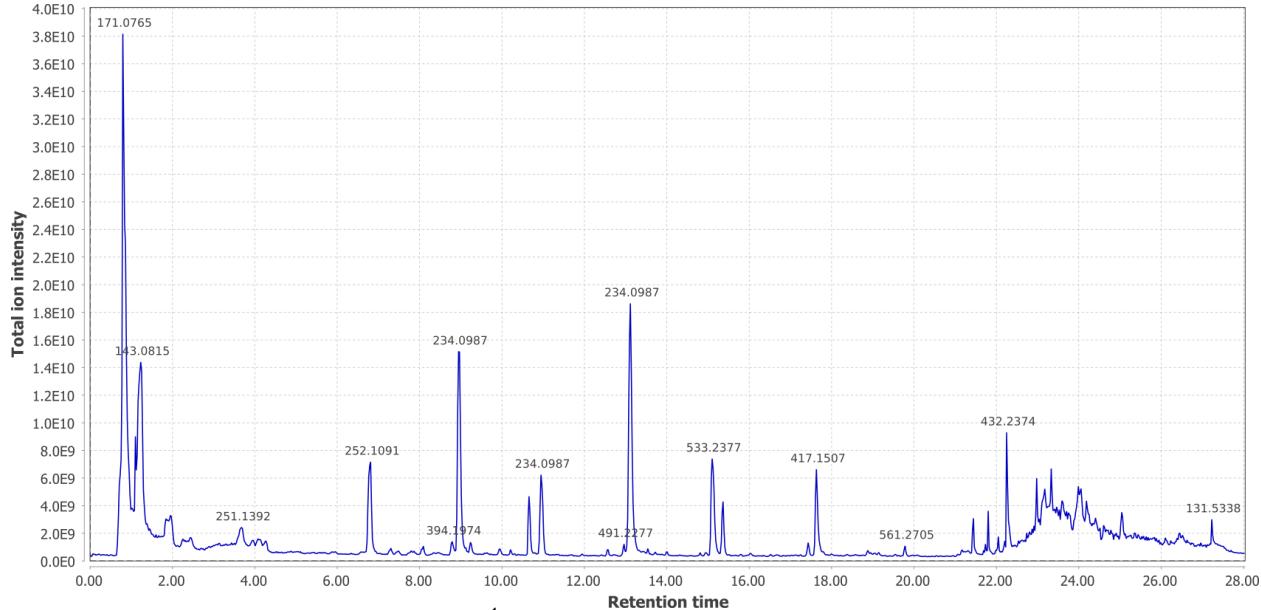
2180 For extraction of *P. pyralis* larval partial body, the posterior 2 abdominal segments were
2181 first cut off from a single laboratory reared larvae (Supplementary Text 1.3.2), and the remaining
2182 partial body was placed in 180 μ L 50% acetonitrile, and macerated with a pipette tip. The
2183 extract was sonicated in a water bath sonicator for ~10 minutes, not letting the temperature of
2184 the bath go above 50°C. The extract was then centrifuged (20,000 x g for 10 minutes), and
2185 filtered through a 0.2 μ m PTFE filter (Filter Vial, P/No. 15530-100, Thomson Instrument
2186 Company).

2187 For extraction of *A. lateralis* larval whole body, laboratory reared *A. lateralis* larvae were
2188 flash frozen in liquid N₂, lyophilized, and the whole body (dry weight: 29.1 mg) was placed in
2189 200 μ L 50% methanol, and macerated with a pipette tip. The extract was sonicated in a water
2190 bath sonicator for 30 minutes, centrifuged (20,000xg for 10 minutes), and filtered through a 0.2
2191 μ m PTFE filter (Filter Vial, P/No. 15530-100, Thomson Instrument Company).

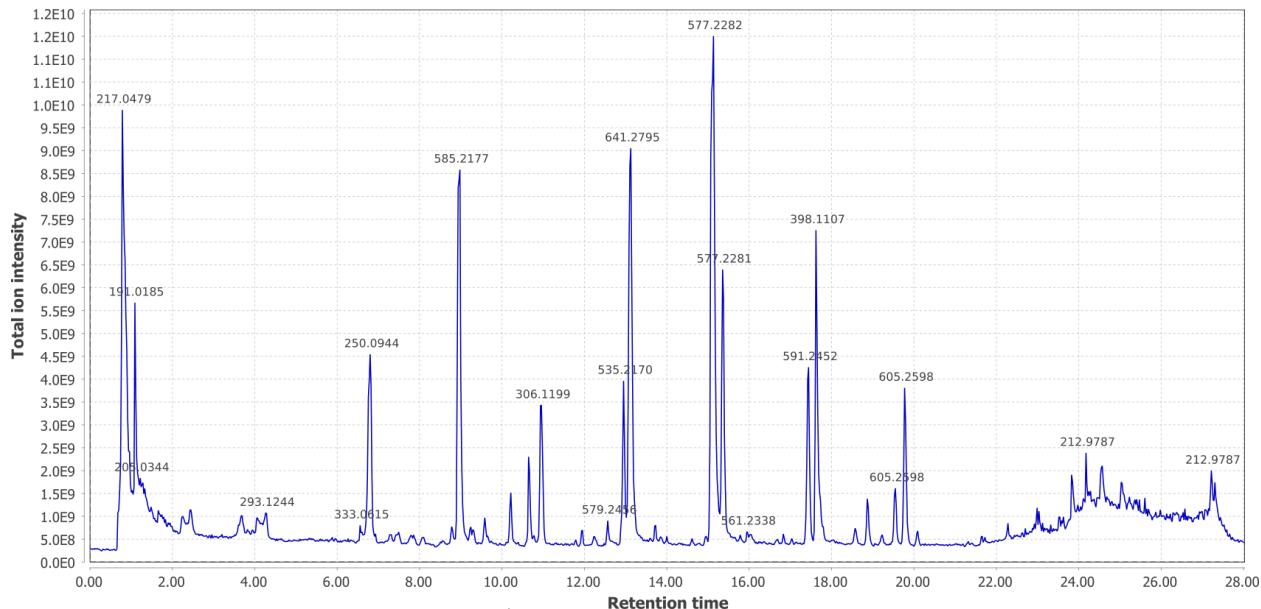
2192 For extraction of *I. luminosus* adult thorax, the mesothorax through the 2 most anterior
2193 abdominal segments (ventral lantern containing segment + 1 segment) of a lyophilized *I.*

2194 *I. luminosus* adult male (Supplementary Text 3.3), was separated from the prothorax plus head
2195 and posterior 3 abdominal segments. This mesothorax + abdomen fragment was then placed in
2196 0.5 mL 50% methanol, and macerated with a pipette tip. The extract was then sonicated in a
2197 water bath sonicator for ~10 minutes, not letting the temperature of the bath go above 50°C,
2198 centrifuged (20,000xg for 10 minutes), and filtered through a 0.2 µm PTFE filter (Filter Vial,
2199 P/No. 15530-100, Thomson Instrument Company).

2200 Injections of these filtered extracts (*P. pyralis* adult male hemolymph 10 µL; *A. lateralis*
2201 adult male hemolymph 5 µL; *P. pyralis* partial larval body extract 5 µL; *A. lateralis* whole larval
2202 body 5 µL; *I. luminosus* thorax extract 20 µL) were separated and analyzed using an UltiMate
2203 3000 liquid chromatography system (Thermo Scientific) equipped with a 150 mm C18 Column
2204 (Kinetex 2.6 µm silica core shell C18 100Å pore, P/No. 00F-4462-Y0, Phenomenex, USA)
2205 coupled to a Q-Exactive mass spectrometer (Thermo Scientific, USA). Two different instrument
2206 methods were used, a slow ~44 minute method, and an optimized ~28 minute method.
2207 Chromatographically both methods are identical up to 20 minutes.


2208 *P. pyralis* hemolymph compounds were separated by the optimized method (28 minute),
2209 with separation via reversed-phase chromatography on a C18 column using a gradient of
2210 Solvent A (0.1% formic acid in H₂O) and Solvent B (0.1% formic acid in acetonitrile); 5% B for 2
2211 min, 5-40% B until 20 min, 40-95% B until 22 minutes, 95% B for 4 min, and 5% B for 5 min;
2212 flow rate 0.8 mL/min. All other sample extracts were separated by the slow (44 minute)
2213 reversed-phase chromatography method, using a C18 column with a gradient of Solvent A
2214 (0.1% formic acid in H₂O) and Solvent B (0.1% formic acid in acetonitrile); 5% B for 2 min, 5-
2215 80% B until 40 min, 95% B for 4 min, and 5% B for 5 min; flow rate 0.8 mL/min.

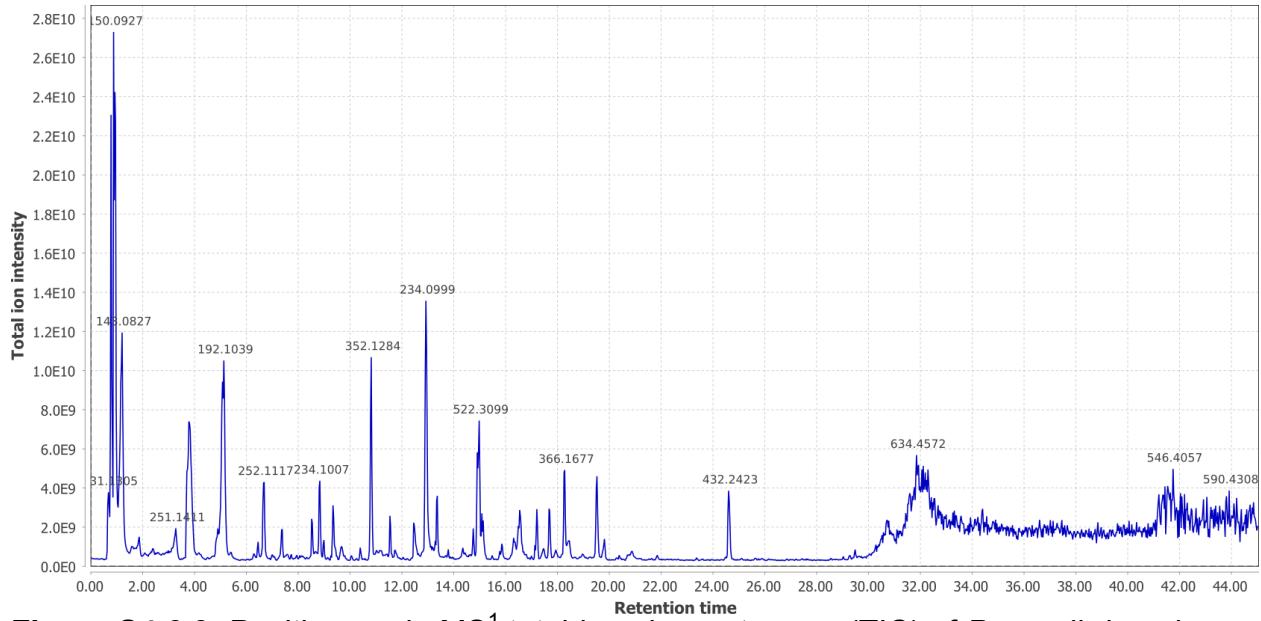
2216 The mass spectrometer was configured to perform one MS¹ scan from *m/z* 120-1250
2217 followed by 1-3 data-dependent MS² scans using HCD fragmentation with a stepped collision
2218 energy of 10, 15, 25 normalized collision energy (NCE). Positive mode and negative mode MS¹
2219 and MS² data were obtained in a single run via polarity switching for the optimized method, or in
2220 separate runs for the slow method. Data was collected as profile data. The instrument was
2221 always used within 7 days of the last mass accuracy calibration. The ion source parameters
2222 were as follows: spray voltage (+) at 3000 V, spray voltage (-) at 2000 V, capillary temperature
2223 at 275°C, sheath gas at 40 arb units, aux gas at 15 arb units, spare gas at 1 arb unit, max spray
2224 current at 100 (µA), probe heater temp at 350°C, ion source: HESI-II. The raw data in Thermo
2225 format was converted to mzML format using ProteoWizard MSConvert[260]. Data analysis was
2226 performed with Xcalibur (Thermo Scientific) and MZmine2 (v2.30)[261]. Raw LC-MS data is
2227 available on MetaboLights (Accession: MTBLS698).


2228 Within MZmine2, data were from all 5 samples on positive mode, and were first cropped
2229 to 20 minutes in order to compare data which was obtained with the same LC gradient
2230 parameters. Profile MS¹ data was then converted to centroid mode with the Mass detection
2231 module(Parameters: Mass Detector = Exact mass, Noise level = 1.0E4), whereas MS² data was
2232 converted to centroid mode with (Noise level=1.0E1). Ions were built into chromatograms using
2233 the Chromatogram Builder module with parameters (min_time_span = 0.10,min_height = 1.0E4,
2234 *m/z* tolerance = 0.001 *m/z* or 5 ppm. Chromatograms were then deconvolved using the

2235 Chromatogram deconvolution module with parameters (Algorithm = Local Minimum Search,
2236 Chromatographic threshold = 5.0%, Search Minimum in RT range=0.10 min, Minimum relative
2237 height = 1%, Minimum absolute height =1.0E0, Min ratio of peak top/edge = 2, Peak duration
2238 range = 0.00-10.00). Isotopic peaks were annotated to their parent features with the Isotopic
2239 peaks grouper module with parameters (m/z tolerance = 0.001 or 5 ppm, Retention time
2240 tolerance = 0.2 min, Monotonic shape=yes, Maximum charge = 2, Representative isotope=Most
2241 intense). The five peaklists (*P. pyralis* hemolymph, *P. pyralis* larval partial body, *A. lateralis* adult
2242 hemolymph, *A. lateralis* larval whole body, *I. luminous* thorax) were then joined and retention
2243 time aligned using the RANSAC algorithm with parameters (m/z tolerance = 0.001 or 10 ppm,
2244 RT tolerance = 1.0 min, RT tolerance after correction = 0.1 min, RANSAC iterations = 100,
2245 Minimum number of points = 5%, Threshold value = 0.5). These aligned peaklists were then
2246 gap-filled. Systematic mass accuracy error was determined with the endogenous tryptophan
2247 $[M+H]^+$ ion (m/z =205.09 , RT=3.5-4.5 mins), and was measured to be +0.6 ppm, +9.9 ppm, +1.6
2248 ppm, +1.1 ppm, and +0.6ppm, for *P. pyralis* adult hemolymph, *P. pyralis* partial larval body
2249 extract, *A. lateralis* adult hemolymph, *A. lateralis* larval body extract, and *I. luminosus* thorax
2250 extract respectively.

2251
2252

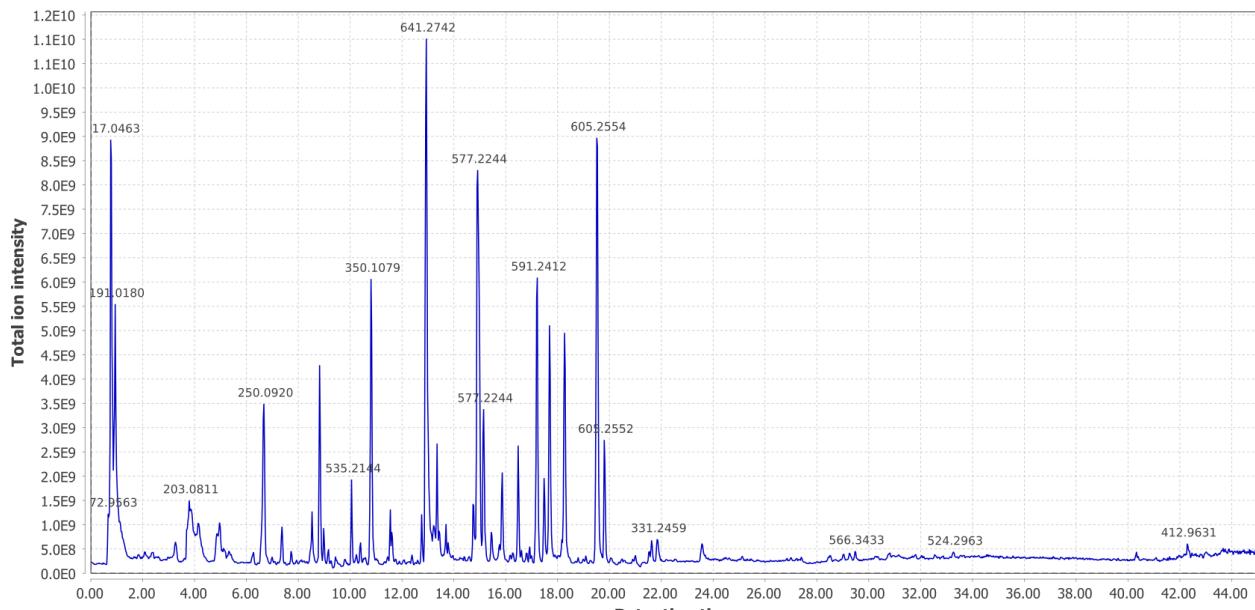
2253
2254 **Figure S4.6.1:** Positive mode MS¹ total-ion-chromatogram (TIC) of *P. pyralis* adult
2255 hemolymph LC-HRAM-MS data.
2256 Figure produced using MZmine2[261].



2257

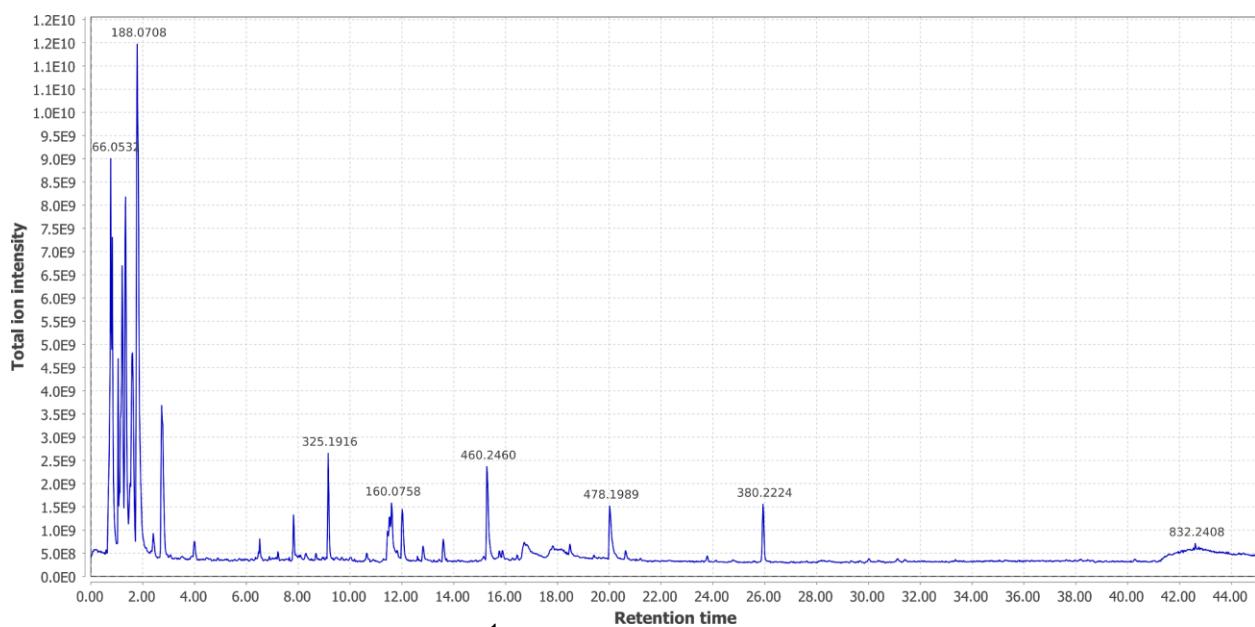
2258 **Figure S4.6.2:** Negative mode MS^1 total-ion-chromatogram (TIC) of *P. pyralis* adult
2259 hemolymph LC-HRAM-MS data.

2260 Figure produced using MZmine2[261].


2261

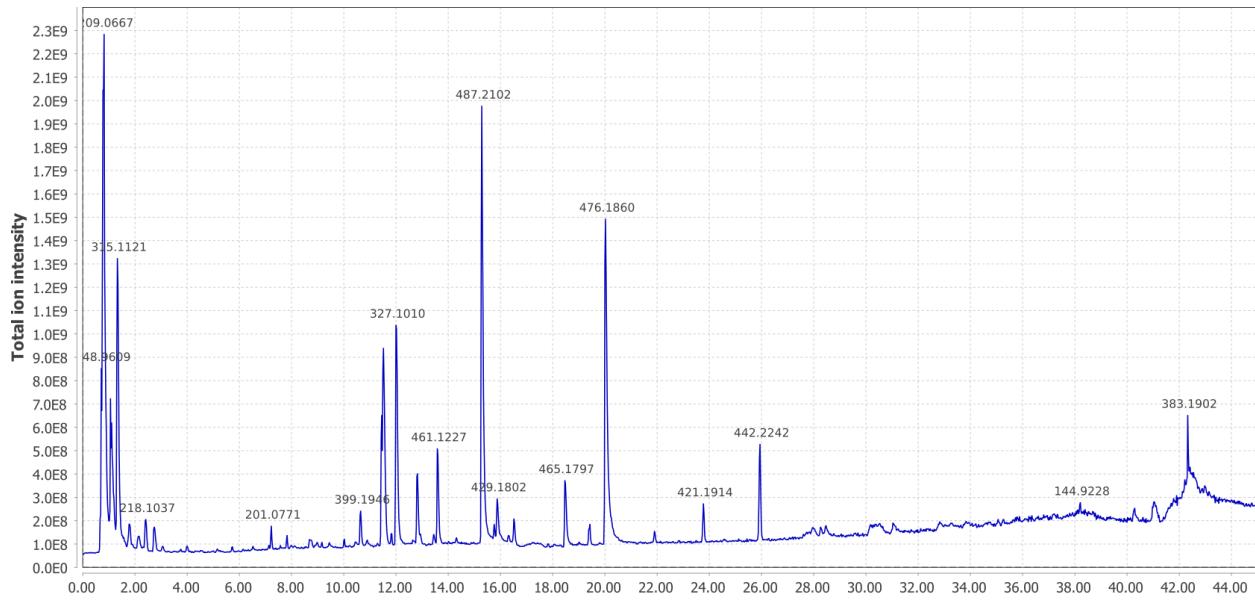
2262

2263 **Figure S4.6.3:** Positive mode MS^1 total-ion-chromatogram (TIC) of *P. pyralis* larval
2264 whole body minus 2 posterior segments LC-HRAM-MS data.


2265 Figure produced using MZmine2[261].

2266
2267
2268
2269
2270

Figure S4.6.4: Negative mode MS¹ total-ion-chromatogram (TIC) of *P. pyralis* larval whole body minus 2 posterior segments LC-HRAM-MS data.

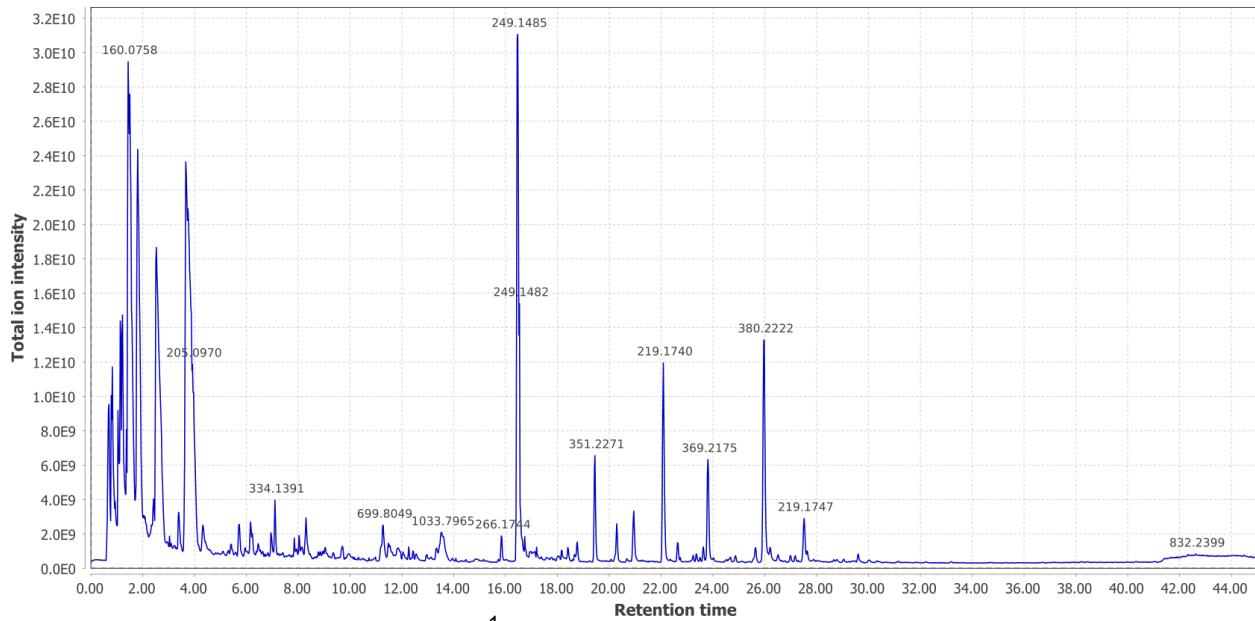

Figure produced using MZmine2[261].

2271
2272
2273
2274

Figure S4.6.5: Positive mode MS¹ total-ion-chromatogram (TIC) of *A. lateralis* adult hemolymph LC-HRAM-MS data.

Figure produced using MZmine2[261].

