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Firefly genomes illuminate parallel origins of bioluminescence in beetles
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Abstract

Fireflies and their luminous courtships have inspired centuries of scientific study. Today
firefly luciferase is widely used in biotechnology, but the evolutionary origin of
bioluminescence within beetles remains unclear. To shed light on this long-standing
question, we sequenced the genomes of two firefly species that diverged over 100
million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis.
To compare bioluminescent origins, we also sequenced the genome of a related click
beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-
identical to fireflies, but anatomically unique light organs, suggesting the intriguing
hypothesis of parallel gains of bioluminescence. Our analyses support independent
gains of bioluminescence in fireflies and click beetles, and provide new insights into the
genes, chemical defenses, and symbionts that evolved alongside their luminous

lifestyle.
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Introduction

Fireflies (Coleoptera: Lampyridae) represent the best-studied case of bioluminescence.
The coded language of their luminous courtship displays (Fig. 1A; Video S1) has been
long studied for its role in mate recognition (Lloyd 1966; Lewis and Cratsley 2008;
Stanger-Hall and Lloyd 2015), while non-adult bioluminescence is likely a warning
signal of their unpalatable chemical defenses (De Cock and Matthysen 1999), such as
the cardiotoxic lucibufagins of Photinus fireflies (Meinwald, Wiemer, and Eisner 1979).
The biochemical understanding of firefly luminescence: an ATP, Mg*, and O
dependent luciferase-mediated oxidation of the substrate luciferin (Shimomura 2012),
along with the cloning of the luciferase gene (de Wet et al. 1985; Ow et al. 1986), led to
the widespread use of luciferase as a reporter with unique applications in biomedical
research and industry (Fraga 2008). With >2000 species globally, fireflies are
undoubtedly the most culturally-appreciated bioluminescent group, yet there are at least
three other beetle families with bioluminescent species: click beetles (Elateridae),
American railroad worms (Phengodidae) and Asian starworms (Rhagophthalmidae)
(Martin et al. 2017). These four closely related families (superfamily Elateroidea) have
homologous luciferases and structurally identical luciferins (Shimomura 2012), implying
a single origin of beetle bioluminescence. However, as Darwin recognized in his
“Difficulties on Theory” (Charles Darwin 1872), the light organs amongst the luminous
beetle families are clearly distinct (Fig. 1B), implying independent origins. Thus, whether
beetle bioluminescence is derived from a single or multiple origin(s) remains

unresolved.
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To address this long-standing question, we sequenced and analyzed the
genomes of three bioluminescent beetle species. To represent the fireflies, we
sequenced the widespread North American “Big Dipper Firefly”, Photinus pyralis (Fig.
1A, C) and the Japanese “Heike-botaru” firefly Aquatica lateralis (Fig. 1B). Photinus
pyralis was used in classic studies of firefly bioluminescent biochemistry (Bitler and
McElroy 1957) and the cloning of luciferase (de Wet et al. 1985), while A. lateralis, a
species with specialized aquatic larvae, is one of the few fireflies that can be reliably
cultured in the laboratory (Yuichi Oba, Furuhashi, et al. 2013). These two fireflies
represent the two major firefly subfamilies, Lampyrinae and Luciolinae, which diverged
from a common ancestor over 100 Mya (Fig. 1B) (Misof et al. 2014; Mckenna et al.
2015). To facilitate evolutionary comparisons, we also sequenced the “Cucubano’,
Ignelater luminosus (Fig. 1B), a Caribbean bioluminescent click beetle, and member of
the “Pyrophorus” used by Raphaél Dubois to first establish the enzymatic basis of
bioluminescence in the late 1800s (Dubois 1885, 1886). Comparative analyses of the
genomes of these three species allowed us to reconstruct the origin(s) and evolution of

beetle bioluminescence.

Results

Sequencing and assembly of firefly and click-beetle genomes

Photinus pyralis adult males were collected from the Great Smoky Mountains National
Park, USA (GSMNP) and Mercer Meadows New Jersey, USA (MMNJ) (Fig. 1C), and
sequenced using short-insert, mate-pair, Hi-C, and long-read Pacific Biosciences

(PacBio) approaches (Table S4.1.1). These datasets were combined in a MaSuRCA
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(Zimin et al. 2013) hybrid genome assembly (Supp. Text 1.5). The Aquatica lateralis
genome was derived from an ALL-PATHSs (Butler et al. 2008) assembly of short insert
and mate-pair reads from a single adult female from laboratory-reared population,
whose lineage, dubbed “lkeya-Y90”, was first collected 25 years ago from a now extinct
population in Yokohama, Japan (Supp. Text 2.5). A single Ignelater luminosus adult
male, collected in Mayaguez Puerto Rico, USA, was used to produce a high-coverage
Supernova (Weisenfeld et al. 2017) linked-read draft genome (Supp. Text 3.5), which
was further manually scaffolded using low-coverage long-read Oxford Nanopore
MinlON sequencing (Supp. Text 3.5.4).

The gene completeness and contiguity statistics of our P. pyralis (Ppyr1.3) and
A. lateralis (Alat1.3) genome assemblies are comparable to the genome of the model
beetle Tribolium castaneum (Fig. 2F; Supp. Text 4.1). The [|. luminosus genome
assembly (llumi1.2) is less complete, but is comparable to other published insect
genomes (Fig. 2F; Supp. Text 4.1). Protein-coding genesets for our study species were
produced via an EvidenceModeler-mediated combination of homology alignments, ab
initio predictions, and de novo and reference-guided RNA-seq assemblies followed by
manual gene curation for gene families of interest (Supp. Text 1.10; 2.8; 3.8). These
coding gene annotation sets for P. pyralis, A. lateralis, and I. luminosus are comprised
of 15,773, 14,285, and 27,557 genes containing 94.2%, 90.0%, and 91.8% of the
Endopterygota Benchmarking Universal Single-Copy Orthologs (BUSCOs)(Siméao et al.
2015), respectively. Protein clustering via predicted orthology indicated 77% of genes
were found in a Orthogroups with at least 1 other species (Fig. 2E; Fig. S4.2.1.1). We

found the greatest orthogroup overlap between the P. pyralis and A. lateralis genesets,
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as expected given the more recent phylogenetic divergence of these species.
Remaining redundancy in the P. pyralis assembly and annotation, as indicated by
duplicates of the BUSCOs and the assembly size (Fig. 2F; Supp. Table 4.1.2) is likely
due to the heterozygosity of the outbred input libraries (Supp. Text 1).

To enable the characterization of long-range genetic structure, we super-
scaffolded the P. pyralis genome assembly into 11 pseudo-chromosomal linkage groups
using a Hi-C proximity-ligation linkage approach (Fig. 2A; Supp. Text 1.5.3). These
linkage groups contain 95% of the assembly (448.8 Mbp). Linkage group LG3a
corresponds to the X-chromosome based on expected adult XO male read coverage
and gene content (Supp. Text 1.6.3) and its size (22.2 Mbp) is comparable to the
expected X-chromosome size based on sex-specific genome size estimates using flow
cytometry (~26 Mbp) (Lower et al. 2017). Homologs to T. castaneum X-chromosome
genes were enriched on LG3a, compared to every other linkage group, suggesting that
the X-chromosomes of these distantly related beetles are homologous, and that their
content has been reasonably conserved for >200 MY (Supp. Text 1.6.4) (Mckenna et al.
2015). We hypothesized that the P. pyralis orthologs of known bioluminescence genes,
including the canonical luciferase Luc? (de Wet et al. 1985) and the specialized luciferin
sulfotransferase LST (Fallon et al. 2016), would be located on the same linkage group
to facilitate chromosomal looping and enhancer assisted co-expression within the light
organ. We however found these genes on separate linkage groups (Fig. 2A), falsifying
that hypothesis.

In addition to nuclear genome assembly and coding gene annotation, we also

assembled the complete mitochondrial genomes (mtDNA) of P. pyralis (Fig. 2C; Supp.
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Text 1.8) and I. luminosus (Supp. Text 3.10), while the mtDNA sequence of A. lateralis
was recently published (Maeda et al. 2017). These mtDNA assemblies show high
conservation of gene content and synteny, with the exception of the variable ~1 Kbp
tandem repeat unit (TRU) found in the firefly mtDNAs.

As repetitive elements are common participants and drivers of genome evolution
(Feschotte and Pritham 2007), we next sought to characterize the repeat content of our
genome assemblies. Overall, 42.6%, 19.8%, and 34.1% of the P. pyralis, A. lateralis,
and /. luminosus assemblies respectively were found to be repetitive (Supp. Text 1.11;
2.9; 3.9). Of these repeats, respectively 66.7%, 39.4%, and 55% could not be classified
as any known repetitive sequence. Helitrons, DNA transposons that transpose through
rolling circle replication (Kapitonov and Jurka 2001), are among the most abundant
individual repeat elements in the P. pyralis assembly. Via in situ hybridization, we
identified that P. pyralis chromosomes have canonical telomeres with telomeric repeats
(TTAGG) (Fig. 2B; Supp. Text 1.13).

DNA methylation is common in eukaryotes, but varies in degree across insects,
especially within Coleoptera (Bewick et al. 2017). Furthermore, the functions of DNA
methylation across insects remain obscure (Bewick et al. 2017; Glastad et al. 2017). To
examine firefly cytosine methylation, we characterized the methylation status of P.
pyralis DNA with whole genome bisulfite sequencing (WGBS). Methylation at CpGs
(mCG) was unambiguously detected at ~20% within the genic regions of P. pyralis and
its methylation levels were at least twice those reported from other holometabolous
insects (Fig. 2D; Supp. Text 1.12). Molecular evolution analyses of the DNA

methyltransferases (DNMTs) show that orthologs of both DNMT1 and DNMT3 were
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conserved in P. pyralis, A. lateralis, and I. luminosus (Fig. S4.2.3.1; Supp. Text 4.2.3),
implying that our three study species, and inferentially likely most firefly lineages,
possess mCG. Corroborating this claim, CpGo/ analysis of methylation indicated our

three study species had DNA methylation (Fig. S4.2.3.3).

The genomic context of firefly luciferase evolution

Two luciferase paralogs have been previously described in fireflies (Yuichi Oba,
Furuhashi, et al. 2013; Bessho-Uehara, Konishi, and Oba 2017). P. pyralis Luc1 was
the first firefly luciferase cloned (de Wet et al. 1985), and its orthologs have been widely
identified from other fireflies (Y. Oba and Hoffmann 2014). The luciferase paralog Luc?2
was previously known only from a handful of Asian taxa, including A. lateralis (Yuichi
Oba, Furuhashi, et al. 2013; Bessho-Uehara, Konishi, and Oba 2017). Previous
investigations of these Asian taxa have shown that Luc? is responsible for light
production from the lanterns of adults, larvae, prepupae and pupae, whereas Luc?2 is
responsible for the dim glow of eggs, ovaries, prepupae and the whole pupal body
(Bessho-Uehara, Konishi, and Oba 2017). From our curated genesets (Supp. Text 1.10;
2.8), we unequivocally identified two firefly luciferases, Luc1 and Luc2, in both the P.
pyralis and A. lateralis genomes. Our RNA-Seq data further show that in both P. pyralis
and A. lateralis Luc1 and Luc2 display expression patterns consistent with previous
reports. While Luc1 is the sole luciferase expressed in the lanterns of both larvae and
adults, regardless of sex, Luc2 is expressed in other tissues and stages, such as eggs
(Fig. 3C). Notably, Luc2 expression is detected in RNA libraries derived from adult
female bodies (no head or lantern), suggesting detection of ovary expression as

described in previous studies (Bessho-Uehara, Konishi, and Oba 2017). Together,
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these results support that, since their divergence via gene duplication prior to the
divergence of Lampyrinae and Luciolinae, Luc1 and Luc2 have established different, but
conserved roles in bioluminescence throughout the firefly life cycle.

Firefly luciferase is hypothesized to be derived from an ancestral peroxisomal
fatty acyl-CoA synthetase (PACS) (Fig. 3A) (Yuichi Oba, Ojika, and Inouye 2003; Yuichi
Oba et al. 2006). We found that, in both firefly species, Luc1 is genomically clustered
with its closely related homologs, including PACSs and non-peroxisomal acyl-CoA
synthetases (ACSs), enzymes which can be distinguished by the presence/absence of
a C-terminal peroxisomal-targeting-signal-1 (PTS1). We also found nearby microsomal
glutathione S-transferase (MGST) family genes (Fig. 3D) that are directly orthologous
between both species. Genome-wide phylogenetic analysis of the luciferases, PACSs
and ACSs genes indicates that Luc? and Luc2 form two orthologous groups, and that
the neighboring PACS and ACS genes near Luc1 form three major clades (Fig. 3C):
Clade A, whose common ancestor and most extant members are ACSs, and Clades B
and C whose common ancestors and most extant members are PACSs. Luc1 and Luc2
are highly conserved at the level of gene structure—both are composed of seven exons
with completely conserved exon/intron boundaries (Fig. S4.3.1.1; S4.3.1.2), and most
members of Clades A, B, and C also have 7 exons. The exact syntenic and orthology
relationships of the ACS and PACS genes adjacent to the Luc? locus remains unclear,
likely due to subsequent gene divergence and shuffling (Fig. 3C, D).

Luc?2 is located on a different linkage-group from Luc? in P. pyralis and on a
different scaffold from Luc? in A. lateralis, consistent with the interpretation that Luc1

and Luc? lie on different chromosomes in both firefly species. No PACS or ACS genes
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were found in the vicinity of Luc?2 in either species. These data support that tandem
gene duplication in a firefly ancestor gave rise to several ancestral PACS paralogs, one
of which neofunctionalized in place to become the ancestral luciferase (AncLuc) (Fig.
3B). Prior to the divergence of the firefly subfamilies Lampyrinae and Luciolinae around
100 Mya (Supp. Text 4.3), this AncLuc duplicated, possibly via a long-range gene
duplication event (e.g. transposon mobilization), and then subfunctionalized in its
transcript expression pattern to give rise to Luc2, while the original AncLuc
subfunctionalized in place to give rise to Luc1 (Fig. 3B). From the shared Luc gene
clustering in both fireflies, we infer the structure of the pre-duplication AncLuc locus
contained one or more ACS genes (Clade A), one or more PACS genes (Clade B/C),

and one or more MGST family genes (Fig. 3B).

Independent origins of firefly and click beetle luciferase

To resolve the number of origins of luciferase activity, and therefore bioluminescence,
between fireflies and click beetles, we first identified the luciferase of /. luminosus
luciferase (llumLuc), and compared its genomic context to the luciferases of P. pyralis
and A. lateralis (Fig. 3D). Unlike some other described bioluminescent Elateridae, which
have separate luciferases expressed in the dorsal prothorax and ventral abdominal
lanterns (Yuichi Oba, Kumazaki, and Inouye 2010), we identified only a single luciferase
in the /. luminosus genome which was highly expressed in both of the lanterns (Fig. 3C;
Supp. Text 3.8). The exon number and exon-intron splice junctions of /lumLuc are
identical to those of firefly luciferases, but unlike the firefly luciferases which have short
introns less than <100 bp long, llumLuc has two long introns (Fig. S4.3.1.1). We found

several PACS genes in the I. luminosus genome which were related to llumLuc and
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formed a clade (Clade D) specific to the Elateridae (Fig. 3C, D). llumLuc lies on a 366
Kbp scaffold containing 18 other genes, including 3 related Clade D PACS genes
(Scaffold 13255; Fig. 3D; Fig. 4), however the Clade D genes that are most closely
related to llumLuc are found on a separate 650 Kbp scaffold (Scaffold 9864; Fig 3D).
We infer that the llumLuc locus is not orthologous to the extant firefly Luc? locus, as
llumLuc is not physically clustered with Clade A, B or C ACS or PACS genes (Fig. 3C,
D). We instead identified a different scaffold in /. luminosus that is likely orthologous to
the firefly Luc?1 locus (Scaffold 9654; Fig. 3D). This assessment is based on the
presence of adjacent Clade A and B ACS and PACS genes, as well as orthologous
exoribonuclease family (PRNT) and inositol monophosphatase family (IMP) genes, both
of which were found adjacent to the A. lateralis Luc1 locus, but not the P. pyralis Luc1
locus (Fig. 3D). Interestingly, lumPACS11, the most basal member of Clade D, was
also found on Scaffold 9654 (Fig. 3D). This finding is consistent with an expansion of
Clade D following duplication from lumPACS11 to a distant site. Overall, these genomic
structures are consistent with independent origins of firefly and click beetle luciferases.
We then carried out targeted molecular evolution analyses including the known
beetle luciferases and their closely related homologs. Ancestral state reconstruction of
luminescent activity on the gene tree using Mesquite(Maddison and Maddison 2017)
recovered two independent gains of luminescence as the most parsimonious and likely
scenario: once in click beetles, and once in the common ancestor of firefly, phengodid,
and rhagophthalmid beetles (Fig. 4A; Supp. Text 4.3.3). In an independent molecular
adaptation analysis utilizing the coding nucleotide sequence of the elaterid luciferases

and their close homologs within Elateridae, 35% of the sites of the branch leading to the
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ancestral click beetle luciferase showed a statistically significant signal of episodic
positive selection with dy/ds>1 (w or max dn/ds=3.98) as compared to the evolution of
its paralogs using the aBSREL branch-site selection test (Smith et al. 2015) (Fig. 4B;
Supp. Text 4.3.4). This implies that the common ancestor of the click beetle luciferases
(EAncLuc) underwent a period of accelerated directional evolution. As the branch under
selection in the molecular adaptation analysis (Fig. 4B) is the same branch of luciferase
activity gain via ancestral reconstruction (Fig. 4A), we conclude that the identified
selection signal represents the relatively recent neofunctionalization of click beetle
luciferase from a non-luminous ancestral Clade D PACS gene, distinct from the more
ancient neofunctionalization of firefly luciferase. Based on the constraints from our tree,
we determine that this neofunctionalization of EAncLuc occured after the divergence of
the elaterid subfamily Agrypninae. In contrast, we cannot determine if the original
neofunctionalization of AncLuc occurred in the ancestral firefly, or at some point during
the evolution of “cantharoid” beetles, an unofficial group of beetles including the
luminous Rhagophthalmidae, Phengodidae and Lampyridae among other non-luminous
groups, but not the Elateridae (Branham and Wenzel 2003). There is evidence for a
subsequent luciferase duplication event in phengodids, but not in rhagophthalmids, that
is independent of the duplication event that gave rise to Luc? and Luc?2 in fireflies (Figs.
3C, 4). Altogether, our results strongly support the independent neofunctionalization of
luciferase activity in click beetles and fireflies, and therefore at least two independent

gains of luciferin-utilizing luminescence in beetles.
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Metabolic adaptation of the firefly lantern

Beyond luciferase, we sought to characterize other metabolic traits which might
have co-evolved in fireflies to support bioluminescence. Of particular importance, the
enzymes of the de novo biosynthetic pathway for firefly luciferin remain unknown (Yuichi
Oba, Yoshida, et al. 2013). We hypothesized that bioluminescent accessory enzymes,
either specialized enzymes with unique functions in luciferin metabolism or enzymes
with primary metabolic functions relevant to bioluminescence, would be highly
expressed (HE: 90th percentile; Supp. Text 4.2.2) in the adult lantern, and would be
differentially expressed (DE; Supp. Text 4.2.2) between Iuminescent and non-
luminescent tissues. To determine this, we performed RNA-Seq and expression
analysis of the dissected P. pyralis and A. lateralis adult male lantern tissue compared
with a non-luminescent tissue (Supp. Text 4.2.2). We identified a set of predicted
orthologous enzyme-encoding genes conserved in both P. pyralis and A. lateralis that
met our HE and DE criteria (Fig. 5). Both luciferase and luciferin sulfotransferase (LST),
a specialized enzyme recently implicated in luciferin storage in P. pyralis (Fallon et al.
2016), were recovered as candidate genes using four criteria (HE, DE, enzymes, direct
orthology across species), confirming the validity of our approach. While a direct
ortholog of LST is present in A. lateralis, it is absent from I. luminosus, suggesting that
LST, and the presumed luciferin storage it mediates, is an exclusive ancestral firefly or
cantharoid trait. This finding is consistent with previous hypotheses of the absence of
LST in Elateridae (Fallon et al. 2016), and with the overall hypothesis of independent

evolution of bioluminescence between the Lampyridae and Elateridae.
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Moreover, we identified several additional enzyme-encoding HE and DE lantern
genes that are likely important in firefly lantern physiology (Fig. 5). For instance,
adenylate kinase likely plays a critical role in efficient recycling of AMP post-
luminescence, and cystathionine gamma-lyase supports a key role of cysteine in
luciferin biosynthesis (Yuichi Oba, Yoshida, et al. 2013) and recycling (Okada et al.
1974). We also detected a combined adenylyl-sulfate kinase and sulfate
adenylyltransferase enzyme (ASKSA) among the lantern-enriched gene list (Fig.
S4.4.2), implicating active biosynthesis of 3'-phosphoadenosine-5'-phosphosulfate
(PAPS), the cofactor of LST, in the lantern. This finding highlights the importance of
LST-catalyzed luciferin sulfonation for bioluminescence. These firefly orthologs of
ASKSA are the only members amongst their paralogs to contain a PTS1 (Fig. S4.4.2),
suggesting specialized localization to the peroxisome, the location of the luminescence
reaction. This suggests that the levels of sulfoluciferin and luciferin may be actively
regulated within the peroxisome of lantern cells in response to luminescence. Overall
our findings of directly orthologous enzymes that share expression patterns in the light
organs of both P. pyralis and A. lateralis indicates that the enzymatic physiology and/or
the gene expression patterns of the photocytes were already fixed in the Luciolinae-
Lampyrinae ancestor.