2275

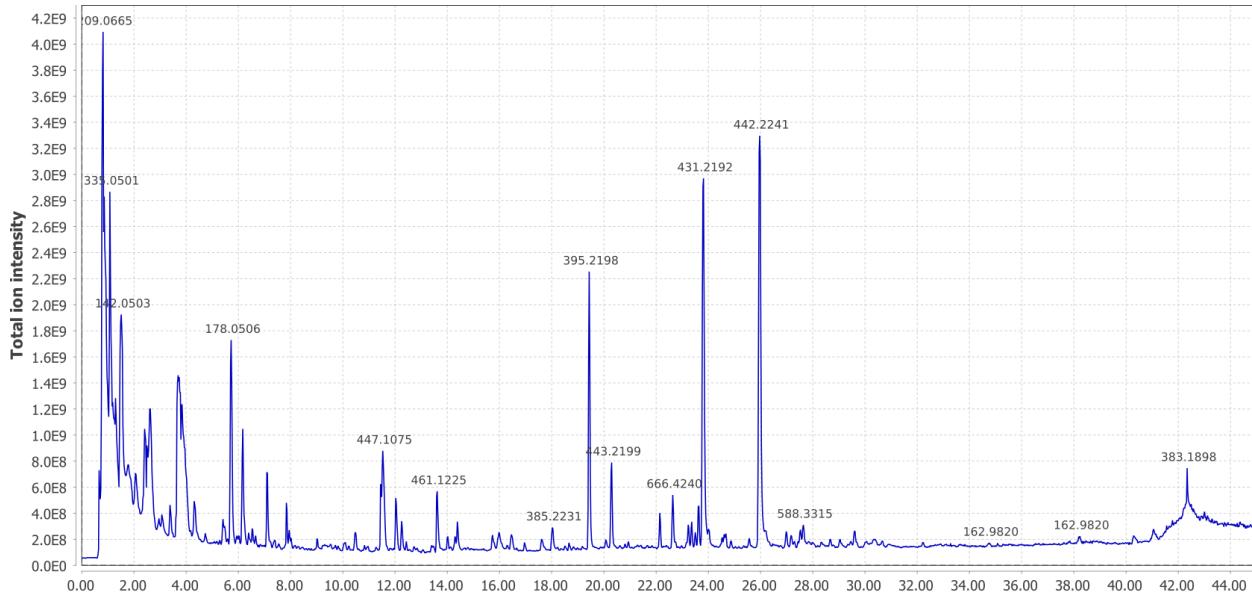

2276 **Figure S4.6.6:** Negative mode MS^1 total-ion-chromatogram (TIC) of *A. lateralis* adult
2277 hemolymph LC-HRAM-MS data.

2278 Figure produced using MZmine2[261].

2279

2280

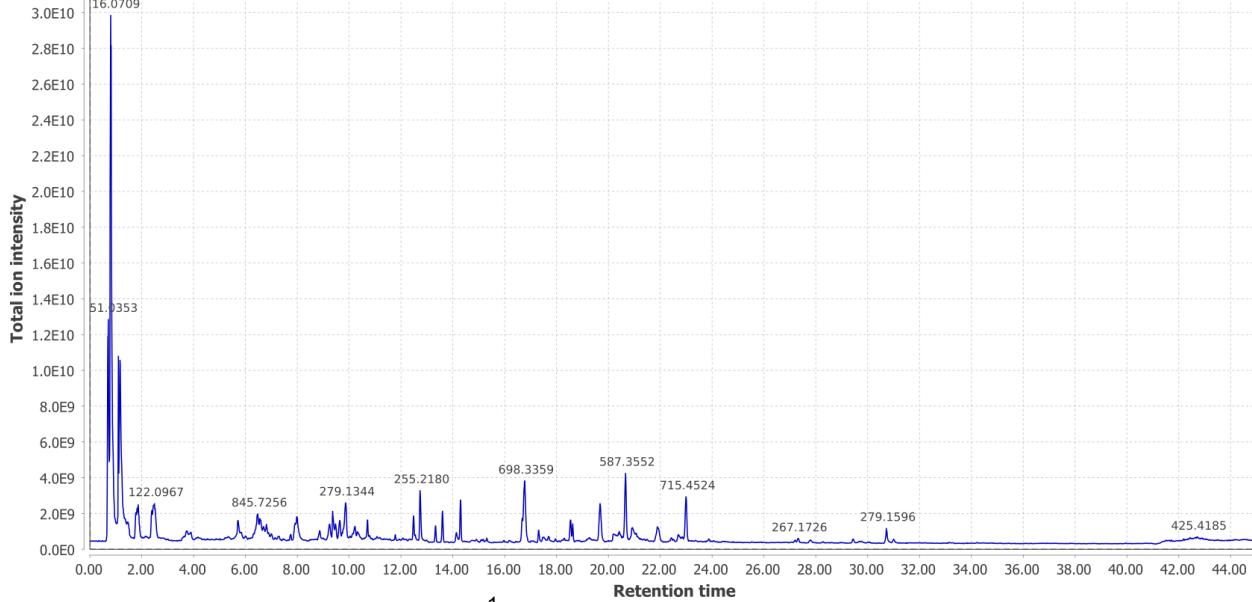
2281



2282

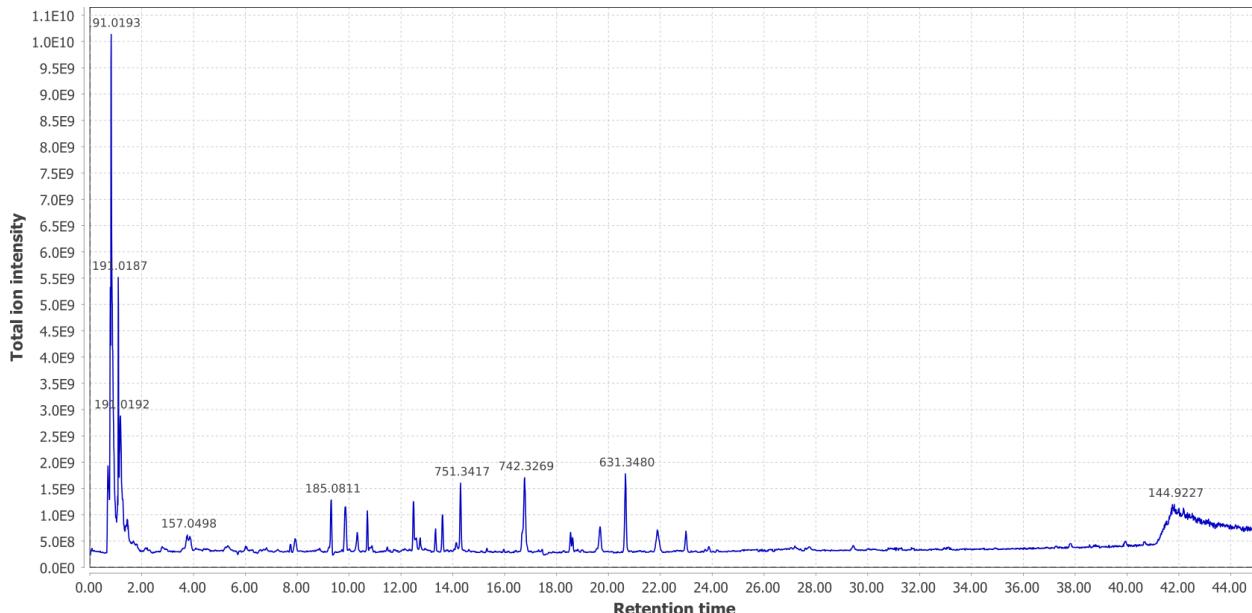
2283 **Figure S4.6.7:** Positive mode MS^1 total-ion-chromatogram (TIC) of *A. lateralis* larval
2284 whole body LC-HRAM-MS data.

2285 Figure produced using MZmine2[261].


2286

2287
2288
2289
2290
2291

Figure S4.6.8: Negative mode MS^1 total-ion-chromatogram (TIC) of *A. lateralis* larval whole body extract LC-HRAM-MS data.

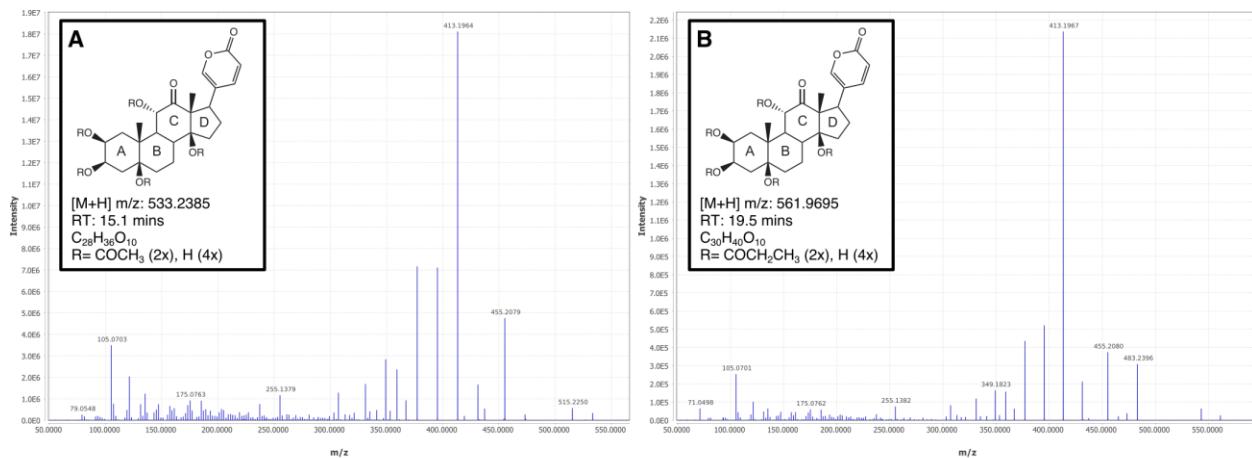

Figure produced using MZmine2[261].

2292
2293
2294
2295

Figure S4.6.9: Positive mode MS^1 total-ion-chromatogram (TIC) of *I. luminosus* mesothorax+abdomen extract LC-HRAM-MS data.

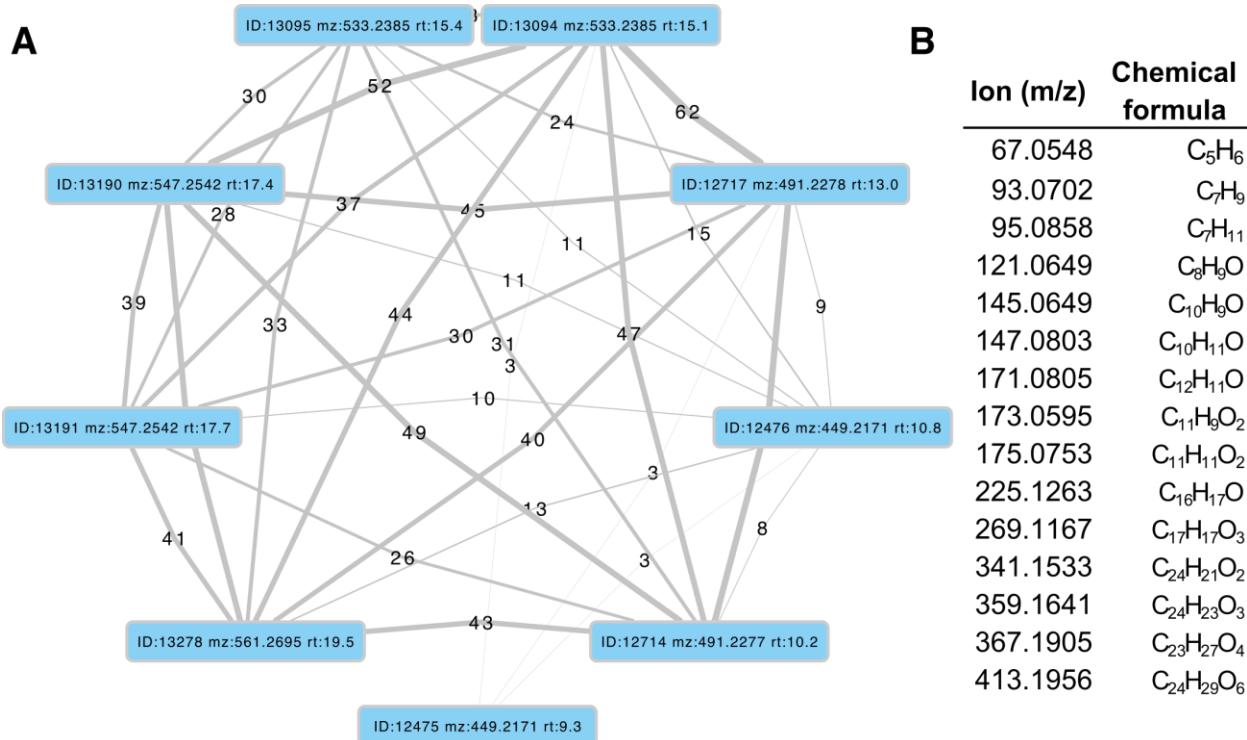
Figure produced using MZmine2[261].

2296
2297 **Figure S4.6.10:** Negative mode MS¹ total-ion-chromatogram (TIC) of *I. luminosus*
2298 mesothorax+abdomen extract LC-HRAM-MS data.
2299 Figure produced using MZmine2[261].
2300


2301

2302 **4.6.5 MS² similarity search for *P. pyralis* lucibufagins**

2303 We first performed a MS² similarity search within *P. pyralis* adult hemolymph for ions that
2304 showed a similar MS² spectra to the MS² spectra arising from the diacetylated lucibufagin
2305 [M+H]⁺ ion from the same run ([M+H]⁺ *m/z* 533.2385, RT = 15.10 mins) (Fig. S4.6.5.1). This
2306 search was performed through the MS² similarity search module of MZmine2 (v2.30) with
2307 parameters (*m/z* tolerance: 0.0004 *m/z* or 1 PPM; minimum # of ions to report: 3). This MS²
2308 similarity search revealed 9 putative lucibufagin isomers with highly similar MS² spectra (Fig.
2309 S4.6.5.2), which expanded to 17 putative lucibufagin isomers when considering features without
2310 MS² spectra, but with identical exact masses and close retention times (Δ RT < 2 min) to the
2311 previously identified 9 (Table S4.6.5.3). Chemical formula prediction was assigned to each
2312 precursor ion using the Chemical formula search module of MZmine2, whereas chemical
2313 formula predictions for product ions was performed within MZmine2 using SIRUIS (v3.5.1)[262].
2314 The structural identity of the 9 putative lucibufagins detected via the MS2 spectra similarity
2315 search was easily interpreted in light that the different chemical formula represented the core
2316 lucibufagins that had undergone acetylation (COCH₃) or propylation (COCH₂CH₃), in different
2317 combinations. Notably the most substituted isomers, dipropylated lucibufagin ([M+H]⁺ *m/z*
2318 561.2695, RT = 19.54 mins) were close to the edge of the cropped data (20 minutes), thus it
2319 may be possible that more highly substituted lucibufagins with a longer retention times are
2320 present, but not detected in the current analysis.


2321 We then performed a MS^2 similarity search within *P. pyralis* partial body extract for ions
 2322 that showed a MS^2 spectra similar to that of the dipropylated lucibufagin $[M+H]^+$ ion from the
 2323 same run ($[M+H]^+$ m/z 561.2738, RT=19.53). This search was performed through the MS^2
 2324 similarity search module of MZmine2 (v2.30) with parameters (m/z tolerance: 0.0004 m/z or 1
 2325 PPM; minimum # of ions to report: 5). This MS^2 similarity search revealed 14 putative
 2326 lucibufagin isomers with highly similar MS^2 spectra (Table S4.6.5.3). Complexes, and
 2327 fragments were manually removed from the analysis. Comparison of the theoretical and
 2328 observed exact mass indicated that this experimental run had an unusual degree of systematic
 2329 m/z error, of $\sim +10$ ppm. After manual correction m/z , chemical formula prediction revealed a
 2330 several putative lucibufagins of unknown structure with nitrogen in their chemical formula,
 2331 suggesting that the nitrogen containing lucibufagins reported by by Gronquist and colleagues
 2332 from *Lucidota atra* [263] may be present in *P. pyralis* larvae.

2333

2334
 2335
 2336
 2337

Figure S4.6.5.1: Positive mode MS^2 spectra of (A) diacetylated lucibufagin $[M+H]^+$ and
 (B) dipropylated lucibufagin $[M+H]^+$.

2338
 2339 **Figure S4.6.5.2:** MS² spectral similarity network for *P. pyralis* adult hemolymph
 2340 lucibufagins.

2341 **(A)** MS² similarity network produced with the MZmine2 MS² similarity search module. Nodes
 2342 represent MS² spectra from the initial dataset, whereas edges represent an MS² similarity match
 2343 between two MS2 spectra. Thickness / label of the edge represents the number of ions matched
 2344 between the two MS2 spectra. **(B)** Table of matched ions between diacetylated lucibufagin (m/z:
 2345 533.2385 RT:15.1), and core (unacetylated) lucibufagin (m/z: 449.2171 RT:10.8 min). MS¹
 2346 adducts and complexes of the presented ions were manually removed.

2347 **Table S4.6.5.3:** Putative lucibufagin compounds from LC-HRAM-MS of *P. pyralis* adult
 2348 hemolymph.

2349 Retention time and m/z values are not calibrated to the other samples.

Assigned ion identity	Ion type	Chemical formula	Expected m/z	Measured m/z	m/z error* (ppm)	Retention time (mins)	Feature area (arb)
Core lucibufagin isomer 1	[M+H] ⁺	C ₂₄ H ₃₃ O ₈	449.2175	449.2171	-0.89	7.9	6.7E+05
Core lucibufagin isomer 2	""	""	""	""	""	9.3	1.1E+07
Monoacetylated lucibufagin isomer 1	""	C ₂₆ H ₃₅ O ₉	491.2281	491.2277	-0.81	10.2	4.2E+07
Core lucibufagin isomer 3	""	C ₂₄ H ₃₃ O ₈	449.2175	449.2171	-0.89	10.8	1.7E+07
Monoacetylated lucibufagin isomer 2	""	C ₂₆ H ₃₅ O ₉	491.2281	491.2277	-0.81	11.4	1.1E+06

Monoacetylated lucibufagin isomer 3	'''	'''	'''	'''	'''	11.9	1.8E+07
Monoacetylated lucibufagin isomer 4	'''	'''	'''	'''	'''	13.0	2.7E+08
Monoacetylated lucibufagin isomer 5	'''	'''	'''	'''	'''	13.2	6.0E+07
Monoacetylated lucibufagin isomer 6	'''	'''	'''	'''	'''	14.5	6.2E+06
Diacetylated lucibufagin isomer 1	'''	C ₂₈ H ₃₇ O ₁₀	533.2387	533.2385	-0.37	15.1	4.0E+09
Diacetylated lucibufagin isomer 2	'''	'''	'''	'''	'''	15.4	1.9E+09
Monoacetylated, mono propylated lucibufagin isomer 1	'''	C ₂₉ H ₃₉ O ₁₀	547.2543	547.2542	-0.18	17.0	1.5E+07
Monoacetylated, mono propylated lucibufagin isomer 2	'''	'''	'''	'''	'''	17.4	2.8E+08
Monoacetylated, mono propylated lucibufagin isomer 3	'''	'''	'''	'''	'''	17.7	1.2E+08
Dipropylated lucibufagin isomer 1	'''	C ₃₀ H ₄₁ O ₁₀	561.2700	561.2695	-0.89	18.9	1.4E+08
Dipropylated lucibufagin isomer 2	'''	'''	'''	'''	'''	19.5	3.9E+07
Dipropylated lucibufagin isomer 3	'''	'''	'''	'''	'''	19.8	1.8E+08

2350

2351 **Table S4.6.5.4:** Putative lucibufagin compounds from LC-HRAM-MS of *P. pyralis* larval
2352 partial body extracts.

2353 Retention time and m/z values are not calibrated to the other samples. *=m/z error and expected m/z
2354 extrapolated from ions with similar m/z, and chemical formula predicted from resulting extrapolated m/z.
2355 **=Likely chemical formula cannot be determined due to many possible chemical formula from the
2356 expected m/z.

Assigned ion identity	Ion type	Chemical formula	Expected m/z	Measured m/z	m/z error (ppm)	Retention time (mins)	Feature area (arb)
Core lucibufagin isomer 2	[M+H] ⁺	C ₂₄ H ₃₃ O ₈	449.2175	449.2215	+8.9	9.15	8.5E+06
Monoacetylated lucibufagin isomer 1	**	C ₂₆ H ₃₅ O ₉	491.2277	491.2326	+9.9	10.04	1.2E+07

Unknown	unknown	C ₂₈ H ₃₉ O ₁₀ *	535.2543*	535.2592	+9.1*	12.40	1.6E+07
Unknown	unknown	C ₂₄ H ₃₈ NO ₆ *	436.2695*	436.2735	+9.1*	13.30	2.2E+07
Unknown	unknown	C ₂₇ H ₄₅ N ₂ O ₈ *	525.3173*	525.3221	+9.1*	13.35	1.3E+08
Unknown	unknown	C ₂₄ H ₄₀ NO ₇ *	454.2799*	454.2840	+9.1*	13.73	1.3E+07
Diacetylated lucibufagin isomer 1	[M+H] ⁺	C ₂₈ H ₃₇ O ₁₀	533.2387	533.2426	+7.3	14.93	1.7E+09
Diacetylated lucibufagin isomer 2	[M+H] ⁺	"	"	533.2426	+7.3	15.16	3.5E+08
Unknown	Unknown	C ₂₉ H ₄₆ NO ₈ *	536.3216*	536.3256	+7.3*	16.57	4.1E+07
Unknown	Unknown	Unknown**	563.2854*	563.2896	+7.3*	16.80	1.3E+07
Unknown	Unknown	C ₂₆ H ₃₁ O ₇	455.2056	455.2097	+9.1*	17.22	5.8E+07
Dipropylated lucibufagin isomer 3	Unknown	C ₃₀ H ₄₁ O ₁₀	561.2700	561.2738	+6.7	19.53	2.0E+09
Dipropylated lucibufagin isomer 4	Unknown	C ₃₀ H ₄₁ O ₁₀	561.2700	561.2738	+6.7	19.82	2.2E+08

2357
2358
2359
2360
2361
2362

2363 **Table S4.6.5.5:** Putative lucibufagin [M+H]⁺ exact masses adjusted for instrument run
2364 specific systematic *m/z* error (Fig. 6B).

2365 Used for multi-ion-chromatogram (MIC) traces in Fig 6B. *= Chemical formula assigned for structurally
2366 unclear putative lucibufagins

Chemical formula	Predicted exact mass	Exact mass adjusted to <i>P. pyralis</i> hemolymph data (+0.6 ppm)	Exact mass adjusted to <i>P. pyralis</i> partial larval body data (+9.9 ppm)	Exact mass adjusted to <i>A. lateralis</i> hemolymph data (+1.6 ppm)	Exact mass adjusted to <i>A. lateralis</i> larval body data (+1.1 ppm)	Exact mass adjusted to <i>I. luminosus</i> thorax data (+0.6 ppm)
C ₂₄ H ₃₃ O ₈	449.2175	449.2178	449.2219	449.2182	449.2180	449.2178
C ₂₄ H ₃₈ NO ₆ *	436.2699	436.2702	436.2742	436.2706	436.2704	436.2702
C ₂₄ H ₄₀ NO ₇ *	454.2804	454.2807	454.2849	454.2811	454.2809	454.2807

C ₂₆ H ₃₁ O ₇	455.2069	455.2072	455.2114	455.2076	455.2074	455.2072
C ₂₆ H ₃₅ O ₉	491.2281	491.2284	491.2330	491.2289	491.2286	491.2284
C ₂₇ H ₄₅ N ₂ O ₈ *	525.3175	525.3178	525.3227	525.3183	525.3181	525.3178
C ₂₈ H ₃₇ O ₁₀	533.2386	533.2389	533.2439	533.2395	533.2392	533.2389
C ₂₈ H ₃₉ O ₁₀ *	535.2543	535.2546	535.2596	535.2552	535.2549	535.2546
C ₂₉ H ₃₉ O ₁₀	547.2543	547.2546	547.2597	547.2552	547.2549	547.2546
C ₂₉ H ₄₆ NO ₈ *	536.3223	536.3226	536.3276	536.3232	536.3229	536.3226
C ₃₀ H ₄₁ O ₁₀	561.2699	561.2702	561.2755	561.2708	561.2705	561.2702

2367 **4.6.7 MS² similarity search for *A. lateralis* lucibufagins**

2368 Although our earlier LC-HRAM-MS analysis (Fig 6B; Supplementary Text 4.6) indicated
 2369 *A. lateralis* adult male hemolymph does not contain detectable quantities of the *P. pyralis*
 2370 lucibufagins, this does not exclude that structurally unknown lucibufagins with chemical formula
 2371 not present in *P. pyralis*, are present in *A. lateralis*. To address this, we performed a MS²
 2372 similarity search against the *A. lateralis* adult male hemolymph MS2 spectra, with the MS²
 2373 spectra of lucibufagin C (*m/z* 533.2385, RT=15.1) as bait, using the MZmine2 similarity search
 2374 module with parameters (*m/z* tolerance= 0.001 or 10 ppm, Minimum # of matched ions=10).
 2375 After filtering to those precursors that were mostly likely to be the [M+H]⁺ of a lucibufagin-like
 2376 molecule (*m/z* 350-800, RT=8-20 mins), 9 MS² spectra were matched (Table S4.6.7.1). None of
 2377 these features were detected in *P. pyralis* (Table S4.6.7.1). Chemical formula prediction was
 2378 difficult due to the high *m/z* of the ions, but in those cases where it was successful, the additions
 2379 of nitrogens and/or phosphorus to the chemical formula was confident. Notably, the most
 2380 confident chemical formula predictions reported \leq 23 carbons, and as the core lucibufagin of *P.*
 2381 *pyralis* contains 24 carbons, it is unlikely that these ions are lucibufagins. The notable degree of
 2382 MS² similarity may be due to the *A. lateralis* compounds also being steroid derived compounds.
 2383 That being said, the identity and role of the compound giving rise to ion 460.2462 is intriguing,
 2384 as it is highly abundant in the *A. lateralis* adult hemolymph, is absent from the *P. pyralis* adult
 2385 hemolymph, and is possibly a steroidal compound.