We also performed a similar expression analysis for genes not annotated as
enzymes, yielding several genes with predicted lysosomal function (Supp. Table 4.4.1;
Supp. Text 4.4). This Indicates that the abundant but as yet unidentified “differentiated
zone granule” organelles of the firefly light organ (Ghiradella and Schmidt 2004) could

be lysosomes. Interestingly, we found a HE (TPM value ~300) and DE opsin, Rh7, in
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the light organ of A. lateralis, but not P. pyralis (Fig. S4.5.1; Supp. Text 4.5), suggesting
a potential light perception role for Rh7 in the A. lateralis lantern, akin to the light

perception role described for Drosophila Rh7 (Ni et al. 2017).

Genomic insights into firefly chemical defense

Firefly bioluminescence is postulated to have first evolved as an aposematic
warning of larval chemical defenses (Branham and Wenzel 2003). Lucibufagins are
abundant unpalatable defense steroids described from certain North American firefly
species, most notably in the genera Photinus (Meinwald, Wiemer, and Eisner 1979),
Lucidota (Gronquist et al. 2005), and Ellychnia (Smedley et al. 2017), and hence are
candidates for ancestral firefly defense compounds. To test whether lucibufagins are
widespread among bioluminescent beetles, we assessed the presence of lucibufagins
in P. pyralis, A. lateralis, and I. luminosus by liquid-chromatography high-resolution
accurate-mass mass-spectrometry (LC-HRAM-MS). While lucibufagins were found in
high abundance in P. pyralis adult hemolymph, they were not observed in A. lateralis
adult hemolymph, nor in I. luminosus metathorax extract (Fig. 6B; Supp. Text 4.6).
Since chemical defense is presumably most critical in the long-lived larval stage, we
next tested whether lucibufagins are present in all firefly larvae even if they are not
present in the adults of certain species. We found lucibufagins in P. pyralis larval
extracts, however, they were not observed in A. lateralis larval extracts (Fig. 6B; Supp.
Text 4.6). Together, these results suggest that the lucibufagin biosynthetic pathway is
either a derived trait only found in particular firefly taxa (e.g. subfamily: Lampyrinae), or
that lucibufagin biosynthesis was an ancestral trait that was lost in A. lateralis.

Consistent with the former hypothesis, the presence of lucibufagins in non-North-
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American Lampyrinae has been previously reported (Tyler et al. 2008), but to date there
are no reports of lucibufagins in the Luciolinae.

The lucibufagin biosynthetic pathway is currently unknown. However, their
chemical structure suggests a biosynthetic origin from cholesterol followed by a series
of hydroxylations, -OH acetylations, and the side-chain oxidative pyrone formation (Fig.
6A) (Meinwald, Wiemer, and Eisner 1979). We hypothesized that cytochrome P450s, an
enzyme family widely involved in metabolic diversification of organic substrates
(Hamberger and Bak 2013), could underlie several oxidative reactions in the proposed
lucibufagin biosynthetic pathway. We therefore inferred the P450 phylogeny among our
three bioluminescent beetle genomes to identify any lineage-specific genes correlated
with lucibufagin presence. Our analysis revealed a unique expansion of one P450
family, the CYP303 family, in P. pyralis. While 94/97 of currently sequenced winged-
insect genomes on OrthoDB (Zdobnov et al. 2017), as well as the A. lateralis and |.
luminosus genomes, contain only a single CYP303 family gene, the P. pyralis genome
contains 11 CYP303 genes and 2 pseudogenes (Fig. 6C), which expanded via tandem
duplication on the same linkage group (Fig. 6D). The CYP303 ortholog of D.
melanogaster, CYP303A1, has been shown to play a role in mechanosensory bristle
development (Willingham and Keil 2004). Although the exact biochemical function and
substrate of D. melanogaster CYP303A1 is unknown, its closely related P450 families
operate on an insect steroid hormone ecdysone (Wilingham and Keil 2004). As
ecdysone and lucibufagins are structurally similar, CYP303 may operate on steroid-like
compounds. Therefore, the lineage-specific expansion of the CYP303 family in P.

pyralis is a compelling candidate in the metabolic evolution of lucibufagins as chemical
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defenses associated with the aposematic role of bioluminescence. Alternatively, this
CYP303 expansion in P. pyralis may be associated with other lineage-specific chemical

traits, such as pheromone production.

Symbionts of bioluminescent beetles

Given the increasingly recognized contributions of symbionts to host metabolism
(Newman and Cragg 2015), we characterized the holobiomes of all three beetles as
potential contributors to metabolic processes related to bioluminescence. Whole
genome sequencing of our wild-caught and laboratory reared fireflies revealed a rich
microbiome. Amongst our firefly genomes, we found various bacterial genomes, viral
genomes, and the complete mtDNA for a phorid parasitoid fly, Apocephalus antennatus,
the first mtDNA reported for genus Apocephalus. This mtDNA was inadvertently
included in the P. pyralis PacBio library via undetected parasitization of the initial
specimens, and was assembled via a metagenomic approach (Supp. Text 5.2).
Independent collection of A. antennatus which emerged from field-collected P. pyralis
adults and targeted COI sequencing later confirmed the taxonomic origin of this mtDNA
(Supp. Text 5.3). We also sequenced and metagenomically assembled the complete
circular genome (1.29 Mbp, GC: 29.7%; ~50x coverage) for a P. pyralis-associated
mollicute (Phylum: Tenericutes), Entomoplasma luminosum subsp. pyralis (Supp. Text
5.1). Entomoplasma spp. were first isolated from the guts of North American fireflies
(Hackett et al. 1992) and our assembly provides the first complete genomic assembly of
any Entomoplasma species. Broad read coverage for the E. luminosus subsp. pyralis
genome was detected in 5/6 of our P. pyralis DNA libraries, suggesting that

Entomplasma is a highly prevalent, possibly vertically inherited, P. pyralis symbiont. It

17


https://paperpile.com/c/6R9ebg/ggck7
https://paperpile.com/c/6R9ebg/uerUq

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

has been hypothesized that these Entomoplasma mollicutes could play a role in firefly
metabolism, specifically via contributing to cholesterol metabolism and lucibufagin
biosynthesis (Smedley et al. 2017).

Within our unfiltered A. lateralis genomic assembly (Alat1.2), we also found 43
scaffolds (2.3 Mbp; GC:29.8%, ~64x coverage), whose taxonomic annotation
corresponded to the Tenericutes (Supp. Text 2.5.2), suggesting that A. lateralis may
also harbor a mollicute symbiont. Alat1.2 also contains 2119 scaffolds (13.0 Mbp,
GC:63.7%, ~25x coverage) annotated as of Proteobacterial origin. Limited
Proteobacterial symbionts were detected in the /. luminosus assembly (0.4 Mbp; GC:30-
65% ~10x coverage) (Supp. Text 3.5.2), suggesting no stable symbiont is present in
adult I. luminosus. Lastly, we detected two species of novel orthomyxoviridae-like
ssRNA viruses, which we dub Photinus pyralis orthomyxo-like virus 1 and 2
(PpyrOMLV1/2), that were highly prevalent across our P. pyralis RNA-Seq datasets,
and showed multi-generational transovarial transmission in the laboratory (Supp. Text
5.4). We also found several endogenous viral elements (EVEs) for PpyrOMLV1/2 in P.
pyralis (Supp. Text 5.4.1). These viruses are the first reported in any firefly species, and
represent only the second report of transgenerational transfer of any Orthomyxoviridae
virus (Marshall et al. 2014), and the second report of Orthomyxoviridae derived EVEs
(Katzourakis and Gifford 2010). Together, these genomes from the firefly holobiont
provide valuable resources for the continued inquiry of the symbiotic associates of

fireflies and their biological and ecological significance.
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Discussion

Here we generated genome assembles, diverse tissue and life-stage RNA-Seq
data, and LC/MS data for three evolutionarily informative and historically well-studied
bioluminescent beetles, and used a series of comparative analyses to illuminate long-
standing questions on the origins and evolution of beetle bioluminescence. By analyzing
the genomic synteny and molecular evolution of the beetle luciferases and their extant
and inferred-ancestral homologs, we found strong support for the independent origins of
luciferase, and therefore bioluminescence, between fireflies and click beetles. Our
approaches and analyses lend molecular evidence to the previous morphology-
phylogeny based hypotheses of parallel gain proposed by Darwin and others (Charles
Darwin 1872; Costa 1975; Branham and Wenzel 2003; Sagegami-Oba, Oba, and Ohira
2007; Bocakova et al. 2007; Y. Oba 2009; Day 2013). While our elaterid luciferase
selection analysis strongly supports an independent gain, we did not perform an
analogous selection analysis of luciferase homologs across bioluminescent beetles, due
to the lack of genomic data from key related beetle families. Additional genomic
information from basal fireflies, other luminous beetle taxa (e.g. Phengodidae and
Rhagophthalmidae), and non-luminous elateroid taxa (e.g. Cantharidae and Lycidae),
will be useful to further develop and test models of luciferase evolution, including the
hypothesis that bioluminescence also originated independently in the Phengodidae
and/or Rhagophthalmidae. The recently published Pyrocoelia pectoralis Lampyrinae
firefly genome is an important advance which will contribute to future genomic studies

(Fu et al. 2017).
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The independent origins of the firefly and click beetle luciferases provide an
exemplary natural model system to understand enzyme evolution through parallel
mutational trajectories, and for evolution of complex metabolic traits generally. The
abundance of gene duplication events of PACSs and ACSs at the ancestral luciferase
locus in both fireflies and 1. luminosus suggests that ancestral promiscuous enzymatic
activities served as raw materials for the selection of new adaptive catalytic functions
(Weng 2014). But while parallel evolution of luciferase implies evolutionary
independence of bioluminescence overall, the reality may be more complex, and the
other subtraits of bioluminescence amongst the bioluminescent beetles likely possess
different evolutionary histories from luciferase. While subtraits such as specialized
tissues and neural control almost certainly arose after luciferase specialization, and thus
can be inferred to also have independent origins between fireflies and click beetles,
luciferin, which was presumably a prerequisite to luciferase neofunctionalization, may
have been present in their common ancestor. Microbial endosymbionts, such as the
tenericutes detected in our P. pyralis and A. lateralis datasets, are intriguing candidate
contributors to luciferin metabolism and biosynthesis. Alternatively, recent reports have
shown that firefly luciferin is readily produced non-enzymatically by mixing
benzoquinone and cysteine (Kanie et al. 2016), and that a compound resulting from the
spontaneous coupling of benzoquinone and cysteine acts as a luciferin biosynthetic
intermediate in Aquatica lateralis (Kanie et al. 2018). Benzoquinone is known to be a
defense compound of distantly related beetles (Dettner 1987) and other arthropods (e.g.
millipedes)(Shear 2015). Therefore, the evolutionary role of sporadic low-level luciferin

synthesis through spontaneous chemical reactions, either in the ancestral
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bioluminescent taxa themselves, or in non-bioluminescent taxa, and dietary acquisition
of luciferin by either the ancestral or modern bioluminescent taxa, should be considered.
To decipher between these alternative evolutionary possibilities, the discovery of genes
involved in luciferin metabolism in fireflies and other bioluminescent beetles will be
essential. Here, as a first step towards that goal, we identified conserved, enriched and
highly expressed enzymes of the firefly lantern that are strong candidates in luciferin
metabolism and the elusive luciferin de novo biosynthetic pathway. Ultimately focused
experimentation will be needed to decipher the biochemical function of these enzymes.

The early evolution of firefly bioluminescence was likely associated with an
aposematic role. The chemical analysis of tissues across species and life stages
presented in this work provides new insights into the evolutionary occurrence of
lucibufagins, the most well-studied defense compounds associated with fireflies. Our
results reject lucibufagins as ancestral defense compounds of fireflies, but rather
suggest them as a derived metabolic trait associated with Lampyrinae. Furthermore, the
high sensitivity of our LC-HRAM-MS and MS? molecular networking-based lucibufagin
identification approach is particularly well suited to broadened sampling in the future,
including those of rare taxa and possibly museum specimens. Combined with genomic
data showing a concomitant expansion of the CYP303 gene family in P. pyralis, we
present a promising path towards elucidating the biosynthetic mechanism underlying
these potent firefly toxins.

Overall, the resources and analyses generated in this study shed valuable light
on the evolutionary questions Darwin first pondered, and will enable future studies of

the ecology, behavior, and evolution of bioluminescent beetles. These resources will
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also accelerate the discovery of new enzymes from bioluminescent beetles that
enhance the biotechnological applications of bioluminescence. Finally, we hope that the
genomic resources shared here will facilitate the development of effective population
genomic tools to monitor and protect wild bioluminescent beetle populations in the face

of changing climate and habitats.

Materials and Methods

Detailed materials and methods are available in the Supplementary Materials.
References to relevant sections of the Supplementary Materials are placed in-line

throughout the maintext.
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553 Fig. 1. Geographic anphylogenetic context of the Big Dipper firefly, Photinus

554  pyralis.

555 (A) P. pyralis males emitting their characteristic swooping “J” patrol flashes over a field
556 in Homer Lake, lllinois. Females cue in on these species-specific flash patterns and
557 respond with their own species-specific flash (Lloyd 1966). Photo credit: Alex Wild.
558 Inset: male and female P. pyralis in early stages of mating. Photo credit: Terry Priest.
559 (B) Cladogram depicting the hypothetical phylogenetic relationship between P. pyralis

560 and related bioluminescent and non-bioluminescent taxa with Tribolium castaneum and

26


https://paperpile.com/c/6R9ebg/j7pKc

561

562

563

564

565

566

567

568

569

570

571

572

Drosophila melanogaster as outgroups. Numbers at nodes give approximate dates of
divergence in millions of years ago (mya) (Misof et al. 2014; Mckenna et al. 2015).
Right: Dorsal and ventral photos of adult male specimens. Note the well-developed
ventral light organs on the true abdominal segments 6 & 7 of P. pyralis and A. lateralis.
In contrast, the luminescent click beetle, I. luminosus, has paired dorsal light organs at
the base of its prothorax (arrowhead) and a lantern on the anterior surface of the ventral
abdomen (not visible). (C) Empirical range of P. pyralis in North America, extrapolated
from 541 reported sightings (Supp. Text 1.2). Collection sites of individuals used for
genome assembly are denoted with circles and location codes. Cross hatches represent
areas which likely have P. pyralis, but were not sampled. Diagonal hashes represent

Ontario, Canada.
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F Species Assembly Data Sex (Mbp) (Mbp) # (Mbp) C (%) D (%)
Photinus pyralis Ppyr1.3 PacBio + lllumina + Hi-C M 422+ 9 471 2160 50.6 97.2 8.4
Aquatica lateralis Alat1.3 lllumina: short + mate-pair F  940+14 902 7313 0.690 97.4 1.2
Ignelater luminosus llumi1.0 linked-reads + nanopore M 764+ 7 845 91324 0.116 94.8 14
Tribolium Sanger + BACs + Genetic
CaSEaRai Tcas5.2 maps + lllumina + BioNano M+F 204 166 6580 14.6 98.4 0.5

Fig. 2. Photinus pyralis genome assembly and analysis.

(A) Assembled Ppyr1.3 linkage groups with annotation of the location of known
luminescence related genes, combined with Hi-C linkage density maps. Linkage group
3a (box with black arrow) corresponds to the X chromosome (Supp. Text 1.6.4.1). (B)
Fluorescence in situ hybridization (FISH) on mitotic chromosomes of a P. pyralis larvae.
The telomeric repeats TTAGG (green) localize to the ends of chromosomes stained with
DAPI (blue). 20 paired chromosomes indicates that this individual was an XX female
(Supp. Text 1.13). (C) Genome schematic of P. pyralis mitochondrial genome (mtDNA).
Like other firefly mtDNAs, it has a tandem repetitive unit (TRU) (Supp. Text 1.8). (D)
mCG is enriched across gene bodies of P. pyralis and shows methylation levels that are

at least two times higher than other holometabolous insects (Supp. Text 1.12). (E)
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Orthogroup (OGs) clustering analysis of genes with Orthofinder (Emms and Kelly 2015)
shows a high degree of overlap of the P. pyralis, A. lateralis, and I. luminosus genesets
with the geneset of Tribolium castaneum. *=Not fully filtered to single isoform per gene.
See Supp. Text 4.2.1 for more detail. Intermediate scripts and species specific overlaps

are available on FigShare (DOI: 10.6084/m9.figshare.6671768). (F) Assembly statistics

for presented genomes. *=Tribolium castaneum model beetle genome assembly
(Tribolium Genome Sequencing Consortium et al. 2008) **=Genome size estimated by
FC: flow cytometry. P. pyralis n=5 females (SEM) I. luminosus n=5 males (SEM), A.
lateralis n=3 technical-replicates of one female (SD). ***=Complete (C), and Duplicated
(D), percentages for the Endopterygota BUSCO (Simao et al. 2015) profile (Supp. Text

1.4,2.4,34,4.1).
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599 Fig. 3. A genomic view of luciferase evolution

600 (A) The reaction scheme of firefly luciferase is related to that of fatty acyl-CoA
601  synthetases. (B) Model for genomic evolution of firefly luciferases. Ranging from
602 genome structures of luciferase loci in extant fireflies (top), to inferred genomic

603  structures in ancestral species (bottom). Arrow (left) represents ascending time. Not all
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adjacent genes within the same clade are shown. (C) Maximum likelihood tree of
luciferase homologs. Grey circles above gene names indicate the presence of
peroxisomal targeting signal 1 (PTS1). Color gradients indicate the transcript per million
(TPM) values of whole body in each sex/stage (grey to blue) and in the prothorax or
abdominal lantern (grey to orange to green). Tree and annotation visualized using iTOL
(Letunic and Bork 2016). Prothorax and abdominal lantern expression values for /.
luminosus are from whole prothorax plus head, and metathorax plus the two most
anterior abdominal segments. Fluc=firefly luciferases, Eluc=elaterid Iluciferases,
R/PLuc=rhagophthalmid/phengodid luciferases. (Supp. Text 4.3.2) Gene accession
numbers, annotation, and expression values are available on FigShare (DOI:

10.6084/m9.figshare.5725690). (D) Synteny analysis of beetle luciferase homologs.

About ten PACS and ACS genes flank the Luc1 gene in both firefly genomes. Although
the Luc1 loci in P. pyralis and A. lateralis are evidently derived from a common
ancestor, the relative positions of the flanking PACS and ACS genes have diverged
between the two species. IllumLuc was captured on a separate scaffold
(lumi1.2_Scaffold13255) from its most most closely related PACSs (/lumPACSS,
IlumPACS9) on llumi1.2_Scaffold9864, although 3 more distantly related PACS genes
(lumiPACS1, llumiPACS2, llumiPACS4) are co-localized with llumLuc. In contrast, a
different scaffold (llumi1.2_Scaffold9654) shows orthology to the firefly Luc? locus. The
full lumi1.2_Scaffold13255 was produced by a manual evidence-supported merge of
two scaffolds (Supp. Text 3.5.4). Genes with a PTS1 are indicated by a dark outline.
Co-orthologous genes are labeled in the same color in the phylogenetic tree and are

connected with corresponding color bands in synteny diagram. Genes and genomic
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632

regions are to scale (Scale bar = 25 Kbp). Gaps excluded from the figure are shown
with dotted lines and are annotated with their length in square brackets. Scaffold ends
are shown with rough black bars. MGST=Microsomal glutathione S-transferase, IMP=
Inositol monophosphatase, PRNT=Polyribonucleotide nucleotidyltransferase. Figure

produced with GenomeTools ‘sketch’ (v1.5.9) (Gremme, Steinbiss, and Kurtz 2013).