2386 **Table S4.6.7.1:** Relative quantification of features identified by lucibufagin MS2
 2387 similarity search

Assigned identity	<i>m/z</i>	Chemical formula	RT (mins)	Similarity score	# of ions matched	<i>A. lateralis</i> feature area (arb)	<i>P. pyralis</i> feature area (arb)
Unknown	460.2462	C ₂₂ H ₃₈ NO ₇ P*; C ₂₅ H ₂₉ N ₇ O ₂ *	15.27	4.10E+11	34	7.04E+08	0.00E+00
""	657.2229	N.D.	12.01	9.50E+11	29	6.13E+07	""
""	414.2043	N.D.	18.07	1.20E+11	25	5.61E+06	""
""	381.2176	C ₂₃ H ₂₆ N ₂ O ₃ *	15.77	3.80E+11	18	1.22E+08	""
""	476.1839	N.D.	15.93	3.80E+11	16	9.87E+06	""
""	456.2148	N.D.	19	2.30E+11	14	5.03E+06	""
""	351.228	N.D.	19.42	2.60E+11	13	1.56E+07	""
""	479.1948	N.D.	19.83	2.20E+11	12	1.11E+07	""

2388 * Determined with Sirius (MS² analysis), and MZmine2 (isotope pattern analysis).
 2389 N.D., Not determined

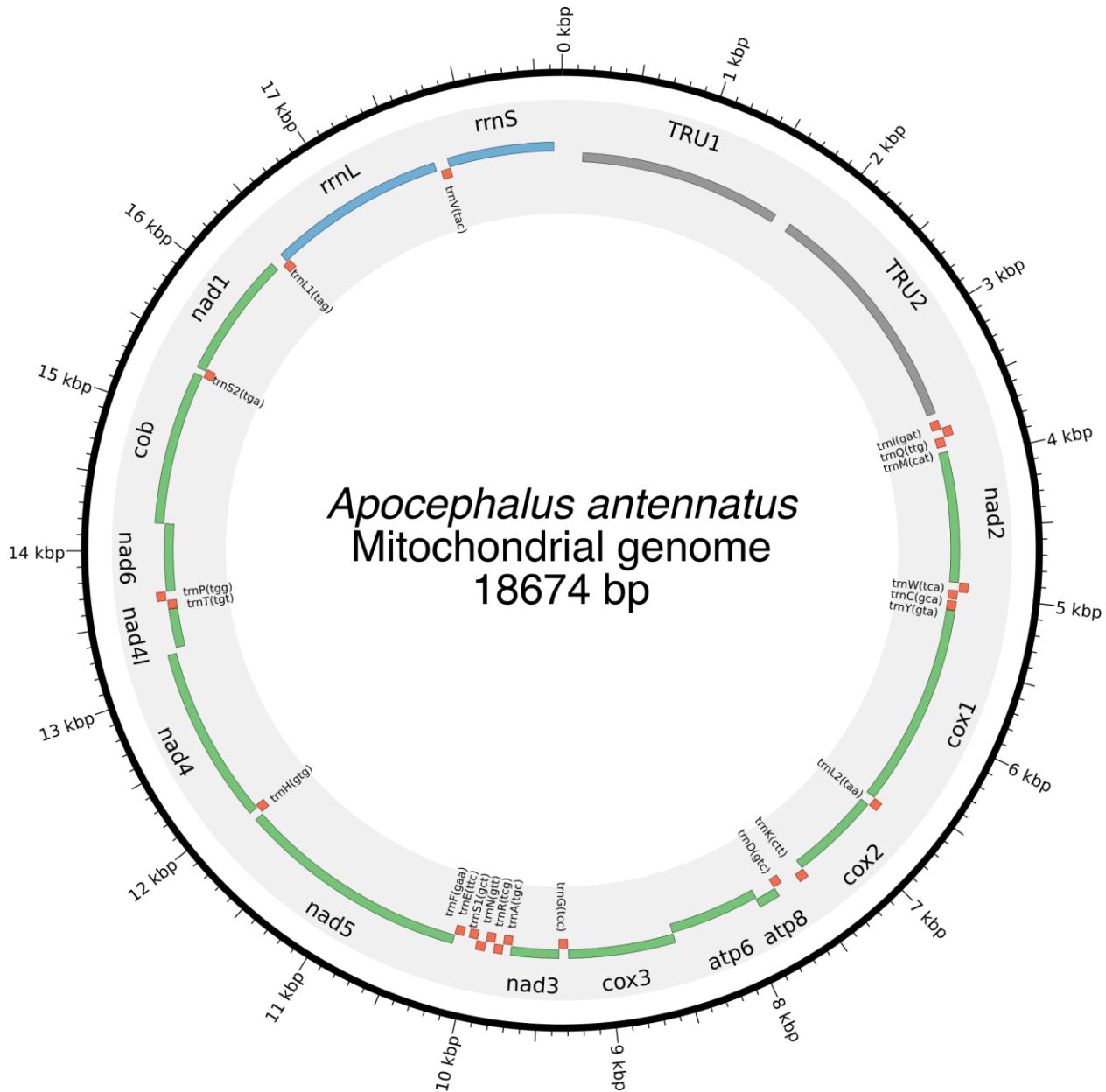
2390

2391

2392

2393

2394 **SUPPLEMENTARY TEXT 5: Holobiont analyses**


2395 **5.1 Assembly and annotation of the complete *Entomoplasma luminosum* subsp.**
2396 ***pyralis* genome**

2397 The complete genome of the molicute (Phylum: Tenericutes) *Entomoplasma luminosum*
2398 subsp. *pyralis* was constructed by a long-read metagenomic sequencing and assembly
2399 approach from the *P. pyralis* PacBio data. First, BUSCO v.3 with the bacterial BUSCO set was
2400 used to identify those contigs from the PacBio only Canu assembly (Ppyr0.1-PB) which
2401 contained conserved bacterial genes. A single 1.04 Mbp contig with 73 bacterial BUSCO genes
2402 was the only contig identified with more than 1 BUSCO hit. Inspection of the Canu produced
2403 assembly graph with Bandage v0.8.1[182], revealed that the contig had a circular assembly
2404 path. BLASTN alignment of the contig to the NCBI nt database indicated that this contig had a
2405 high degree of similarity to annotated Mycoplasmal genomes. Together this data suggested that
2406 this contig represented a complete Mycoplasmal genome. Polishing of the contig was performed
2407 by mapping and PacBio consensus-calling using SMRTPortal v2.3.0.140893 with the
2408 “RS_Resequencing.1” protocol with default parameters. The median coverage was ~50x. The
2409 resulting consensus sequence was restarted with seqkit[61] to place the FASTA record junction
2410 180° across the circular chromosome, and reentered into the polishing process to enable
2411 efficient mapping across the circular junction. This mapping, consensus calling, and rotation
2412 process was repeated 3 times total, after which no additional nucleotide changes occurred. The
2413 genome was “restarted” with seqkit such that the FASTA start position began between the
2414 ribosomal RNAs, and annotation was conducted through NCBI using their prokaryotic gene
2415 annotation pipeline (PGAP). Analysis with BUSCO v.3 of the peptides produced from the
2416 aforementioned genome annotation indicated that 89.8% of expected Tenericutes single-copy
2417 conserved orthologs were captured in the annotation (C:89.8%[S:89.8%,D:0.0%], F:2.4%,
2418 M:7.8%, n:166). Comparison of the predicted 16S RNA gene sequence to the NCBI 16S RNA
2419 gene database indicated that this gene had 99% identity to the *E. luminosum* 16S sequence
2420 (ATCC 49195 - formerly *Mycoplasma luminosum*; NCBI Assembly ID ASM52685v1)[264,265],
2421 leading to our description of this genome as the genome of *Entomoplasma luminosum*
2422 subspecies (subsp.) *pyralis*. Protein overlap comparisons using the OrthoFinder pipeline
2423 (v1.1.10)[188] between our predicted protein geneset for *E. luminosum* var. *pyralis* and the
2424 protein geneset of *Entomoplasma luminosum* (ATCC 49195 - formerly *M. luminosum*; NCBI
2425 Assembly ID ASM52685v1), indicated that 94% (670/709) of the previously annotated *E.*
2426 *luminosum* proteins are present in our genome of *E. luminosum* subsp. *pyralis*.

2427 **5.2 Assembly and annotation of Phorid mitochondrial genome**

2428 The complete mitochondrial genome of the dipteran parasitoid *Apocephalus*
2429 *antennatus*, first detected via BLASTN of mtDNAs as a concatemerized sequence in the Canu
2430 PacBio only assembly (Ppyr0.1-PB) was constructed in full by a long-read metagenomic
2431 sequencing and assembly approach. First, PacBio reads were mapped to the NCBI set of

2432 mitochondrial genomes concatenated with the *P. pyralis* mitochondrial genome assembly
2433 reported in this manuscript (NCBI accession KY778696.1), using GraphMap v0.5.2 with
2434 parameters “align -C -t 4 -P”. Of the mitochondrial mapped reads (45949 reads), 98% (45267
2435 reads) were partitioned to the *P. pyralis* mtDNA. The next most abundant category at 1.1% (531
2436 reads), was partitioned to the mtDNA of the Phorid fly *Megaselia scalaris* (NCBI accession:
2437 KF974742.1). The next most abundant category at 0.11% (53 reads) was partitioned to the
2438 mitochondrion of the Red algae *Galdieria sulphuraria* (NCBI accession: NC_024666.1). The
2439 reads were then split into 3 partitions: *P. pyralis* mapping, *M. scalaris* mapping, and other, and
2440 input into Canu (v1.6+44) [57] for assembly. Each partitioned assembly by Canu produced a
2441 single circular contig, notably the “other” and *Megaselia* partitions produced highly similar
2442 sequences, whereas the *P. pyralis* partition produced a circular sequence that was highly similar
2443 to *P. pyralis* DNA. We inspected the *M. scalaris* partition further as it was produced with more
2444 reads. Notably, although an inspection of the contig was circular, and showed a high degree of
2445 similarity upon blastn to the *M. scalaris* mtDNA, the contig was ~2x larger than expected
2446 (29,821 bp). An analysis of contig’s self-complementarity with Gepard (v1.40)[178], indicated
2447 that this contig had 2x tandem repetitive regions, and was duplicated overall twice. Similarly,
2448 the .GFA output of Canu noted an overlap of 29,821, indicating that the assembler was unable
2449 to determine an appropriate overlap, other than the entire contig. Manual trimming of the contig
2450 to the correct size, 180° restarting with seqkit, and polishing using SMRTPortal v2.3.0.140893
2451 with the “RS_Resequencing.1” protocol with default parameters, followed by 180° seqkit
2452 “restarting”, followed by another round of polishing, produced the final mtDNA (18,674 bp; Fig.
2453 S5.2.1). This mtDNA was taxonomically identified in a separate analysis to originate from *A.*
2454 *antennatus* (Supplementary Text 5.3). Coding regions, tRNAs, and rRNAs were predicted via
2455 the MITOSv2 mitochondrial genome annotation web server[62]. Small mis-annotations (e.g. low
2456 scoring additional predictions of already annotated mitochondrial genes) were manually
2457 inspected and removed. Tandem repetitive regions were manually annotated. The complete *A.*
2458 *antennatus* genome annotation plus assembly is available on NCBI Genbank (Accession:
2459 MG546669).
2460

2461 10 10
2462 **Figure S5.2.1:** Mitochondrial genome of *Apocephalus antennatus*.
2463 The mitochondrial genome of *A. antennatus* was assembled and annotated as described in the
2464 Supplementary Text 5.2, and taxonomically identified as described in Supplementary Text 5.3.
2465 Figure produced with Circos[63].

2466 5.3 Taxonomic identification of Phorid mitochondrial genome origin

After the successful metagenomic assembly of the mitochondrial genome of an unknown Phorid fly species from the *P. pyralis* PacBio library (Supplementary Text 5.2), we sought to characterize the species of origin for this mitochondrial genome. We planned to achieve this by collecting the Phorid flies which emerged from adult *P. pyralis*, taxonomically identifying them, and performing targeted mitochondrial PCR and sequencing experiments to correlate their

mitochondrial genome sequence to our mtDNA assembly. We successfully obtained phorid fly larvae emerging from *P. pyralis* adult males collected from MMNJ (identical field site to PacBio collection), and Rochester, NY (RCNY), in the summer of 2017. The MMNJ phorid larvae did not successfully pupate, however we obtained 5 adult specimens from successful pupations of the RCNY larvae. Two adults from this batch were identified as *A. antennatus* (Malloch), by Brian V. Brown, Entomology Curator of the Natural History Museum of Los Angeles County. DNA was extracted from one of the remaining 3 specimens and a COI fragment was PCR-amplified and Sanger sequenced. The forward primer was 5'-TTTGATTCTCGGCCACCCA-3', the reverse primer 5'-AGCATCGGGTAGTCTGAGT-3'. This COI fragment from had 99% identity (558/563 nt) to the COI gene of our mitochondrial assembly. This sequenced COI fragment has been submitted to GenBank (GenBank Accession: MG517481). We conclude that this is sufficient evidence to denote that our assembled Phorid mitochondrial genome is the mitochondrial genome of *A. antennatus*. Notably, *A. antennatus* was previously reported by Lloyd [266] to be a parasite of several firefly species in genera *Photuris*, *Photinus*, and *Pyractomena*, from collection sites ranging from Florida to New York. To our knowledge, this is the first report of a mitochondrial genome which was first assembled via an untargeted metagenomic approach and then later correlated to its species of origin.

5.4 *Photinus pyralis* orthomyxo-like viruses

We identified the first two viruses associated to *P. pyralis* and the Lampyridae family. The proposed *Photinus pyralis* orthomyxo-like virus 1 & 2 (PpyrOMLV1 & 2) present a multipartite genome conformed by five RNA segments encoding a putative nucleoprotein (NP), hemagglutinin-like glycoprotein (HA) and a heterotrimeric viral RNA polymerase (PB1, PB2 and PA). The viral genomes for *Photinus pyralis* orthomyxo-like virus 1 & 2 are available on NCBI Genbank with accessions MG972985-MG972994. Expression analyses on 24 RNA libraries of diverse individuals/developmental stages/tissues and geographic origins of *P. pyralis* indicate a dynamic presence, widespread prevalence, a pervasive tissue tropism, a low isolate variability, and a persistent life cycle through transovarial transmission of PpyrOMLV1 & 2. Genomic and phylogenetic studies suggest that the detected viruses correspond to a new lineage within the *Orthomyxoviridae* family (ssRNA(-)) (Figure S5.4.1.A-I). The concomitant occurrence in the *P. pyralis* genome of species-specific signatures of Endogenous viral-like elements (EVEs) associated to retrotransposons linked to the identified Orthomyxoviruses, suggest a past evolutionary history of host-virus interaction (Supplementary Text 5.5, Fig. S5.4.1.J). This tentative interface is correlated to low viral RNA levels, persistence and no apparent phenotypes associated with infection. We suggest that the identified viruses are potential endophytes of high prevalence as a result of potential evolutionary modulation of viral levels associated to EVEs. *Photinus pyralis* orthomyxo-like virus 1 and 2 (PpyrOMLV1 & PpyrOMLV2) share their genomic architecture and evolutionary clustering (Fig. S5.4.1.A-H, Fig. S5.4.2). They are multipartite linear ssRNA negative strand viruses, conformed by five genome segments generating a ca. 10.8 Kbp total RNA genome. Genome segments one through three (ca. 2.3-2.5 Kbp long)

2511 encode a heterotrimeric viral polymerase constituted by subunit Polymerase Basic protein 1 -
2512 PB1 (PpyrOMLV1: 801 aa, 91 kDa; PpyrOMLV2: 802 aa, 91.2 kDa), Polymerase Basic protein
2513 2 - PB2 (PpyrOMLV1: 804 aa, 92.6 kDa; PpyrOMLV2: 801 aa, 92.4 kDa) and Polymerase Acid
2514 protein - PA (PpyrOMLV1: 754 aa, 86.6 kDa; PpyrOMLV2: 762 aa, 87.9 kDa). PpyrOMLV1 &
2515 PpyrOMLV2 PB1 present a Flu_PB1 functional domain (Pfam: pfam00602; PpyrOMLV1:
2516 interval= 49-741, e-value= 2.93e-69; PpyrOMLV2: interval= 49-763, e-value= 1.42e-62) which is
2517 the RNA-directed RNA polymerase catalytic subunit, responsible for replication and transcription
2518 of virus RNA segments, with two nucleotide-binding GTP domains. PpyrOMLV1 & PpyrOMLV2
2519 PB2 present a typical Flu_PB2 functional domain (Pfam: pfam00604; PpyrOMLV1: interval= 26-
2520 421, e-value= 5.10e-13; PpyrOMLV2: interval= 1-692, e-value= 1.57e-11) which is involved in 5'
2521 end cap RNA structure recognition and binding to further initiate virus transcription (Supp Table
2522 2). PpyrOMLV1 & PpyrOMLV2 PA subunits share a characteristic Flu_PA domain (Pfam:
2523 pfam00603; PpyrOMLV1: interval= 122-727, e-value= 3.73e-07; PpyrOMLV2: interval= 117-
2524 732, e-value= 5.63e-10) involved in viral endonuclease activity, necessary for the cap-snatching
2525 process[267]. Genome segment four (1.6 Kbp size) encodes a Hemagglutinin protein – HA
2526 (PpyrOMLV1: 526 aa, 59.7 kDa; PpyrOMLV2: 525 aa, 58.6 kDa) presenting a Baculo_gp64
2527 domain (Pfam: pfam03273; PpyrOMLV1: interval= 108-462, e-value= 2.16e-15; PpyrOMLV2:
2528 interval= 42-460, e-value= 1.66e-23), associated with the gp64 glycoprotein from baculovirus as
2529 well as other viruses, such as Thogotovirus (*Orthomyxoviridae* - OMV) which was postulated to
2530 be related to the arthropod-borne nature of these specific Orthomyxoviruses. In addition, HA as
2531 expected, presents an N-terminal signal domain, a C terminal transmembrane domain, and a
2532 putative glycosylation site. Lastly, genome segment five (ca. 1.8 Kbp size) encodes a putative
2533 nucleocapsid protein – NP (PpyrOMLV1: 562 aa, 62.3 kDa; PpyrOMLV2: 528 aa, 58.5 kDa)
2534 with a Flu_NP structural domain (Pfam: pfam00506; PpyrOMLV1: interval= 145-322, e-value=
2535 1.32e-01; PpyrOMLV2: interval= 94-459, e-value= 1.47e-04) this single-strand RNA-binding
2536 protein is associated to encapsidation of the virus genome for the purposes of RNA
2537 transcription, replication and packaging (Fig. S5.4.1.E). Despite sharing genome architecture
2538 and structural and functional domains of their predicted proteins, PpyrOMLV1 & PpyrOMLV2
2539 pairwise identity of ortholog gene products range between 21.4 % (HA) to 49.8 % (PB1),
2540 suggesting although a common evolutionary history, a strong divergence indicating separated
2541 species, borderline to be considered even members of different virus genera (Fig. S5.4.2). The
2542 conserved 3' sequence termini of the viral genomic RNAs are (vgRNA ssRNA(-) 3'-end) 5'-
2543 GUUCUUACU-3' for PpyrOMLV1, and and 5'-(G/A)U(U/G)(G/U/C)(A/C/U)UACU-3'. for
2544 PpyrOMLV2. The 5' termini of the vgRNAs are partially complementary to the 3' termini,
2545 supporting a panhandle structure and a hook like structure of the 5' end by a terminal short stem
2546 loop. PpyrOMLV1 & PpyrOMLV2 genome segments present an overall high identity in their
2547 respective RNA segments ends (Figure S5.4.1 F). These primary and secondary sequence
2548 cues are associated to polymerase binding and promotion of both replication and transcription.
2549 In influenza viruses, and probably every OMV, the first 10 nucleotides of the 3' end form a stem-
2550 loop or 'hook' with four base-pairs (two canonical base-pairs flanked by an A-A base-pair). This
2551 compact RNA structure conforms the promoter, which activates polymerase initiation of RNA

synthesis[268]. The presence of eventual orthologs of OMV additional genome segments and proteins, such as Neuraminidase (NA), Matrix (M) and Non-structural proteins (NS1, NS2) was assessed retrieving no results by TBLASTN relaxed searches, nor with *in silico* approaches involving co-expression, expression levels, or conserved terminis. Given that the presence of those additional segments varies among diverse OMV genera, and that 35 related tentative new virus species identified in TSA did not present any additional segments, we believe that these lineages of viruses are conformed by five genome segments. Further experiments based on specific virus particle purification and target sequencing could corroborate our results. Based on sequence homology to best BLASTP hits, amino acid sequence alignments, predicted proteins and domains, and phylogenetic comparisons to reported species we assigned PpyrOMLV1 & PpyrOMLV2 to the OMV virus family. These are the first viruses that have been associated with the *Lampyridae* beetle family, which includes over 2,000 species. The OMV virus members share diverse structural, functional and biological characters that define and restrict the family. OMV virions are 80–120 nm in diameter, of spherical or pleomorphic morphology. The virion envelope is derived from the host cell membrane, incorporating virus glycoproteins and eventually non-glycosylated proteins (one or two in number). Typical virion surface glycoprotein projections are 10–14 nm in length and 4–6 nm in diameter. The virus genome is multisegmented, has a helical-like symmetry, consisting of different size ribonucleoproteins (RNP), 50–150 nm in length. Influenza RNPs can perform either replication or transcription of the same template. Virions of each genus contain different numbers of linear ssRNA (-) genome segments[269]. Influenza A virus (FLUAV), influenza B virus (FLUBV) and infectious salmon anemia virus (ISAV) are conformed of eight segments. Influenza C virus (FLUCV), Influenza D virus (FLUDV) and Dhori virus (DHOV) have seven segments. Thogoto virus (THOV) and Quaranfil virus (QUAV) have six segments. Johnston Atoll virus (JAV) genome is still incomplete, and only two segments have been described. Segment lengths range from 736 to 2396 nt. Genome size ranges from 10.0 to 14.6 Kbp[269]. As described previously, every OMV RNA segment possess conserved and partially complementary 5'- and 3'-end sequences with promoter activity[270]. OMV structural proteins are tentatively common to all genera involving the three polypeptides subunits that form the viral RdRP (PA, PB1, PB2)[271]; a nucleoprotein (NP), which binds with each genome ssRNA segment to form RNPs; and the hemagglutinin protein (HA, HE or GP), which is a type I membrane integral glycoprotein involved in virus attachment, envelope fusion and neutralization. In addition, a non-glycosylated matrix protein (M) is present in most species. There are some species-specific divergence in some structural OMVs proteins. For instance, HA of FLUAV is acylated at the membrane-spanning region and has widespread N-linked glycans[272]. The HA protein of FLUCV, besides its hemagglutinating and envelope fusion function, has an esterase activity that induces host receptor enzymatic destruction[269]. In contrast, the HA of THOV is divergent to influenza virus HA proteins, and presents high sequence similarity to a baculovirus surface glycoprotein[273]. The HA protein has been described to have an important role in determining OMV host specificity. For instance, human infecting Influenza viruses selectively bind to glycolipids that contain terminal sialyl-galactosyl residues with a 2-6 linkage, in contrast, avian influenza viruses

2593 bind to sialyl-galactosyl residues with a 2-3 linkage[269]. Furthermore, FLUAV and FLUBV
2594 share a neuraminidase protein (NA), which is an integral, type II envelope glycoprotein
2595 containing sialidase activity. Some OMVs possess additional small integral membrane proteins
2596 (M2, NB, BM2, or CM2) that may be glycosylated and have diverse functions. As an illustration,
2597 M2 and BM2 function during un-coating and fusion by equilibrating the intraluminal pH of the
2598 trans-Golgi apparatus and the cytoplasm. In addition, some viruses encode two nonstructural
2599 proteins (NS1, NS2)[269]. OMV share replication properties, which have been studied mostly in
2600 Influenza viruses. It is important to note that gene reassortment has been described to occur
2601 during mixed OMV infections, involving viruses of the same genus, but not between viruses of
2602 different genera[274]. This is used also as a criteria for OMV genus demarcation. Influenza virus
2603 replication and transcription occurs in the cell nucleus and comprises the production of the three
2604 types of RNA species (i) genomic RNA (vRNA) which are found in virions; (ii) cRNA molecules
2605 which are complementary RNA in sequence and identical in length to vRNA; and also (iii) virus
2606 mRNA molecules which are 5' capped by cap snatching of host RNAs and 3' polyadenylated by
2607 polymerase stuttering on U rich stretches. These remarkable dynamic multifunction characters
2608 of OMV polymerases are associated with its complex tertiary structure, of this modular
2609 heterotrimeric replicase[275]. We explored in detail the putative polymerase subunits of the
2610 identified firefly viruses. The PB1 subunit catalyzes RNA synthesis in its internal active site
2611 opening, which is formed by the highly conserved polymerase motifs I-III. Motifs I and III (Fig.
2612 S5.4.1.H) present three conserved aspartates (PpyrOMLV1: Asp 346, Asp 491 and Asp 492;
2613 PpyrOMLV2: Asp 348, Asp 495 and Asp 496) which coordinate and promote nucleophilic attack
2614 of the terminal 3' OH from the growing transcript on the alpha-phosphate of the inbound
2615 NTP[271]. Besides presenting, with high confidence, the putative functional domains associated
2616 with their potential replicase/transcriptase function, we assessed whether the potential spatial
2617 and functional architecture was conserved at least in part in FOML viruses. In this direction we
2618 employed the SWISS-MODEL automated protein structure homology-modelling server to
2619 generate a 3D structure of PpyrOMLV1 heterotrimeric polymerase. The SWISS server selected
2620 as best-fit template the trimeric structure of Influenza A virus polymerase, generating a structure
2621 for each polymerase subunit of PpyrOMLV1. The generated structure shared structural cues
2622 related to its multiple role of RNA nucleotide binding, endonuclease, cap binding, and
2623 nucleotidyl transferase (Fig. S5.4.1.G-H). The engendered subunit structures suggest a
2624 probable conservation of PpyrOMLV1 POL, that could allow the predicted functional enzymatic
2625 activity of this multiple gene product. The overall polymerase rendered structure presents a
2626 typical U shape with two upper protrusions corresponding to the PA endonuclease and the PB2
2627 cap-binding domain. The PB1 subunit appears to plug into the interior of the U and has the
2628 distinctive fold of related viral RNA polymerases with fingers, palm and thumb adjacent to a
2629 tentative central active site opening where RNA synthesis may occur[268,276]. OMV Pol activity
2630 is central in the virus cycle of OMVs, which have been extensively studied. The life cycle of
2631 OMVs starts with virus entry involving the HA by receptor-mediated endocytosis. For Influenza,
2632 sialic acid bound to glycoproteins or glycolipids function as receptor determinants of
2633 endocytosis. Fusion between viral and cell membranes occurs in endosomes. The infectivity

2634 and fusion of influenza is associated to the post-translational cleavage of the virion HA.
2635 Cleavability depends on the number of basic amino acids at the target cleavage site[269]. In
2636 thogotoviruses, no requirement for HA glycoprotein cleavage have been demonstrated[273].
2637 Integral membrane proteins migrate through the Golgi apparatus to localized regions of the
2638 plasma membrane. New virions form by budding, incorporating matrix proteins and viral RNPs.
2639 Viral RNPs are transported to the cell nucleus where the virion polymerase complex synthesizes
2640 mRNA species[277]. Another tentative function of the NP could be associated to the potential
2641 interference of the host immune response in the nucleus mediated by capsid proteins of some
2642 RNA virus, which could inhibit host transcription and thus liberate and direct it to viral RNA
2643 synthesis[278]. mRNA synthesis is primed by capped RNA fragments 10–13 nt in length that
2644 are generated by cap snatching from host nuclear RNAs which are sequestered after cap
2645 recognition by PB2 and incorporated to vRNA by PB1 and PA proteins which present viral
2646 endonuclease activity[279]. In contrast, thogotoviruses have capped viral mRNA without host-
2647 derived sequences at the 5' end. Virus mRNAs are polyadenylated at the 3' termini through
2648 iterative copying by the viral polymerase stuttering on a poly U track in the vRNA template.
2649 Some OMV mRNAs are spliced generating alternative gene products with defined functions.
2650 Protein synthesis of influenza viruses occurs in the cytoplasm. Partially complementary vRNA
2651 molecules act as templates for new viral RNA synthesis and are neither capped nor
2652 polyadenylated. These RNAs exist as RNPs in infected cells. Given the diverse hosts of OMV,
2653 biological properties of virus infection diverge between species. Influenzaviruses A infect
2654 humans and cause respiratory disease, and they have been found to infect a variety of bird
2655 species and some mammalian species. Interspecies transmission, though rare, is well
2656 documented. Influenza B virus infect humans and cause epidemics, and have been rarely found
2657 in seals. Influenzaviruses C cause limited outbreaks in humans and have been occasionally
2658 found on dogs. Influenza spreads globaly in a yearly outbreak, resulting in about three to five
2659 million cases of severe illness and about 250,000 to 500,000 human deaths[280]. Influenzavirus
2660 D has been recently reported and accepted and infects cows and swine[281]. Natural
2661 transmission of influenzaviruses is by aerosol (human and non-aquatic hosts) or is water-borne
2662 (avians). In contrast, Thogoto and Dhori viruses which also infect humans, are transmitted by,
2663 and able to replicate in ticks. Thogoto virus was identified in *Rhipicephalus* sp. ticks collected
2664 from cattle in the Thogoto forest in Kenya, and Dhori virus was first isolated in India from
2665 *Hyalomma dromedarii*, a species of camel ticks[282,283]. Dhori virus infection in humans
2666 causes a febrile illness and encephalitis. Serological evidence suggests that cattle, camel,
2667 goats, and ducks might be also susceptible to this virus. Experimental hamster infection with
2668 THOV may be lethal. Unlike influenzaviruses, these viruses do not cause respiratory disease.
2669 The transmission of fish infecting isaviruses (ISAV) is via water, and virus infection induces the
2670 agglutination of erythrocytes of many fish species, but not avian or mammalian
2671 erythrocytes[284]. Quaranfil and Johnston Atoll are transmitted by ticks and infect avian
2672 species[285].

2673 We have limited biological data of the firefly detected viruses. Nevertheless, a significant
2674 consistency in the genomic landscape and predicted gene products of the detected viruses in

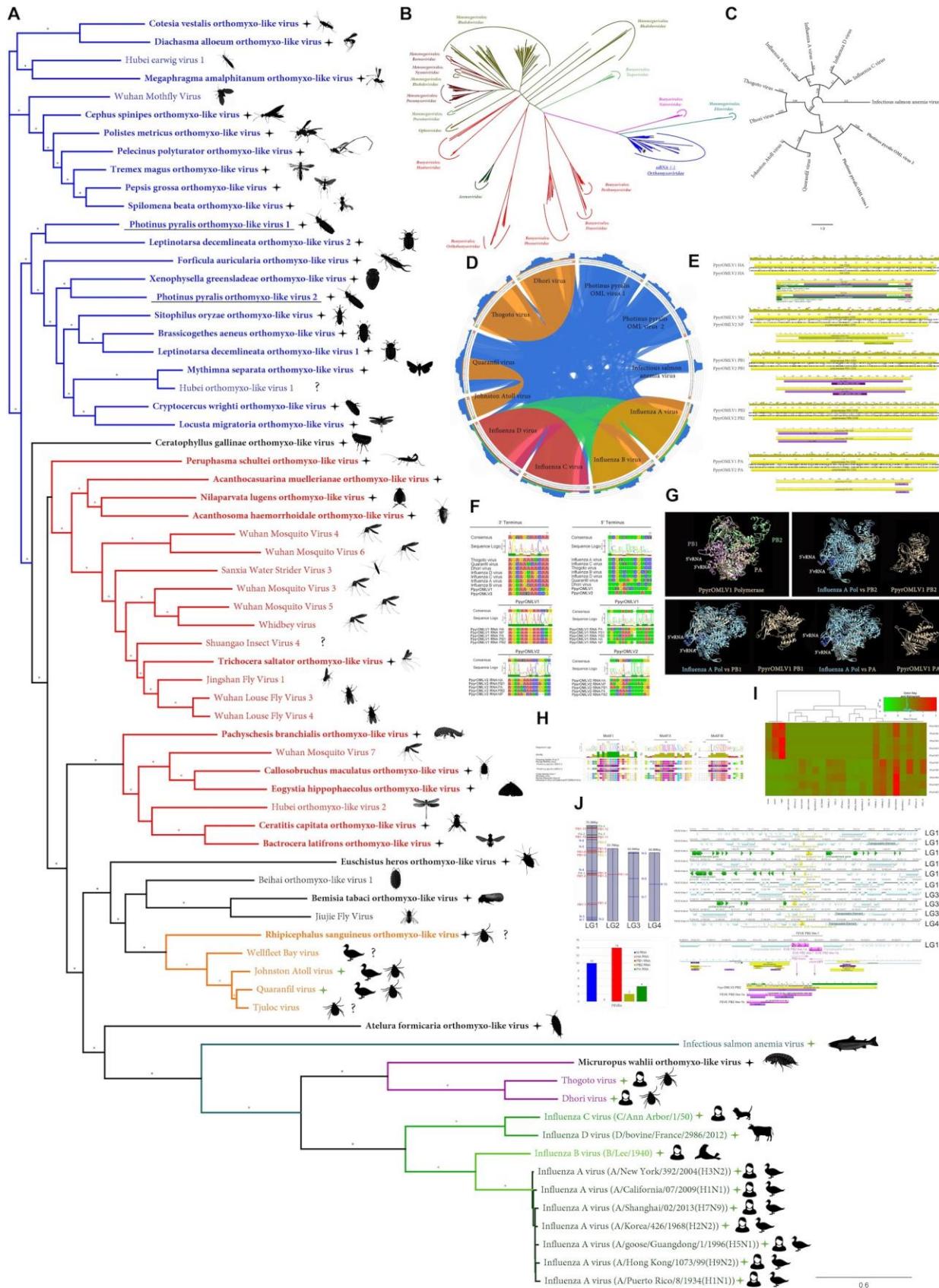
2675 comparison with accepted OMV species sufficed to suggest for PpyrOMLV1 and PpyrOMLV2 a
2676 tentative taxonomic assignment within the OMV family. Besides relying on the OMV structural
2677 and functional signatures determined by virus genome annotation, we explored the evolutionary
2678 clustering of the detected viruses by phylogenetic insights. We generated MAFFT alignments
2679 and phylogenetic trees of the predicted viral polymerase of firefly viruses and the corresponding
2680 replicases of all 493 proposed and accepted species of ssRNA(-) virus. The generated trees
2681 consistently clustered the diverse sequences to their corresponding taxonomical niche, at the
2682 level of genera. Interestingly, PpyrOMLV1 and PpyrOMLV2 replicases were placed
2683 unequivocally within the OMV family (Fig. S5.4.1.B). When the genetic distances of firefly
2684 viruses proteins and ICTV accepted OMV species were computed, a strong similarity was
2685 evident (Fig. S5.4.1.B-D). Overall similarity levels of PpyrOMLV polymerase subunits ranged
2686 between 11.03 % to as high as 37.30 % among recognized species, while for the more
2687 divergent accepted OMV (ISAV - *Isavirus* genus) these levels ranged only from 8.54 % to
2688 20.74 %, illustrating that PpyrOMLV are within the OMV by genetic standards. Phylogenetic
2689 trees based on aa alignments of structural gene products of recognized species and PpyrOMLV
2690 supported this assignment, placing ISAV and issavirus as the most distant species and genus
2691 within the family, and clustering PpyrOMLV1 and PpyrOMLV2 in a distinctive lineage within
2692 OMV, more closely related to the *Quaranjavirus* and *Thogotovirus* genera than the *Influenza A*-
2693 *D* or *Isavirus* genera (Fig. S5.4.2). Furthermore, it appears that virus genomic sequence data,
2694 while it has been paramount to separate species, in the case of genera, there are some
2695 contrasting data that should be taken into consideration. For instance, DHOV and THOV are
2696 both members of the *Thogotovirus* genus, sharing a 61.9 % and a 34.9 % identity at PB1 and
2697 PB2, respectively. However, FLUCV and FLUDV are assigned members of two different genus,
2698 *Influenzavirus C* and *Influenzavirus D*, while sharing a higher 72.2 % and a 52.2 % pairwise
2699 identity at PB1 and PB2, respectively (Fig. S5.4.2). In addition, FLUAV and FLUBV, assigned
2700 members of two different genus, *Influenzavirus A* and *Influenzavirus D* present a comparable
2701 identity to that of DHOV and THOV thogotoviruses, sharing a 61 % and a 37.9 % identity at PB1
2702 and PB2, respectively. It is worth noting that similarity thresholds and phylogenetic clustering
2703 based in genomic data have been used differently to demarcate OMV genera, hence there is a
2704 need to eventually re-evaluate a series of consensus values, which in addition to biological data,
2705 would be useful to redefine the OMV family. Perhaps, these criteria discrepancies are more
2706 related to a historical evolution of the OMV taxonomy than to pure biological or genetic
2707 standards. In contrast to FLUDV, JOV and QUAU, the other virus members of OMV have been
2708 described, proposed and assigned at least 34 years ago.

2709 The potential prevalence, tissue/organ tropism, geographic dispersion and lifestyle of
2710 PpyrOMLV1 & 2 were assessed by the generation and analyses of 29 specific RNA-Seq
2711 libraries of *P. pyralis* (refer to Specimens/libraries Table). As RNA was isolated from
2712 independent *P. pyralis* individuals of diverse origin, wild caught or lab reared, the fact that we
2713 found at least one of the PpyrOMLV present in 82 % of the libraries reflects a widespread
2714 presence and potentially a high prevalence of these viruses in *P. pyralis* (Fig. S5.4.1J, Table
2715 S5.4.5,S5.4.6). Wild caught individuals were collected in period spanning six years, and

2716 locations separated as much as 900 miles (New Jersey – Georgia, USA). Interestingly
2717 PpyrOMLV1 & 2 were found in individuals of both location, and the corresponding assembled
2718 isolate virus sequences presented negligible differences, with an inter-individual variability
2719 equivalent to that of isolates (0.012%). A similar result was observed for virus sequences
2720 identified in RNA libraries generated from samples collected in different years. We were not able
2721 to identified fixed mutations associated to geographical or chronological cues. Further
2722 experiments should explore the mutational landscape of PpyrOMLV1 & 2, which appears to be
2723 significantly lower than of Influenzaviruses, specifically *Influenza A virus*, which are
2724 characterized by high mutational rate (ca. 1 mutation per genome replication) associated to the
2725 absence of RNA proofreading enzymes [286]. In addition we evaluated the presence of
2726 PpyrOMLV1 & 2 on diverse tissues and organs of *P. pyralis*. Overall virus RNA levels were
2727 generally low, with an average of 9.47 FPKM on positive samples. However, PpyrOMLV1 levels
2728 appear to be consistently higher than PpyrOMLV2, with an average of 20.50 FPKM for
2729 PpyrOMLV1 versus 4.22 FPKM for PpyrOMLV2 on positive samples. When the expression
2730 levels are scrutinized by genome segment, HA and NP encoding segments appear to be, for
2731 both viruses, at higher levels, which would be in agreement with other OMV such as
2732 Influenzaviruses, in which HA and NP proteins are the most expressed proteins, and thus viral
2733 mRNAs are consistently more expressed [269]. Nevertheless, these preliminary findings related
2734 to expression levels should be taken cautiously, given the small sample size. Perhaps the more
2735 remarkable allusion derived from the analyses of virus presence is related to tissue and organ
2736 deduced virus tropism. Strikingly, we found virus transcripts in samples exclusively obtained
2737 from light organs, complete heads, male or female thorax, female spermatheca, female
2738 spermatophore digesting glands and bursa, abdominal fat bodies, male reproductive spiral
2739 gland, and other male reproductive accessory glands (Table S5.4.5, S5.4.6), indicating a
2740 widespread tissue/organ tropism of PpyrOMLV1 & 2. This tentatively pervasive tropism of
2741 PpyrOMLV1 & 2 emerges as a differentiation character of these viruses and accepted OMV. For
2742 instance, influenza viruses present a epithelial cell-specific tropism, restricted typically to the
2743 nose, throat, and lungs of mammals, and intestines of birds. Tropism has consequences on host
2744 restriction. Human influenza viruses mainly infect ciliated cells, because attachment of all
2745 *influenza A virus* strains to cells requires sialic acids. Differential expression of sialic acid
2746 residues in diverse tissues may prevent cross-species or zoonotic transmission events of avian
2747 influenza strains to man[287]. Tropism has also influence in disease associated effects of OMV.
2748 Some *influenza A virus* strains are more present in tracheal and bronchial tissue which is
2749 associated with the primary lesion of tracheobronchitis observed in typical epidemic influenza.
2750 Other *influenza A virus* strains are more prevalent in type II pneumocytes and alveolar
2751 macrophages in the lower respiratory tract, which is correlated to diffuse alveolar damage with
2752 avian influenza[288]. The presence of PpyrOMLV1 & 2 virus RNA in reproductive glands raises
2753 some potential of the involvement of sex in terms of prospective horizontal transmission. Given
2754 that most libraries corresponded to 3-6 pooled individuals samples of specific organs/tissue,
2755 direct comparisons of virus RNA levels were not always possible. However, this valuable data
2756 gives important insights into the widespread potential presence of the viruses in every analyzed

organ/tissue. Importantly, RNA levels of the putative virus segments shared co-expression levels and a systematic pattern of presence/absence, supporting the suggested multipartite nature of the viruses. We observed the presence of virus RNA of both PpyrOMLV1 & 2 in eight of the RNA-Seq libraries, thus mixed infections appear to be common. Interestingly, we did not observe in any of the 24 virus positive samples evidence of reassortment. Reassortment is a common event in OMV, a process by which influenza viruses swap gene segments. Genetic exchange is possible due to the segmented nature of the OMV viral genome and may occur during mixed infections. Reassortment generates viral diversity and has been associated to host gain of Influenzavirus[289]. Reassorted Influenzavirus have been reported to occasionally cross the species barrier, into birds and some mammalian species like swine and eventually humans. These infections are usually dead ends, but sporadically, a stable lineage becomes established and may spread in an animal population[274]. Besides its evolutionary role, reassortment has been used as a criterion for species/genus demarcation, thus the lack of observed gene swap in our data supports the phylogenetic and sequence similarity insights that indicates species separation of PpyrOMLV1 & 2.

In light of the presence of virus RNA in reproductive glands, we further explored the potential life style of PpyrOMLV1 & 2 related to eventual vertical transmission. Vertical transmission is extremely exceptional for OMV, and has only been conclusively described for the *Infectious salmon anemia virus (Isavirus)* [290]. In this direction, we were able to generate a strand-specific RNA-Seq library of one *P. pyralis* adult female PpyrOMLV1 virus positive (parent), another library from seven eggs of this female at ~13 days post fertilization, and lastly an RNA-Seq library of four 1st instar larvae (offspring). When we analyzed the resulting RNA reads, we found as expected virus RNA transcripts of every genome segment of PpyrOMLV1 in the adult female library. Remarkably, we also found PpyrOMLV1 sequence reads of every genome segment of PpyrOMLV1 in both the eggs and larvae samples. Moreover, virus RNA levels fluctuated among the different developmental stages of the samples. The average RNA levels of the adult female were 41.10 FPKM, in contrast, the fertilized eggs sample had higher levels of virus related RNA, averaging at 61.61 FPKM and peaking at the genome segment encoding NP (104.49 FPKM). Interestingly, virus RNA levels appear to drop in 1st instar larvae, in the sequenced library average virus RNA levels were of 10.42 FPKM. Future experiments should focus on PpyrOMLV1 & 2 virus titers at extended developmental stages to complement these preliminary results. However, it is interesting to note that the tissue specific library corresponding to female spermatheca, where male sperm are stored prior to fertilization, presented relatively high levels of both PpyrOMLV1 & 2 virus RNAs, suggesting that perhaps during early reproductive process and during egg development virus RNAs tend to raise. This tentatively differential and variable virus RNA titers observed during development could be associated to an unknown mechanism of modulation of latent antiviral response that could be repressed in specific life cycle stages. Further studies may validate these results and unravel a mechanistic explanation of this phenomenon. Nevertheless, besides the preliminary developmental data, the consistent presence of PpyrOMLV1 in lab-reared, isolated offspring of

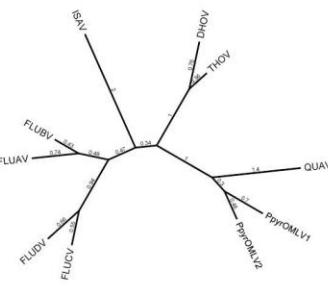

2797 an infected *P. pyralis* female is robust evidence demonstrating mother-to-offspring vertical
2798 transmission for this newly identified OMV.

2799 One of many questions that remains elusive here is whether PpyrOMLV1 & 2 are
2800 associated with any potential alteration of phenotype of the infected host. We failed to unveil
2801 any specific effect of the presence of PpyrOMLV1 & 2 on fireflies. It is worth noting that subtle
2802 alterations or symptoms would be difficult to pinpoint in these insects. Future studies should
2803 enquire whether PpyrOMLV1 & 2 may have any influence in biological attributes of fireflies such
2804 as fecundity, life span or life cycle. Nevertheless, we observed in our data some hints that could
2805 be indicative of a chronic state status, cryptic or latent infection of firefly individuals: (i) virus
2806 positive individuals presented in general relatively low virus RNA levels. (ii) virus RNA was
2807 found in every assessed tissue/organ. (iii) vertical transmission of the identified viruses. The first
2808 hint is hardly conclusive, it is difficult to define what a relatively low RNA level is, and high virus
2809 RNA loads are not directly associated with disease on reported OMV. The correlation of high
2810 prevalence, prolonged host infection, and vertical transmission observed in several new
2811 mosquito viruses has resulted in their classification as “commensal” microbes. A shared
2812 evolutionary history of viruses and host, based in strategies of immune evasion of the viruses
2813 and counter antiviral strategies of the host could occasionally result in a modulation of viral
2814 loads and a chronic but latent state of virus infection[291].

2815

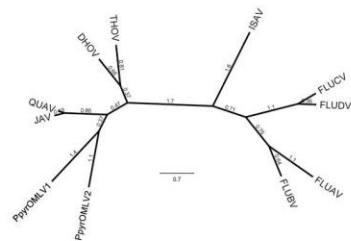
2816

2817

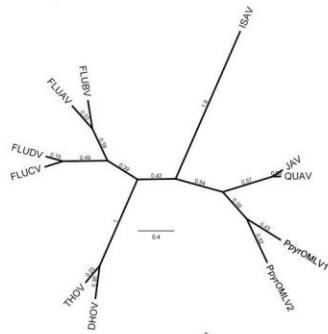


2819 **Figure S5.4.1:** *Photinus pyralis* viruses and endogenous viral-like elements.

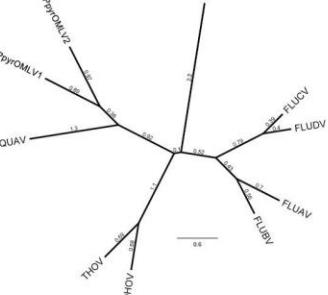
2820 **(A)** Phylogenetic tree based in MAFFT alignments of predicted replicases of *Orthomyxoviridae*
2821 (OMV) ICTV accepted viruses (green stars), new *Photinus pyralis* viruses (underlined) and
2822 tentative OMV-like virus species (black stars). ICTV recognized OMV genera: *Quaranjavirus*
2823 (orange), *Thogotovirus* (purple), *Issavirus* (turquoise), *Influenzavirus A-D* (green). Silhouettes
2824 correspond to host species. Asterisk denote FastTree consensus support >0.5. Question marks
2825 depict viruses with unidentified or unconfirmed host. **(B)** Phylogenetic tree of OMV proposed
2826 and recognized species in the context of all ssRNA (-) virus species, based on MAFFT
2827 alignments of refseq replicases. *Photinus pyralis* viruses are portrayed by black stars. **(C)**
2828 Phylogenetic tree of ICTV recognized OMV species and PpyrOLMV1 & 2. Numbers indicate
2829 FastTree consensus support. **(D)** Genetic distances of concatenated gene products of OMV
2830 depicted as circoletto diagrams. Proteins are oriented clockwise in N-HA-PB1-PB2-PA order
2831 when available. Sequence similarity is expressed as ribbons ranging from blue (low) to red
2832 (high). **(E)** Genomic architecture, predicted gene products and structural and functional domains
2833 of PpyrOLMV1 & 2. **(F)** Virus genomic noncoding termini analyses of PpyrOLMV1 & 2 in the
2834 context of ICTV OMV. The 3' and 5' end, A and U rich respectively, partially complementary
2835 sequences are associated to tentative panhandle polymerase binding and replication activity,
2836 typical of OMV. **(G)** 3D renders of the heterotrimeric polymerase of PpyrOLMV1 based on
2837 Swiss-Expasy generated models using as template the Influenza A virus polymerase structure.
2838 Structure comparisons were made with the MatchAlign tool of the Chimera suite, and solved in
2839 PyMOL. **(H)** Conserved functional motifs of PpyrOLMV1 & 2 PB1 and related viruses. Motif I-III
2840 are essential for replicate activity of viral polymerase. **(I)** Dynamic and prevalent virus derived
2841 RNA levels of the corresponding PpyrOLMV1 & 2 genome segments, determined in 24 RNA
2842 libraries of diverse individuals/developmental stages/tissues and geographic origins. RNA levels
2843 are expressed as normalized TPM, heatmaps were generated by Shinyheatmap. Values range
2844 from low (green) to high (red). **(J)** Firefly EVEs (FEVEs) identified in the *P. pyralis* genome
2845 assembly mapped to the corresponding pseudo-molecules. A 15 Kbp region flanking
2846 nucleoprotein like FEVES are depicted, enriched in transposable elements. Representative
2847 products of a putative PB2 FEVE are aligned to the corresponding protein of PpyrOLMV 2.