32


https://paperpile.com/c/6R9ebg/c6Dp

633
634

635

636

637

638

639

640

00 TcasPACS4

Coleoptera T. castaneum

B PpyrPACS4
B PpyrPACS3

- A0 AatPACS4 T
100=~ O LcruPACS2
o 100 B AlatACS6
& N B AlatPACS6
—0 B lumPACS1
99 I L R Elateridae Assigned character state
100 100 ) DPangPACS o helater luminosus O No luciferase activit
go=——WIWMPACSE oo hhorus angustus luscus _ ACIViLY
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M PanglLucD
100 -
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~ activity probability by ML
B = undetermined by parsimony
== = equivalent by parsimony
M = |uciferase activity by parsimony
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B AlatACS5

M PhirLucR

M PhirLucG

Phengodidae Phrixothrix hirtus

M RohbLuc

Rhagopthalmidae

Rhagophthalmus ohbai

M PpyrLuc2
M PatrLuc2

M AlatlLuc2
M Sazuluct
M DaxilLuc1
M PretLuct
B CrufLuct

Lampyridae

95 M PatrLuc1

W AfanLuc1

Photinus pyralis
Pyrocoelia atripennis
Aquatica lateralis
Luciola cruciata
Stenocladius azumai
Drillaster axillaris

W AlatLuc1
Phausis reticulata
Cyphonocerus ruficollis
Amydetes fanestratus

M PpyrLuci

by parsimony

PpyrLuci

52

91

o

PffPACS
AbinPACS
CberPACS
llumPACS2
llumPACS1
llumPACS4

100
_100:

Max. w = 147.67
1.53% of sites
LRT =21.75

A

98

PangPACS
llumPACS8
llumPACS9
PtermLuc
llumLue
PjanLucD

0.1

Elateridae
Pectocera fortunei fortunei

Cryptalaus berus

* 100
Max w=398 EAncLucT
EE‘% of sites

T=14.73

Pyrearinus termitilluminans

Agrypnus binodulus binodulus Photophorus jansonii

Pyrophorus sp. (YO 2006)

PangLucV
PangLucD
PsplLucD
PmelucD
PplagLucD
PmelucV

Max. w = 26.23 PplagLucV
3.21% of sites
LRT = 17.64

Ignelater luminosus Pyrophorus meliferus
Pyrophorus angustus luscus  Pyrophorus plagiophthalmus

Fig. 4. Parallel evolution of elaterid and firefly luciferase

(A) Ancestral state reconstruction recovers at least two gains of luciferase activity in
bioluminescent beetles. Luciferase activity (black: luciferase activity, white: no luciferase
activity, shaded: undetermined) was annotated on extant firefly luciferase homologs via
literature review or inference via orthology. The ancestral states of luciferase activity
within the putative ancestral nodes were then reconstructed with an unordered

parsimony framework and a maximum likelihood (ML) framework (Supp. Text 4.3.3).
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Two gains (“G”) of luciferase activity, annotated with black arrows and yellow stars, are
hypothesized. These hypothesized gains occurred once in a gene within the common
ancestor of fireflies, rhagophthalmid, and phengodid beetles, and once in a gene within
the common ancestor of bioluminescent elaterid beetles. Scale bar is substitutions per
site. Numbers adjacent to nodes represents node support. (B) Molecular adaptation
analysis supports independent neofunctionalization of click beetle luciferase. We tested
the molecular adaptation of elaterid luciferase using the adaptive branch-site REL test
for episodic diversification (aBSREL) method (Smith et al. 2015) (Supp. Text 4.3.4). The
branch leading to the common ancestor of elaterid luciferases (red star) was one of
three branches (red and blue stars) recovered with significant (p < 0.01) evidence of
positive selection, with 35% of sites showing strong directional selection (w or max
dn/ds = 3.98), which we interpret as signal of the initial neofunctionalization of elaterid
ancestral luciferase (EAncLuc) from an ancestor without luciferase activity. Branches
with blue stars may represent the post-neofunctionalization selection of a few sites via
sexual selection of emission colors. Specific sites identified as under selection using
Mixed Effect Model of Evolution (MEME) and Phylogenetic Analysis by Maximum
Likelihood (PAML) methods are described in Supp. Text 4.3.4. The tree and results
from the full adaptive model are shown. Branch length, with the exception of the
PpyrLuc1 branch which was shortened, reflects the number of substitutions per site.
Numbers adjacent to nodes represents node support. Figure was produced with iTOL

(Letunic and Bork 2016).
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F)' pyrahs genes P.pyralis ID expPr::;ion Ppyr BSN- Ppyr Orthogroup Alat Alat BSN- Exp?fs‘siun A. lateralis 1D
HE (0GS1.1) Predicted function rank TPM  PTS1 D PTS1__ TPM rank (0GS1.0)
(1578) (1426) PPYR_00001 Luciterase” 2 66743  PTS1 OGOODODS7 PTS1 36044 1 AQULA_005067
PPYR_11147  Cystathionine gamma-lyase 3 38574 0G0002087 18096 3 AQULA_003032
PPYR_0D4B99  Short chain dehydrogenase 4 28506  PTS1 OGDO00476 PTS1 9452 9 AQULA_00B573
PPYR_09320 Saccharupine dehydrogenase-iike 6 17516  PTST OGOODO161 PTS1 6355 12 AQULA_D12956
PPYR_06194 Alphalbeta hydrolase 7 13554 060009024 850 161 AQULA_013805
PPYR_02512  Histidine Triad superfamily B 11131 0GO005956 5575 13 AQULA_DOBET1
OG PPYR_00996 Strictosidine synthase-like 12 4870 0G0002066 2529 35 AQULA_D02781
S PPYR_08432 Adenylate kinase 13 4726 0G0005480 PTS1 3619 22 AQULA_DOT40T
PPYR_08520 Methionine-R-sulfoxide reductase 18 3946 0G0005974 2293 44 AQULA_00BS14
PPYR_DBD5E Acety-CoA hydrolaseftransierase 21 3628 060003529 4381 17 AQULA_000701
PPYR_00003  Luciferin sulfotransferase” 25 3167 PTST OG0000054 2366 43 AQULA_D12700
2843 32 AQULA_D04004
Annotated PPYR_14B44 Malic oxidoreductase-like 55 1570 PTS1 OGO000618 PTS1 2441 41 AQULA_005495
as enzyme PPYR_DB564 Malic oxidoreductase-iike 569 212 - -
(3890) PPYR_04459 ABC transporier 75 1229 0G0000018 647 223 AQULA_002548
. PPYR_08864 ABC transporter 1119 118 -
A_ Iaterahs genes PPYR_09240 CoA transferase 76 1210 PTS1 OGODO0D3901 PTS1 630 203 AQULA_DO1958
PPYR_DBB79 Metallo-beta-lactamase 79 1200 0G00D4565 1880 51 AQULA_004381
HE PPYR_11151 Enolase 103 926 060007981 370 380 AQULA_D03033
(1429) PPYR_01504 Alpharbeta hydrolase 155 675 0GO00007E PTS1 804 148 AQULA_012908
PPYR_10210 Methionine-S-sulfoxide reductase 174 637 060005026 640 227 AQULA_D05939
PPYR_14372 Adenylylsulfate kinase & sulfate 214 537 PTS1 OGOOD0BYB PTS1 4300 19 AQULA_DO1585
adenylyltransferase
PPYR_05464 Peroxiredaxin 251 474 0G0000556 1434 72 AQULA 013952
PPYR_06980 Gytochrome P450 405 307 0G0000593 251 543 AQULA_002673
PPYR_10578  Short chain dehydrogenase 419 300 0G00D4118 412 335 AQULA_D0Z2715
DE PPYR_D8779 3'5"cyclie nucleotide 442 286 0G0007963 104 1258 AQULA_D02893
41 6) phosphodiesterase
PPYR_01821 ABC transporier 478 259 0G0000018 242 566  AQULA 007404
PPYR_12812 Fatly acid hydroxylase 538 228 0G0000BES 718 194 AQULA_001837
PPYR_01505 Alpha/Beta hydrolase 664 188 0G00D0D7E 101 1287  AQULA_D12815
Annotated PPYR_D1858 Enoyl-CoA hydratase/isomerase 674 187 0G0002807 652 221 AQULA 010152
as enzyme PPYR_05219 DD-peplidase superfamily 1526 a7 0GO004630 300 448 AQULA_D04580
(3432)

Fig. 5. Comparative analyses of firefly lantern

metabolic adaptations to bioluminescence

expression highlight

likely

Candidate enzymes of bioluminescent accessory metabolism. Enzymes which are

highly expressed (HE), differentially expressed (DE), and annotated as enzymes via

InterProScan are shown in the Venn diagrams for their respective species. Those genes

in the intersection of the two sets which are within the same orthogroup (OGs) as

determined by OrthoFinder are shown in the table. Many-to-one orthology relationships

are represented by bold orthogroups and blank cells. See Supp. Text 4.2.2 for more

detail. *=genes of previously described function)
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Fig. 6. An expansion in the CYP303-P450 family correlates with lucibufagin

content

(A) Hypothesized lucibufagin biosynthetic pathway, starting from cholesterol. (B) LC-
HRAM-MS multi-ion-chromatograms (MIC) showing the summation of exact mass
traces for the [M+H] of 11 lucibufagin chemical formulas £ 5 ppm, calibrated for run-
specific systematic m/z error (Table S4.6.5.5). Y-axis upper limit for P. pyralis adult
hemolymph and larval body extract is 1000x larger than other traces. Arrows (blue/teal)
indicate features with high MS? spectral similarity to known lucibufagins. Sporadic peaks
in A. lateralis body, and /. luminosus thorax traces are not abundant, preventing MS?
spectral acquisition and comparison, but do not match the m/z and RT of P. pyralis
lucibufagins. (Supp. Text 4.6) (C) Maximum likelihood tree of CYP303 family
cytochrome P450 enzymes from P. pyralis, A. lateralis, T. castaneum, and D.
melanogaster. P. pyralis shows a unique CYP303 family expansion, whereas the other

species only have a single CYP303. Circles represent node bootstrap support >60%.
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Branch length measures substitutions per site. Pseudogenes are annotated with the
greek letter W (Supp. Text 1.10.1; 4.2.4). (D) Genomic loci for P. pyralis CYP303 family
genes. These genes are found in multiple gene clusters on LG9, supporting origin via

tandem duplication. Introns >4 kbp are shown.
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SUPPLEMENTARY TEXT 1: Photinus pyralis additional information

1.1 Taxonomy, biology, and life history

Photinus pyralis (Linnaeus 1767) is amongst the most widespread and abundant of all
U.S. fireflies[1,2]. It inspired extensive work on the biochemistry and physiology of firefly
bioluminescence in the early 20" century, and the first luciferase gene was cloned from this
species[3]. A habitat generalist, P. pyralis occurs in fields, meadows, suburban lawns, forests,
and woodland edges, and even urban environments. For example, the authors have observed
P. pyralis flashing in urban New York City and Washington D.C. Adults rest on vegetation during
the day and signaling begins as early as 20 minutes before sunset[1]. Male flashing is cued by
ambient light levels, thus shaded or unshaded habitats can show up to a 30 minute difference in
the initiation of male flashing[1]. Males can be cued to flash outside of true twilight if exposed to
light intensities simulating twilight[4]. P. pyralis were also reported to flash during totality of the
total solar eclipse of 2017 (Personal communication: L.F. Faust, M.A. Branham). Courtship
activity lasts for 30-45 minutes and both sexes participate in a bioluminescent flash dialog, as is
typical for Photinus fireflies.

Males initiate courtship by flying low above the ground while repeating a single ~300 ms
patrol flash at ~5-10 second intervals[4]. Males emit their patrol flash while dipping down and
then ascending vertically, creating a distinctive J-shaped flash gesture[1,4] (Fig. 1A). During
courtship, females perch on vegetation and respond to a male patrol flash by twisting their
abdomen towards the source of the flash and giving a single response flash given after a 2-3
sec delay (Video S1). Receptive females will readily respond to simulated male flashes, such as
those produced by an investigator's penlight. Females have fully developed wings and are
capable of flight. Both sexes are capable of mating several times during their adult lives. During
mating, males transfer to females a fitness-enhancing nuptial gift consisting of a spermatophore
manufactured by multiple accessory glands[5]; the molecular composition of this nuptial gift has
recently been elucidated for P. pyralis[6]. In other Photinus species, male gift size decreases
across sequential matings[7], and multiple matings are associated with increased female
fecundity[8].

Adult P. pyralis live 2-3 weeks, and although these adults are typically considered non-
feeding, both sexes have been reported drinking nectar from the flowers of the milkweed
Asclepias syriaca[9]. Mated females store sperm and lay ~30-50 eggs over the course of a few
days on moss or in moist soil. The eggs take 2-3 weeks to hatch. Larval bioluminescence is
thought to be universal for the Lampyridae, where it appears to function as an aposematic
warning signal. Like other Photinus, P. pyralis larvae are predatory, live on and beneath the sail,
and appear to be earthworm specialists[10]. In the northern parts of its range, slower
development likely requires P. pyralis to overwinter at least twice, most likely as larvae. Farther
south, P. pyralis may complete development within several months, achieving two generations
per year[11], which may be possibly be observed in the South as a “second wave” of signalling
P. pyralis in September.
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Anti-predator chemical defenses of male P. pyralis include several bufadienolides,
known as lucibufagins, that circulate in the hemolymph[12]. Pterins have also been reported to
be abundant in P. pyralis[13], however the potential defense role of these compounds has never
been tested (Personal communication: J. Meinwald). When attacked, P. pyralis males release
copious amounts of rapidly coagulating hemolymph and such “reflex-bleeding” may also provide
physical protection against small predators[14,15].

Video S1: _A Photinus pyralis courtship dialogue

1.2 Species distribution

Although Photinus pyralis is widely distributed in the Eastern United States, published
descriptions of its range are limited, with the notable exception of Lloyd’s 1966 monograph[1]
which addresses the range of many Photinus species. We therefore sought to characterize the
current distribution of P. pyralis in order to produce an updated map to inform our experimental
design and enable future population genetic studies. Four sources of data were used to produce
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the presented range map of P. pyralis: (i) Field surveys by the authors (ii) Published[1,16] and
unpublished sightings of P. pyralis at county level resolution, provided by Dr. J. Lloyd (University
of Florida), (iii) coordinates and dates of P. pyralis sightings, obtained by targeted e-mail
surveys to firefly field biologists, (iv) citizen scientist reports of P. pyralis through the iNaturalist
platform[17]. iNaturalist sightings were manually curated to only include reports which could be
unambiguously identified as P. pyralis from the photos, and also that also included GPS
geotagging to <100 m accuracy. A spreadsheet of these sightings is available on FigShare
(DOI: 10.6084/m9.figshare.5688826).

QGIS (v2.18.9)[18] was used for data viewing and figure creation. A custom Python
script[19] within QGIS was used to link P. pyralis sightings to counties from the US census
shapefile[20]. Outlying points that were located in Desert Ecoregions of the World Wildlife Fund
(WWEF) Terrestrial Ecoregions shapefile[21,22] or the westernmost edge of the range were
manually removed, as they are likely isolated populations not representative of the contiguous
range. For Fig. 1B, these points were converted to a polygonal range map using the “Concave
hull” QGIS plugin (“nearest neighbors = 19”) followed by smoothing with the Generalizer QGIS
plugin with Chaiken’s algorithm (Level=10, and Weight = 3.00). Below (Figure S1.2.1), red
circles indicate county-centroided presence records.

In our field surveys, we found that the range of P. pyralis was notably extended from the
range reported by Lloyd, specifically we found P. pyralis in abundance to the west of the Mill
river in Connecticut. P. pyralis is found with confidence roughly from Connecticut to Texas, and
possibly as far south as Guatemala (Personal communication: A. Catalan). These possible
southern populations require further study.
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Figure S1.2.1: Detailed ge(;gFaphicdi_stribuiion map for P. pyralis

P. pyralis sightings (red circles show county centroided reports) in the United States and
Ontario, Canada (diagonal hashes). The World Wildlife Fund Terrestrial Ecoregions[21,22] are
also shown (colored shapes). The P. pyralis sighting dataset shown is identical to that used to
prepare Fig. 1B.

1.3 Specimen collection and identification

Adult male P. pyralis specimens for lllumina short-insert and mate-pair sequencing were
collected at sunset on June 13th, 2011 near the Visitor's Center at Great Smoky Mountains
National Park (permit to Dr. Kathrin Stanger-Hall). Specimens were identified to species and sex
via morphology[23], flash pattern and behavior[1], and cytochrome-oxidase | (COI) similarity
(partial sequence: primers HCO, LCO[24]) when blasted against an in-house database of firefly
COlI nucleotide sequences. Collected fireflies were stored in 95% ethanol at -80°C until DNA
extraction.

Adult male P. pyralis specimens for Pacific Biosciences (PacBio) RSIl sequencing were
captured during flight at sunset on June 9th, 2016, from Mercer Meadows in Lawrenceville, NJ
(40.3065 N 74.74831 W), on the basis of the characteristic “rising J” flash pattern of P. pyralis
(permit to TRF via Mercer County Parks Commission). Collected fireflies were sorted, briefly
checked to be likely P. pyralis by the presence of the margin of ventral unpigmented abdominal
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tissue anterior to the lanterns, flash frozen with liquid N, lyophilized, and stored at -80°C until
DNA extraction. A single aedeagus (male genitalia) was dissected from the stored specimens
and confirmed to match the P. pyralis taxonomic key[23] (Fig. S1.3.1).

A B

Figure $S1.3.1: P. pyralfs—aedeagus (male genitalia)

(A) Ventral and (B) side view of a P. pyralis aedeagus dissected from specimens
collected on the same date and locality as those used for PacBio sequencing. Note the strongly
sclerotized paired ventro-basal processes (“mickey mouse ears”) emerging from the median
process, characteristic of P. pyralis [23].

1.3.2 Collection and rearing of P. pyralis larvae

We intended to survey the lucibufagin content of P. pyralis larvae (Fig 4B;
Supplementary Text 4.6), and as well as the transovarial transmission of Photinus pyralis
orthomyxo-like viruses from parent to larvae (Supplementary Text 5.4; 5.5), but as P. pyralis
larvae are subterranean and extremely difficult to collect from the wild, we reared P. pyralis
larvae from eggs laid from mated pairs. It is important to note that these P. pyralis larval rearing
experiments were unexpectedly successful. Although there has been some success in
laboratory rearing and domestication of Asian Aquatica spp.[25], including the A. lateralis lkeya-
Y90 strain described in this manuscript, rearing of North American fireflies is considered
extremely difficult with numerous unpublished failures for unclear reasons [26], and limited
reports of successful rearing of mostly non-Photinus genera, including Photuris sp. [27],
Pyractomena angulata [28], and Pyractomena borealis (Personal communication: Scott
Smedley). The below protocol for Photinus pyralis larval rearing is presented in the context of
disclosure of the methods of this manuscript, and should be considered a preliminary,
unoptimized rearing protocol. A full description of the P. pyralis larvae and it’s life history and
behavior will be presented in a separate manuscript.

Four adult female P. pyralis were collected from the Bluemont Junction Trail in Arlington,
VA from June 12th through June 18th 2017 (collection permission obtained by TRF from
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Arlington County Parks and Recreation department). The females were mated to P. pyralis
males collected either from the same locality and date, or to males collected from Kansas in late
June. Mating was performed by housing 1-2 males and 1 female in small plastic containers for
~1-3 days with a wet kimwipe to maintain humidity. Mating pairs were periodically checked for
active mating, which in Photinus fireflies takes several hours. Successfully mated females were
transferred to Magenta GA-7 plastic boxes (Sigma-Aldrich, USA), and provided a ~4 cm x 4 cm
piece of locally collected moss (species diverse and unknown) as egg deposition substrate, and
allowed to deposit eggs until their death in ~1-4 days. Deceased females were removed,
artificial freshwater (AFW; 1:1000 diluted 32 PSU artificial seawater) was sprayed into the box to
maintain high humidity, and eggs were kept for 2-3 weeks at room temperature and periodically
checked until hatching. Like other firefly eggs, the eggs of P. pyralis were observed to be faintly
luminescent imaging using a cooled CCD camera (Figure S.1.3.2.1), however this luminescence
was not visible to the dark-adapted eye, indicating that this luminescence is less intense than
other firefly species such as Luciola cruciata [29].