	DHOV	THOV	FLUAV	FLUBV	FLUCV	FLUDV	PPOMLV1	PPOMLV2	QUAV	ISAV
DHOV	41.36%	41.35%	11.46%	13.17%	10.44%	9.86%	12.08%	12.02%	10.65%	9.65%
THOV	41.36%	41.35%	12.20%	15.59%	11.05%	11.43%	12.84%	13.73%	11.60%	12.12%
FLUAV	11.46%	12.20%	36.59%	17.42%	17.47%	9.73%	11.66%	8.68%	12.20%	
FLUBV	13.17%	15.59%	36.29%	18.57%	17.34%	13.58%	14.39%	10.00%	13.39%	
FLUCV	10.44%	11.05%	18.29%	18.57%	18.57%	10.59%	11.78%	8.41%	10.30%	
FLUDV	9.86%	11.46%	17.47%	17.54%	18.47%	11.93%	10.78%	9.69%	11.51%	
PPOMLV1	12.08%	12.02%	9.73%	13.58%	10.39%	11.93%	13.00%	19.78%	10.51%	
PPOMLV2	12.02%	13.73%	11.66%	14.39%	11.42%	10.78%	18.00%	22.96%	11.63%	
QUAV	10.65%	11.60%	8.68%	10.00%	8.23%	9.59%	19.78%	22.96%	8.54%	
ISAV	9.65%	12.12%	12.20%	13.39%	10.51%	11.51%	11.63%	8.54%	8.54%	

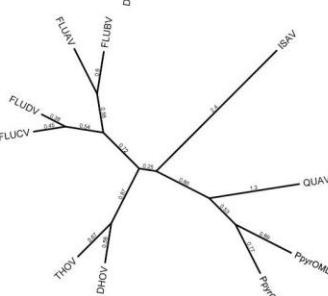
Nucleoprotein


	DHOV	THOV	JAV	QUAV	PPOMLV2	PPOMLV1	ISAV	FLUAV	FLUBV	FLUCV	FLUDV
DHOV	33.99%	33.99%	18.39%	20.80%	18.68%	14.26%	5.89%	7.77%	8.12%	8.61%	7.67%
THOV	33.99%	33.99%	13.55%	21.15%	16.19%	14.37%	8.47%	9.07%	9.69%	9.69%	6.64%
JAV	18.39%	19.55%	73.55%	73.55%	18.32%	19.47%	4.21%	4.16%	5.82%	5.82%	5.82%
QUAV	20.80%	21.15%	73.55%	73.55%	20.11%	18.25%	5.41%	7.49%	7.59%	7.62%	6.94%
PPOMLV1	18.68%	16.18%	18.32%	20.11%	18.25%	18.25%	6.07%	6.67%	8.15%	7.48%	7.99%
PPOMLV2	14.26%	12.43%	19.74%	18.25%	18.25%	18.25%	5.77%	5.98%	8.68%	7.39%	6.44%
ISAV	5.89%	4.21%	4.16%	5.82%	5.82%	5.82%	8.24%	7.77%	7.77%	7.77%	7.77%
FLUAV	7.77%	8.47%	6.67%	5.82%	5.82%	5.82%	20.91%	20.62%	20.94%	21.31%	19.28%
FLUBV	8.12%	8.37%	5.84%	7.58%	8.15%	8.68%	8.24%	26.59%	13.46%	15.19%	
FLUCV	8.61%	6.99%	6.98%	7.92%	7.48%	7.39%	7.73%	11.37%	13.46%	52.78%	
FLUDV	7.67%	6.64%	6.30%	6.94%	7.99%	6.44%	7.34%	11.86%	15.19%	52.78%	

Hemagglutinin


	DHOV	THOV	JAV	QUAV	PPOMLV2	PPOMLV1	ISAV	FLUAV	FLUBV	FLUCV	FLUDV
DHOV	61.55%	61.55%	25.89%	24.48%	23.56%	23.95%	20.08%	21.00%	20.00%	20.51%	15.34%
THOV	61.55%	61.55%	25.13%	24.22%	24.12%	25.03%	20.18%	19.85%	19.42%	20.39%	16.73%
FLUAV	25.89%	25.13%	61.31%	38.86%	39.94%	39.94%	19.93%	20.49%	20.49%	20.39%	16.76%
FLUBV	24.48%	24.22%	61.91%	38.86%	39.94%	39.94%	20.75%	19.73%	22.37%	23.61%	17.52%
FLUCV	23.56%	24.12%	38.86%	40.16%	40.16%	72.24%	20.91%	20.62%	20.94%	21.31%	19.28%
FLUDV	23.95%	25.03%	39.84%	40.82%	72.24%	72.24%	20.81%	21.61%	20.22%	20.19%	20.74%
PPOMLV1	20.08%	20.18%	20.86%	20.71%	20.62%	20.81%	49.30%	49.30%	36.56%	37.39%	16.67%
PPOMLV2	20.08%	19.59%	47.31%	47.31%	23.62%	23.62%	12.65%	12.59%	13.81%	8.98%	
JAV	20.08%	19.42%	21.74%	22.37%	20.94%	20.22%	36.96%	35.47%	35.47%	29.12%	17.37%
QUAV	20.51%	20.30%	21.99%	23.61%	21.31%	20.10%	37.30%	36.21%	82.50%	82.50%	15.10%
ISAV	15.34%	16.73%	17.02%	17.52%	19.28%	20.74%	16.63%	17.27%	18.18%	18.18%	15.18%

PB1 Polymerase


	DHOV	THOV	JAV	QUAV	PPOMLV2	PPOMLV1	ISAV	FLUAV	FLUBV	FLUCV	FLUDV
DHOV	39.81%	39.91%	25.89%	14.04%	12.84%	14.21%	12.72%	11.33%	11.91%	9.98%	
THOV	39.81%	39.91%	25.13%	13.86%	12.61%	14.34%	11.99%	12.47%	11.91%	9.48%	
FLUAV	12.69%	12.55%	37.91%	21.46%	22.99%	22.99%	12.90%	12.46%	14.34%	10.36%	
FLUBV	14.04%	13.86%	37.91%	21.46%	22.99%	22.99%	11.69%	13.56%	14.36%	10.39%	
FLUCV	12.84%	12.61%	21.46%	23.44%	23.44%	72.24%	12.65%	12.59%	13.81%	9.94%	
FLUDV	14.21%	14.34%	22.99%	23.82%	52.20%	12.17%	11.38%	12.17%	12.17%	9.94%	
PPOMLV1	12.72%	11.99%	12.86%	11.69%	12.65%	12.17%	27.36%	18.76%	18.76%	8.99%	
PPOMLV2	11.33%	12.41%	12.92%	13.56%	12.99%	11.38%	27.36%	18.76%	20.39%	8.54%	
QUAV	11.91%	11.91%	14.49%	14.95%	13.51%	12.74%	18.76%	20.39%	18.03%	8.54%	
ISAV	9.98%	9.48%	10.05%	10.39%	8.98%	9.94%	8.99%	8.54%	8.54%	8.54%	

PB2 Polymerase

	DHOV	THOV	JAV	QUAV	PPOMLV1	PPOMLV2	ISAV	FLUAV	FLUBV	FLUCV	FLUDV
DHOV	39.59%	39.59%	15.74%	16.32%	16.11%	16.33%	12.22%	12.52%	11.72%	10.18%	
THOV	39.59%	39.59%	14.95%	14.52%	15.09%	15.50%	10.62%	11.70%	10.47%	10.01%	
FLUAV	15.24%	14.95%	35.37%	22.85%	23.45%	24.76%	11.39%	13.06%	10.12%	10.90%	
FLUBV	16.32%	14.95%	35.37%	22.85%	23.45%	24.76%	11.39%	12.61%	9.93%	10.60%	
FLUCV	16.11%	15.99%	22.83%	23.45%	50.47%	11.84%	10.44%	10.50%	9.02%	8.84%	
FLUDV	16.23%	15.99%	22.76%	24.87%	50.42%	11.44%	30.22%	18.03%	18.03%	9.17%	
PPOMLV1	12.22%	10.62%	11.98%	11.03%	11.84%	11.44%	10.44%	18.81%	18.81%	7.90%	
PPOMLV2	12.52%	11.70%	13.68%	12.65%	11.10%	10.60%	30.22%	18.03%	18.03%	10.50%	
QUAV	11.72%	10.47%	10.12%	9.99%	9.02%	10.41%	18.81%	18.03%	18.03%	9.17%	
ISAV	10.18%	10.01%	10.49%	10.60%	8.84%	9.50%	7.90%	10.50%	10.50%	8.54%	

PA Polymerase

2848

2849 **Figure S5.4.2:** Pairwise identity of OMLV viral proteins amongst identified OMLV viruses.
2850

2851 **Table S5.4.3:** Best hits from BLASTP of PpyrOMLV proteins against the NCBI database

Genome Segment	Size (nt)	Gene product (aa)	Best hit	Best hit Taxonomy	Query cover	E value	Identity
PpyrOMLV1-PB1	251 0	801 PB1	Wuhan Mothfly Virus	Orthomyxoviridae	83%	0.0	51%
PpyrOMLV1-PA	234 6	754 PA	Hubei earwig virus 1	Orthomyxoviridae	98%	4.00E-137	35%
PpyrOMLV1-HA	166 7	526 HA	Tjuloc virus	Orthomyxoviridae	91%	9.00E-25	25%
PpyrOMLV1-PB2	251 7	804 PB2	Hubei earwig virus 1	Orthomyxoviridae	91%	3.00E-118	31%
PpyrOMLV1-N	183 5	562 N	Hubei earwig virus 1	Orthomyxoviridae	93%	8.00E-74	30%
PpyrOMLV2-PB1	249 5	802 PB1	Hubei orthomyxo-like virus 1	Orthomyxoviridae	93%	0.0	48%
PpyrOMLV2-PA	234 9	762 PA	Hubei earwig virus 1	Orthomyxoviridae	98%	1.00E-107	31%
PpyrOMLV2-HA	166 8	525 HA	Wellfleet Bay virus	Orthomyxoviridae	82%	3.00E-40	26%
PpyrOMLV2-PB2	250 6	801 PB2	Hubei earwig virus 1	Orthomyxoviridae	96%	3.00E-86	27%
PpyrOMLV2-N	173 8	528 N	Hubei earwig virus 1	Orthomyxoviridae	95%	6.00E-82	32%

2852

2853

2854

2855 **Table S5.4.4:** InterProScan domain annotation of PpyrOMLV proteins

2856

Genome product	Annotation	Start	End	Length	Database	Id	InterPro ID	InterPro name
PpyrOMLV1-PB1	Flu_PB1	48	752	705	PFAM	PF00602	IPR001407	RNA_pol_PB1_influenza
	RDRP_SSRNA	330	529	200				RNA-dir_pol_NSviruses
PpyrOMLV2-PB1	Flu_PB1	54	766	713	PFAM	PF00602	IPR001407	RNA_pol_PB1_influenza
	RDRP_SSRNA	337	539	203				RNA-dir_pol_NSviruses
PpyrOMLV1-PB2	Flu_PB2	13	421	409	PFAM	PF00604	IPR001591	RNA_pol_PB2_orthomyxovir
PpyrOMLV2-PB2	Flu_PB2	13	415	403	PFAM	PF00604	IPR001591	RNA_pol_PB2_orthomyxovir
PpyrOMLV1-HA	SignalP-noTM	1	19	19	SIGNALP_EUK	SignalP-noTM		Unintegrated
	Baculo_gp64	108	432	325				Baculovirus_Gp64
PpyrOMLV2-HA	SignalP-noTM	1	21	21	SIGNALP_EUK	SignalP-noTM		Unintegrated
	Baculo_gp64	66	426	361				Baculovirus_Gp64
PpyrOMLV1-PA	Flu_PA	663	736	74	PFAM	PF00603	IPR001009	RNA-dir_pol_influenzavirus
PpyrOMLV2-PA	Flu_PA	667	740	74	PFAM	PF00603	IPR001009	RNA-dir_pol_influenzavirus
PpyrOMLV1-PB1	flu NP-like	94	459	366	SUPERFAMILY	SSF161003		Unintegrated
PpyrOMLV2-PB1	flu NP-like	363	483	121	SUPERFAMILY	SSF161003		Unintegrated

2857

2858

2859 **Table S5.4.5: FPKM of reads mapped to PpyrOMLV genome segments from *P. pyralis***
2860 **RNA-Seq datasets**

	SRR 3883773	SRR 3883772	SRR 3883758	SRR 3883771	SRR 3883770	SRR 3883769	SRR 3883768	SRR 3883767	SRR 3883765	SRR 3883764	SRR 3883763	SRR 3883762
Ppyr OMLV 1 HA	11	541	2	160	0	4	881	2	0	2	199	2848
Ppyr OMLV 1 NP	0	321	0	141	0	0	523	0	0	0	120	1460
Ppyr OMLV 1 PA	3	256	0	95	0	0	306	1	0	5	100	660
Ppyr OMLV 1 PB1	2	364	2	208	0	4	820	0	0	0	669	1464
Ppyr OMLV 1 PB2	5	194	0	152	2	0	319	2	0	0	106	696
Ppyr OMLV 2 HA	12	444	266	124	54	247	549	38	22	10	232	710
Ppyr OMLV 2 NP	29	526	275	144	66	299	653	24	205	57	274	1067
Ppyr OMLV 2 PA	12	88	216	72	40	204	97	18	15	8	50	838
Ppyr OMLV 2 PB1	9	115	75	72	26	78	76	8	74	57	146	493
Ppyr OMLV 2 PB2	5	50	57	67	47	131	110	22	85	72	173	728

2861

	SRR 3883761	SRR 3883760	SRR 3883759	SRR 3883757	SRR 3883756	SRR 3883766	SRR 2103867	SRR 2103849	SRR 2103848	Ppyr_larvae	Ppyr_Female	Ppyr_eggs
Ppyr OMLV 1 HA	0	578	2	6	867	0	0	0	0	1664	7826	15586
Ppyr OMLV 1 NP	0	289	0	3	647	0	2	0	0	644	5216	6562
Ppyr OMLV 1 PA	0	124	0	2	626	0	0	0	0	1264	3692	9564
Ppyr OMLV 1 PB1	2	460	0	3	1607	2	0	0	0	2824	7144	15952

Pyr OMLV 1 PB2	0	188	0	2	848	0	0	0	0	648	2562	10568
Pyr OMLV 2 HA	13	236	23	546	337	286	43	190	415	0	0	0
Pyr OMLV 2 NP	32	248	22	501	482	196	51	127	432	0	0	0
Pyr OMLV 2 PA	14	93	6	234	222	131	75	54	97	0	0	0
Pyr OMLV 2 PB1	29	90	4	168	180	63	22	96	190	0	0	0
Pyr OMLV 2 PB2	49	90	6	256	230	94	22	57	96	0	0	0

2862

2863 **Table S5.4.6:** FPKM of reads mapped to PyrOMLV genome segments from *P. pyralis*
 2864 RNA-Seq datasets

	SRR 3883773	SRR 3883772	SRR 3883758	SRR 3883771	SRR 3883770	SRR 3883769	SRR 3883768	SRR 3883767	SRR 3883765	SRR 3883764	SRR 3883763	SRR 3883762
Pyr OMLV1 HA	19.10	0.32	0.05	6.46	0.00	0.11	30.69	0.05	0.00	0.08	4.07	69.54
Pyr OMLV1 NP	10.37	0.00	0.00	5.21	0.00	0.00	16.66	0.00	0.00	0.00	2.24	32.61
Pyr OMLV1 PA	6.46	0.06	0.00	2.74	0.00	0.00	7.62	0.02	0.00	0.13	1.46	11.52
Pyr OMLV1 PB1	8.53	0.04	0.04	5.57	0.00	0.07	18.95	0.00	0.00	0.00	9.07	23.72
Pyr OMLV1 PB2	4.50	0.10	0.00	4.03	0.05	0.00	7.29	0.03	0.00	0.00	1.42	11.16
Pyr OMLV2 HA	16.13	0.36	7.41	5.15	2.31	6.80	19.68	0.90	1.05	0.39	4.88	17.84
Pyr OMLV2 NP	17.36	0.79	6.96	5.44	2.57	7.48	21.27	0.52	8.87	2.01	5.24	24.36
Pyr OMLV2 PA	2.21	0.25	4.17	2.07	1.19	3.89	2.41	0.30	0.49	0.21	0.73	14.58
Pyr OMLV2 PB1	2.73	0.18	1.37	1.95	0.73	1.40	1.78	0.12	2.30	1.44	2.01	8.10

	Ppyr OMLV2 PB2	1.18	0.10	1.03	1.81	1.31	2.34	2.56	0.34	2.63	1.81	2.36	11.88
2865													
	SRR 3883761	SRR 3883760	SRR 3883759	SRR 3883757	SRR 3883756	SRR 3883766	SRR 2103867	SRR 2103849	SRR 2103848	Ppyr_ larvae	Ppyr_ Female	Ppyr_ eggs	
Ppyr OMLV 1 HA	0.00	18.29	0.08	0.21	23.44	0.00	0.00	0.00	0.00	15.89	74.25	104.49	
Ppyr OMLV 1 NP	0.00	8.37	0.00	0.09	16.00	0.00	0.04	0.00	0.00	5.62	45.27	40.24	
Ppyr OMLV 1 PA	0.00	2.81	0.00	0.05	12.10	0.00	0.00	0.00	0.00	8.63	25.05	45.85	
Ppyr OMLV 1 PB1	0.04	9.66	0.00	0.07	28.83	0.04	0.00	0.00	0.00	17.89	44.97	70.96	
Ppyr OMLV 1 PB2	0.00	3.91	0.00	0.05	15.05	0.00	0.00	0.00	0.00	4.06	15.96	46.51	
Ppyr OMLV 2 HA	0.43	7.68	0.95	19.30	9.38	9.74	1.02	4.94	8.95	0.00	0.00	0.00	
Ppyr OMLV 2 NP	0.97	7.34	0.82	16.09	12.19	6.07	1.10	3.00	8.47	0.00	0.00	0.00	
Ppyr OMLV 2 PA	0.32	2.10	0.17	5.73	4.28	3.09	1.23	0.97	1.45	0.00	0.00	0.00	
Ppyr OMLV 2 PB1	0.63	1.92	0.11	3.88	3.27	1.40	0.34	1.63	2.68	0.00	0.00	0.00	
Ppyr OMLV 2 PB2	1.06	1.90	0.16	5.88	4.16	2.08	0.34	0.96	1.35	0.00	0.00	0.00	

2866 **5.5 *P. pyralis* Endogenous virus-like Elements (EVEs)**

2867 To gain insights on the potential shared evolutionary history of *P. pyralis* and the IOMV
 2868 PpyrOMLV1 & 2, we examined our assembly of *P. pyralis* for putative signatures or
 2869 paleovirological traces[292–294] that would indicate ancestral integration of virus related
 2870 sequences into the firefly host. Remarkably, we found Endogenous virus-like Elements
 2871 (EVEs)[295], sharing significant sequence identity with most PpyrOMLV1 & 2 genome
 2872 segments, spread along four *P. pyralis* linkage-groups. Virus integration into host genomes is a
 2873 frequent event derived from reverse transcribing RNA viruses (*Retroviridae*). Retroviruses are

2874 the only animal viruses that depend on integration into the genome of the host cell as an
2875 obligate step in their replication strategy[296]. Viral infection of germ line cells may lead to viral
2876 gene fragments or genomes becoming integrated into host chromosomes and subsequently
2877 inherited as host genes.

2878 Animal genomes are paved by retrovirus insertions[297]. These insertions, which are
2879 eventually eliminated from the host gene pool within a few generations, and may, in some
2880 cases, increase in frequency, and ultimately reach fixation. This fixation in the host species can
2881 be mediated by drift or positive selection, depending on their selective value. On the other hand,
2882 genomic integration of non-retroviral viruses, such as PpyrOMLV1 & 2, is less common. Viruses
2883 with a life cycle characterized by no DNA stage, such as OMV, do not encode a reverse
2884 transcriptase or integrase, thus are not retro transcribed nor integrated into the host genome.
2885 However, exceptionally and recently, several non-retroviral sequences have been identified on
2886 animal genomes; these insertions have been usually associated with the transposable elements
2887 machinery of the host, which provided a means to genome integration[298,299]. Interestingly,
2888 when we screened our *P. pyralis* genome assembly Ppyr1.2 by BLASTX searches (E-value
2889 $<1e10^{-6}$) of PpyrOMLV1 & 2 genome segments, we identified several genome regions that could
2890 be defined as Firefly EVEs, which we termed FEVEs (Fig. S5.1 J; Table S5.5.1-5.5.5). We
2891 found 30 OMV related FEVEs, which were mostly found in linkage group one (LG1, 83 % of
2892 pinpointed FEVEs). The majority of the detected FEVEs shared sequence identity to the PB1
2893 encoding region of genome segment one of PpyrOMLV1 & 2 (ca. 46 % of FEVEs), followed by
2894 N encoding genome segment five (ca. 33 % of detected FEVEs). In addition we identified four
2895 FEVEs related to genome segment three (PA region) and two FEVEs associated to genome
2896 segment two (PB2 encoding region). We found no evidence of FEVEs related to the
2897 hemagglutinin coding genome segment four (HA). The detected *P. pyralis* FEVEs represented
2898 truncated fragments of virus like sequences, generally presenting frameshift mutations, early
2899 termination codons, lacking start codons, and sharing diverse mutations that altered the
2900 potential translation of eventual gene products. FEVEs shared sequence similarity to the coding
2901 sequence of specific genome segments of the cognate FOLMV. We generated best/longest
2902 translation products of the corresponding FEVEs, which presented an average length of ca.
2903 21.86 % of the corresponding PpyrOMLV genome segment encoding gene region (Table
2904 S5.5.1-5.5.5), and an average pairwise identity to the FOLMV virus protein of 55.08 %.
2905 Nevertheless, we were able to identify FEVEs that covered as high as ca. 60 % of the
2906 corresponding gene product, and in addition, although at specific short protein regions of the
2907 putative related FOLMV, similarity values were as high as 89 % pairwise identity. In addition,
2908 most of the detected FEVEs were flanked by Transposable Elements (TE) (Figure S5.4.1 J)
2909 suggesting that integration followed ectopic recombination between viral RNA and transposons.
2910 We found several conserved domains associated to reverse transcriptases and integrases
2911 adjacent to the corresponding FEVEs, which supports the hypothesis that these virus-like
2912 elements could be reminiscent of an OMV-like ancestral virus that could have been integrated
2913 into the genome by occasional sequestering of viral RNAs by the TE machinery. The finding of
2914 EVEs in the *P. pyralis* genome is not trivial, OMV EVEs are extremely rare. There has been only

2915 one report of OMV like sequences integrated into animal host genomes, which is the case of
2916 *Ixodes scapularis*, the putative vector of *Quaranfil virus* and *Johnston Atoll virus* corresponding
2917 to genus *Quaranjavirus* [295]. The fact that besides FEVEs, the only other OMV EVE
2918 corresponded to an Arthropod genome, given the ample studies of bird and mammal genomes,
2919 is suggestive that perhaps OMV EVEs are restricted to Arthropod hosts. Sequence similarity of
2920 FEVEs and firefly viruses suggest that these viral 'molecular fossils' could have been tightly
2921 associated to PpyrOLMV1 & 2 ancestors. Moreover, we found potential NP and PB1 EVEs in
2922 our genome of light emitting click beetle *Ignelater luminosus* (Elateridae), an evolutionary distant
2923 coleoptera. Sequence similarity levels of the corresponding EVEs averaging 52 %, could not be
2924 related with evolutionary distances of the hosts. We were not able to generate conclusive
2925 phylogenetic insights of the detected EVEs, given their partial, truncated and altered nature of
2926 the virus like sequences. In specific cases such as PB1-like EVEs there appears to be a trend
2927 suggesting an indirect relation between sequence identity and evolutionary status of the firefly
2928 host, but this preceding findings should be taken cautiously until more gathered data is
2929 available. The widespread presence of DNA sequences significantly similar to OMV in the
2930 explored firefly and related genomes are an interesting and intriguing result. At this stage is
2931 prudently not to venture to suggest more likely one of the two plausible explanations of the
2932 presence of these sequences in related beetles genomes: (i) Ancestral OMV like virus
2933 sequences were retrotranscribed and incorporated to an ancient beetle, followed by speciation
2934 and eventual stabilization or lost of EVEs in diverse species. (ii) Recent and recursive
2935 integration of OMV like virus sequences in fireflies and horizontal transmission between hosts.
2936 These propositions are not mutually exclusive, and may be indistinctly applied to specific cases.
2937 Future studies should enquire in this genome dark matter to better understand this interesting
2938 phenomenon. When more data is available EVE sequences may be combined with phylogenetic
2939 data of host species to expose eventual patterns of inter-class virus transmission. Either way,
2940 more studies are needed to explore these proposals, Katzourakis & Gifford[295] suggested that
2941 EVEs could reveal novel virus diversity and indicate the likely host range of virus clades.

2942 After identification and confirmation that firefly related EVEs are present in the host DNA
2943 genome, an obvious question follows: Are these EVEs just signatures of an evolutionary vestige
2944 of stochastic past infections; or could they be associated with an intrinsic function? It has been
2945 suggested that intensity and prevalence of infection may be a determinant of EVEs integration,
2946 and that exposure to environmental viruses may not[300]. Previous reports have suggested that
2947 EVEs may firstly function as restriction factors in their hosts by conferring resistance to infection
2948 by exogenous viruses, and the eventual counter-adaptation of virus populations of EVE positive
2949 hosts, could reduce the EVE restriction mechanism to a non-functional status[301]. Recently, in
2950 mosquitoes, a new mechanism of antiviral immunity against RNA viruses has been proposed,
2951 relying in the production and expression of EVEs DNA[302]. Alternatively, eventual EVE
2952 expression could lend to the production viral like truncated proteins that may compete in trans
2953 with virus proteins from infecting viruses and limit viral replication, transcription or virion
2954 assembly[303]. In addition, integration and eventual modulation in the host genome may be
2955 associated with an interaction between viral RNA and the mosquito RNAi machinery[304]. The

2956 piRNA pathway mediates through small RNAs and Piwi-Argonaut proteins the repression of TE
 2957 derived nucleic acids based on sequence complementarity, and has also been associated to
 2958 regulation of arbovirus viral related RNA, suggesting a functional connection among resistance
 2959 mechanisms against RNA viruses and TEs[299,305]. Furthermore, arbovirus EVEs have been
 2960 linked to the production of viral derived piRNAs and virus-specific siRNA, inducing host cell
 2961 immunity without limiting viral replication, supporting persistent and chronic infection[302].
 2962 Perhaps an EVE dependent mechanism of modulation of virus infection could have some level
 2963 of reminiscence to the paradigmatic CRISPR/Cas system which mediates bacteriophage
 2964 resistance in prokaryotic hosts.

2965 In sum, genomic studies are a great resource for the understanding of virus and host
 2966 evolution. Here we glimpsed an unexpected hidden evolutionary tale of firefly viruses and
 2967 related FEVEs. Animal genomes appear to reflect as a book, with many dispersed sentences,
 2968 an antique history of ancestral interaction with microbes, and EVEs functioning as virus related
 2969 bookmarks. The exponential growth of genomic data would help to further understand this
 2970 complex and intriguing interface, in order to advance not only in the apprehension of the
 2971 phylogenomic insights of the host, but also explore a multifaceted and dynamic virome that has
 2972 accompanied and even might have shifted the evolution of the host.