Upon hatching, 1st instar larvae were mainly fed ~1 cm cut pieces of Canadian
Nightcrawler earthworms (Lumbricus terrestris; Windsor Wholesale Bait, Ontario, Canada), and
occasional live White Worms (Enchytraeus albidus; Angels Plus, Olean, NY). Although P.
pyralis 1st instar larvae were observed to attack live Enchytraeus albidus, an experiment to
determine if this would be suitable as a single food source was not performed. Uneaten and
putrefying earthworm pieces were removed after 1 day, and the container cleaned. Once the
larvae had been manually fed for ~2 weeks and deemed sufficiently strong, they were
transferred to plastic shoeboxes (P/N: S-15402, ULINE, USA) which were intended to mimic a
soil ecosystem. In personal discussions of unpublished firefly rearing attempts by various firefly
researchers, we noted that a common theme was the difficulty of preventing the uneaten prey of
these predatory larvae from putrifying. Therefore, we sought to create ecologically inspired “eco-
shoeboxes”, where fireflies would prey on live organisms, and other organisms would assist in
cleanup of uneaten or partially eaten prey that had been fed to the firefly larvae, to prevent the
growth of pathogenic microorganisms on uneaten prey.

First, these shoeboxes were filled with 1L of mixed 50% (v/v) potting soil, and 50%
coarse sand (Quikrete, USA) that had been washed several times with distilled water to remove
silt and dust. The soil-sand mix was wet well with AFW, and live Enchytraeus albidus (50+),
temperate springtails (50+; Folsomia candida; Ready Reptile Feeders, USA), and dwarf isopods
(50+; Trichorhina tomentosa; Ready Reptile Feeders, USA) were added to the box, and several
types of moss, coconut husk, and decaying leaves were sparingly added to the corners of the
box. The non-firefly organisms were included to mimic a primitive detritivore (Enchytraeus
albidus & Trichorhina tomentosa) and fungivore (Folsomia candida) system. About 50 firefly
larvae were included per box. No interactions between the P. pyralis larvae and the additional
organisms were observed. Predation on Enchytraeus albidus seems likely, but careful
observations were not made. Distilled water was sprayed into the box every ~2 days to maintain
a high humidity. Throughout this period, live Lumbricus terrestris (~10-15 cm) were added to the
box every 2-3 days as food. These earthworms were first prepared by washing with distilled
water several times to remove attached soil, weakened and stimulated to secrete coelemic fluid
and gut contents by spraying with 95% ethanol, washed several times in distilled water, and left
overnight in ~2 cm depth distilled water at 4°C. Anecdotally this cleaning and preparation

Fallon, Lower et al. 2018 - Supplementary Materials 11


https://paperpile.com/c/fHp9OK/Eazz

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

process reduced the rate and degree that dead earthworms putrefied. Young P. pyralis larvae
were observed to successfully kill and gregariously feed on these live earthworms (Figure
S1.3.2.2). The possibility that firefly larvae possess a paralytic venom used to stun or kill prey
has been noted by other researchers [10,30]. In our observations, an earthworm would
immediately react to the bite from a single P. pyralis larvae, thrashing about for several minutes,
but would then become seemingly paralyzed over time, supporting the role of a potent, possibly
neurotoxic, firefly venom. The P. pyralis larvae would then begin extra-oral digestion and
gregarious feeding on the liquified earthworm. Once the earthworm had been killed and broken
apart by firefly larvae, Enchytraeus albidus would enter through gaps in the cuticle and begin to
feed in large numbers throughout the interior of the earthworm. The other detritivores were
observed at later stages of feeding. Between the combined action of the P. pyralis larvae, and
the other detritivores, the live earthworm was completely consumed within 1-2 days, and no
manual cleanup was required.

Compared to the initial manual feeding and cleaning protocol for P. pyralis 1st instar
larvae, the “eco-shoebox” rearing method was low-input and convenient for large numbers of
larvae. The feeding and cleanup process was efficient for ~2 months (July -> September),
leading to a large number of healthy 3-4th instar larvae. However after that point, P. pyralis
larvae, possibly in preparation for a winter hibernation, seemingly became quiescent, and were
less frequently seen patrolling throughout the box. At the same time, the Enchytraeus albidus
earthworms were observed to become less abundant, either due to continual predation by P.
pyralis, or due to population collapse from insufficient fulfillment of nutritional requirements from
feeding of Enchytraeus albidus on Lumbricus terrestris alone.

At this point, earthworms were not consumed within 1-2 days, and became putrid, and P.
pyralis which had been feeding on these earthworms were frequently found dead nearby, and
themselves quickly putrefied. Generally after this point P. pyralis larvae were more frequently
found dead and partially decayed, indicating the possibility of pathogenesis from
microorganisms from putrefying earthworms. At this stage it was observed that mites (Acari),
probably from the soil contained in the guts of the fed earthworms, became abundant, and were
observed to act as ectoparasitic on P. pyralis larvae. An attempt to simulate hibernation of P.
pyralis larvae was made by storing them at 4°C for ~3 weeks, however a large proportion
(~30%) of larvae died during this hibernation to a seeming fungal infection. Other larvae revived
quickly when returned to room temperature, but all Trichorhina tomentosa were Killed by even
transient exposure to 4°C. To date, a smaller number of 5th and 6th instar P. larvae have been
obtained, but pupation in the laboratory has not occured. The lack of pupation is unsurprising as
it is likely occurs in the wild after 1-2 years of growth, is likely under temperature and
photoperiodic control, and may require a licensing stage of cold temperature hibernation for
several weeks. Overall, manual feeding of 1st instar larvae followed by the “eco-shoebox”
method was unexpectedly successful approach for the maintenance and growth of P. pyralis
larvae.
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Figure $1.3.2.1: Luminescence of P. pra/is eggs.

(A) Photograph under ambient light of ~1 day post deposition P. pyralis eggs. (B) Photograph
of self-luminescence of ~1 day post deposition P. pyralis eggs. Both photographs taken with a
NightOwl LB98 cooled CCD luminescence imager (Berthold Technologies, USA).
Luminescence was not visible to the dark-adapted eye.
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Figure S1..2.2:Grgris predatin of young . pyrai larvae on live Lubricus
terrestris

Both P. pyralis larvae (red arrows), and Enchytraeus albidus (yellow arrows), were observed to
feed on the paralyzed earthworms.

1.4 Karyotype and genome size

The karyotype of P. pyralis was previously reported to be 2n=20 with XO sex
determination (male, 18A+X0O; female, 18A+XX)[31]. The genome sizes of four P. pyralis adult
males were previously determined to be 422 + 9 Mbp (SEM, n=4), whereas the genome sizes of
five P. pyralis adult females were determined to be 448 + 7 (SEM, n=5) by nuclear flow
cytometry analysis[32]. From these analyses, the size of the X-chromosome is inferred to be
~26 Mbp. Genome size inference via kmer spectral analysis of the P. pyralis short-insert
lllumina data from a single adult P. pyralis male estimated a genome size of 343 Mbp (Figure
S1.5.1.1).
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1.5 Library preparation and sequencing

See Table S4.1.1 for a overview of all sequence libraries. Library specific construction methods
are detailed below.

1.5.1 llumina

DNA was extracted from sterile-water-washed thorax of Great Smoky Mountains
National Park collected specimens using phenol-chloroform extraction with RNAse digestion,
checked for quality via gel electrophoresis, and quantified by Nanodrop or Qubit (Thermo
Scientific, USA). To obtain sufficient DNA for both short insert and mate-pair library
construction, libraries were constructed separately from DNA from each of two individual males
and pooled DNA of three males, all from the same population. Males were selected for
sequencing as they are more easily found in the field than females. In addition, as P. pyralis
males are XO[33], differences in sequencing coverage could inform localization of scaffolds to
the X chromosome. lllumina TruSeq short insert (average insert size: 300 bp) and Nextera
mate-pair libraries (insert size: 3 Kbp, 6 Kbp) were constructed at the Georgia Genomics Facility
(Athens, GA) and subsequently sequenced on two lanes of lllumina HiSeq2000 100x100 bp PE
reads (University of Texas; Table S4.1.1).
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Figure $1.5.1.1: Genome scope kmer analysis of the P. pyralis short read library.

(A) linear and (B) log plot of a kmer spectral genome composition analysis of the “8369” P.
pyralis lllumina short-read library from a single P. pyralis XO adult male (Supp. Text 1.5.1; Table
S4.1.1) with jellyfish (v2.2.9; parameters: -C -k 35)[34] and GenomeScope (v1.0; parameters:
Kmer length=35, Read length=100, Max kmer coverage=1000)[35]. len=inferred haploid
genome length, unig=percentage non-repetitive sequence, het=overall rate of genome
heterozygosity, kcov=mean kmer coverage for heterozygous bases, err=error rate of the reads,
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dup: average rate of read duplications. These results are consistent with the genome size of a
XO male, when possible systematic error of kmer spectral analysis and flow cytometry genome
size estimates is considered. The heterozygosity is somewhat low when compared to some
other arthropods.

1.5.2 PacBio

High-molecular-weight DNA (HMW DNA) was extracted from four pooled lyophilized
adult male P. pyralis (dry mass 90.8 mg) from the MMNJ field site. These specimens were first
externally washed using 95% ethanol, after which DNA extraction proceeded with a 100/G
Genomic Tip plus Genomic Buffers kit (Qiagen, USA). DNA extraction followed the
manufacturer's protocol, with the exception of the final precipitation step, where HMW DNA was
pelleted with 40 ug RNA grade glycogen (Thermo Scientific, USA) and centrifugation (3000 x g,
30 min, 4°C) instead of spooling on a glass rod. Although increased genomic heterozygosity
from 4 pooled males and a resulting more complicated genome assembly was a concern for a
wild population like P. pyralis, four males were used in order to extract enough DNA for
workable coverage using 15 Kbp+ size-selected PacBio RSIl sequencing. All extracted DNA
was used for library preparation, and all of the final library was used for sequencing. Adult
males, being XO, were chosen over the preferable XX females, as adult males are much more
easily captured because they signal during flight, whereas females are typically found in the
brush below and generally only flash in response to authentic male signals.

Precipitated HMW DNA was redissolved in 80 pyL Qiagen QLE buffer (10 mM Tris-Cl, 0.1
mM EDTA, pH 8.5) yielding 17.1 ug of DNA (214 ng/uL) and glycogen (500 ng/uL). Final DNA
concentration was measured with a Qubit fluorometer (Thermo Scientific) using the Qubit Broad
Range kit. Manipulations hereafter, including HMW DNA size QC, fragmentation, size selection,
library construction, and PacBio RSII sequencing, were performed by the Broad Technology
Labs of the Broad Institute (Cambridge, MA, USA).

First, the size distribution of the HMW DNA was confirmed by pulsed-field-gel-
electrophoresis (PFGE). In brief, 100 ng of HMW DNA was run on a 1% agarose gel (in 0.5x
TBE) with the BioRad CHEF DRIII system. The sample was run out for 16 hours at 6 volts/cm
with an angle of 120 degrees with a running temperature of 14°C. The gel was stained with
SYBRgreen dye (Thermo Scientific - Part No. S75683). 1 ug of 5 Kbp ladder (BioRad, part no
170-3624) was used as a standard. These results demonstrated the HMW DNA had a mean
size of >48 Kbp (Fig. S1.5.2.1). This pool of HMW DNA is designated 1611_PpyrPB1 (NCBI
BioSample SAMN08132578).

Next, HMW DNA (17.1 pg) was sheared to a targeted average size of 20-30 Kbp by
centrifugation in a Covaris g-Tube (part no. 520079) at 2500 x g for 2 minutes. SMRTbell
libraries for sequencing on the PacBio platform were constructed according to the
manufacturer's recommended protocol for 20 Kbp inserts, which includes size selection of
library constructs larger than 15 Kbp using the BluePippin system (Sage Science, Beverly MA,
USA). Two separate cassettes were run. In each cassette, 2 lanes were used in which there
was 1362 ng/lane (PAC20kb kit). Constructs 15 Kbp and above were eluted over a period of
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four hours. An additional damage repair step was carried out post size-selection. Insert size
range for the final library was determined using the Fragment Analyzer System (Advanced
Analytical, Ankeney IA, USA). The size-selected SMRTbell library was then sequenced over 61
SMRT cells on a PacBio RSII instrument of the Broad Technology Labs (Cambridge, MA), using
the P6 v.2 polymerase and the v.4 DNA Sequencing Reagent (P6-C4 chemistry; part numbers
100-372-700, 100-612-400). PacBio sequencing data is available on the NCBI Sequence Read
Archive (Bioproject PRINA378805).

Lambda

-100kb

Figure S1.5.2.1: PFGE of P. pyralis HMW DNA used for PacBio sequencing

Lane 1 was used for further library prep and sequencing, Lanes 2-5 represent separate
batches of P. pyralis HMW DNA that was not used for PacBio sequencing. Lane 1 was used as
it had the highest DNA yield, and an equivalent DNA size distribution to the other samples.
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Figure $1.5.2.2: Subread length distribution for P. pyralis PacBio RSIl sequencing.

Figure produced with SMRTPortal (v2.3.0.140936)[36] by aligning all PacBio reads from data
from the 61 SMRT cells against Ppyr1.3 using the RS_Resequencing.1 protocol with default
parameters. Subread length unit is basepair (bp).

1.5.3 Hi-C library preparation

Two adult P. pyralis MMNJ males were flash frozen in liquid nitrogen, stored at -80°C,
and shipped on dry-ice to Phase Genomics (Seattle, WA). Manipulations hereafter occurred at
Phase Genomics, following previously published protocols[37-39]. Briefly, a streamlined version
of the standard Hi-C protocol[37] was used to perform a series of steps resulting in proximity-
ligated DNA fragments, in which physically proximate sequence fragments are joined into linear
chimeric molecules. First, in vivo chromatin was cross-linked with formaldehyde, fixing
physically proximate loci to each other. Chromatin was then extracted from cellular material and
digested with the Sau3Al restriction enzyme, which cuts at the GATC motif. The resulting
fragments were proximity ligated with biotinylated nucleotides and pulled down with streptavidin
beads. These chimeric sequences were then sequenced with 80 bp PE sequencing on the
lllumina NextSeq platform, resulting in Hi-C read pairs.
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1.6 Genome assembly

The P. pyralis genome assembly followed three stages: (1) a hybrid assembly using
lllumina and PacBio reads, producing assembly Ppyr1.1 (Supplementary Text 1.6.2), (2)
Ppyr1.1 scaffolded using Hi-C data, producing assembly Ppyr1.2 (Supplementary Text 1.6.3),
and (3) Ppyr1.2 manually curation for proper X-chromosome assembly and removal of putative
non-firefly sequences, producing Ppyr1.3 (Supplementary Text 1.6.4).

1.6.2 Ppyr1.1: MaSuRCA hybrid assembly

Several genome assembly approaches were evaluated with the general goal of
maximizing conserved gene content and contiguity. The highest quality P. pyralis assembly was
generated by a hybrid assembly approach using a customized MaSuRCA
(v3.2.1_01032017)[40,41] pipeline that combined both lllumina-corrected PacBio reads (Mega-
reads) and synthetic long reads constructed from short-insert reads alone (Super-reads) using a
custom small overlap length (59 bp).

We first applied MaSuRCA (v3.2.1_01032017)[42,43] to correct our long reads (38x
coverage; Library ID 1611_PpyrPB1; Table S4.1.1) using our short-insert and mate-pair reads
(Libraries: 8369, 375_3K, 8375 6K, 83 _3K, 83_6K; Table S4.1.1). No pre-filtering of reads was
performed, as lllumina adaptors are automatically removed within the MaSuRCA pipeline. We
modified the pipeline to assemble the genome using both corrected long reads (Mega-reads)
and synthetic long reads (Super-reads) with a custom smaller overlap length (59 bp). All reads
(short-insert, mate-pair and PacBio) were then used within the MaSuRCA pipeline to call a
genomic consensus.

To scaffold the contigs, we first filtered lllumina short-reads from the mate-pair libraries
(Libraries 8375 3K, 8375 6K, 83 3K, 83 6K) with Nxtrim (v0.4.1)[44] with parameters "--
separate --rf --justmp”. We then manually integrated the MaSuRCA assembly by replacing the
incomplete mitochondrial contigs with complete mitochondrial assemblies from P. pyralis and
Apocephalus antennatus (Supplementary Text 5.2). We scaffolded and gap-filled the assembly
using the lllumina short-insert and filtered mate-pair reads (Libraries: 8369, 8375_3K, 8375_6K,
83_3K, 83_6K) via Redundans (v0.13a)[45] with default settings. After scaffolding with our
lllumina data, redundant sequences were removed by the MaSuRCA “deduplicate_contigs.sh”
script. We then applied PBijelly (v15.8.24)[46] and PacBio reads to scaffold and gap-fill the
assembly, and redundancy reduction with “deduplicate_contigs.sh” script was run again. Finally,
we replaced mitochondrial sequences which had been artificially extended by the scaffolding,
gap-filling and sequence extension process with the proper sequences. The resultant assembly
was dubbed Ppyr1.1.

1.6.3 Ppyr1.2: Scaffolding with Hi-C

The Hi-C read pairs were applied in a manner similar to that originally described here[38]
and later expanded upon[39]. Briefly, Hi-C reads were mapped to Ppyr1.1 with BWA
(v1.7.13)[47], requiring perfect, unique mapping locations for a read pair to be considered
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usable. The number of read pairs joining a given pair of contigs is referred to as the “link
frequency” between those contigs, and when normalized by the number of restriction sites in the
pair of contigs, is referred to as the “link density” between those contigs.

A three-stage scaffolding process was used to create the final scaffolds, with each stage
based upon previously described analysis of link density[38,39]. First, contigs were placed into
chromosomal groups. Second, contigs within each chromosomal group were placed into a linear
order. Third, the orientation of each contig is determined. Each scaffolding stage was performed
many times in order to optimize the scaffolds relative to expected Hi-C linkage characteristics.

In keeping with previously described methods[38,39], the number of chromosomal
scaffolds to create—10-was an a priori input to the scaffolding process derived from the
previously published chromosome count of P. pyralis [31]. However, to verify the correctness of
this assumption, scaffolds were created for haploid chromosome numbers ranging from 5 to 15.
A scaffold number of 10 was found to be optimal for containing the largest proportion of Hi-C
linkages within scaffolds, which is an expected characteristic of actual Hi-C data.

1.6.4 Ppyr1.3: Manual curation and taxonomic annotation filtering

1.6.4.1 Defining the X chromosome

Hi-C data was mapped and converted to .hic format with the juicer pipeline (v1.5.6)[48],
and then visualized using juicebox (v1.5.2)[49]. This visualization revealed a clear breakpoint in
Hi-C linkage density on LG3 at ~22,220,000 bp. Mapping of lllumina short-insert and PacBio
reads with Bowtie2 (v2.3.1)[50] and SMRTPortal (v2.3.0.140893) with the “RS_Resequencing.1”
protocol, followed by visualization with Qualimap (v2.2.1)[51], revealed that the first section of
LG3 (1-22,220,000 bp), here termed LG3a, was present at roughly half the coverage of LG3b
(22,220,001-50,884,892 bp) in both the Illumina and PacBio libraries. Mapping of Tribolium
castaneum X chromosome proteins (NCBI Tcas 5.2) to the Ppyr1.2 assembly using both tblastn
(v2.6.0)[52] and Exonerate(v2.2.0)[53] based “protein2genome” alignment through the MAKER
pipeline revealed a relative enrichment on LG3a only. Taken together, this data suggested that
the half-coverage section of LG3 (LG3a) corresponded to the X-chromosome of P. pyralis, and
that it was misassembled onto an autosome. Therefore, we manually split LG3 into LG3a and
LG3b in the final assembly.

1.6.4.2 Taxonomic annotation filtering

Given the recognized importance of filtering genome assemblies to avoid
misinterpretation of the data[54], we sought to systematically remove assembled non-firefly
contaminant sequence from Ppyr1.2. Using the blobtools toolset (v1.0.1)[55], we taxonomically
annotated our scaffolds by performing a blastn (v2.6.0+) nucleotide sequence similarity search
against the NCBI nt database, and a diamond (v0.9.10.111)[56] translated nucleotide sequence
similarity search against the of Uniprot reference proteomes (July 2017). Using this similarity

1

information, we taxonomically annotated the scaffolds with blobtools using parameters “-x
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bestsumorder --rank phylum”. A tab delimited text file containing the results of this blobtools
annotation are available on FigShare (DOI: 10.6084/m9.figshare.5688982). We then generated
the final genome assembly by retaining scaffolds that either contained annotated features
(genes or non-simple/low-complexity repeats), had coverage > 10.0 in both the lllumina (Fig.
S$1.6.3.2.1) and PacBio libraries (Fig. $S1.6.3.2.2), and if the taxonomic phylum was annotated
as “Arthropod” or “no-hit” by the blobtools pipeline. This approach removed 374 scaffolds (2.1
Mbp), representing 15% of the scaffold number and 0.4% of the nucleotides of Ppyr1.2. Notably,
four tenericute scaffolds, likely corresponding to a partially assembled Entomoplasma sp.
genome, distinct from the Entomoplasma luminosus var. pyralis assembled from the PacBio
library (Supplementary Text 5) were removed. Furthermore we removed two contigs
representing the mitochondrial genome of P. pyralis (complete mtDNA available via Genbank:
KY778696). The final filtered assembly, Ppyr1.3, is available at www.fireflybase.org.
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621  Figure $1.6.4.2.1: Blobplot of lllumina short-insert reads aligned against Ppyr1.2

622 Coverage shown represents mean coverage of reads from the Illumina short-insert library
623 (Sample name 8369; Table S4.1.1), aligned against Ppyr1.2 using Bowtie2 with parameters (--
624  local). Scaffolds were taxonomically annotated as described in Supplementary Text 1.6.3.2.
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Figure S1.6.4.2.2: Blobplot of P. pyralis PacBio reads aligned against Ppyr1.2

Coverage shows represents mean coverage of reads from the PacBio library (Sample name
1611; Table S4.1.1). The reads were aligned using SMRTPortal v2.3.0.140893 with the
“‘RS_Resequencing.1” protocol with default parameters. Scaffolds were taxonomically annotated
as described in Supplementary Text 1.6.3.2.
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Figure $1.6.4.2.3: Venn diagram representation of blobtools taxonomic annotation
filtering approach for Ppyr1.2 scaffolds.

(A) The blue set represents scaffolds which have >10.0 coverage in both lllumina and PacBio
libraries, (B) The red set represents scaffolds which had either genes on repeats (non simple or
low-complexity) annotated, (C) The green set represents scaffolds with suspicious taxonomic
assignment (Non ‘Arthropod’ or ‘no-hit’). Outside A, B, and C, represents low-coverage,
unannotated scaffolds. Ppyr1.3 consists of the intersection of A and B, minus the intersection of
C. All linkage groups (LG1-LG10) were annotated as ‘Arthropod’ by blobtools, and captured in
the intersection between A and B but not set C.

1.7 Ppyr0.1-PB: PacBio only genome assembly

In addition to our finalized genome assembly (Ppyr1.3), we sought to better understand the
symbiont composition that varied between our P. pyralis PacBio and lllumina libraries. Therefore
we produced a long-read only assembly of our PacBio data to assemble the sequence that
might be unique to this library. To achieve this, we first filtered the HDF5 data from the 61
sequence SMRT cells to .FASTQ format subreads using SMRTPortal (v2.3.0.140893)[36] with
the “RS_Subreads.1” protocol with default parameters. These subreads were then input into
Canu (Github commit 28ecea5 / v1.6)[57] with parameters “genomeSize=450m
corOutCoverage=200 ovlErrorRate=0.15 obtErrorRate=0.15 -pacbio-raw”. The unpolished
contigs from this produced genome assembly are dubbed Ppyr0.1-PB.

1.8 Mitochondrial genome assembly and annotation

To achieve a full length mitochondrial genome (mtDNA) assembly of P. pyralis,
sequences were assembled separately from the nuclear genome. Short insert lllumina reads
from a single GSMNP individual (Sample 8369; Table S4.1.1) were mapped to the known
mtDNA of the closest available relative, Pyrocoelia rufa (NC_003970.1[58]) using bowtie2 v2.3.1
(parameters: --very-sensitive-local). All concordant read pairs were input to SPAdes (v3.8.0)[59]
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(parameters: --plasmid --only-assembler -k35,55,77,90) for assembly. The resulting contigs
were then combined with the P. rufa mitochondrial reference genome for a second round of
read mapping and assembly. The longest resulting contig aligned well to the P. rufa
mitochondrial genome, however it was ~1 Kbp shorter than expected, with the unresolved
region appearing to be the tandem repetitive region (TRU)[58], previously described in the P.
rufa mitochondrial genome. To resolve this, all PacBio reads were mapped to the draft
mitochondrial genome, and a single high-quality PacBio circular-consensus-sequencing (CCS)
read that spanned the unresolved region was selected using manual inspection and manually
assembled with the contiguous sequence from the lllumina sequencing to produce a complete
circular assembly. The full assembly was confirmed by re-mapping the lllumina short-read data
using bowtie2 followed by consensus calling with Pilon v1.21[60]. Re-mapped PacBio long-read
data also confirmed the structure of the mtDNA, and indicated variability in the repeat unit copy
number of the TRU amongst the four sequenced P. pyralis individuals (Sample 1611_PpyrPB1;
Table S4.1.1). The P. pyralis mtDNA was then “restarted” using seqkit[61], such that the FASTA
record break occurred in the AT-rich region, and annotated using the MITOS2 annotation
server[62]. Low confidence and duplicate gene predictions were manually removed from the
MITOS2 annotation. The final P. pyralis mtDNA with annotations is available on GenBank
(KY778696).
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Figure $1.8.1: Mitochondrial genome of P. pyralis

The mitochondrial genome of P. pyralis was assembled and annotated as described. Note the
firefly specific tandem-repeat-unit (TRU) region. Figure produced with Circos[63].

Fallon, Lower et al. 2018 - Supplementary Materials 26


https://paperpile.com/c/fHp9OK/xuQB

685

686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722

1.9 Transcriptome analysis

1.9.1 RNA-extraction, library preparation and sequencing

In order to capture expression from diverse life stages, stranded RNA-Seq libraries were
prepared from whole bodies of four life stages/sexes (eggs, 1st instar larvae, adult male, and
adult female; Table S1.9.1.1). Eggs and larvae were derived from a laboratory mating of P.
pyralis (Collected MMNJ, July 2016). Briefly, live adult P. pyralis were transported to the lab and
allowed to mate in a plastic container over several days. The female, later sequenced, was
observed mating with two independent males on two separate nights. The female was then
transferred to a plastic container with moss, and allowed to oviposit over several days. Once no
more oviposition was observed, the female was removed, flash frozen with liquid N, and stored
at -80°C for RNA extraction. Resulting eggs were washed 3x with dilute bleach/ H,O and reared
in aggregate in plastic containers on moist Whatman paper. ~13 days after the start of egg
oviposition, a subset of eggs were flash frozen for RNA extraction. The remaining eggs were
allowed to hatch and larvae were flash frozen the day after emergence (1st instar). Total RNA
was extracted from a single stored adult male (non-paternal to eggs/larvae), the adult female
(maternal to eggs/larvae), seven pooled eggs, and four pooled larvae using the RNeasy Lipid
Tissue Mini Kit (QIAGEN) with the optional on-column DNase treatment. lllumina sequencing
libraries were prepared by the Whitehead Genome Technology Core (WI-GTC) using the
TruSeq Stranded mRNA library prep kit (lllumina) and following the manufacturer's instructions
with modification to select for larger insert sizes (~300-350 bp). These samples were
multiplexed with unrelated plant RNA-Seq samples and sequenced 150x150 nt on one rapid
mode flowcell (2 lanes) of a HiSeq2500 (WI-GTC), to a depth of ~30M paired reads per library.

To examine gene expression in adult light organs, we generated non-strand specific
sequencing of polyA pulldown enriched mRNA from dissected photophore tissue (Table
S$1.9.1.1). Photophores were dissected from the abdomens of adult P. pyralis males (Collected
MMNJ, July 2015) by Dr. Adam South (Harvard School of Public Health), using 3 individuals per
biological replicate. These tissues and libraries were co-prepared and sequenced with other
previously published libraries (full library preparation and sequencing details here[6]) at a depth
of ~10M paired reads per library.

To examine gene expression in larval light organs, we performed RNA-seq on dissected
larval light organs. We first extracted total RNA from a pool of 6 dissected larval photophores
from 3 individuals using the RNeasy Lipid Tissue Mini Kit (QIAGEN) with the optional on-column
DNase treatment. The larvae were the same larvae described in Supplementary Text. 1.3.2.
Total RNA. The total RNA was enriched to mRNA via polyA pulldown and prepared into a paired
unstranded lllumina sequencing using the Kapa HyperPrep kit (Kapa Biosystems, USA), and
sequenced to a depth of 43M 100x100 paired reads on a HiSeq2500 sequencer (lllumina,
USA).
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All of these data were combined with previously published tissue, sex, and stage-specific
libraries (Table S1.9.1.1) for reference-guided transcriptome assembly (Supp. Text 1.9.3).
Strand-specific data was used for de novo transcriptome assembly (Supp. Text 1.9.2).

Table $1.9.1.1: P. pyralis RNA sequencing libraries

N: number of individuals pooled for sequencing; Sex/stage: M = male, F = female, A = adult, L
= larva, L1= larva 1st instar, L4= larvae 4th instar, E13=13 days post fertilization eggs; Tissue:
H = head, PA = lantern abdominal segments, FB = abdominal fat body, T = thorax, OAG = other
accessory glands, SD = spermatophore digesting gland/bursa, SG = spiral gland, SC =
spermatheca, P = dissected photophore, E = egg, WB = whole body

Library name Source® SRAID N |Sex/stage|Tissue Library type
8175 Photinus pyralis male SRA1 SRR2103848 1 M/A H
head (adult) transcriptome
8176 Photinus pyralis male SRA1 SRR2103849 1 M/A PA
light organ (adult)
transcriptome
8819 Photinus pyralis light SRA1 SRR2103867 1 L PA
organ (larval) transcriptome
9 Photinus_sp_1_lantern SRA2 SRR3521424 1 M/A PA |Strand-specific. Ribo-
zero
Ppyr_FatBody_1 SRA3 SRR3883756 6 M/A FB
Ppyr_FatBody 2 SRA3 SRR3883757 6 M/A FB
Ppyr_FatBody_3 SRA3 SRR3883766 6 M/A FB
Ppyr_FatBody Mated SRA3 SRR3883767 4 M/A FB
Ppyr_FThorax SRA3 SRR3883768 3 FIA T
Ppyr_MThorax_1 SRA3 SRR3883769 6 M/A T
Ppyr_MThorax_2 SRA3 SRR3883770 6 M/A T
Ppyr_MThorax_3 SRA3 SRR3883771 6 M/A T
Ppyr_OAG_1A SRA3 SRR3883772 6 M/A AG
Ppyr_OAG_1B SRA3 SRR3883773 6 M/A AG
Ppyr_OAG_2 SRA3 SRR3883758 6 M/A AG
Ppyr_OAG_Mated SRA3 SRR3883759 4 M/A AG
Ppyr SDGBursa SRA3 SRR3883760 3 F/A SD
Ppyr_SG_Mated SRA3 SRR3883761 4 M/A SG
Ppyr Spermatheca SRA3 SRR3883762 3 F/IA SC
Ppyr_SpiralGland_1 SRA3 SRR3883763 6 M/A SG
Ppyr_SpiralGland_2 SRA3 SRR3883764 6 M/A SG
Ppyr_SpiralGland_3 SRA3 SRR3883765 6 M/A SG
Ppyr_Lantern_1A > SRR6345453 6 M/A P
Ppyr_Lantern_2 > SRR6345454 6 M/A P
Ppyr_Lantern_3 > SRR6345446 6 M/A P
Ppyr Eggs ** SRR6345447 7 E13 E Strand-specific
Ppyr Larvae ** SRR6345445 4 L1 WB Strand-specific
Ppyr wholeFemale* ** SRR6345449 1 F/IA WB Strand-specific
Ppyr_wholeMale > SRR6345452 1 M/A WB Strand-specific
TF_VA2017_3pooled_larval > SRR7345580 3 L4 P
lantern

@ SRA1= NCBI BioProject PRINA289908 [64]; SRA2= NCBI BioProject PRINA321737 [65]; SRA3= NCBI BioProject PRINA328865
[6]

* Parent of eggs and larvae with data from this study

** This study
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1.9.2 De novo transcriptome assembly and genome alignment

One strand-specific de novo transcriptome was produced from all available MMNJ
strand-specific reads (WholeMale, WholeFemale, eggs, larvae) and strand-specific reads from
SRA (SRR3521424)(Table S1.9.1.1). Reads from these 5 libraries were pooled (158.6M paired-
reads) as input for de novo transcriptome assembly. Transcripts were assembled using Trinity
(v2.4.0)[66] with default parameters except the following: (--SS_lib_type RF --trimmomatic --
min_glue 2 --min_kmer_cov 2 --jaccard_clip --no_normalize_reads). Gene structures were then
predicted from alignment of the de novo transcripts to the Ppyr1.3 genome using the PASA
pipeline (v2.1.0)[67] with the following steps: first, poly-A tails were trimmed from transcripts
using the internal seqclean component; next, transcript accessions were extracted using the
accession_extractor.pl component; finally, the trimmed transcripts were aligned to the genome
with modified parameters (--aligners blat,gmap --ALT_SPLICE --transcribed_is_aligned_orient --
tdn tdn.accs). Using both the blat (v. 36x2)[68] and gmap (v2017-09-11)[69] aligners was
required, as an appropriate gene model for Luc2 was not correctly produced using only a single
aligner. Importantly, it was also necessary to set (-
NUM_BP_PERFECT_SPLICE_BOUNDARY=0) for the validate_alignments_in_db.dbi step, to
ensure transcripts with natural variation near the splice sites were not discarded. Post
alignment, potentially spurious transcripts were filtered out using a custom script[70] that
removed extremely lowly-expressed transcripts (<1% of the expression of a given PASA
assembly cluster). Expression values used for filtering were calculated from the WholeMale
library reads using the Trinity align_and_estimate_abundance.pl utility script. The WholeMale
library was selected because it was the highest quality library - strand-specific, low
contamination, and many reads - thereby increasing the reliability of the transcript quantification.
Finally, the PASA pipeline was run again with this filtered transcript set to generate reliable
transcript structures. Peptides were predicted from the final transcript structures using
Transdecoder (v.5.0.2)[71] with default parameters. Direct coding gene models (DCGMs) were
then produced with the Transdecoder “cdna_alignment_orf_to_genome_orf.pl” utility script with
the PASA assembly GFF and transdecoder predicted peptide GFF as input. The unaligned de
novo transcriptome assembly is dubbed “PPYR_Trinity_stranded”, whereas the aligned direct
coding gene models are dubbed “Ppyr1.3_Trinity-PASA_stranded-DCGM”.

1.9.3 Reference guided transcriptome assembly

Two reference guided transcriptomes, one strand-specific and one non-strand-specific,
were produced from all available P. pyralis RNA-Seq reads (Table S1.9.1.1) using HISAT2
(v2.0.5)[72] and StringTie (v1.3.3b)[73]. For each library, reads were first mapped to the Ppyr1.3
genome assembly with HISAT2 (parameters: -X 2000 --dta --fr) and then assembled using
StringTie with default parameters except use of “--rf" for the strand-specific libraries. The
resulting library-specific assemblies were then merged into a final assembly using StringTie (--
merge), one for the strand-specific and one for the non-strand specific libraries, producing two
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final assemblies. For each final assembly, a transcript fasta file was produced and peptides
predicted using Transdecoder with default parameters. Then, the StringTie .GTFs were
converted to GFF format with the Transdecoder “gtf to_alignment_gff3.pl” utility script and
direct coding gene models (DCGMs) were produced with the Transdecoder
“cdna_alignment_orf_to_genome_orf.pl” utility script, with the StringTie GFF and transdecoder
predicted peptide GFF as input. The final GFFs were validated and sorted with genometools
(v1.5.9) with parameters (parameters: gff3 -tidy -sort -retainids), and then sorted again for IGV
format with igvtools (parameters: sort). The aligned direct coding gene models for the stranded
and unstranded reference guided transcriptomes are dubbed “Ppyr1.3_Stringtie stranded-
DCGM” and “Ppyr1.3_Stringtie_unstranded-DCGM”.

1.9.4 Transcript expression analysis

P. pyralis RNA-Seq reads (Table S1.9.1.1) were pseudoaligned to the PPYR_0OGS1.1
geneset CDS sequences using Kallisto (v0.44.0)[74] with 100 bootstraps (-b 100), producing
transcripts-per-million reads (TPM). Kallisto expression quantification analysis results are
available on FigShare (DOI: 10.6084/m9.figshare.5715139).

1.10 Official coding geneset annotation (PPYR_0GS1.1)

We annotated the coding gene structure of P. pyralis by integrating direct coding gene
models produced from the de novo transcriptome (Supplementary Text 1.9.2) and reference
guided transcriptome (Supplementary Node 1.9.3), with a lower weighted contribution of ab
initio gene predictions, using the Evidence Modeler (EVM) algorithm (v1.1.1)[67]. First,
Augustus (v3.2.2)[75] was trained against Ppyr1.2 with BUSCO (parameters: -l
endopterygota_odb9 --long --species tribolium2012). Next, preliminary gene models for
prediction training were produced by the alignment of the P. pyralis de novo transcriptome to
Ppyr1.2 with the MAKER pipeline (v3.0.08)[76] in “est2genome” mode. Preliminary gene models
were used to train SNAP (v2006-07-28)[77] following the MAKER instructions[78]. Augustus and
SNAP gene predictions of Ppyr1.3 were then produced through the MAKER pipeline, with hints
derived from MAKER blastx/exonerate mediated protein alignments of peptides from Drosophila
melanogaster (NCBI GCF_000001215.4 Release 6 plus ISO1_MT protein.faa), Tribolium
castaneum (NCBI GCF_000002335.3 Tcas5.2 protein), and Aquatica lateralis (AlatOGS1.0;
this report), and MAKER blastn/exonerate transcript alignments of the P. pyralis de novo
transcriptome. These ab initio coding gene models are dubbed “Ppyr1.3_abinitio_Augustus-
SNAP-MAKER-GMs.gff3”

We then integrated the ab initio predictions with our de novo and reference guided direct
coding gene models, using EVM. A variety of evidence sources, and EVM evidence weights
were empirically tested and evaluated using a combination of inspection of known gene models
(e.g. Luc1/Luc2), and the BUSCO score of the geneset. In the final version, 6 sources of
evidence were used for EVM: de novo transcriptome direct coding gene models
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(Ppyr1.3_Trinity-PASA_stranded-DCGM; weight=11), protein alignments (D. melanogaster, T.
castaneum, A. lateralis; weight = 8), GMAP and BLAT alignments of de novo transcriptome (via
PASA; weight = 5), reference guided transcriptome direct coding gene models
(Ppyr1.3_Stringtie_stranded-DCGM; weight = 3), Augustus and SNAP ab initio gene models
(via MAKER; weight = 2). A custom script[79] was necessary to convert MAKER GFF format to
an EVM compatible GFF format.

Lastly, gene models for luciferase homologs, P450s (Supp. Text 1.10.1), and de novo
methyltransferases (DNMTs) which were fragmented or were incorrect (e.g. fusions of adjacent
genes) were manually corrected based on the evidence of the de novo and reference guided
direct coding gene models. Manual correction was performed by performing TBLASTN
searches with known good genes from these gene families within
SequencerServer(v1.10.11)[80], converting the TBLASTN results to gff3 format with a custom
script[81], and viewing these alignments alongside the alternative direct coding gene models
(Supp. Text. 1.9.2; 1.9.3) in Integrative Genomics Viewer(v2.4.8)[82]. The official gene set
models gff3 file was manually modified in accordance with the evidence from the direct gene
models. Different revision numbers of the official geneset (e.g. PPYR_0GS1.0, PPYR_0GS1.1)
represent the improvement of the geneset over time due to these continuing manual gene
annotations.

1.10.1 P450 annotation

Translated de novo transcripts were formatted to be BLAST searchable with NCBI's
standalone software. The peptides were searched with 58 representative insect P450s in a
batch BLAST (evalue = 10). The query set was chosen to cover the diversity of insect P450s.
The top 100 hits from each search were retained. The resulting 5,837 hit IDs were filtered to
remove duplicates, leaving 472 unique hits. To reduce redundancy due to different isoforms, the
Trinity transcript IDs (style DNXXX_cX_gX_iX) were filtered down to the “DN” level, resulting in
136 unique IDs. All peptides with these IDs were retrieved and clustered with CD-Hit
(v4.5.4)[83] to 99% percent identity to remove short overlapping peptides. These 535 protein
sequences were batch BLAST compared to a database of all named insect P450s to identify
best hits. False positives were removed and about 30 fungal sequences were removed. These
fungal sequences could potentially be from endosymbiotic fungi in the gut. Overlapping
sequences were combined and the transcriptome sequences were BLAST searched against the
P. pyralis genome assembly to fill gaps and extend the sequences to the ends of the genes
were possible. This approach was very helpful with the CYP4G gene cluster, allowing fragments
to be assembled into whole sequences. When a new genome assembly and geneset became
available, the P450s were compared to the integrated gene models in PPYR_0OGS1.0. Some
hybrid sequences were corrected. The final set contains 170 named cytochrome P450
sequences (166 genes, 2 pseudogenes).