2973

2974 **Table S5.5.1: FEVE hits from BLASTX of PpyrOMLV PB1**

Scaffold	Start	End	Strand	id with PpOMLV	E value	Coverage	FEVE
Ppyr1.2_LG1	12787323	12786796	(-)	56.30%	8.22E-50	39.10%	EVE PB1 like-1
Ppyr1.2_LG1	13016647	13016120	(-)	56.30%	8.22E-50	39.10%	EVE PB1 like-2
Ppyr1.2_LG1	34701480	34701560	(+)	37.00%	2.88E-26	26.70%	EVE PB1 like-3
Ppyr1.2_LG1	34701562	34701774	(+)	37.60%	2.88E-26	30.20%	EVE PB1 like-3
Ppyr1.2_LG1	34701801	34702214	(+)	45.30%	2.88E-26	34.00%	EVE PB1 like-3
Ppyr1.2_LG1	35094645	35095094	(+)	28.10%	2.15E-10	9.50%	EVE PB1 like-4
Ppyr1.2_LG1	35110084	35109956	(-)	53.50%	2.37E-14	4.40%	EVE PB1 like-5
Ppyr1.2_LG1	35110214	35110107	(-)	75.00%	2.37E-14	14.70%	EVE PB1 like-5

Ppyr1.2_LG1	35110347	35110213	(-)	42.60%	2.37E-14	2.90%	EVE PB1 like-5
Ppyr1.2_LG1	50031464	50031330	(-)	64.40%	1.18E-09	10.00%	EVE PB1 like-6
Ppyr1.2_LG1	50031498	50031457	(-)	71.40%	1.18E-09	11.60%	EVE PB1 like-6
Ppyr1.2_LG1	50613130	50612921	(+)	49.40%	3.71E-11	4.90%	EVE PB1 like-7
Ppyr1.2_LG1	50673211	50673621	(+)	38.50%	1.03E-12	9.70%	EVE PB1 like-8
Ppyr1.2_LG1	51208464	51207634	(-)	77.20%	0	56.40%	EVE PB1 like-9
Ppyr1.2_LG1	51209399	51208467	(-)	68.50%	0	53.60%	EVE PB1 like-9
Ppyr1.2_LG1	51209556	51209398	(-)	71.70%	0	39.20%	EVE PB1 like-9
Ppyr1.2_LG1	61871682	61872158	(+)	31.10%	2.84E-23	36.00%	EVE PB1 like-10
Ppyr1.2_LG1	61872158	61872319	(+)	46.30%	2.84E-23	28.30%	EVE PB1 like-10
Ppyr1.2_LG1	61872355	61872456	(+)	41.20%	2.84E-23	27.00%	EVE PB1 like-10
Ppyr1.2_LG1	61930528	61930205	(-)	38.00%	3.58E-27	30.90%	EVE PB1 like-11
Ppyr1.2_LG1	61930686	61930504	(-)	63.60%	3.58E-27	35.90%	EVE PB1 like-11
Ppyr1.2_LG1	68038999	68039073	(+)	60.00%	7.73E-12	6.60%	EVE PB1 like-12
Ppyr1.2_LG1	68039072	68039314	(+)	40.70%	7.73E-12	5.00%	EVE PB1 like-12
Ppyr1.2_LG1	68039289	68039330	(+)	64.30%	7.73E-12	8.00%	EVE PB1 like-12
Ppyr1.2_LG1	68128820	68129008	(+)	51.50%	1.89E-06	4.90%	EVE PB1 like-13
Ppyr1.2_LG2	34545814	34545680	(-)	58.70%	3.84E-06	7.20%	EVE PB1 like-14

Ppyr1.2_LG2 34546169 34545801 (-) 52.80% 1.16E-31 34.10% EVE PB1 like-14

2975

2976 **Table S5.5.2:** FEVE hits from BLASTX of PpyrOMLV PB2

Scaffold	Start	End	Strand	id with PpOMLV	E value	Coverage	FEVE
Ppyr1.2_LG1	50313869	50314219	(+)	82.10%	6.91E-54	48.30%	EVE PB2 like-1
Ppyr1.2_LG1	50314216	50315016	(+)	82.40%	1.92E-142	57.90%	EVE PB2 like-1
Ppyr1.2_LG1	50315772	50315002	(-)	89.10%	9.97E-145	60.60%	EVE PB2 like-1
Ppyr1.2_LG1	58707403	58706942	(-)	52.60%	6.19E-42	35.80%	EVE PB2 like-2

2977

2978 **Table S5.5.3:** FEVE hits from BLASTX of PpyrOMLV PA

Scaffold	Start	End	Strand	id with PpOMLV	E value	Coverage	FEVE
Ppyr1.2_LG1	34977392	34977231	(-)	48.10%	7.73E-07	3.50%	EVE PA like-1
Ppyr1.2_LG1	62052289	62052023	(-)	28.70%	8.92E-11	7.10%	EVE PA like-2
Ppyr1.2_LG1	62117077	62116811	(-)	28.70%	1.22E-10	7.10%	EVE PA like-3
Ppyr1.2_LG1	62117493	62117101	(-)	26.30%	1.22E-10	8.60%	EVE PA like-3
Ppyr1.2_LG1	68122348	68122440	(+)	77.40%	3.40E-06	15.70%	EVE PA like-4

2979

2980 **Table S5.5.4:** FEVE hits from BLASTX of PpyrOMLV HA

2981 (None detected)

2982 **Table S5.5.5: FEVE hits from BLASTX of PpyrOMLV NP**

Scaffold	Start	End	Strand	id with PpOML		E value	Coverage	FEVE
				V				
Ppyr1.2_LG1	181303	181404	(+)	79.40%	7.01E-09	17.90%	EVE NP like-1	
Ppyr1.2_LG1	1029425	1029568	(+)	93.80%	9.59E-21	27.40%	EVE NP like-2	
Ppyr1.2_LG1	2027860	2027438	(-)	35.50%	3.00E-21	30.80%	EVE NP like-3	
Ppyr1.2_LG1	36568324	36568551	(+)	42.10%	8.99E-11	7.20%	EVE NP like-4	
Ppyr1.2_LG1	52877256	52877086	(-)	68.40%	3.87E-15	14.60%	EVE NP like-5	
Ppyr1.2_LG1	59927414	59927271	(+)	93.80%	5.60E-20	26.40%	EVE NP like-6	
Ppyr1.2_LG3	17204346	17204122	(-)	46.70%	7.60E-13	7.10%	EVE NP like-7	
Ppyr1.2_LG3	31635344	31635030	(-)	35.80%	3.30E-08	10.00%	EVE NP like-8	
Ppyr1.2_LG3	50175821	50175922	(+)	79.40%	7.01E-09	17.90%	EVE NP like-9	
Ppyr1.2_LG4	27811681	27811758	(+)	38.50%	3.22E-13	2.50%	EVE NP like-10	
Ppyr1.2_LG4	27811853	27812179	(+)	39.00%	3.22E-13	10.90%	EVE NP like-10	

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998 **Table S6: Experiment.com donors**

Liliana Bachrach	Doug Fambrough	Benjamin Lower	Luis Cunha	Joshua Guerriero
Atsuko Fish	Tom Alar	Noreen Huefner	David Esopi	John Skarha
Rutong Xie	Richard Hall	Zachary Michel	Jack Hynes	Keith Guerin
Nathan Shaner	Joe Doggett	Joe T. Bamberg	Michael McGurk	Pureum Kim
Sara Lewis	Mark Lewis	Lauren Solomon	Peter Berx	Milo Grika
Jing-Ke Weng	Sarah Sander	Dr. Husni Elbahesh	Matt Grommes	Daniel Zinshteyn
Peter Rodenbeck	Daniel Bear	Kathryn Larracuente	Colette Dedyne	Tom Brekke
Larry Fish	Don Salvatore	Matthew Cichocki	Florencia Schlamp	Edoardo Gianni
Amanda Larracuente	Emily Davenport	Marcel Bruchez	Marie Lower	Cindy Wu
Hunter Lower	Ted Sharpe	Robert Unckless	Michael R. McKain	Christina Tran
Allan Kleinman	David Plunkett	Arvid Ågren	Ben Pfeiffer	Eric Damon Walters
Misha Koksharov	Tim Fallon	Margaret S Butler	Kathryn Keho	Geoffrey Giller
Sarah Shekher	Edward Garrity	Yasir Ahmed-Braimah	Jenny Wayfarer	Fahd Butt
Jared Lee	Huaping Mo	Ruth Ann Grissom	Darby Thomas	Christophe Mandy
Raphael De Cock	TimG	Tomáš Pluskal	Emily Hatas	

Linds Fallon	Jan Thys	Genome Galaxy	Richard Casey	
Grace Li	Francisco Martinez Gasco	Dustin Greiner	William Nicholls	

2999 **SUPPLEMENTARY TEXT 7: Data availability**

3000 **7.1 Files on FigShare:**

3001 (1) Photinus pyralis sighting records (Excel spreadsheet) - ([10.6084/m9.figshare.5688826](https://doi.org/10.6084/m9.figshare.5688826))
 3002 For reviewers: <https://figshare.com/s/8508568ed8a4fcac7707>

3003 (2) Ilumi1.0 Blobtools results - ([10.6084/m9.figshare.5688952](https://doi.org/10.6084/m9.figshare.5688952)) For reviewers:
 3004 <https://figshare.com/s/5bba84434550fa53f297>

3005 (3) Alat1.2 Blobtools results - ([10.6084/m9.figshare.5688928](https://doi.org/10.6084/m9.figshare.5688928)) For reviewers:
 3006 <https://figshare.com/s/81c56e197832ae0deb17>

3007 (4) Ppyr1.2 Blobtools results - ([10.6084/m9.figshare.5688982](https://doi.org/10.6084/m9.figshare.5688982)) For reviewers:
 3008 <https://figshare.com/s/a59f5d7ee0d3a7c7dc64>

3009 (5) Nucleotide multiple sequence alignment for Elaterid luciferase homolog branch selection
 3010 test(Supplementary Note 4.3) - ([10.6084/m9.figshare.5691277](https://doi.org/10.6084/m9.figshare.5691277)) For reviewers:
 3011 <https://figshare.com/s/21a50b49b95b83f938c6>

3012 (6) Protein multiple sequence alignment for P450 tree - Supplementary Fig 1.10.1.1 -
 3013 ([10.6084/m9.figshare.5697643](https://doi.org/10.6084/m9.figshare.5697643)) For reviewers:
 3014 <https://figshare.com/s/f927956e3f92a8b61d1b>

3015 (7) Photinus pyralis orthomyxo-like virus 1 sequence and annotation -
 3016 ([10.6084/m9.figshare.5714806](https://doi.org/10.6084/m9.figshare.5714806)) For reviewers:
 3017 <https://figshare.com/s/a2d8b8c61c4e51ff5180>

3018 (8) Photinus pyralis orthomyxo-like virus 2 sequence and annotation -
 3019 ([10.6084/m9.figshare.5714812](https://doi.org/10.6084/m9.figshare.5714812)) For reviewers:
 3020 <https://figshare.com/s/f5041dc0d51aaf7b58fa>

3021 (9) OrthoFinder protein clustering analysis (Orthogroups) - ([10.6084/m9.figshare.5715136](https://doi.org/10.6084/m9.figshare.5715136))
 3022 For reviewers: <https://figshare.com/s/7ba2e519a2acb87ba240>

3023 (10) PPyR_OGS1.1 kallisto RNA-Seq expression quantification (TPM) -
 3024 ([10.6084/m9.figshare.5715139](https://doi.org/10.6084/m9.figshare.5715139)) For reviewers:
 3025 <https://figshare.com/s/b210bf1d3b854bf7c1f2>

3026 (11) AQUA_OGS1.0 kallisto RNA-Seq expression quantification (TPM) -
 3027 ([10.6084/m9.figshare.5715142](https://doi.org/10.6084/m9.figshare.5715142)) For reviewers:
 3028 <https://figshare.com/s/335bbbdb105150c34cfa>

3029 (12) Figure 5. PPyR_OGS1.1 + AQUA_OGS1.0 Sleuth / differential expression
 3030 Venn diagram analysis (BSN-TPM) - ([10.6084/m9.figshare.5715151](https://doi.org/10.6084/m9.figshare.5715151)) For reviewers:
 3031 <https://figshare.com/s/6cb8c724917412668cc0>

3032 (13) Ilumi_OGS1.2 kallisto RNA-Seq expression quantification (TPM) -
 3033 ([10.6084/m9.figshare.5715157](https://doi.org/10.6084/m9.figshare.5715157)) For reviewers:
 3034 <https://figshare.com/s/1302eda060db2b70b19b>

3035 (14) Figure 4C. CYP303 maximum likelihood gene tree -
3036 ([10.6084/m9.figshare.5716045](https://doi.org/10.6084/m9.figshare.5716045)) For reviewers:
3037 <https://figshare.com/s/e2661cb07a50750bd3ca>
3038 (15) Figure 3C. Maximum likelihood tree of luciferase homologs. -
3039 ([10.6084/m9.figshare.5725690](https://doi.org/10.6084/m9.figshare.5725690)) For reviewers:
3040 <https://figshare.com/s/1e0fe3ccb9b2e15170df>
3041 (16) Figure 4A. Supplementary Text 4.3.3 - NEXUS files. Newick file -
3042 ([10.6084/m9.figshare.6020063](https://doi.org/10.6084/m9.figshare.6020063)) For reviewers:
3043 <https://figshare.com/s/f2d5a1676b4a40e44e6d>
3044 (17) Fig. 2E, Fig. 4.2.1.1 Orthogroup Venn Diagram analysis -
3045 ([10.6084/m9.figshare.6671768](https://doi.org/10.6084/m9.figshare.6671768)) For reviewers: <https://figshare.com/s/ba11d235ecfcfedffa930>
3046 (18) Figure S4.2.3.1: DNA and tRNA methyltransferase gene phylogeny -
3047 ([10.6084/m9.figshare.6531311](https://doi.org/10.6084/m9.figshare.6531311)) For reviewers:
3048 <https://figshare.com/s/267ab9cbbdbba148eb38>
3049 (19) Figure S4.3.2.1 Preliminary maximum likelihood phylogeny of luciferase
3050 homologs - ([10.6084/m9.figshare.6687086](https://doi.org/10.6084/m9.figshare.6687086)) For reviewers:
3051 <https://figshare.com/s/9e530e0284cd0cc9e233>
3052 (20) Supplementary Video 1: A *Photinus pyralis* courtship dialogue -
3053 ([10.6084/m9.figshare.5715760](https://doi.org/10.6084/m9.figshare.5715760)) For reviewers:
3054 <https://figshare.com/s/c74a6623494f6addbdd4>
3055 (21) Supplementary Figure 4.5.1a Opsin gene tree - ([10.6084/m9.figshare.5723005](https://doi.org/10.6084/m9.figshare.5723005))
3056 For reviewers: <https://figshare.com/s/c74a6623494f6addbdd4>
3057 (22) Supplementary Text 4.3.4: MEME selected site analysis -
3058 ([10.6084/m9.figshare.6626651](https://doi.org/10.6084/m9.figshare.6626651)) For reviewers:
3059 <https://figshare.com/s/8fb1bb7411c318ea2466>
3060 (23) Supplementary Text 4.3.4: PAML-BEB selected site analysis -
3061 ([10.6084/m9.figshare.6725081](https://doi.org/10.6084/m9.figshare.6725081)) For reviewers:
3062 <https://figshare.com/s/fc9bb5a7080c573333a5>

3063 **7.2 Files on www.firebaseio.org / [www.github.org](https://github.com):**

3064 **7.2.1 *Photinus pyralis* genome and associated files**

- Ppyr1.3 genome assembly - (http://www.firebaseio.org/firefly_data/Ppyr1.3.fasta.zip)
- *P. pyralis* Official Geneset (OGS) GFF3 files -
(https://github.com/photocyte/PPYR_OGS)
 - Official geneset gene-span nucleotide FASTA files
 - Official geneset mRNA nucleotide FASTA files
 - Official geneset CDS nucleotide FASTA files
 - Official geneset peptide FASTA files
- Supporting Non-OGS files -
(https://github.com/photocyte/PPYR_OGS/tree/master/Supporting_non-OGS_data)
 - Trinity/PASA direct coding gene models (DCGM) GFF3 file
 - DCGM CDS FASTA file

3076 ■ DCGM peptide FASTA file
3077 ○ Stringtie stranded direct coding gene model (DCGM) GFF3 file
3078 ■ DCGM CDS FASTA file
3079 ■ DCGM peptide FASTA file
3080 ○ Stringtie unstranded direct coding gene model (DCGM) GFF3 file
3081 ■ DCGM CDS FASTA file
3082 ■ DCGM peptide FASTA file
3083 ○ Expression quantification (TPM)
3084 ○ InterProScan OGS functional annotation
3085 ○ PTS1 OGS annotation
3086 ○ Gaps GFF3 file
3087 ○ Repeat library FASTA and aligned GFF3 file.
3088 ○ Ab-initio gene models
3089

3090 **7.2.2 *Aquatica lateralis* genome and associated files**

- 3091 ● Alat1.3 genome assembly - (http://www.firebaseio.org/firefly_data/Alat1.3.fasta.zip)
- 3092 ● *A. lateralis* Official Geneset (OGS) GFF3 files -
[\(https://github.com/photocyte/AQULA_OGS\)](https://github.com/photocyte/AQULA_OGS)
 - 3093 ○ Official geneset gene-span nucleotide FASTA files
 - 3094 ○ Official geneset mRNA nucleotide FASTA files
 - 3095 ○ Official geneset CDS nucleotide FASTA files
 - 3096 ○ Official geneset peptide FASTA files
- 3097 ● Supporting Non-OGS files -
[\(https://github.com/photocyte/AQULA_OGS/tree/master/Supporting_non-OGS_data\)](https://github.com/photocyte/AQULA_OGS/tree/master/Supporting_non-OGS_data)
 - 3098 ○ Trinity/PASA direct coding gene models (DCGM) GFF3 file
 - 3099 ■ DCGM CDS FASTA file
 - 3100 ■ DCGM peptide FASTA file
 - 3101 ○ Stringtie unstranded direct coding gene model (DCGM) GFF3 file
 - 3102 ■ DCGM CDS FASTA file
 - 3103 ■ DCGM peptide FASTA file
 - 3104 ○ Expression quantification (TPM)
3105 ○ InterProScan OGS functional annotation
3106 ○ PTS1 OGS annotation
3107 ○ Gaps GFF3 file
3108 ○ Repeat library FASTA and aligned GFF3 file.
3109 ○ Ab-initio gene models

3113 **7.2.3 *Ignelater luminosus* genome and associated files**

- 3114 ● Ilumi1.2 genome assembly - (http://www.firebaseio.org/firefly_data/Ilumi1.2.fasta.zip)
- 3115 ● *I. luminosus* Official Geneset (OGS) GFF3 files -
[\(https://github.com/photocyte/ILUMI_OGS\)](https://github.com/photocyte/ILUMI_OGS)

- 3117 ○ Official geneset gene-span nucleotide FASTA files
- 3118 ○ Official geneset mRNA nucleotide FASTA files
- 3119 ○ Official geneset CDS nucleotide FASTA files
- 3120 ○ Official geneset peptide FASTA files
- 3121 ● Supporting Non-OGS files -
3122 (https://github.com/photocyte/ILUMI_OGS/tree/master/Supporting_non-OGS_data)
 - 3123 ○ Trinity/PASA direct coding gene models (DCGM) GFF3 file
 - 3124 ■ DCGM CDS FASTA file
 - 3125 ■ DCGM peptide FASTA file
 - 3126 ○ Stringtie unstranded direct coding gene model (DCGM) GFF3 file
 - 3127 ■ DCGM CDS FASTA file
 - 3128 ■ DCGM peptide FASTA file
 - 3129 ○ Expression quantification (TPM)
 - 3130 ○ InterProScan OGS functional annotation
 - 3131 ○ PTS1 OGS annotation
 - 3132 ○ Gaps GFF3 file
 - 3133 ○ Repeat library FASTA and aligned GFF3 file.
 - 3134 ○ Ab-initio gene models

3136 **7.3 Tracks on www.firebaseio.org JBrowse genome browser:**

3137 For each genome:

3138 (1) Gaps

3139 (2) Repeats

3140 (3) Direct gene-models (Stringtie)

3141 (4) Direct gene-models (Trinity)

3142 (5) Official geneset gene-models

3143

3144

3145

3146 **Bibliography**

3147

3148 1. Lloyd JE. Studies on the flash communication system in *Photinus* fireflies. University of
3149 Michigan Museum of Zoology; 1966; Available:
3150 <https://deepblue.lib.umich.edu/bitstream/handle/2027.42/56374/MP130.pdf>

3151 2. Lloyd JE. Fireflies (Coleoptera: Lampyridae). In: Capinera JL, editor. Encyclopedia of
3152 Entomology. Dordrecht: Springer Netherlands; 2008. pp. 1429–1452.

3153 3. de Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the
3154 expression of active luciferase in *Escherichia coli*. *Proc Natl Acad Sci U S A*. 1985;82:
3155 7870–7873.

3156 4. Case JF. Flight studies on photic communication by the firefly *Photinus pyralis*. *Integr
3157 Comp Biol*. Oxford University Press; 2004;44: 250–258.

3158 5. Reijden ED van der, Monchamp JD, Lewis SM. The formation, transfer, and fate of
3159 spermatophores in *Photinus* fireflies (Coleoptera: Lampyridae). *Can J Zool. NRC Research
3160 Press*; 1997;75: 1202–1207.

3161 6. Al-Wathiqui N, Fallon TR, South A, Weng J-K, Lewis SM. Molecular characterization of
3162 firefly nuptial gifts: a multi-omics approach sheds light on postcopulatory sexual selection.
3163 *Sci Rep*. 2016;6: 38556.

3164 7. Cratsley CK, Rooney JA, Lewis SM. Limits to Nuptial Gift Production by Male Fireflies,
3165 *Photinus ignitus*. *J Insect Behav*. Kluwer Academic Publishers-Plenum Publishers; 2003;16:
3166 361–370.

3167 8. Rooney J, Lewis SM. Fitness advantage from nuptial gifts in female fireflies. *Ecol Entomol*.
3168 Blackwell Science Ltd; 2002;27: 373–377.

3169 9. Faust L, Faust H. The Occurrence and Behaviors of North American Fireflies (Coleoptera:
3170 Lampyridae) on Milkweed, *Asclepias syriaca* L. *Coleopt Bull. The Coleopterists Society*;
3171 2014;68: 283–291.

3172 10. Hess WN. Notes on the biology of some common Lampyridae. *Biol Bull. Marine Biological
3173 Laboratory*; 1920;38: 39–76.

3174 11. Faust LF. Fireflies, Glow-worms, and Lightning Bugs: Identification and Natural History of
3175 the Fireflies of the Eastern and Central United States and Canada. University of Georgia
3176 Press; 2017.

3177 12. Meinwald J, Wiemer DF, Eisner T. Lucibufagins. 2. Esters of 12-oxo-
3178 2. β .,5. β .,11. α .-trihydroxybufalin, the major defensive steroids of the firefly
3179 *Photinus pyralis* (Coleoptera: Lampyridae). *J Am Chem Soc. American Chemical Society*;
3180 1979;101: 3055–3060.

3181 13. Goetz MA, Meinwald J, Eisner T. Lucibufagins, IV. New defensive steroids and a pterin
3182 from the firefly, *Photinus pyralis* (coleoptera: Lampyridae). *Experientia*. Birkhäuser-Verlag;
3183 1981;37: 679–680.

3184 14. Blum MS, Sannasi A. Reflex bleeding in the lampyrid *Photinus pyralis*: Defensive function.
3185 *J Insect Physiol.* 1974;20: 451–460.

3186 15. Faust L, De Cock R, Lewis S. Thieves in the Night: Kleptoparasitism by Fireflies in the
3187 Genus *Photuris* Dejean (Coleoptera: Lampyridae). *Coleopt Bull.* The Coleopterists Society;
3188 2012;66: 1–6.

3189 16. Luk SPL, Marshall SA, Branham MA. The fireflies of Ontario (Coleoptera: Lampyridae). *Can
3190 J Arthropod Identif.* 2011;16: 1–105.

3191 17. Common Eastern Firefly (*Photinus pyralis*). In: iNaturalist [Internet]. Available:
3192 <https://www.inaturalist.org/taxa/129350-Photinus-pyralis>

3193 18. Foundation OSG. QGIS Geographic Information System [Internet]. 2017. Available:
3194 <http://qgis.osgeo.org>

3195 19. Fallon TR. *Ppyralis_QGIS_sighting_to_centroided_county.py* [Internet]. Available:
3196 [https://github.com/photocyte/2017_misc_scripts/blob/master/Ppyralis_QGIS_sighting_to_ce
ntroided_county.py](https://github.com/photocyte/2017_misc_scripts/blob/master/Ppyralis_QGIS_sighting_to_ce
3197 ntroided_county.py)

3198 20. United States Census Bureau. Cartographic Boundary Shapefiles - Counties [Internet].
3199 [cited 2017]. Available: https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html

3200 21. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et
3201 al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of
3202 terrestrial ecoregions provides an innovative tool for conserving biodiversity. *Bioscience.*
3203 *BioOne*; 2001;51: 933–938.

3204 22. Fund WW. Terrestrial Ecoregions of the World [Internet]. [cited 2017]. Available:
3205 <https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world>

3206 23. Green JW. Revision of the nearctic species of *Photinus* (Coleoptera: Lampyridae). *Proc
3207 Calif Acad Sci.* 1956;28: 561–613.

3208 24. Stanger-Hall KF, Lloyd JE. Flash signal evolution in *Photinus* fireflies: character
3209 displacement and signal exploitation in a visual communication system. *Evolution.* 2015;69:
3210 666–682.

3211 25. Ho J-Z, Chiang P-H, Wu C-H, Yang P-S. Life cycle of the aquatic firefly *Luciola picta*
3212 (Coleoptera: Lampyridae). *J Asia Pac Entomol.* 2010;13: 189–196.

3213 26. Lloyd J. Where can I find information on raising fireflies? *Fireflyer Companion.* 1996: 20.

3214 27. McLean M, Buck J, Hanson FE. Culture and Larval Behavior of Photurid Fireflies. *Am Midl
3215 Nat.* The University of Notre Dame; 1972;87: 133–145.

3216 28. Buschman LL. Larval Development and Its Photoperiodic Control in the Firefly
3217 *Pyractomena lucifera* (Coleoptera: Lampyridae). *Ann Entomol Soc Am.* Oxford University
3218 Press; 1988;81: 82–90.