The cytochrome P450s in insects belong to four established clans CYP2, CYP3, CYP4
and Mito (Fig. S1.10.1.1). P. pyralis has about twice as many P450s as Drosophila
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melanogaster (86 genes, 4 pseudogenes) and slightly more than the red flour beetle Tribolium
castaneum (137 genes, 10 pseudogenes). Pseudogenes were determined by a lack of
conserved sites common to all P450s.The CYP3 clan is the largest, mostly due to three families:
CYP9 (40 sequences), CYP6 (36 sequences) and CYP345 (18 sequences). Insects have few
conserved sequences across species. These include the halloween genes for 20-
hydroxyecdysone synthesis and metabolism CYP302A1, CYP306A1, CYP307A2, CYP314A1
and CYP315A1[84] in the CYP2 and Mito clans. The CYP4G subfamily makes a hydrocarbon
waterproof coating for the exoskeleton[85]. Additional conserved P450s are CYP15A1 (juvenile
hormone[85]) and CYP18A1 (20-hydroxyecdysone degradation[86]) in the CYP2 clan. Most of
the other P450s are limited to a narrower phylogenetic range. Many are unique to a single
genus, though this may change as more sampling is done. It is common for P450s to expand
into gene blooms[87].
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Figure $1.10.1.1: P. pyralis P450 gene phylogenetic tree

Neighbour-joining phylogenetic tree of 165 cytochrome P450s from P. pyralis. Four
pseudogenes and one short sequence were removed. The P450 clans have colored spokes
(CYP2 clan brown, CYP3 clan green, CYP4 clan red, Mito clan blue). Shading highlights
different families and family clusters within the CYP3 clan. The tree was made using Clustal
Omega at EBI[88] with default settings. The resulting multiple sequence alignment is available
on FigShare (DOI: 10.6084/m9.figshare.5697643). The tree was drawn with FigTree v1.3.1
using midpoint rooting.

1.10.2 Virus annotation and analysis

Viruses were discovered from analysis of published P. pyralis RNA sequencing libraries
(NCBI TSA: GEZMO00000000.1) and the Ppyr1.2 genome assembly. 24 P. pyralis RNA
sequencing libraries were downloaded from SRA (taxid: 7054, date accessed: 15th June 2017).
RNA sequence reads were first de novo assembled using Trinity v2.4.0[66] with default
parameters. Resulting transcriptomes were assessed for similarity to known viral sequences by
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TBLASTN searches (max e-value = 1 x 10°) using as probe the complete predicted non
redundant viral Refseq proteins retrieved from NCBI (date accessed: 15th June 2017).
Significant hits were explored manually and redundant contigs discarded. False-positives were
eliminated by comparing candidate viral contigs to the entire non-redundant nucleotide (nt) and
protein (nr) database to remove false-positives.

Candidate virus genome segment sequences were curated by iterative mapping of reads
using Bowtie 2 (v2.3.2)[50]. Special attention was taken with the segments’ terminis -- an
arbitrary cut off of 10x coverage was used as threshold to support terminal base calls. The
complementarity and folded structure of untranslated ends, as would be expected for members
of the Orthomyxoviridae, was assessed by Mfold 2.3[89]. Further, conserved UTR sequences
were identified using ClustalW2[90] (support of >65% required to call a base). To identify/rule
out additional segments of no homology to the closely associated viruses we used diverse in
silico approaches based on RNA levels including: the sequencing depth of the transcript,
predicted gene product structure, or conserved genome termini, and significant co-expression
with the remaining viral segments.

After these filtering steps, putative viral sequences were annotated manually. First,
potential open reading frames (ORF) were predicted by ORFfinder[91] and manually inspected
by comparing predicted ORFS to those from the closest-related reference virus genome
sequence. Then, translated ORFs were blasted against the non-redundant protein sequences
NR database and best hits were retrieved. Predicted ORF protein sequences were also
subjected to a domain-based Blast search against the Conserved Domain Database (CDD)
(v3.16)[92] and integrated with SMARTI[93], Pfam[94], and PROSITE[95] results to characterize
the functional domains. Secondary structure was predicted with Garnier as implemented in
EMBOSS (v6.6)[96], signal and membrane cues were assessed with SignalP (v4.1)[97], and
transmembrane topology and signal peptides were predicted by Phobius[98]. Finally, the
potential functions of predicted ORF products were explored using these annotations as well as
similarity to viral proteins of known function.

To characterize Orthomyxoviridae viral diversity in P. pyralis in relation to known viruses,
predicted P. pyralis viral proteins were used as probes in TBLASTN (max e-value = 1 x 107)
searches of the complete 2,754 Transcriptome Shotgun Assembly (TSA) projects on NCBI (date
accessed: 15th June 2017). Significant hits were retrieved and the target TSA projects further
explored with the complete Orthomyxoviridae refseq collection to assess the presence of
additional similar viral segments. Obtained transcripts were extended/curated using the SRA
associated libraries for each TSA hit and then the curated virus sequences were characterized
and annotated as described above.

To identify P. pyralis viruses to family/genus/species, amino acid sequences of the
predicted viral polymerases, specifically the PB1 subunit, were used for phylogenetic analyses
with viruses of known taxonomy. To do this, multiple sequence alignment were generated using
MAFFT (v7.310) [99] and unrooted maximum-likelihood phylogenetic trees were constructed
using FastTree [100] with standard parameters. FastTree accounted for variable rates of
evolution across sites by assigning each site to one of 20 categories, with the rates
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geometrically spaced from 0.05 to 20, and set each site to its most likely rate category using a
Bayesian approach with a gamma prior. Support for individual nodes was assessed using an
approximate likelihood ratio test with the Shimodaira-Hasegawa-like procedure. Tree topology,
support values and substitutions per site were based on 1,000 tree resamples.

To facilitate taxonomic identification we complemented BLASTP data with 2 levels of
phylogenetic insights: (i) Trees based on the complete refseq collection of ssSRNA (-) viruses
which permitted a conclusive assignment at the virus family level. (ii) Phylogenetic trees based
on reported, proposed, and discovered Orthomyxoviridae viruses that allowed tentative species
demarcation and genera postulation. PB1-based trees were complemented independently with
phylogenetic studies derived from amino acids of predicted nucleoproteins, hemagglutinin
protein, PB2 protein, and PA protein which supported species, genera and family demarcation
based on solely on PB1, the standard in Orthomyxoviridae. In addition, sequence similarity of
concatenated gene products of International Committee on Taxonomy of Viruses (ICTV)
allowed demarcation to species and firefly viruses were assessed by Circoletto diagrams[101]
(e-value = 1e10-2). Where definitive identification was not easily assessed, protein Motif
signatures were determined by identification of region of high identity between divergent virus
species, visualized by Sequence Logo[102], and contrasted with related literature.
Heterotrimeric viral polymerase 3D structure prediction was generated with the SWISS-MODEL
automated protein structure homology-modelling server[103] with the best fit template 4WSB:
the crystal structure of Influenza A virus 4WSB. Predicted structures were visualized in UCSF
Chimera[104] and Needleman-Wunsch sequence alignments from structural superposition of
proteins were generated by MatchMaker and the Match->Align Chimera tool. Alternatively, 3D
structures were visualized in PyMOL (v1.8.6.0; Schrodinger).

Viral RNA levels in the transcriptome sequences were also examined. Virus transcripts
RNA levels were obtained by mapping the corresponding raw SRA FASTQ read pairs using
either Bowtie2[50] or the reference mapping tool of the Geneious 8.1.9 suite (Biomatters, Ltd.)
with standard parameters. Using the mapping results and retrieving library data, absolute levels,
TPMs and FPKM were calculated for each virus RNA segment. Curated genome segments and
coding annotation of the identified PpyrOMLV1 and 2 are available on FigShare at (DOI:
10.6084/m9.figshare.5714806) and (DOIl: 10.6084/m9.figshare.5714812) respectively, and
NCBI Genbank (accessions MG972985 through MG972994)

All curation, phylogeny construction, and visualization were conducted in Geneious 8.1.9
(Biomatters, Ltd.). Animal silhouettes in Fig. S5.4.1 were developed based on non-copyrighted
public domain images. Figure compositions were assembled using Photoshop CS5 (Adobe).
Bar graphs were generated with Excel 2007 software (Microsoft). RNA levels normalized as
mapped transcripts per million per library were visualized using Shinyheatmap[105].

Finally, to identify endogenous viral-like elements, tentative virus detections and the viral
refseq collection were contrasted to the P. pyralis genome assembly Ppyr1.2 by BLASTX
searches (e-value = 1e-6) and inspected by hand. Then 15 Kbp genome flanking regions were
retrieved and annotated. Lastly, transposable elements (TEs) were determined by the presence
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of characteristic conserved domains (e.g. RNASE_H, RETROTRANSPOSON, INTEGRASE) on
predicted gene products and/or significant best BLASTP hits to reported TEs (e-value <1e-10).

1.11 Repeat annotation

Repeat prediction for P. pyralis was performed de novo using RepeatModeler
(v1.0.9)[106] and MITE-Hunter (v11-2011)[107]. RepeatModeler uses RECON[108] and
RepeatScout[109] to predict interspersed repeats, and then refines and classifies the consensus
repeat models to build a repeat library. MITE-Hunter detects candidate MITEs (miniature
inverted-repeat transposable elements) by scanning the assembly for terminal inverted repeats
and target site duplications <2 kb apart. To identify tandem repeats, we also ran Tandem
Repeat Finder (v4.09; parameters: 2 7 7 80 10)[110], and added repeats whose repeat block
length was >5 kb to the repeat library annotated as “complex tandem repeat”. The
RepeatModeler and MITE-Hunter libraries were combined and classified using RepeatClassifier
(RepeatModeler 1.0.9 distribution)[106]. The complex repeats identified by Tandem Repeat
Finder were added to this classified list to create the final library of 3118 repeats. This repeat
library is dubbed the P. pyralis Official Repeat Library 1.0 (PPYR_ORL1.0).

Table S$1.11.1: Annotated repetitive elements in P. pyralis

Repeat class family counts bases % of assembly
DNA All 122551 38364685 8.14
Helitrons 35068 9308100 1.97
LTR All 28860 11401648 242
Non-LTR All 52107 17744320 3.76
LINE 48983 16763499 3.56
SINE 1241 139637 0.03
Unknown interspersed 696511 141970977 30.1
Complex tandem repeats 10395 2352796 0.50
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Simple repeat 48224 2372183 0.50

rRNA 449 161517 0.034

1.12 P. pyralis methylation analysis

MethyIC-seq libraries were prepared from HMW DNA prepared from four P. pyralis
MMNJ males using a previously published protocol[111], and sequenced to ~36x expected
depth on an lllumina NextSeq500. Methylation analysis was performed using methylpy[112]
Methylpy calls programs for read processing and aligning: (i) reads were trimmed of sequencing
adapters using Cutadapt[113], (ii) processed reads were mapped to both a converted forward
strand (cytosines to thymines) and converted reverse strand (guanines to adenines) using
bowtie (flags: -S, -k 1, -m 1, --chunkmbs 3072, --best, --strata, -0 4, -e 80, - 20, -n 0 [114]), and
(i) PCR duplicates were removed using Picard[115]. In total, 49.4M reads were mapped
corresponding to an actual sequencing depth of ~16x. A sodium bisulfite non-conversion rate of
0.17% was estimated from Lambda phage genomic DNA. Raw WGBS data can be found on the
NCBI Gene Expression Omnibus (GSE107177). Previously published whole genome bisulfite
sequencing (WGBS)/MethylC-seq libraries for Apis mellifera [116], Bombyx mori [117],
Nicrophorus vespilloides [118], and Zootermopsis nevadensis [119] were downloaded from the
Short Read Archive (SRA) using accessions SRR445803—4, SRR027157-9, SRR2017555, and
SRR3139749, respectively. Libraries were subjected to identical methylation analysis as P.
pyralis.

Weighted DNA methylation was calculated for CG sites by dividing the total number of
aligned methylated reads by the total number of methylated plus un-methylated reads [120]. For
genic metaplots, the gene body (start to stop codon), 1000 base pairs (bp) upstream, and 1000
bp downstream was divided into 20 windows proportional windows based on sequence length
(bp). Weighted DNA methylation was calculated for each window and then plotted in R
(v3.2.4)[121].

1.13 Telomere FISH analysis

We synthesized a 5’ fluorescein-tagged (TTAGG)s oligo probe (FAM; Integrated DNA
Technologies) for fluorescence in situ hybridization (FISH). We conducted FISH on squashed
larval tissues according to previously published methods[122], with some modification. Briefly,
we dissected larvae in 1X PBS and treated tissues with a hypotonic solution (0.5% Sodium
citrate) for 7 minutes. We transferred treated larval tissues to 45% acetic acid for 30 seconds,
fixed in 2.5% paraformaldehyde in 45% acetic acid for 10 minutes, squashed, and dehydrated in
100% ethanol. We treated dehydrated slides with detergent (1% SDS), dehydrated again in
ethanol, and then stored until hybridization. We hybridized slides with probe overnight at 30°C,
washed in 4X SSCT and 0.1X SSC at 30°C for 15 minutes per wash. Slides were mounted in

Fallon, Lower et al. 2018 - Supplementary Materials 37


https://paperpile.com/c/fHp9OK/Bc5Pm
https://paperpile.com/c/fHp9OK/ccLU
https://paperpile.com/c/fHp9OK/3u0On
https://paperpile.com/c/fHp9OK/b0cGI
https://paperpile.com/c/fHp9OK/3QAZ
https://paperpile.com/c/fHp9OK/hSoF
https://paperpile.com/c/fHp9OK/0XGU
https://paperpile.com/c/fHp9OK/dmaG
https://paperpile.com/c/fHp9OK/F7h4
https://paperpile.com/c/fHp9OK/oVmm
https://paperpile.com/c/fHp9OK/VXeE
https://paperpile.com/c/fHp9OK/KM6S

1016
1017
1018
1019

VectaShield with DAPI (Vector Laboratories), visualized on a Leica DM5500 upright
fluorescence microscope at 100X, imaged with a Hamamatsu Orca R2 CCD camera. Images
were captured and analyzed using Leica’s LAX software.
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SUPPLEMENTARY TEXT 2: Aquatica lateralis additional information

2.1 Taxonomy, biology, and life history
Aquatica lateralis (Motschulsky, 1860) (Japanese name, Heike-botaru / N4 7R & )L) is
one of the most common and popular luminous insects in mainland Japan. This species is a

member of the subfamily Luciolinae and had long belonged in the genus Luciola, but was

recently moved to the new genus Aquatica with some other Asian aquatic fireflies[123].

The life cycle of A. lateralis is usually one year. Aquatic larva possesses a pair of outer
gills on each abdominal segment and live in still or slow streams near rice paddies, wetlands
and ponds. Larvae mainly feed on freshwater snails. They pupate in a mud cocoon under the
soil near the water. Adults emerge in early to end of summer. While both males and females are
full-winged and can fly, there is sexual dimorphism in adult size: the body length is about 9 mm
in males and 12 mm in females[124].

Like other firefly larvae, A. lateralis larvae are bioluminescent. Larvae possess a pair of
lanterns at the dorsal margin of the abdominal segment 8. Adults are also luminescent and
possess lanterns at true abdominal segments 6 and 7 in males and at segment 6 in
females[124—-126]. The adult is dusk active. Male adults flash yellow-green for about 1.0 second
in duration every 0.5-1.0 seconds while flying ~1 m above the ground. Female adults, located
on low grass, respond to the male signal with flashes of 1-2 seconds in duration every 3-6 sec.
Males immediately approach females and copulate on the grass[124,127]. Like many other
fireflies, A. lateralis is likely toxic: both adults and larvae emit an unpleasant smell when
disturbed and both invertebrate (dragonfly) and vertebrate (goby) predators vomit up the larva
after biting[128]. A. lateralis larvae have eversible glands on each of the 8 abdominal
segments[123]. The contents of the eversible glands is perhaps similar to that reported for A. leii
[129].

2.2 Species distribution

The geographical range of A. lateralis includes Siberia, Northeast China, Kuril Isls,
Korea, and Japan (Hokkaido, Honshu, Shikoku, Kyushu, Tsushima Isls.)[130]. Natural habitats
of these Japanese fireflies have been gradually destroyed through human activity, and currently
these species can be regarded as ‘flagship species’ for conservation[131]. For example, in
2017, Japanese Ministry of Environment began efforts to protect the population of A. lateralis in
the Imperial Palace, Tokyo, where 3,000 larvae cultured in an aquarium were released in the
pond beside the Palace[132].
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2.3 Specimen collection

Individuals used for genome sequencing, RNA sequencing, and LC-HRAM-MS were
derived from a small population of laboratory-reared fireflies. This population was established
from a few individuals collected from rice paddy in Kanagawa Prefecture of Japan in 1989 and
1990[133] by Mr. Haruyoshi lkeya, a highschool teacher in Yokohama, Japan. Mr. lkeya
collected adult A. lateralis specimens from their natural habitat in Yokohama and has
propagated them for over 25 years (~25 generations) in a laboratory aquarium without any
addition of wild individuals. This population has since been propagated in the laboratory of YO,
and is dubbed the “lkeya-Y90” cultivar. Because of the small number of individuals used to
establish the population and the number of generations of propagation, this population likely
represents a partially inbred strain. Larvae were kept in aquarium at 19-21°C and fed using
freshwater snails (Physella acuta and Indoplanorbis exustus). Under laboratory rearing
conditions, the life cycle is reduced to 7-8 months. The original habitat of this strain has been
destroyed and the wild population which led to the laboratory strain is now extinct.

2.4 Karyotype and genome size

Unlike P. pyralis, the karyotype of A. lateralis is reported to be 2n=16 with XY sex
determination (male, 14A+XY; female, 14A+XX)[134]. The Y chromosome is much smaller than
X chromosome, and the typical behaviors of XY chromosomes, such as partial conjugation of
X/Y at first meiotic metaphase and separation delay of X/Y at first meiotic anaphase, were
observed in testis cells[134].

We determined the genome size of A. lateralis using flow cytometry-mediated calibrated-
fluorimetry of DNA content with propidium iodide stained nuclei. First, the head + prothorax of a
single pupal female (gender identified by morphological differences in abdominal segment VIII)
was homogenized in 100 yuL PBS. These tissues were chosen to avoid the ovary tissue. Once
homogenized, 900 uL PBS, 1 uL Triton X-100 (Sigma-Aldrich), and 4 yL 100 mg/mL RNase A
(QIAGEN) were added. The homogenate was incubated at 4°C for 15 min, filtered with a 30 um
Cell Tries filter (Sysmex), and further diluted with 1 mL PBS. 20 pyL of 0.5 mg/mL propidium
iodide was added to the mixture and then average fluorescence of the 2C nuclei determined
with a SH-800 flow cytometer (Sony, Japan). Three technical replicates of this sample were
performed. Independent runs for extracted Aphid nuclei (Acyrthosiphon pisum; 517 Mbp), and
fruit fly nuclei (Drosophila melanogaster, 175 Mbp) were performed as calibration standards.
Genome size was estimated at 940 Mbp + 1.4 (S.D.; technical replicates = 3).

Genome size inference via Kmer spectral analysis estimated a genome size of 772 Mbp
(Figure S2.5.1).
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2.5 Genomic sequencing and assembly

Genomic DNA was extracted from the whole body of a single laboratory-reared A.
lateralis adult female (c.v. Ikeya-Y90) using the QlAamp Kit (Qiagen). Purified DNA was
fragmented with a Covaris S2 sonicator (Covaris, Woburn, MA, USA), size-selected with a
Pippin Prep (Sage Science, Beverly, MA, USA), and then used to create two paired-end
libraries using the TruSeq Nano Sample Preparation Kit (Illumina) with insert sizes of ~200 and
~800 bp. These libraries were sequenced on an lllumina HiSeq1500 using a 125x125 paired-
end sequencing protocol. Mate-pair libraries of 2-20 Kb with a peak at ~5 Kb were created from
the same genomic DNA using the Nextera Mate Pair Sample Preparation Kit (FC-132-1001,
lllumina), and sequenced on HiSeq 1500 using a 100x100 paired-end sequencing protocol at
the NIBB Functional Genomics Facility (Aichi, Japan). In total, 133.3 Gb of sequence (159x)
was generated.

Reads were assembled using ALLPATHS-LG (build# 48546)[135], with default
parameters and the “HAPLOIDIFY = True” option. Scaffolds were filtered to remove non-firefly
contaminant sequences using blobtools[55], resulting in the final assembly (Alat1.3). The final
assembly (Alat1.3) consists of 5,388 scaffolds totaling 908.5 Gbp with an N50 length of 693.0
Kbp, corresponding to 96.6% of the predicted genome size of 940 Mbp based on flow cytometry
(Supplementary Text 2.4). Genome sequencing library statistics are available in Table S4.1.1.
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Figure S$2.5.1: Genome scope kmer analysis of the A. lateralis short-insert genomic
library.

(A) linear and (B) log plot of a kmer spectral genome composition analysis of the
‘FFGPE_PE200” A. lateralis Illumina short-insert library (Supp. Text 2.5; Table S4.1.1) with
jellyfish (v2.2.9; parameters: -C -k 35)[34] and GenomeScope (v1.0; parameters: Kmer
length=35, Read length=100, Max kmer coverage=1000)[35]. len=inferred haploid genome
length, unig=percentage non-repetitive sequence, het=overall rate of genome heterozygosity,
kcov=mean kmer coverage for heterozygous bases, err=error rate of the reads, dup: average
rate of read duplications. These results are consistent when considering the possible systematic
error of kmer spectral analysis and flow cytometry genome size estimates. The heterozygosity is
lower than that measured for P. pyralis, possibly reflecting the long-term laboratory rearing in
reduced population sizes of A. lateralis strain lkeya-Y90.

2.5.2 Taxonomic annotation filtering

Potential contaminants in Alat1.2 were identified using the blobtools toolset (v1.0)[55].
First, scaffolds were compared to known sequences by performing a blastn (v2.5.0+) nucleotide
sequence similarity search against the NCBI nt database and a diamond (v0.9.10)[56]
translated nucleotide sequence similarity search against the of Uniprot reference proteomes
(July 2017). Using this similarity information, scaffolds were annotated with blobtools
(parameters “-x bestsumorder”). We also inspected the read coverage by mapping the paired-
end reads (FFGPE_PEZ200) on the genome using bowtie2. A tab delimited text file containing
the results of this blobtools annotation are available on FigShare (DOI:
10.6084/m9.figshare.5688928). The contigs derived from potential contaminants and/or poor
quality contigs were then removed: contigs with higher %GC (>50%) with bacterial hits or no
database hits and showing low read coverage (<30x) (see Fig. S2.5.2.1). This process removed
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1925 scaffolds (1.17 Mbp), representing 26.3% of the scaffold number and 1.3% of the
nucleotides of Alat1.2, producing the final filtered assembly, dubbed Alat1.3.
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Figure S2.5.2.1: Blobplot of A. lateralis lllumina reads aligned against Alat1.2

Coverage shown represents mean coverage of reads from the lllumina short-insert library
(Sample name FFGPE_PE200; Table S4.1.1), aligned against Alat1.2 using Bowtie2. Scaffolds
were taxonomically annotated as described in Supplementary Text 2.5.2.

2.6 RNA-extraction, library preparation and sequencing

In order to capture transcripts from diverse life-stages and tissues, non-stranded RNA-
Seq libraries were prepared from fresh specimens of nine life stages/sexes/tissues (eggs, 5th
(the last) instar larvae, both sex of pupae, adult male head, male abdomen (prothorax-to-fifth
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segment), male lantern, adult female head, and female lantern (Table S2.6.1). Live specimens
were anesthetized on ice and dissected during the day. The lantern tissue was dissected from
the abdomen and contains the cuticle, photocyte layer and reflector layer. For eggs, larvae, and
pupae, total RNA was extracted using the RNeasy Mini Kit (QIAGEN) with the optional on-
column DNase treatment. For adult specimens, total RNA was extracted using TRIzol reagent
(Invitrogen) to avoid contamination of pigments and uric acid. These were then treated with
DNase in solution and then cleaned using a RNeasy Mini kit.

cDNA libraries were generated from purified Total RNA (500 ng from each sample) using
a TruSeq RNA Sample Preparation Kit v2 (lllumina) according to the manufacturer’s protocol
(Low Throughput Protocol), except that all reactions were carried out at half scale. The
fragmentation of mRNA was performed for 4 min. The enrichment PCR was done using 6
cycles. A subset of nine libraries (BdM1, HeF1, HeM1, LtF1, LtM1, Egg1, Lrv1, PpEF, PpLM;
Table S2.6.1) were multiplexed and sequenced in a single lane of Hiseq1500 101x101 bp
paired-end reads. The remaining 23 libraries (BdM2, BdM3, HeF2, HeF3, HeM2, HeM3, LtF2,
LtF3, LtM2, LtM3, WAF1, WAF2, WAF3, WAM1, WAM2, WAM3, Egg2, Lrv2, Lrv3, PpEM,
PpLF, PpMF, PpMM) were multiplexed and sequenced in two lanes of Hiseq1500 66 bp single-
end reads. Sequence quality was inspected with FastQC[136].

Table S2.6.1: Aquatica lateralis RNA sequencing

N: number of individuals pooled for sequencing; Sex/stage: M = male, F = female, A = adult, L
= larva, L = larvae, E = Eggs, P = Pupae, P-E = Pupae early, P-M = Pupae middle, P-L = Pupae
late; Tissue: H = head, La = dissected lantern containing cuticle, photocyte layer and reflector
layer, H = head, B = Thorax, plus abdomen excluding lantern containing segments. W = whole
specimen. AEL = After egg laying

Sex/

Library name | Label SRAID N Stage Tissue Library type

R102L6_idx13 | BdM1 DRR119264 1 M/A B lllumina paired-end, non-stranded specific, PolyA
R128L1_idx25 | BdM2 DRR119265 1 M/A B lllumina single-end, non-stranded specific, PolyA
R128L2_idx27 | BdM3 DRR119266 1 M/A B lllumina single-end, non-stranded specific, PolyA
R102L6_idx15 | HeF1 DRR119267 3 F/IA H lllumina paired-end, non-stranded specific, PolyA
R128L1_idx22 | HeF2 DRR119268 3 FIA H lllumina single-end, non-stranded specific, PolyA
R128L2_idx23 | HeF3 DRR119269 3 F/IA H lllumina single-end, non-stranded specific, PolyA
R102L6_idx12 | HeM1 DRR119270 2 M/A H lllumina paired-end, non-stranded specific, PolyA
R128L1_idx20 | HeM2 DRR119271 2 M/A H lllumina single-end, non-stranded specific, PolyA
R128L2_idx21 | HeM3 DRR119272 2 M/A H lllumina single-end, non-stranded specific, PolyA
R102L6_idx16 | LtF1 DRR119273 5 FIA La lllumina paired-end, non-stranded specific, PolyA
R128L1_idx06 | LtF2 DRR119274 5 F/IA La lllumina single-end, non-stranded specific, PolyA
R128L2_idx12 | LtF3 DRR119275 5 FIA La lllumina single-end, non-stranded specific, PolyA
R102L6_idx14 | LtM1 DRR119276 5 M/A La lllumina paired-end, non-stranded specific, PolyA
R128L1_idx05 | LtM2 DRR119277 5 M/A La lllumina single-end, non-stranded specific, PolyA
R128L2_idx19 | LtM3 DRR119278 5 M/A La lllumina single-end, non-stranded specific, PolyA
R128L2_idx15 | WAF1 DRR119279 1 F/IA w lllumina single-end, non-stranded specific, PolyA
R128L1_idx16 | WAF2 DRR119280 1 FIA w lllumina single-end, non-stranded specific, PolyA
R128L2_idx18 | WAF3 DRR119281 1 F/IA w lllumina single-end, non-stranded specific, PolyA
R128L1_idx11 | WAMA1 DRR119282 1 M/A w lllumina single-end, non-stranded specific, PolyA
R128L2_idx13 | WAM2 DRR119283 1 M/A w lllumina single-end, non-stranded specific, PolyA
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R128L1_idx14 | WAM3 DRR119284 1 M/A w lllumina single-end, non-stranded specific, PolyA

19.6 mg E lllumina paired-end, non-stranded specific, PolyA
R102L6_idx4 Egg1 DRR119285 (~30-50) | ~6h AEL w

21.6 mg E lllumina single-end, non-stranded specific, PolyA
R128L1_idx01 | Egg2 DRR119286 (~30-50) |~7d AEL W
R102L6_idx5 Lrv1 DRR119287 1 L W lllumina paired-end, non-stranded specific, PolyA
R128L1_idx03 | Lrv2 DRR119288 1 L w lllumina single-end, non-stranded specific, PolyA
R128L2_idx04 | Lrv3 DRR119289 1 L w lllumina single-end, non-stranded specific, PolyA
R128L1_idx07 | PpEM DRR119290 1 M/P-E w lllumina single-end, non-stranded specific, PolyA
R128L2_idx10 | PpLF DRR119291 1 F/P-L W lllumina single-end, non-stranded specific, PolyA
R128L1_idx09 | PpMF DRR119292 1 F/P-M w lllumina single-end, non-stranded specific, PolyA
R128L2_idx08 | PpMM DRR119293 1 M/P-M w lllumina single-end, non-stranded specific, PolyA
R102L6_idx7 PpEF DRR119294 1 F/P-E w lllumina paired-end, non-stranded specific, PolyA
R102L6_idx6 PpLM DRR119295 1 M/P-L w lllumina paired-end, non-stranded specific, PolyA

2.7 Transcriptome analysis

2.7.1 De novo transcriptome assembly and alignment

To build a comprehensive set of reference transcript sequences, reads derived from the
pool of nine libraries (BdM1, HeF1, HeM1, LtF1, LtM1, Egg1, Lrv1, PpEF, PpLM; Table S2.6.1)
were pooled. These represent RNA prepared from various tissues (head, thorax+abdomen,
lantern) and stages (egg, pupae, adult) of both sexes. A non strand-specific de novo
transcriptome assembly was produced with Trinity (v2.6.6)[66] using default parameters
exception the following: (--min_glue 2 --min_kmer_cov 2 --jaccard_clip --no_normalize_reads --
trimmomatic). Peptides were predicted from the de novo transcripts via Transdecoder (v5.3.0;
default parameters). De novo transcripts were then aligned to the A. lateralis genome (Alat1.3)
using the PASA pipeline with blat (v36x2) and gmap (v2018-05-03) (--aligners blat,gmap),
parameters for alternative splice analysis and strand specificity (--ALT_SPLICE --
transcribed_is_aligned_orient), and input of the previously extracted Trinity accessions (--tdn
tdn.accs). Importantly, it was necessary to set (-
NUM_BP_PERFECT_SPLICE_BOUNDARY=0) for the validate_alignments_in_db.dbi step, to
ensure transcripts with natural variation near the splice sites were not discarded. Direct coding
gene models (DCGMs) were then produced with the Transdecoder
“cdna_alignment_orf_to_genome_orf.pl” utility script, with the PASA assembly GFF and
transdecoder predicted peptide GFF as input. The unaligned de novo transcriptome assembly
is dubbed “AQULA_Trinity_unstranded”, whereas the aligned direct coding gene models are
dubbed “Alat1.3_Trinity_unstranded-DCGM”.

2.7.2 Reference guided transcriptome alignment and assembly

A reference guided transcriptome was produced from all available A.lateralis RNA-seq
reads (Table S2.6.1) using HISAT2 (v2.1.0)[72] and StringTie (v1.3.3b)[73]. Reads were first
mapped to the A. lateralis genome (Alat1.3) with HISAT2 (parameters: -X 2000 --dta --fr). Then
StringTie assemblies were performed on each separate .bam file corresponding to the original
libraries using default parameters. Finally, the produced .GTF files were merged using StringTie
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(--merge). A transcript fasta file was produced from the StringTie GTF file with the transdecoder
“gtf_genome_to_cdna_fasta.pl” utility script, and peptides were predicted for these transcripts
using Transdecoder (v5.3.0) with default parameters. The StringTie .GTF was converted to GFF
format with the Transdecoder “gtf to_alignment_gff3.pl” utility script, and direct coding gene
models (DCGMs) were then produced with the Transdecoder
“cdna_alignment_orf_to_genome_orf.pl” utility script, with the StringTie-provided GFF and
transdecoder predicted peptide GFF as input. The reference guided transcriptome assembly
was dubbed “AQULA_Stringtie_unstranded”, whereas the aligned direct coding gene models
were dubbed “Alat1.3_Stringtie_unstranded-DCGM”.

2.7.3 Transcript expression analysis

A. lateralis RNA-Seq reads (Table S2.6.1) were pseudoaligned to the AQULA_OGS1.0
geneset mMRNAs using Kallisto (v0.43.1)[74] with 100 bootstraps (-b 100), producing transcripts-
per-million reads (TPM). Kallisto expression quantification analysis results are available on
FigShare (DOI: 10.6084/m9.figshare.5715142).

2.8 Official coding geneset annotation (AQULA_0GS1.0)

A protein-coding gene reference set for A. lateralis was generated by Evidence Modeler
(v1.1.1) using both aligned transcripts and aligned proteins. For transcripts, we combined
reference guided and de novo transcriptome assembly approaches. Notably, these reference
guided and de novo transcriptome assembly approaches differed from the current de novo
(Supplementary Text 2.7.1) and reference guided (Supplementary Text 2.7.2) transcriptome
assembly approaches. In the reference-guided approach applied here, RNA-Seq reads were
mapped to the genome assembly with TopHat and assembled into transcripts with Cufflinks
(parameters: --min-intron-length 30)[137]. The Cufflinks transcripts were subjected to the
TransDecoder program to extract ORFs. In the de novo transcriptome approach applied here,
RNA-seq reads were assembled de novo by Trinity and ORFs were predicted using
TransDecoder. We used CD-HIT-EST[83] to reduce the redundancy of the predicted ORFs. The
ORF sequences were mapped to the genome using Exonerate in est2genome mode for splice-
aware alignment. We processed homology evidence at the protein level using the reference
proteomes of D. melanogaster and T. castaneum. These reference proteins were split-mapped
to the A. lateralis genome in two steps: first with BLASTX to find approximate loci, and then with
Exonerate in protein2genome mode to obtain more refined alignments. These gene models
derived from multiple evidence were merged by the EVM program to obtain the reference
annotation for the genomes. We also predicted ab initio gene models using Augustus, but we
didn’t include Augustus models for the EVM integration because our preliminary analysis
showed the ab initio gene models had no positive impact on gene prediction.

Lastly, gene models for luciferase homologs, P450s, and de novo methyltransferases
(DNMTs) which were fragmented or were incorrect (e.g. fusions of adjacent genes) were
manually corrected based on the evidence of the de novo and reference guided direct coding
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gene models. Manual correction was performed by performing TBLASTN searches with known
good genes from these gene families within SequencerServer(v1.10.11)[80], converting the
TBLASTN results to gff3 format with a custom script[81], and viewing these alignments
alongside the alternative direct coding gene models (Supp. Text. 2.7.1; 2.7.2) in Integrative
Genomics Viewer(v2.4.8)[82]. The official gene set .gff3 file was manually modified in
accordance with the alternative gene models. Different revision numbers of the official geneset
(e.g. AQULA_OGS1.0, AQULA_OGS1.1) represent the improvement of the geneset over time
due to these continuing manual gene annotations.

2.9 Repeat annotation

A de novo species-specific repeat library for A. lateralis was constructed using
RepeatModeler (v1.0.9), and Tandem Repeat Finder (v4.09; settings: 2 7 7 80 10)[110]. Only
tandem repeats from Tandem Repeat Finder with a repeat block length >5 kb (annotated as
“‘complex tandem repeat”) were added to the RepeatModeler library. This process yielded a
final library of 1695 interspersed repeats. We then used this library and RepeatMasker
(v4.0.5)[138] to identify and mask interspersed and tandem repeats in the genome assembly.
This repeat library is dubbed the Aquatica Ilateralis Official Repeat Library 1.0
(AQULA_ORL1.0).

Table S2.9.1: Annotated repetitive elements in A. lateralis

Repeat class family counts bases % of assembly
DNA All 229064 73263593 8.06
Helitrons 930 466679 0.051
LTR All 59499 23391956 2.57
Non-LTR All 151788 50394853 5.55
LINE 151788 50394853 5.55
SINE 0 0 0
Unknown interspersed 450934 99998958 11.01
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Complex tandem repeats
Simple repeat
rRNA

1254
1255

295 33237 0.004
155265 6656757 0.73
0 0 0
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SUPPLEMENTARY TEXT 3: Ignelater luminosus additional information

3.1 Taxonomy, biology, and life history

Ignelater luminosus is a member of the beetle family Elateridae (“click beetles”), related
to Lampyridae within the superfamily Elateroidea. The Elateridae includes about 10,000
species[139] (17 subfamilies)[140], which are widespread throughout the globe. Unlike in
fireflies, where bioluminescence is universal, only ~200 described elaterid species are luminous.
These luminous species are recorded only from tropical and subtropical regions of Americas
and some small Melanesian islands, such as Fiji and Vanuatu [140,141]. For instance, the
tropical American Pyrophorus noctilucus is considered the largest (~30 mm) and brightest
bioluminescent insect [142,143]. All luminous species are closely related - luminous click
beetles belong to the tribes Pyrophorini and Euplinthini[141,144] of the subfamily Agrypninae,
with the single exception of Campyloxenus pyrothorax (Chile) in the related subfamily
Campyloxeninae[145]. The luminescence of a pair of pronotal ‘light organs’ of the adult Balgus
schnusei [146], a species that has now been assigned to the Thylacosterninae of the
Elateridae[140], has not been confirmed by later observation. This near-monophyly of
bioluminescent elaterid taxa is supported by both morphological[147] and molecular
phylogenetic  analysis[148-150], though early = morphological phylogenies were
inconsistent[145,151-154]. This suggests a single origin of bioluminescence in this family.

The genus Ignelater was established by Costa in 1975 and /. luminosus was included in
this genus[141]. Often this species is called Pyrophorus luminosus as an ‘auctorum’, a name
used to describe a variety of taxa[155]. This use of “Pyrophorus” as an auctorum may be due to
the heightened difficulty of classifying Elateridae[141]. The genus Ignelater is characterized by
the presence of both dorsal and ventral photophores[141,156]. An unreviewed report suggested
that the adult /. luminosus has a ventral light organ only in males [157]. Phylogenetic analyses
based on the morphological characters suggested that the genera Ignelater and Photophorus
(which contain only two species from Fiji and Vanuatu) are the most closely related genera in
the tribe Pyrophorini [156]. The earliest fossil of an Elateridae species was recorded from the
Middle Jurassic of Inner Mongolia, China [158]. McKenna and Farrell suggested that, based on
molecular analyses, the family Elateridae originated in the Early Cretaceous (130 Mya) [159]. It
is expected that many recent genera in Elateroidea were established by the Early Tertiary (<65
Mya) [160].

The exact function of bioluminescence across different life stages remains unknown for
many luminous elaterid species. Bioluminescent elaterid beetles typically have 2 paired lanterns
on the dorsal surface of the prothorax, and a single lantern on the ventral abdomen which is
only exposed during flight. Several bioluminescent Elateridae produce different colored
luminescence from their prothorax and abdominal lanterns [161,162]. Harvey reported that there
was not a marked difference in the luminescence color of the dorsal and ventral lanterns of
Puerto Rican I. luminosus [29]. Like fireflies, elaterid larvae often produce light, with the glowing
termite mounds of Brazil that contain the predatory larvae of Pyrearinus termitilluminans being a
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striking example [163]. A description of the anatomy of the larval light organ of Pyrophorus is
provided by Harvey[29], and a more modern photograph of the larval light organ is provided by
Bechara and Stevani[164]. I. luminosus larvae likely also produce light, though it has not been
specifically reported in the literature. . luminosus are subterranean predators, and are
enthusiastic predator of the white grub (Ancylonycha spp.), reportedly consuming 50+ to reach
full size [165]. Adult I. luminosus are luminescent and a bioluminescent courtship behavior was
described in an unreviewed study [166]. Reportedly, males search during flight with their
prothorax lanterns illuminated steadily, while females stay on the ground modulating the
intensity of their prothorax lanterns in ~2 second intervals. Once a female is observed, the
prothorax lanterns of the male go dark, the ventral lantern becomes illuminated, and the male
approaches the female via a circular search pattern. Mating is brief, reportedly taking only 5
seconds. It is unclear if the male ventral lantern response represents a direct control of light
production from the ventral lantern, or simply the beetle exposing a constitutively luminescent
ventral lantern which is normally obscured from view.

Unlike fireflies, bioluminescent elaterid species are not known to have potent chemical
defenses. For example, the Jamaican bioluminescent elaterid beetle Pyrophorus
plagiophthalmus, does not appear to be strongly unpalatable, as bats were observed to
regularly capture the beetles during their flying bioluminescent displays [167]. A defense role
for I. luminosus luminescence to startle predators is possible.