3219 29. Harvey EN. Bioluminescence. Academic Press; 1952.

3220 30. Williams FX. Notes on the life-history of some North American Lampyridae. *J N Y Entomol*

3221 Soc. JSTOR; 1917;25: 11–33.

3222 31. Wasserman M, Ehrman L. Firefly Chromosomes, II. (Lampyridae: Coleoptera). Fla
3223 Entomol. Florida Entomological Society; 1986;69: 755–757.

3224 32. Lower SS, Johnston JS, Stanger-Hall KF, Hjelmen CE, Hanrahan SJ, Korunes K, et al.
3225 Genome Size in North American Fireflies: Substantial Variation Likely Driven by Neutral
3226 Processes. *Genome Biol Evol*. 2017;9: 1499–1512.

3227 33. Dias CM, Schneider MC, Rosa SP, Costa C, Cella DM. The first cytogenetic report of
3228 fireflies (Coleoptera, Lampyridae) from Brazilian fauna. *Acta Zool. Blackwell Publishing Ltd*;
3229 2007;88: 309–316.

3230 34. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of
3231 occurrences of k-mers. *Bioinformatics*. 2011;27: 764–770.

3232 35. Vrture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, et al.
3233 GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics*.
3234 2017;33: 2202–2204.

3235 36. Biosciences P. SMRT Analysis Software [Internet]. Available:
3236 <http://www.pacb.com/products-and-services/analytical-software/smrt-analysis/>

3237 37. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al.
3238 Comprehensive mapping of long-range interactions reveals folding principles of the human
3239 genome. *Science*. 2009;326: 289–293.

3240 38. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale
3241 scaffolding of de novo genome assemblies based on chromatin interactions. *Nat
3242 Biotechnol*. 2013;31: 1119–1125.

3243 39. Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-molecule
3244 sequencing and chromatin conformation capture enable de novo reference assembly of the
3245 domestic goat genome. *Nat Genet*. 2017;49: 643–650.

3246 40. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome
3247 assembler. *Bioinformatics*. 2013;29: 2669–2677.

3248 41. Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S, Marçais G, et al. Hybrid assembly of the large
3249 and highly repetitive genome of *Aegilops tauschii*, a progenitor of bread wheat, with the
3250 MaSuRCA mega-reads algorithm. *Genome Res*. 2017;27: 787–792.

3251 42. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome
3252 assembler. *Bioinformatics*. 2013;29: 2669–2677.

3253 43. Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S, Marçais G, et al. Hybrid assembly of the large
3254 and highly repetitive genome of *Aegilops tauschii*, a progenitor of bread wheat, with the
3255 MaSuRCA mega-reads algorithm. *Genome Res*. 2017;27: 787–792.

3256 44. O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim:
3257 optimized trimming of Illumina mate pair reads. *Bioinformatics*. 2015;31: 2035–2037.

3258 45. Pryszzc LP, Gabaldón T. Redundans: an assembly pipeline for highly heterozygous

3259 genomes. *Nucleic Acids Res.* 2016;44: e113.

3260 46. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap: upgrading
3261 genomes with Pacific Biosciences RS long-read sequencing technology. *PLoS One.*
3262 2012;7: e47768.

3263 47. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
3264 *Bioinformatics.* 2009;25: 1754–1760.

3265 48. Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer
3266 Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst.*
3267 2016;3: 95–98.

3268 49. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox
3269 Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *Cell Syst.*
3270 2016;3: 99–101.

3271 50. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.*
3272 2012;9: 357–359.

3273 51. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality
3274 control for high-throughput sequencing data. *Bioinformatics.* 2016;32: 292–294.

3275 52. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
3276 architecture and applications. *BMC Bioinformatics.* 2009;10: 421.

3277 53. Slater GSC, Birney E. Automated generation of heuristics for biological sequence
3278 comparison. *BMC Bioinformatics.* 2005;6: 31.

3279 54. Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, et al. No evidence
3280 for extensive horizontal gene transfer in the genome of the tardigrade *Hypsibius dujardini*.
3281 *Proc Natl Acad Sci U S A.* 2016;113: 5053–5058.

3282 55. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. *F1000Res.*
3283 2017;6. doi:10.12688/f1000research.12232.1

3284 56. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. *Nat*
3285 *Methods.* 2015;12: 59–60.

3286 57. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and
3287 accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome*
3288 *Res.* 2017;27: 722–736.

3289 58. Bae JS, Kim I, Sohn HD, Jin BR. The mitochondrial genome of the firefly, *Pyrocoelia rufa*:
3290 complete DNA sequence, genome organization, and phylogenetic analysis with other
3291 insects. *Mol Phylogenet Evol.* 2004;32: 978–985.

3292 59. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling
3293 Genomes and Mini-metagenomes from Highly Chimeric Reads. *Lecture Notes in Computer*
3294 *Science.* 2013. pp. 158–170.

3295 60. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
3296 integrated tool for comprehensive microbial variant detection and genome assembly

3297 improvement. *PLoS One*. 2014;9: e112963.

3298 61. Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File
3299 Manipulation. *PLoS One*. 2016;11: e0163962.

3300 62. M. Bernt, A. Donath, F. Jühling, F. Externbrink, C. Florentz, G. Fritzsch, J. Pütz, M.
3301 Middendorf, P. F. Stadler. MITOS2 WebServer [Internet]. Available: <http://mitos2.bioinf.uni-leipzig.de>

3303 63. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an
3304 information aesthetic for comparative genomics. *Genome Res*. 2009;19: 1639–1645.

3305 64. Sander SE, Hall DW. Variation in opsin genes correlates with signalling ecology in North
3306 American fireflies. *Mol Ecol*. 2015;24: 4679–4696.

3307 65. Fallon TR, Li F-S, Vicent MA, Weng J-K. Sulfoluciferin is Biosynthesized by a Specialized
3308 Luciferin Sulfotransferase in Fireflies. *Biochemistry*. 2016;55: 3341–3344.

3309 66. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length
3310 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*.
3311 2011;29: 644–652.

3312 67. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic
3313 gene structure annotation using EvidenceModeler and the Program to Assemble Spliced
3314 Alignments. *Genome Biol*. 2008;9: R7.

3315 68. Kent WJ. BLAT--the BLAST-like alignment tool. *Genome Res*. 2002;12: 656–664.

3316 69. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and
3317 EST sequences. *Bioinformatics*. 2005;21: 1859–1875.

3318 70. Fallon TR. PASA_expression_filter_2017.py [Internet]. Available:
3319 https://github.com/photocyte/PASA_expression_filter_2017

3320 71. Haas BJ. TransDecoder [Internet]. Available:
3321 <https://github.com/TransDecoder/TransDecoder/wiki>

3322 72. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory
3323 requirements. *Nat Methods*. 2015;12: 357–360.

3324 73. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie
3325 enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol*.
3326 2015;33: 290–295.

3327 74. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
3328 quantification. *Nat Biotechnol*. 2016;34: 525–527.

3329 75. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a
3330 generalized hidden Markov model that uses hints from external sources. *BMC
3331 Bioinformatics*. 2006;7: 62.

3332 76. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management
3333 tool for second-generation genome projects. *BMC Bioinformatics*. 2011;12: 491.

3334 77. Korf I. Gene finding in novel genomes. *BMC Bioinformatics*. 2004;5: 59.

3335 78. MAKER Tutorial for GMOD Online Training 2014 [Internet]. Available:
3336 http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/MAKER_Tutorial_for_GMOD_O
3337 nline_Training_2014

3338 79. Fallon TR. *maker_gff_to_evm_gff_2017.py* [Internet]. Available:
3339 https://github.com/photocyte/maker_gff_to_evm_gff_2017

3340 80. Priyam A, Woodcroft BJ, Rai V, Munagala A, Moghul I, Ter F, et al. Sequenceserver: a
3341 modern graphical user interface for custom BLAST databases [Internet]. *bioRxiv*. 2015. p.
3342 033142. doi:10.1101/033142

3343 81. Fallon TR. *blastxml2gff* [Internet]. 2018. Available:
3344 https://github.com/photocyte/general_scripts/blob/master/blastxml2gff.py

3345 82. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-
3346 performance genomics data visualization and exploration. *Brief Bioinform*. 2013;14: 178–
3347 192.

3348 83. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or
3349 nucleotide sequences. *Bioinformatics*. 2006;22: 1658–1659.

3350 84. Rewitz KF, O'Connor MB, Gilbert LI. Molecular evolution of the insect Halloween family of
3351 cytochrome P450s: phylogeny, gene organization and functional conservation. *Insect
3352 Biochem Mol Biol*. 2007;37: 741–753.

3353 85. Helvig C, Koener JF, Unnithan GC, Feyereisen R. CYP15A1, the cytochrome P450 that
3354 catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora
3355 allata. *Proc Natl Acad Sci U S A*. 2004;101: 4024–4029.

3356 86. Guittard E, Blais C, Maria A, Parvy J-P, Pasricha S, Lumb C, et al. CYP18A1, a key
3357 enzyme of *Drosophila* steroid hormone inactivation, is essential for metamorphosis. *Dev
3358 Biol*. 2011;349: 35–45.

3359 87. Sezutsu H, Le Goff G, Feyereisen R. Origins of P450 diversity. *Philos Trans R Soc Lond B
3360 Biol Sci*. 2013;368: 20120428.

3361 88. Clustal Omega [Internet]. Available: <https://www.ebi.ac.uk/Tools/msa/clustalo/>

3362 89. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic
3363 Acids Res*. 2003;31: 3406–3415.

3364 90. Larkin MA, Blackshields G, Brown NP, Chenna R, McGgettigan PA, McWilliam H, et al.
3365 Clustal W and Clustal X version 2.0. *Bioinformatics*. 2007;23: 2947–2948.

3366 91. Wheeler DL. Database resources of the National Center for Biotechnology. *Nucleic Acids
3367 Res*. 2003;31: 28–33.

3368 92. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional
3369 classification of proteins via subfamily domain architectures. *Nucleic Acids Res*. 2017;45:
3370 D200–D203.

3371 93. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. *Nucleic*
3372 *Acids Res.* 2017; doi:10.1093/nar/gkx922

3373 94. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein
3374 families database: towards a more sustainable future. *Nucleic Acids Res.* 2016;44: D279–
3375 85.

3376 95. Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al. PROSITE: a
3377 documented database using patterns and profiles as motif descriptors. *Brief Bioinform.*
3378 2002;3: 265–274.

3379 96. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software
3380 Suite. *Trends Genet.* 2000;16: 276–277.

3381 97. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal
3382 peptides from transmembrane regions. *Nat Methods.* 2011;8: 785–786.

3383 98. Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal
3384 peptide prediction method. *J Mol Biol.* 2004;338: 1027–1036.

3385 99. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
3386 improvements in performance and usability. *Mol Biol Evol.* 2013;30: 772–780.

3387 100. Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-Likelihood Trees
3388 for Large Alignments. *PLoS One.* 2010;5: e9490.

3389 101. Darzentas N. Circoletto: visualizing sequence similarity with Circos. *Bioinformatics.*
3390 2010;26: 2620–2621.

3391 102. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator.
3392 *Genome Res.* 2004;14: 1188–1190.

3393 103. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-
3394 MODEL: modelling protein tertiary and quaternary structure using evolutionary information.
3395 *Nucleic Acids Res.* 2014;42: W252–8.

3396 104. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.
3397 UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput*
3398 *Chem.* 2004;25: 1605–1612.

3399 105. Khomtchouk BB, Hennessy JR, Wahlestedt C. shinyheatmap: Ultra fast low memory
3400 heatmap web interface for big data genomics. *PLoS One.* 2017;12: e0176334.

3401 106. Smit A, Hubley R. RepeatModeler [Internet]. 2017. Available:
3402 <http://www.repeatmasker.org>.

3403 107. Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat
3404 transposable elements from genomic sequences. *Nucleic Acids Res.* 2010;38: e199.

3405 108. Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in
3406 sequenced genomes. *Genome Res.* 2002;12: 1269–1276.

3407 109. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large

3408 genomes. *Bioinformatics*. 2005;21 Suppl 1: i351–8.

3409 110. Benson G. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids*
3410 Res. 1999;27: 573–580.

3411 111. Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR. MethylC-seq library preparation for
3412 base-resolution whole-genome bisulfite sequencing. *Nat Protoc*. 2015;10: 475–483.

3413 112. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human
3414 body epigenome maps reveal noncanonical DNA methylation variation. *Nature*. 2015;523:
3415 212–216.

3416 113. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
3417 reads. *EMBnet.journal*. 2011;17: 10–12.

3418 114. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment
3419 of short DNA sequences to the human genome. *Genome Biol*. 2009;10: R25.

3420 115. Picard Tools - By Broad Institute [Internet]. [cited 18 Dec 2017]. Available:
3421 <http://broadinstitute.github.io/picard>

3422 116. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, et al. Reversible
3423 switching between epigenetic states in honeybee behavioral castes. *Nat Neurosci*.
3424 2012;15: 1371–1373.

3425 117. Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, et al. Single base-resolution methylome of the
3426 silkworm reveals a sparse epigenomic map. *Nat Biotechnol*. 2010;28: 516–520.

3427 118. Cunningham CB, Ji L, Wiberg RAW, Shelton J, McKinney EC, Parker DJ, et al. The
3428 Genome and Methylome of a Beetle with Complex Social Behavior, *Nicrophorus*
3429 vespilloides (Coleoptera: Silphidae). *Genome Biol Evol*. 2015;7: 3383–3396.

3430 119. Glastad KM, Gokhale K, Liebig J, Goodisman MAD. The caste- and sex-specific DNA
3431 methylome of the termite *Zootermopsis nevadensis*. *Sci Rep*. 2016;6: 37110.

3432 120. Schultz MD, Schmitz RJ, Ecker JR. “Leveling” the playing field for analyses of single-
3433 base resolution DNA methylomes. *Trends Genet*. 2012;28: 583–585.

3434 121. Team RC, Others. R: A language and environment for statistical computing. Citeseer;
3435 2013; Available:
3436 <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.5851&rep=rep1&type=pdf>

3437 122. Larracuente AM, Ferree PM. Simple method for fluorescence DNA *in situ* hybridization
3438 to squashed chromosomes. *J Vis Exp*. 2015; 52288.

3439 123. Fu XH, Ballantyne LA, Lambkin CL. *Aquatica* gen. nov. from mainland China with a
3440 description of *Aquatica wuhana* sp. nov. (Coleoptera: Lampyridae: Luciolinae). *Zootaxa*.
3441 2010;2530: 1–18.

3442 124. Ohba N. Mystery of Fireflies. Yokosuka City Mus. Yokosuka, Japan (In Japanese). 2004.

3443 125. Branham MA, Wenzel JW. The origin of photic behavior and the evolution of sexual
3444 communication in fireflies (Coleoptera: Lampyridae). *Cladistics*. Blackwell Publishing Ltd;

3445 2003;19: 1–22.

3446 126. Kanda S. Firefly. *Nihon Hakko Seibutsu Kenkyukai* (1935). 1935;

3447 127. Ohba N. Studies on the communication system of Japanese fireflies. *Sci Rept Yokosuka*
3448 City Mus. 1983;30: 1–62.

3449 128. Ohba N, Hidaka T. Reflex bleeding of fireflies and prey-predator relationship. *Science*
3450 Report of the Yokosuka City Museum. 2002;49: 1–12.

3451 129. Fu X, Vencl FV, Nobuyoshi O, Benno Meyer-Rochow V, Lei C, Zhang Z. Structure and
3452 function of the eversible glands of the aquatic firefly *Luciola leii* (Coleoptera: Lampyridae).
3453 *Chemoecology*. Birkhäuser-Verlag; 2007;17: 117–124.

3454 130. KAWASHIMA, I. A check-list of Japanese fireflies (Coleoptera, Lampyridae and
3455 Rhagophthalmidae). *Jpn J syst Ent*, Matsuyama. 2003;9: 241–261.

3456 131. Higuchi H, editor. *Conservation of Ecosystem. Conservation Biology*. Univ. Tokyo Press,
3457 Tokyo; 1996. pp. 71–102.

3458 132. Environment JM of. Press Release [Internet]. 2017. Available:
3459 http://www.env.go.jp/garden/kokyogaien/topics/post_134.html

3460 133. Ikeya H. Melanic strain of *Luciola lateralis*. *Bull Firefly Mus Toyota Town*. 2016;8: 175–
3461 177.

3462 134. Inoue M, Yamamoto H. Cytological studies of family Lampyridae I. Karyotypes of *Luciola*
3463 *lateralis* and *L. cruciata*. *La Kromosomo*. 1987;II-45: 1440–1443.

3464 135. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-
3465 quality draft assemblies of mammalian genomes from massively parallel sequence data.
3466 *Proc Natl Acad Sci U S A*. 2011;108: 1513–1518.

3467 136. Andrews S. A quality control tool for high throughput sequence data. In: FastQC
3468 [Internet]. Available: <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

3469 137. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript
3470 assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform
3471 switching during cell differentiation. *Nat Biotechnol*. 2010;28: 511–515.

3472 138. Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015. Institute for Systems
3473 Biology <http://repeatmasker.org>. 2015;

3474 139. Slipinski, S. A., Leschen, R. A. B. & Lawrence, J. F. Order Coleoptera Linnaeus, 1758.
3475 In: Zhang Z –Q, editor. *Animal Biodiversity: An Outline of Higher-level Classification and*
3476 *Survey of Taxonomic Richness*. Magnolia Press, Auckland.; 2011. pp. 203–208.

3477 140. Costa, C., Lawrence, J. F. & Rosa, S. P. Elateridae Leach, 1815. In: Leschen, R. A. B.,
3478 Beutel, R. G. & Lawrence, J. F., editor. *Handbook of Zoology*, Vol IV, Arthropoda: Insecta,
3479 Teilband 39, Coleoptera, Beetles Vol 2: Morphology and Systematics. Walter de Gruyter,
3480 Berlin.; 2010. pp. 75–103.

3481 141. Costa C. Systematics and evolution of the tribes Pyrophorini and Heligmini, with

3482 description of Campyloxeninae, new subfamily (Coleoptera, Elateridae). *Arq Zool* . 1975;26:
3483 49–190.

3484 142. Harvey EN, Stevens KP. THE BRIGHTNESS OF THE LIGHT OF THE WEST INDIAN
3485 ELATERID BEETLE, PYROPHORUS. *J Gen Physiol*. 1928;12: 269–272.

3486 143. Levy HC. Greatest bioluminescence. In: Walker TJ, editor. *Book of Insect Records*. Univ.
3487 Florida, Florida.; 1998. pp. 72–73.

3488 144. Arias-Bohart ET. *Malalcahuelloocaresi* gen. & sp. n. (Elateridae, Campyloxeninae).
3489 *Zookeys*. 2015; 1–13.

3490 145. Stibick JNL. Classification of the Elateridae (Coleoptera). Relationships and
3491 classification of the subfamilies and tribes *Pacific Insects*. 1979;20: 145–186.

3492 146. Costa C. Note on the bioluminescence of *Balgus schnusei* (Heller, 1974)(Trixagidae,
3493 Coleoptera). *Rev Bras Entomol*. 1984; Available: <http://agris.fao.org/agris-search/search.do?recordID=US201302648173>

3495 147. Douglas H. Phylogenetic relationships of Elateridae inferred from adult morphology, with
3496 special reference to the position of Cardiophorinae. *Zootaxa*. 2011;2900: 1–45.

3497 148. Oba Y, Sagegami-Oba R. Phylogeny of Elateridae inferred from molecular analysis. *Nat
3498 Insects*. 2007;42: 30–42.

3499 149. Sagegami-Oba R, Oba Y, Ohira H. Phylogenetic relationships of click beetles
3500 (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: insights into the evolution of
3501 bioluminescence in Elateridae. *Mol Phylogenet Evol*. 2007;42: 410–421.

3502 150. Kandrata R, Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): is
3503 there a common tendency of click beetles to soft-bodiedness and neoteny? *Zool Scr*.
3504 Blackwell Publishing Ltd; 2011;40: 364–378.

3505 151. Hyslop JA. The phylogeny of the Elateridae based on larval characters. *Ann Entomol
3506 Soc Am*. Oxford University Press Oxford, UK; 1917;10: 241–263.

3507 152. Ôhira H. Morphological and taxonomic study on the larvae of Elateridae in Japan
3508 (Coleoptera). H Ohira, Okazaki City, Japan. 1962;61.

3509 153. Dolin VG. Phylogeny of the click beetles (Coleoptera, Elateridae). *Vestn Zool*.
3510 1978;May/June 1978, 3. Available: <http://agris.fao.org/agris-search/search.do?recordID=US201302455464>

3512 154. Ôhira H. Illustrated key to click beetles of Japan. *Jpn Soc Environ Entomol Zool*, editor
3513 An Illustrated Guide to Identify Insects Osaka, Japan: Bunkyo Shuppan. 2013; 227–251.

3514 155. Johnson PJ. 58. Elateridae Leach 1815. *American beetles*. 2002;2: 160–173.

3515 156. Rosa SP. Análise filogenética e revisão taxonômica da tribo Pyrophorini Candeze, 1863
3516 (Coleoptera, Elateridae, Agrypninae) [Internet]. Universidade de São Paulo. 2007.
3517 Available: <http://www.teses.usp.br/teses/disponiveis/41/41133/tde-04092007-174412/en.php>

3519 157. Reyes N, Lee V. Behavioral and morphological observations of *Ignelater luminosus* in
3520 Dominica. 2010.

3521 158. Chang H, Kirejtshuk AG, Ren D, Shih C. First Fossil Click Beetles from the Middle
3522 Jurassic of Inner Mongolia, China (Coleoptera: Elateridae). Annal Zool. Museum and
3523 Institute of Zoology, Polish Academy of Sciences; 2009;59: 7–14.

3524 159. McKenna DD, Farrell BD. Beetles (Coleoptera). The timetree of life. Oxford University
3525 Press Oxford; 2009;278: 289.

3526 160. Grimaldi D, Engel MS. Evolution of the Insects. Cambridge University Press; 2005.

3527 161. Oba Y, Kumazaki M, Inouye S. Characterization of luciferases and its parologue in the
3528 Panamanian luminous click beetle *Pyrophorus angustus*: a click beetle luciferase lacks the
3529 fatty acyl-CoA synthetic activity. Gene. 2010;452: 1–6.

3530 162. Feder JL, Velez S. Intergenic exchange, geographic isolation, and the evolution of
3531 bioluminescent color for *Pyrophorus* click beetles. Evolution. 2009;63: 1203–1216.

3532 163. Costa C, Vanin SA. Coleoptera Larval Fauna Associated with Termite Nests (Isoptera)
3533 with Emphasis on the “Bioluminescent Termite Nests” from Central Brazil. Psyche .
3534 Hindawi; 2010;2010. doi:10.1155/2010/723947

3535 164. Bechara EJH, Stevani CV. Brazilian Bioluminescent Beetles: Reflections on Catching
3536 Glimpses of Light in the Atlantic Forest and Cerrado. An Acad Bras Cienc. 2018;90: 663–
3537 679.

3538 165. Wolcott GN. The Rise and Fall of the White Grub in Puerto Rico. Am Nat. 1950;84: 183–
3539 193.

3540 166. Kretsch E. Courtship Behavior of *Ignelater luminosus*. 2000.

3541 167. Vélez S. Biogeographic and Genetic Approaches to the Natural History of the
3542 Bioluminescent Jamaican Click Beetle, *Pyrophorus plagiophthalmus* (Coleoptera:
3543 Elateridae). Feder JL, editor. Master of Science, University of Notre Dame. 2006.

3544 168. Virkki N, Flores M, Escudero J. Structure, orientation, and segregation of the sex
3545 trivalent in *Pyrophorus luminosus* III. (Coleoptera, Elateridae). Can J Genet Cytol. NRC
3546 Research Press; 1984;26: 326–330.

3547 169. Perez-Gelabert DE. Arthropods of Hispaniola (Dominican Republic and Haiti): A
3548 checklist and bibliography. Magnolia Press; 2008.

3549 170. Rosa SP. New species of *Ignelater* Costa (Coleoptera, Elateridae, Pyrophorini). Pap
3550 Avulsos Zool. Museu de Zoologia da Universidade de São Paulo; 2010;50: 445–449.

3551 171. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid
3552 genome sequences. Genome Res. 2017;27: 757–767.

3553 172. Center for Disease Control and Prevention (CDC). Hymenolepiasis [Internet]. Available:
3554 <https://www.cdc.gov/dpdx/hymenolepiasis/index.html#lifeCycle>

3555 173. Sheiman IM, Shkutin MF, Terenina NB, Gustafsson MKS. A behavioral study of the

3556 beetle *Tenebrio molitor* infected with cysticercoids of the rat tapeworm *Hymenolepis*
3557 *diminuta*. *Naturwissenschaften*. 2006;93: 305–308.

3558 174. Kryukov K. FASTA Splitter [Internet]. Available: <http://kirill-kryukov.com/study/tools/fasta-splitter/>

3560 175. Li H. Minimap2: fast pairwise alignment for long nucleotide sequences. *ArXiv e-prints*.
3561 2017;2017. Available:
3562 <https://pdfs.semanticscholar.org/a703/88011f2995783e159dc21a62905753a6af44.pdf>

3563 176. Wick R. adapter trimmer for Oxford Nanopore reads [Internet]. Available:
3564 <https://github.com/rrwick/Porechop>

3565 177. Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, et al. LINKS:
3566 Scalable, alignment-free scaffolding of draft genomes with long reads. *Gigascience*.
3567 2015;4: 35.

3568 178. Krumsieck J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots
3569 on genome scale. *Bioinformatics*. 2007;23: 1026–1028.

3570 179. Arnoldi F, Ogoh K, Ohmiya Y, Viviani VR. Mitochondrial genome sequence of the
3571 Brazilian luminescent click beetle *Pyrophorus divergens* (Coleoptera: Elateridae):
3572 mitochondrial genes utility to investigate the evolutionary history of Coleoptera and its
3573 bioluminescence. *Gene*. Elsevier; 2007;405: 1–9.

3574 180. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al.
3575 Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. *Lecture Notes
3576 in Computer Science*. 2013. pp. 158–170.

3577 181. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes:
3578 assembling plasmids from whole genome sequencing data. *Bioinformatics*. 2016;32: 3380–
3579 3387.

3580 182. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo
3581 genome assemblies. *Bioinformatics*. 2015;31: 3350–3352.

3582 183. Bae JS, Kim I, Sohn HD, Jin BR. The mitochondrial genome of the firefly, *Pyrocoelia*
3583 *rufa*: complete DNA sequence, genome organization, and phylogenetic analysis with other
3584 insects. *Mol Phylogenet Evol*. 2004;32: 978–985.

3585 184. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using
3586 exact alignments. *Genome Biol*. 2014;15: R46.

3587 185. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for
3588 genome assemblies. *Bioinformatics*. 2013;29: 1072–1075.

3589 186. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:
3590 assessing genome assembly and annotation completeness with single-copy orthologs.
3591 *Bioinformatics*. 2015;31: 3210–3212.

3592 187. Poelchau M, Childers C, Moore G, Tsavatapalli V, Evans J, Lee C-Y, et al. The i5k
3593 Workspace@NAL--enabling genomic data access, visualization and curation of arthropod
3594 genomes. *Nucleic Acids Res*. 2015;43: D714–9.

3595 188. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome
3596 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* 2015;16:
3597 157.

3598 189. Fallon TR. Filter Uniprot to Best Isoform [Internet]. Available:
3599 https://github.com/photocyte/filter_uniprot_to_best_isoform

3600 190. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-
3601 based tool for the analysis of sets through Venn diagrams. *BMC Bioinformatics.* 2015;16:
3602 169.

3603 191. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq
3604 incorporating quantification uncertainty. *Nat Methods.* 2017;14: 687–690.

3605 192. Fallon TR. interproscan_to_enzyme_go.py [Internet]. Available:
3606 https://github.com/photocyte/interproscan_to_enzyme_go/tree/master

3607 193. Tang H, Klopfenstein D, Pedersen B, Flick P, Sato K, Ramirez F, et al. GOATOOLS:
3608 tools for gene ontology. Zenodo. 2015;

3609 194. Le SQ, Gascuel O. An improved general amino acid replacement matrix. *Mol Biol Evol.*
3610 2008;25: 1307–1320.

3611 195. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis
3612 Version 7.0 for Bigger Datasets. *Mol Biol Evol.* 2016;33: 1870–1874.

3613 196. Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription
3614 units in an invertebrate genome. *Genome Res.* 2007;17: 625–631.

3615 197. Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. Evolution of DNA Methylation across
3616 Insects. *Mol Biol Evol.* 2017;34: 654–665.

3617 198. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
3618 improvements in performance and usability. *Mol Biol Evol.* 2013;30: 772–780.

3619 199. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic
3620 trees and networks. *Syst Biol.* 2012;61: 1061–1067.

3621 200. Wood KV, de Wet JR, Dewji N, DeLuca M. Synthesis of active firefly luciferase by in vitro
3622 translation of RNA obtained from adult lanterns. *Biochem Biophys Res Commun.* 1984;124:
3623 592–596.

3624 201. De Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S. Firefly luciferase gene:
3625 structure and expression in mammalian cells. *Mol Cell Biol. Am Soc Microbiol;* 1987;7:
3626 725–737.

3627 202. Masuda T, Tatsumi H, Nakano E. Cloning and sequence analysis of cDNA for luciferase
3628 of a Japanese firefly, *Luciola cruciata*. *Gene.* 1989;77: 265–270.

3629 203. Tatsumi H, Kajiyama N, Nakano E. Molecular cloning and expression in *Escherichia coli*
3630 of a cDNA clone encoding luciferase of a firefly, *Luciola lateralis*. *Biochim Biophys Acta.*
3631 1992;1131: 161–165.

3632 204. Ye L, Buck LM, Schaeffer HJ, Leach FR. Cloning and sequencing of a cDNA for firefly
3633 luciferase from *Photuris pennsylvanica*. *Biochim Biophys Acta*. 1997;1339: 39–52.

3634 205. Oba Y, Mori N, Yoshida M, Inouye S. Identification and characterization of a luciferase
3635 isotype in the Japanese firefly, *Luciola cruciata*, involving in the dim glow of firefly eggs.
3636 *Biochemistry*. 2010;49: 10788–10795.

3637 206. Oba Y, Furuhashi M, Bessho M, Sagawa S, Ikeya H, Inouye S. Bioluminescence of a
3638 firefly pupa: involvement of a luciferase isotype in the dim glow of pupae and eggs in the
3639 Japanese firefly, *Luciola lateralis*. *Photochem Photobiol Sci*. 2013;12: 854–863.

3640 207. Bessho-Uehara M, Oba Y. Identification and characterization of the Luc2-type luciferase
3641 in the Japanese firefly, *Luciola parvula*, involved in a dim luminescence in immobile stages.
3642 *Luminescence*. 2017;32: 924–931.

3643 208. Bessho-Uehara M, Konishi K, Oba Y. Biochemical characteristics and gene expression
3644 profiles of two paralogous luciferases from the Japanese firefly *Pyrocoelia atripennis*
3645 (Coleoptera, Lampyridae, Lampyrinae): insight into the evolution of firefly luciferase genes.
3646 *Photochem Photobiol Sci*. 2017;16: 1301–1310.

3647 209. Wood KV, Lam YA, Seliger HH, McElroy WD. Complementary DNA coding click beetle
3648 luciferases can elicit bioluminescence of different colors. *Science*. 1989;244: 700–702.

3649 210. Viviani VR, Bechara EJ, Ohmiya Y. Cloning, sequence analysis, and expression of
3650 active *Phrixothrix* railroad-worms luciferases: relationship between bioluminescence
3651 spectra and primary structures. *Biochemistry*. 1999;38: 8271–8279.

3652 211. Viviani VR, Silva AC, Perez GL, Santelli RV, Bechara EJ, Reinach FC. Cloning and
3653 molecular characterization of the cDNA for the Brazilian larval click-beetle *Pyrearinus*
3654 *termitilluminans* luciferase. *Photochem Photobiol*. 1999;70: 254–260.

3655 212. Ohmiya Y, Sumiya M, Viviani VR, Ohba N. Comparative aspects of a luciferase
3656 molecule from the Japanese luminous beetle, *Rhagophthalmus ohbai*. *Sci Rep Yokosuka*
3657 *City Mus*. 2000;47: 31–38.

3658 213. Oba Y, Hoffmann KH. Insect Bioluminescence in the Post-Molecular Biology Era. *Insect*
3659 *Molecular Biology and Ecology*. CRC Press; 2014; 94–120.

3660 214. Timmermans MJTN, Dodsworth S, Culverwell CL, Bocak L, Ahrens D, Littlewood DTJ, et
3661 al. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for
3662 molecular systematics. *Nucleic Acids Res*. 2010;38: e197.

3663 215. Timmermans MJTN, Vogler AP. Phylogenetically informative rearrangements in
3664 mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles
3665 (Dryopoidea). *Mol Phylogenet Evol*. 2012;63: 299–304.

3666 216. McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, et al. The beetle
3667 tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during
3668 the Cretaceous terrestrial revolution. *Syst Entomol*. John Wiley & Sons, Ltd; 2015;40: 835–
3669 880.

3670 217. Martin GJ, Branham MA, Whiting MF, Bybee SM. Total evidence phylogeny and the

3671 evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). *Mol Phylogenetic*
3672 *Evol.* 2017;107: 564–575.

3673 218. Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, et al. Age constraint on
3674 Burmese amber based on U–Pb dating of zircons. *Cretaceous Res.* 2012;37: 155–163.

3675 219. Kazantsev SV. *Protoluciola albertallenii* gen. n., sp. n., a new Luciolinae firefly (Insecta:
3676 Coleoptera: Lampyridae) from Burmite amber. *RUSSIAN ENTOMOLOGICAL JOURNAL.*
3677 2015;24: 281–283.

3678 220. Velez S, Feder JL. Integrating biogeographic and genetic approaches to investigate the
3679 history of bioluminescent colour alleles in the Jamaican click beetle, *Pyrophorus*
3680 *plagiophthalmus*. *Mol Ecol.* 2006;15: 1393–1404.

3681 221. Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, et al.
3682 OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant,
3683 archaeal, bacterial and viral orthologs. *Nucleic Acids Res.* 2017;45: D744–D749.

3684 222. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
3685 sequencing data. *Bioinformatics.* 2012;28: 3150–3152.

3686 223. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated
3687 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics.* 2009;25: 1972–
3688 1973.

3689 224. Tanabe AS. Kakusan4 and Aminosan: two programs for comparing nonpartitioned,
3690 proportional and separate models for combined molecular phylogenetic analyses of
3691 multilocus sequence data. *Mol Ecol Resour.* 2011;11: 914–921.

3692 225. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
3693 thousands of taxa and mixed models. *Bioinformatics.* 2006;22: 2688–2690.

3694 226. Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, et al. ELM—
3695 the database of eukaryotic linear motifs. *Nucleic Acids Res.* Oxford University Press;
3696 2012;40: D242–D251.

3697 227. Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Motif refinement of
3698 the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. *J Mol Biol.*
3699 2003;328: 567–579.

3700 228. Georg Neuberger, Sebastian Maurer-Stroh, Birgit Eisenhaber, Andreas Hartig and Frank
3701 Eisenhaber. The PTS1 Predictor [Internet]. Available: <http://mendel.imp.ac.at/pts1/>

3702 229. Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis
3703 [Internet]. 2017. Available: <http://mesquiteproject.org>

3704 230. Oba Y, Sato M, Inouye S. Cloning and characterization of the homologous genes of
3705 firefly luciferase in the mealworm beetle, *Tenebrio molitor*. *Insect Mol Biol.* 2006;15: 293–
3706 299.

3707 231. Oba Y, Sato M, Ohta Y, Inouye S. Identification of paralogous genes of firefly luciferase
3708 in the Japanese firefly, *Luciola cruciata*. *Gene.* 2006;368: 53–60.

3709 232. Mofford DM, Liebmann KL, Sankaran GS, Reddy GS, Reddy GR, Miller SC.
3710 Luciferase Activity of Insect Fatty Acyl-CoA Synthetases with Synthetic Luciferins. *ACS*
3711 *Chem Biol.* 2017;12: 2946–2951.

3712 233. Arnoldi FGC, da Silva Neto AJ, Viviani VR. Molecular insights on the evolution of the
3713 lateral and head lantern luciferases and bioluminescence colors in Mastinocerini railroad-
3714 worms (Coleoptera: Phengodidae). *Photochem Photobiol Sci.* 2010;9: 87–92.

3715 234. Amaral DT, Silva JR, Viviani VR. Transcriptional comparison of the photogenic and non-
3716 photogenic tissues of *Phrixothrix hirtus* (Coleoptera: Phengodidae) and non-luminescent
3717 *Chauliognathus flavipes* (Coleoptera: Cantharidae) give insights on the origin of lanterns in
3718 railroad worms. *Gene Reports.* 2017;7: 78–86.

3719 235. Li X, Ogoh K, Ohba N, Liang X, Ohmiya Y. Mitochondrial genomes of two luminous
3720 beetles, *Rhagophthalmus lufengensis* and *R. ohbai* (Arthropoda, Insecta, Coleoptera).
3721 *Gene.* 2007;392: 196–205.

3722 236. Oba Y, Yoshida M, Shintani T, Furuhashi M, Inouye S. Firefly luciferase genes from the
3723 subfamilies Psilochladinae and Ototretinae (Lampyridae, Coleoptera). *Comp Biochem*
3724 *Physiol B Biochem Mol Biol.* 2012;161: 110–116.

3725 237. Viviani VR, Amaral D, Prado R, Arnoldi FGC. A new blue-shifted luciferase from the
3726 Brazilian *Amydetes fanestratus* (Coleoptera: Lampyridae) firefly: molecular evolution and
3727 structural/functional properties. *Photochem Photobiol Sci.* 2011;10: 1879–1886.

3728 238. Branchini BR, Southworth TL, Salituro LJ, Fontaine DM, Oba Y. Cloning of the Blue
3729 Ghost (*Phausis reticulata*) Luciferase Reveals a Glowing Source of Green Light.
3730 *Photochem Photobiol.* 2017;93: 473–478.

3731 239. Stoltz U, Velez S, Wood KV, Wood M, Feder JL. Darwinian natural selection for orange
3732 bioluminescent color in a Jamaican click beetle. *Proc Natl Acad Sci U S A.* 2003;100:
3733 14955–14959.

3734 240. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high
3735 throughput. *Nucleic Acids Res.* 2004;32: 1792–1797.

3736 241. Nei M, Kumar S. *Molecular Evolution and Phylogenetics.* Oxford University Press; 2000.

3737 242. Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. Less
3738 is more: an adaptive branch-site random effects model for efficient detection of episodic
3739 diversifying selection. *Mol Biol Evol.* 2015;32: 1342–1353.

3740 243. Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies.
3741 *Bioinformatics.* 2005;21: 676–679.

3742 244. Goh K-S, Li C-W. A photocytess-associated fatty acid-binding protein from the light organ
3743 of adult Taiwanese firefly, *Luciola cerata*. *PLoS One.* 2011;6: e29576.

3744 245. Nathanson JA, Kantham L, Hunnicutt EJ. Isolation and N-terminal amino acid sequence
3745 of an octopamine ligand binding protein. *FEBS Lett.* 1989;259: 117–120.

3746 246. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and
3747 annotation of phylogenetic and other trees. *Nucleic Acids Res.* 2016;44: W242–5.

3748 247. Briscoe AD, Chittka L. THE EVOLUTION OF COLOR VISION IN INSECTS. *Annu Rev*
3749 *Entomol.* 2001;46: 471–510.

3750 248. Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, et al. Shedding new
3751 light on opsin evolution. *Proc Biol Sci.* 2012;279: 3–14.

3752 249. Martin GJ, Lord NP, Branham MA, Bybee SM. Review of the firefly visual system
3753 (Coleoptera: Lampyridae) and evolution of the opsin genes underlying color vision. *Org*
3754 *Divers Evol.* 2015;15: 513–526.

3755 250. Feuda R, Marlétaz F, Bentley MA, Holland PWH. Conservation, Duplication, and
3756 Divergence of Five Opsin Genes in Insect Evolution. *Genome Biol Evol.* 2016;8: 579–587.

3757 251. McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the
3758 Asian longhorned beetle (*Anoplophora glabripennis*), a globally significant invasive species,
3759 reveals key functional and evolutionary innovations at the beetle-plant interface. *Genome*
3760 *Biol.* 2016;17: 227.

3761 252. Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, et al. A
3762 model species for agricultural pest genomics: the genome of the Colorado potato beetle,
3763 *Leptinotarsa decemlineata* (Coleoptera: Chrysomelidae) [Internet]. *bioRxiv.* 2017. p.
3764 192641. doi:10.1101/192641

3765 253. Sakai K, Tsutsui K, Yamashita T, Iwabe N, Takahashi K, Wada A, et al. *Drosophila*
3766 *melanogaster* rhodopsin Rh7 is a UV-to-visible light sensor with an extraordinarily broad
3767 absorption spectrum. *Sci Rep.* 2017;7: 7349.

3768 254. Ni JD, Baik LS, Holmes TC, Montell C. A rhodopsin in the brain functions in circadian
3769 photoentrainment in *Drosophila*. *Nature.* 2017;545: 340–344.

3770 255. Arikawa K, Aoki K. Response characteristics and occurrence of extraocular
3771 photoreceptors on lepidopteran genitalia. *J Comp Physiol.* Springer-Verlag; 1982;148: 483–
3772 489.

3773 256. Schnitzler CE, Pang K, Powers ML, Reitzel AM, Ryan JF, Simmons D, et al. Genomic
3774 organization, evolution, and expression of photoprotein and opsin genes in *Mnemiopsis*
3775 *leidyi*: a new view of ctenophore photocytes. *BMC Biol.* 2012;10: 107.

3776 257. Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ. Evidence for light
3777 perception in a bioluminescent organ. *Proceedings of the National Academy of Sciences.*
3778 2009;106: 9836–9841.

3779 258. Pankey MS, Minin VN, Imholte GC, Suchard MA, Oakley TH. Predictable transcriptome
3780 evolution in the convergent and complex bioluminescent organs of squid. *Proc Natl Acad*
3781 *Sci U S A.* 2014;111: E4736–42.

3782 259. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated
3783 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics.* 2009;25: 1972–
3784 1973.

3785 260. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A
3786 cross-platform toolkit for mass spectrometry and proteomics. *Nat Biotechnol.* 2012;30: 918–

3787 920.

3788 261. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for
3789 processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
3790 *BMC Bioinformatics*. 2010;11: 395.

3791 262. Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decomposing isotope patterns for
3792 metabolite identification. *Bioinformatics*. 2009;25: 218–224.

3793 263. Gronquist M, Meinwald J, Eisner T, Schroeder FC. Exploring uncharted terrain in
3794 nature's structure space using capillary NMR spectroscopy: 13 steroids from 50 fireflies. *J*
3795 *Am Chem Soc*. 2005;127: 10810–10811.

3796 264. Kyrpides NC, Woyke T, Eisen JA, Garrity G, Lilburn TG, Beck BJ, et al. Genomic
3797 Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I)
3798 project. *Stand Genomic Sci*. 2014;9: 1278–1284.

3799 265. Williamson DL, Tully JG, Rose DL, Hackett KJ, Henegar R, Carle P, et al. Mycoplasma
3800 *somnilux* sp. nov., *Mycoplasma luminosum* sp. nov., and *Mycoplasma lucivorax* sp. nov.,
3801 new sterol-requiring mollicutes from firefly beetles (Coleoptera: Lampyridae). *Int J Syst*
3802 *Bacteriol*. 1990;40: 160–164.

3803 266. Lloyd JE. Firefly Parasites and Predators. *Coleopt Bull*. The Coleopterists Society;
3804 1973;27: 91–106.

3805 267. Guilligay D, Kadlec J, Crépin T, Lunardi T, Bouvier D, Kochs G, et al. Comparative
3806 structural and functional analysis of orthomyxovirus polymerase cap-snatching domains.
3807 *PLoS One*. 2014;9: e84973.

3808 268. Reich S, Guilligay D, Cusack S. An in vitro fluorescence based study of initiation of RNA
3809 synthesis by influenza B polymerase. *Nucleic Acids Res*. 2017;45: 3353–3368.

3810 269. King AMQ, Lefkowitz E, Adams MJ, Carstens EB. Virus Taxonomy: Ninth Report of the
3811 International Committee on Taxonomy of Viruses. Elsevier; 2011.

3812 270. Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P. Genomic RNAs of influenza viruses
3813 are held in a circular conformation in virions and in infected cells by a terminal panhandle.
3814 *Proc Natl Acad Sci U S A*. 1987;84: 8140–8144.

3815 271. Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S. Structural insights into RNA
3816 synthesis by the influenza virus transcription-replication machine. 2017. *Virus Res* :
3817 30782–30781.

3818 272. Eisfeld AJ, Neumann G, Kawaoka Y. At the centre: influenza A virus ribonucleoproteins.
3819 *Nat Rev Microbiol*. 2015;13: 28–41.

3820 273. Leahy MB, Dessens JT, Weber F, Kochs G, Nuttall PA. The fourth genus in the
3821 Orthomyxoviridae: sequence analyses of two Thogoto virus polymerase proteins and
3822 comparison with influenza viruses. *Virus Res*. 1997;50: 215–224.

3823 274. Kimble JB. Zoonotic Transmission of Influenza H9 subtype through Reassortment
3824 [Internet]. Perez DR, editor. University of Maryland, College Park. 2013. Available:
3825 <https://search.proquest.com/docview/1431983410>

3826 275. Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the
3827 mechanisms of viral RNA synthesis. *Nat Rev Microbiol.* 2016;14: 479–493.

3828 276. Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, et al.
3829 Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. *Nature.*
3830 2015;527: 114–117.

3831 277. Hara K, Kashiwagi T, Hamada N, Watanabe H. Basic amino acids in the N-terminal half
3832 of the PB2 subunit of influenza virus RNA polymerase are involved in both transcription and
3833 replication. *J Gen Virol.* 2017;98: 900–905.

3834 278. Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport
3835 of nucleocapsid proteins of enveloped RNA viruses. *Front Microbiol.* 2015;6: 553.

3836 279. Sikora D, Rocheleau L, Brown EG, Pelchat M. Influenza A virus cap-snatches host
3837 RNAs based on their abundance early after infection. *Virology.* 2017;509: 167–177.

3838 280. Thompson WW, Weintraub E, Dhankhar P, Cheng P-Y, Brammer L, Meltzer MI, et al.
3839 Estimates of US influenza-associated deaths made using four different methods. *Influenza*
3840 *Other Respi Viruses.* Wiley Online Library; 2009;3: 37–49.

3841 281. Hause BM, Duceppe M, Collin EA, Ran Z, Liu R, Sheng Z, et al. Isolation of a novel
3842 swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza
3843 C viruses. *PLoS Pathog.* 2013;9: e1003176.

3844 282. Anderson CR, Casals J. Dhori virus, a new agent isolated from *Hyalomma dromedarii* in
3845 India. *Indian J Med Res.* 1973;61: 1416–1420.

3846 283. Haig DA, Woodall JP, Danskin D. THOGOTO VIRUS: A HITHERTO UNDERSCRIBED
3847 AGENT ISOLATED FROM TICKS IN KENYA. *J Gen Microbiol.* 1965;38: 389–394.

3848 284. Mjaaland S, Rimstad E, Falk K, Dannevig BH. Genomic characterization of the virus
3849 causing infectious salmon anemia in Atlantic salmon (*Salmo salar* L.): an orthomyxo-like
3850 virus in a teleost. *J Virol.* 1997;71: 7681–7686.

3851 285. Presti RM, Zhao G, Beatty WL, Mihindukulasuriya KA, da Rosa APAT, Popov VL, et al.
3852 Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family
3853 Orthomyxoviridae. *J Virol.* 2009;83: 11599–11606.

3854 286. Pauly MD, Procaro M, Lauring AS. The mutation rates and mutational bias of influenza
3855 A virus [Internet]. *bioRxiv.* 2017. p. 110197. doi:10.1101/110197

3856 287. Zeng H, Goldsmith CS, Maines TR, Belser JA, Gustin KM, Pekosz A, et al. Tropism and
3857 infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal
3858 differentiated primary epithelial cell cultures. *J Virol.* 2013;87: 2597–2607.

3859 288. Mansfield KG. Viral tropism and the pathogenesis of influenza in the Mammalian host.
3860 *Am J Pathol.* American Society for Investigative Pathology; 2007;171: 1089.

3861 289. Steel J, Lowen AC. Influenza A virus reassortment. *Curr Top Microbiol Immunol.*
3862 2014;385: 377–401.

3863 290. Marshall SH, Ramírez R, Labra A, Carmona M, Muñoz C. Bona fide evidence for natural

3864 vertical transmission of infectious salmon anemia virus in freshwater brood stocks of
3865 farmed Atlantic salmon (*Salmo salar*) in Southern Chile. *J Virol.* 2014;88: 6012–6018.

3866 291. Hall RA, Bielefeldt-Ohmann H, McLean BJ, O'Brien CA, Colmant AMG, Piyasena TBH,
3867 et al. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction
3868 with Arboviral Pathogens. *Evol Bioinform Online.* 2016;12: 35–44.

3869 292. Ballinger MJ, Bruenn JA, Hay J, Czechowski D, Taylor DJ. Discovery and evolution of
3870 bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect
3871 genomes. *J Virol.* 2014;88: 8783–8794.

3872 293. Metegnier G, Becking T, Chebbi MA, Giraud I, Moumen B, Schaack S, et al.
3873 Comparative paleovirological analysis of crustaceans identifies multiple widespread viral
3874 groups. *Mol DNA.* 2015;6: 16.

3875 294. Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on
3876 host biology. *Nat Rev Genet.* 2012;13: 283–296.

3877 295. Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. *PLoS Genet.*
3878 2010;6: e1001191.

3879 296. Temin HM. Reverse transcription in the eukaryotic genome: retroviruses,
3880 pararetroviruses, retrotransposons, and retrotranscripts. *Mol Biol Evol.* 1985;2: 455–468.

3881 297. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, et al. Genome-wide
3882 analysis of retroviral DNA integration. *Nat Rev Microbiol.* 2005;3: 848–858.

3883 298. Gilbert C, Cordaux R. Viruses as vectors of horizontal transfer of genetic material in
3884 eukaryotes. *Curr Opin Virol.* 2017;25: 16–22.

3885 299. Palatini U, Miesen P, Carballar-Lejarazu R, Ometto L, Rizzo E, Tu Z, et al. Comparative
3886 genomics shows that viral integrations are abundant and express piRNAs in the arboviral
3887 vectors *Aedes aegypti* and *Aedes albopictus*. *BMC Genomics.* 2017;18: 512.

3888 300. Olson KE, Bonizzoni M. Nonretroviral integrated RNA viruses in arthropod vectors: an
3889 occasional event or something more? *Curr Opin Insect Sci.* 2017;22: 45–53.

3890 301. Aiewsakun P, Katzourakis A. Endogenous viruses: Connecting recent and ancient viral
3891 evolution. *Virology.* 2015;479-480: 26–37.

3892 302. Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V, Blanc H, et al. Virus-derived
3893 DNA drives mosquito vector tolerance to arboviral infection. *Nat Commun.* 2016;7: 12410.

3894 303. Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC. Long-term transmission of
3895 defective RNA viruses in humans and *Aedes* mosquitoes. *Science.* 2006;311: 236–238.

3896 304. Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, Blanc H, et al. RNA-mediated
3897 interference and reverse transcription control the persistence of RNA viruses in the insect
3898 model *Drosophila*. *Nat Immunol.* 2013;14: 396–403.

3899 305. Miesen P, Joosten J, van Rij RP. PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector
3900 Mosquitoes. *PLoS Pathog.* 2016;12: e1006017.