3.2 Species distribution

I. luminosus is often considered to be endemic to Puerto Rico[168], however the genus
Ignelater is reported in Florida (USA), Vera Cruz (Mexico), the Bahamas, Cuba, Isla de la
Juventud, Hispaniola (Haiti+Dominican Republic), Puerto Rico, and the Lesser Antilles [141].
Similarly, I. luminosus itself has been reported on the island of Hispaniola [166,169], indicating /.
luminosus is not restricted to Puerto Rico. This geographic distribution of Ignelater suggests that
Puerto Rico likely contains multiple Ignelater species and, given the difficulty of distinguishing
different species of bioluminescent Elateridae by morphological characters, a definitive species
distribution for /. luminosus cannot be stated, other than this species is seemingly not endemic
to Puerto Rico.

3.3 Collection

I. luminosus (llliger, 1807) adult specimens were collected from private land in
Mayagliez, Puerto Rico (18° 13' 12.1974" N, 67° 6' 31.6866" W) with permission of the
landowner by Dr. David Jenkins (USDA-ARS). Individuals were captured at night on April 20th
and April 28th 2015 during flight on the basis of light production. The /. luminosus specimens
were frozen in a -80°C freezer, lyophilized, shipped to the laboratory (MIT) on dry ice, and
stored at -80°C. Full collection metadata is available from the NCBI BioSample records of these
specimens (NCBI Bioproject PRJNA418169). Identification to species was performed by
comparing antenna and dissected genitalia morphology to published keys [141,156,170] (Fig.
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S3.3.1). All inspected specimens were male (3/3). Separate specimens were used for
sequencing. Although the genitalia morphology of the sequenced specimens was not inspected
to confirm their sex, sequenced specimens were inferred to be male, based on the fact that
female bioluminescent elaterid beetles are rarely seen in flight (Personal communication: S.
Velez) and the dissected specimens collected in the same batch as the sequenced specimens
were confirmed to be male.

Figure S3.3.1: /. luminosus aedeagus (male genitalia)

(A) dorsal and (B) ventral view of an Ignelater luminosus aedeagus, dissected from the same
batch of specimens used for linked-read sequencing and genome assembly. The species
identity of this specimen was confirmed as /. luminosus by comparison of the aedeagus to the
keys of Costa and Rosa [141,156,170].

3.4 Karyotype and genome size

The karyotype of Puerto Rican /. luminosus (as Pyrophorus luminosus) was reported as
2n=14A + X;X,Y[168]. The genome sizes of 5 male I. luminosus were determined by flow
cytometry-mediated calibrated-fluorimetry of DNA content with propidium iodide stained nuclei
by Dr. J. Spencer Johnston (Texas A&M University). The frozen head of each individual was
placed into 1 mL of cold Galbraith buffer in a 1 mL Kontes Dounce Tissue Grinder along with the
head of a female Drosophila virilis standard (1C = 328 Mbp). The nuclei from the sample and
standard were released with 15 strokes of the “B” (loose) pestle, filtered through 40 ym Nylon
mesh, and stained with 25 mg/mL Propidium lodide (PI). After a minimum of 30 min staining in
the dark and cold, the average fluorescence channel number for the PI (red) fluorescence of the
2C (diploid) nuclei of the sample and standard were determined using a CytoFlex Flow
Cytometer (Beckman-Coulter). The 1C amount of DNA in each sample was determined as the
ratio of the 2C channel number of the sample and standard times 328 Mbp. The genome size of
these I. luminosus males was determined to be 764 + 7 Mbp (SEM, n=5). Genome size
inference via Kmer spectral analysis of the /. luminosus linked-read data estimated a genome
size of 841 Mbp (Figure S3.5.1).
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3.5 Genomic sequencing and assembly

HMW DNA (25 pg) was extracted from a single male specimen of /. luminosus using a
100/G Genomic Tip with the Genomic buffers kit (Qiagen, USA). The I. luminosus specimen
was first washed with 95% ethanol, and DNA was extracted following the manufacturer's
protocol, with the exception of the final precipitation step, where HMW DNA was pelleted with
40 ug RNA grade glycogen (Thermo Scientific, USA) and centrifugation (3000 x g, 30 min, 4°C)
instead of spooling on a glass rod. HMW DNA was sent on dry-ice to the Hudson Alpha Institute
of Biotechnology Genomic Services Lab (HAIB-GSL), where pulsed-field-gel-electrophoresis
(PFGE) quality control and 10x Genomics Chromium Genome v1 library construction was
performed. PFGE quality control indicated the mean size of the input DNA was >35 kbp+. The
resulting library was then sequenced on one HiSegX lane. 408,838,927 paired reads (150x150
PE) were produced, corresponding to a genomic coverage of 153x. To evaluate the effect of
different llumina instruments on data and assembly quality, the library was also sequenced on
one HiSeq2500 lane, where 145,250,480 reads (150x150 PE) were produced, corresponding to
a genomic coverage of 54x. A summary of the library statistics for the genomic sequencing is
available in Table S4.1.1. The draft genome of /. luminosus (llumi1.0) was assembled from the
obtained HiSegX genomic sequencing reads using the Supernova assembler (v1.1.1)[171], on a
40 core 1 TB RAM server at the Whitehead Institute for Biomedical Research. The reported
mean molecule size was 12.23 kbp. The assembly was exported to FASTA format using
Supernova mkoutput (parameters: --style=pseudohap), and modified by taxonomic annotation
filtering (Supplementary Text 3.5.2) and polishing (Supplementary Text 3.5.3) to form llumi1.1.
A Supernova (v2.0.0) assembly was also produced from combined HiSegX and HiSeq2500
reads, but on a brief inspection the quality was equivalent to llumi1.1, so the new assembly was
not used for further analyses. Manual long-read based scaffolding was then applied to produce
a final assembly llumi1.2 (Supplementary Text 3.5.4).
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Figure S3.5.1: Genome scope kmer analysis of the /. luminosus linked-read genomic
library.

(A) linear and (B) log plot of a kmer spectral genome composition analysis of the
“1610_IllumiHiSeqgX” I. luminosus lllumina linked-read library (Supp. Text 2.5; Table S4.1.1) with
jellyfish (v2.2.9; parameters: -C -k 35)[34] and GenomeScope (v1.0; parameters: Kmer
length=35, Read length=138, Max kmer coverage=1000)[35]. Before analysis, 10x Chromium
barcodes were trimmed off Read1 using cutadapt (v1.8; parameters: -u 23)[113]. vlen=inferred
haploid genome length, unig=percentage non-repetitive sequence, het=overall rate of genome
heterozygosity, kcov=mean kmer coverage for heterozygous bases, err=error rate of the reads,
dup: average rate of read duplications. These results are consistent when considering the
possible systematic error of kmer spectral analysis and flow cytometry genome size estimates.
The heterozygosity is higher than that measured for P. pyralis and A. lateralis. The read error
rate for this library is also significantly higher than the P. pyralis and A. lateralis results,
highlighting the difference in raw read error rate between HiSeq2500 and HiSeqgX sequencing.

3.5.2 Taxonomic annotation filtering

We sought to systematically remove assembled non-elaterid contaminant sequence
from Ilumi1.0. Using the blobtools toolset (v1.0.1),[55] we taxonomically annotated our scaffolds
by performing a blastn (v2.6.0+) nucleotide sequence similarity search against the NCBI nt
database, and a diamond (v0.9.10.111)[56] translated nucleotide sequence similarity search
against the of Uniprot reference proteomes (July 2017). Using this similarity information, we
taxonomically annotated the scaffolds with blobtools using parameters “-x bestsumorder --rank
phylum” (Fig. S3.5.2.1). A tab delimited text file containing the results of this blobtools
annotation are available on FigShare (DOI: 10.6084/m9.figshare.5688952). We then generated
the final genome assembly by retaining scaffolds that had coverage > 10.0 in the
1610_llumiHiSegX library, and did not have a high scoring (score > 5000) taxonomic
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assignment for “Proteobacteria”, and polishing indels and gap-filling with Pilon (Supplementary
Text 3.5.3). This approach removed 235 scaffolds (330 Kbp), representing 0.2% of the scaffold
number and 0.03% of the nucleotides of llumi1.0. While filtering the llumi1.0 assembly, we
noted a large contribution of scaffolds taxonomically annotated as Platyhelminthes (1740
scaffolds; 119.56 Mbp). Upon closer inspection, we found conflicting information as to the most
likely taxonomic source of these scaffolds. Diamond searches of these scaffolds had hits in
Coleoptera, whereas blastn searches showed these scaffold had confident hits (nucleotide
identity >90%, evalue = 0) against the Rat Tapeworm Hymenolepis diminuta genome (NCBI
BioProject PRJEB507). Removal of these scaffolds decreased the endopterygota BUSCO
score, from C:97% D:1.3% to C:76.0% D:1.1%. This loss of the endopterygota BUSCOs led us
to conclude that the Platyhelminthes annotated scaffolds were authentic scaffolds of [
luminosus, but sequences of Hymenolepis sp. may have been transferred into the /. luminosus
genome via horizontal-gene-transfer (HGT). Although Hymenolepis diminuta infects mammals,
it also spends a period of its life cycle in intermediate insect hosts, including beetles, as
cysticercoids [172,173]. For a beetle like I. luminosus, which has a extended predatory larval
stage, the accidental ingestion and harboring of a Hymenolepis sp. is plausible, potentially
enabling HGT between Hymenolepis sp. and I. luminosus over evolutionary timescales.
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Figure $3.5.2.1: Blobtools plot of llumi1.0

Coverage shown represents mean coverage of reads from the HiSeqX Chromium library
sequencing (Sample name 1610_llumiHiSeqgX; Table S4.1.1), aligned against llumi1.0 using
Bowtie2 with parameters (--local). Scaffolds were taxonomically annotated as described in
Supplementary Text 3.5.2.

3.5.3 llumi1.1: Indel polishing

Manual inspection of the initial gene-models for llumi1.0 revealed a key luciferase
homolog had an unlikely frameshift occurring after a polynucleotide run. Mapping of the
1610_IllumiHiSegX and 1706_llumiHiSeq2500 reads (Table S4.1.1) with Bowtie2 using
parameters (--local), revealed that this indel was not supported by the majority of the data, and
that indels were present at a notable frequency after polynucleotide runs. As a greatly increased
indel rate after polynucleotide runs (~10% error) is a known systematic error of lllumina
sequencing, and has been noted as the major error type in Supernova assemblies[171], we
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therefore sought to correct these errors globally through the use of Pilon (v1.2.2)[60]. In order
to run Pilon efficiently, we split the taxonomically filtered llumi1.0 reference (dubbed llumi1.0b;
Supplementary Text 3.5.2) using Kirill Kryukov’s fasta_splitter.pl script (v0.2.6)[174], partitioned
the previously mapped 1610 _llumiHiSeqgX paired-end reads to these references using samtools,
and ran Pilon in parallel on the partitioned reads and records with parameters (--fix gaps,indels -
-changes --vcf --diploid). The final consensus FASTAs produced by Pilon were merged to
produce the polished assembly (llumi1.1). llumi1.1 (842,900,589 nt; 91,325 scaffolds) was
slightly smaller than llumi1.0b (845,332,796 nt; 91,325 scaffolds), indicating the gaps filled by
Pilon were smaller than their predicted size. The BUSCO score increased modestly after
polishing (C:93.3% to C:94.8%), suggesting that indel polishing and gap filling had a net positive
effect.

3.5.4 llumi1.2: Manual long-read scaffolding

We determined via manual gene-model annotation of llumi1.1 (Supplementary Text 3.8),
that the 2nd through 7th exon of llumPACS4 (ILUMI_06433-PA) were present on
llumi1.1_Scaffold13255, but that the 1st exon was missing from this scaffold. Targeted tblastn
using PangPACS (AB479114.1)[161], the most closely related gene sequence to lIlumPACS4,
indicated that the most similar region in the . luminosus genome to the predicted PangPACS
1st exon was a right-pointing region on Ilumi1.1_Scaffold11560, not captured in any gene
model, but downstream of the existing luciferase homolog genes llumPACS1 and llumPACS2.
We surmised that this region was the correct 1st exon for IlumPACS4, and that the lumPACS4
gene model spanned llumi1.1_Scaffold13255 and llumi1.1_Scaffold11560, and thus that the
right edge of llumi1.1_Scaffold13255 and the left edge of the reverse complement of
llumi1.1_Scaffold11560 should be joined. To substantiate this, we performed long-read Oxford
Nanopore MinlON sequencing at the MIT BioMicroCenter. The HMW DNA used was the same
DNA used for Chromium library prep, and had been stored at -80°C since extraction. Thawing
of DNA and size distribution QC on a FEMTO Pulse capillary electrophoresis instrument
(Advanced Analytical Technologies Inc, USA) indicated the DNA had a mean size distribution
peak of ~17 kbp. A 1D Nanopore library was prepared from this DNA using the standard kit and
protocol (Part #: SQK-LSK108). The resulting library was sequenced for 48 hours on a MinlON
sequencer using a R9.4 flow cell (Part #:FLO-MIN106). Raw trace data was basecalled live
within the MinKNOW software (v18.01.6). 824,248 reads (2.4 Gbp; ~1-2x of the I. luminosus
genome) were obtained. Reads were mapped to llumi1.1 with minimap2 (v2.8-r686-dirty)[175]
using parameters (-ax map-ont). Inspection of mapped reads with Integrative Genomics
Viewer(v2.4.8)[82] revealed a 17.6 kbp read with 7 kbp antiparallel alignment to the right edge
of Scaffold13255. Inspection of the extension of this read off Scaffold13255 revealed it
contained 10 kbp+ of a non-palindromic complex tandem repeat DNA with an ~100 bp repeat
unit (Figure S3.5.4.1). The repeat unit of this complex tandem repeat DNA (Table S3.5.4.2) is
annotated in our de novo repeat library construction as “llumi.complex.repeat.1” (Supplementary
Text 3.9), and via blastn is clearly interspersed at low copy numbers throughout the llumi1.1
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genome assembly. Notably, this repeat unit was present the right edge of
llumi1.1_Scaffold13255, while the reverse complement of this repeat unit was present on the
right edge of llumi1.1_Scaffold11560, supporting that these scaffolds were adjacent to one
another, but the assembly had been broken by this large stretch of tandem repetitive DNA.
Although our Nanopore sequencing did not unambiguously span this repetitive element and
bridge the two scaffolds, we surmised that this information was sufficient to manually merge
these scaffolds (Figure S3.5.4.3). The long llumi1.1_Scaffold13255 extending read was adaptor
trimmed with porechop (v0.2.3)[176], removing 35 bp from the start of the read. Next, the 3’ end
of the read which aligned up to the last nucleotide of llumi1.1_Scaffold13255 was trimmed.
Finally, the remaining read was reverse complemented, and concatenated to the right edge of
llumi1.1_Scaffold13255. 1337 Ns were concatenated to the right edge of the extended
llumi1.1_Scaffold13255 to indicate an uncertainty in the repeat copy number, and
llumi1.1_Scaffold11560 was reverse complemented and concatenated to
llumi1.1_Scaffold13255 to produce the final version of llumi1.2_Scaffold13255 (Figure
S3.5.4.3). Further whole genome scaffolding using this Nanopore data and the LINKS pipeline
(v1.8.5)[177] with parameters (-d 4000,8000,10000,14000,16000,20000 -t 2,3,5,9 -l 2 -a 0.75)
was attempted, but only a single additional pair of scaffolds was merged, so this whole-genome
scaffolding was not used further.
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1502
1503 Figure S3.5.4.1: Self alignment of the llumi1.1_Scaffold13255 right-edge extending

1504  long MinlON read.
1505  Alignment performed in in Gepard[178]. Note the large (10 kbp+) tandem repetitive region.

1506 Table S3.5.4.2: Sequence of the I. luminosus luciferase cluster splitting complex tandem repeat

Repeat name Repeat unit Repeat unit sequence
length
llumi.complex.repeat.1 ~ 100 bp TGGTACGAACTATACACGTATACTCAAATCTAATTGTGATACAGCAAAG

TAATAATGCAGCATTGTTTGCCGCTCTATACTGCGATTTTATAGTGGT

1507
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Figure S3.5.4.3: Diagram of manual scaffold merges between llumi1.1 and llumi1.2

Diagram of the manual merge of llumi1.1_Scaffold13255 with llumi1.1_Scaffold11560 between
I. luminosus genome assembly versions llumi1.1 and llumi1.2. This merge was supported by:
(1) The putative missing 1st exon of lumPACS4 being present on the right edge of
llumi1.2_Scaffold11560 (2) The right edge of llumi1.1_Scaffold13255, and the right edge of
llumi1.1_Scaffold11560, having anti-parallel versions of a homologous complex tandem repeat.
See Figure 3 in the maintext for explanation of presented genes.

3.6 RNA extraction, library prep, and sequencing

3.6.1 HiSeq2500

Total RNA was extracted from the head + prothorax of an I. luminosus presumed male
using the RNeasy Lipid Tissue Mini Kit (Qiagen, USA). lllumina sequencing libraries were
prepared from total RNA enriched to mRNA with a polyA pulldown using the TruSeq RNA
Library Prep Kit v2 (lllumina, San Diego, CA). The library was sequenced at the Whitehead
Institute Genome Technology Core (Cambridge, MA) on two lanes of an lllumina HiSeq 2500
using rapid mode 100x100 bp PE. This library was multiplexed with the P. pyralis RNA-Seq
libraries of Al-Wathiqui and colleagues [6], and thus, P. pyralis reads arising from index
misassignment were present in this library which necessitated downstream filtering to avoid
misinterpretation.

3.6.2 BGISEQ-500

Total RNA was extracted from the head + prothorax, mesothorax + metathorax, and
abdomen of presumed I. luminosus males using the RNeasy Lipid Tissue Mini Kit (Qiagen,
USA), and sent on dry-ice to Beijing Genomics Institute (BGI, China). Transcriptome libraries for
RNA each sample were prepared from total RNA using the BGISEQ-500 (BGI, China) RNA
sample prep protocol. Briefly, poly-A mRNA was purified using oligo (dT) primed magnetic
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beads and chemically fragmented into smaller pieces. Cleaved fragments were converted to
double-stranded cDNA by using N6 primers. After gel purification and end-repair, an “A” base
was added at the 3’-end of each strand. The Ad153-2B adapters with barcode was ligated to
both ends of the end repaired/dA tailed DNA fragments, then amplification by ligation-mediated
PCR. Following this, a single strand DNA was separated at a high temperature and then a Splint
oligo sequence was used as bridge for DNA cyclization to obtain the final library. Then rolling
circle amplification (RCA) was performed to produce DNA Nanoballs (DNBs). The qualified
DNBs were loaded into the patterned nanoarrays and the libraries were sequenced as 50x50 bp
(PE-50) read through on the BGISEQ-500 platform. Sequencing-derived raw image files were
processed by BGISEQ-500 base-calling software with the default parameters, generating the
‘raw data” for each sample stored in FASTQ format. This library preparation and sequencing
was provided free of charge as an evaluation of the BGISEQ-500 platform.

Table S$3.6.3: /. luminous RNA-Seq libraries

Library name SRAID N Sex Tissue Notes

Pyrophorus_luminosus_head | SRR6339835 | 1 M* Prothorax and head lllumina RNA-Seq
(lantern containing)

Prothorax_A3 SRR6339834 | 1 M* Prothorax and head BGISEQ-500 RNA-Seq
(lantern containing)

Thorax_A3 SRR6339833 | 1 M* Mesothorax and BGISEQ-500 RNA-Seq
metathorax
Abdomen_A3 SRR6339832 | 1 M* Abdomen BGISEQ-500 RNA-Seq

(lantern containing)

Prothorax_A4 SRR6339831 | 1 M* Prothorax and head BGISEQ-500 RNA-Seq
(lantern containing)

Thorax_A4 SRR6339830 | 1 M* Mesothorax and BGISEQ-500 RNA-Seq
metathorax
Abdomen_A4 SRR6339838 | 1 M* Abdomen BGISEQ-500 RNA-Seq

(lantern containing)

* Gender inferred. See Supplementary Text 3.3 for a discussion on this inference.

3.7 Transcriptome analysis

Both de novo (Supplementary Text 3.7.1) and reference guided (Supplementary Text
3.7.2) transcriptome assembly approaches using Trinity and Stringtie respectively were used.
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3.7.1 De novo transcriptome assembly and alignment

For the de novo transcriptome approach, all available I. Juminosus RNA-Seq reads
(head+prothorax,metathorax+mesothorax, abdomen - both lllumina and BGISEQ-500) were
pooled and input into Trinity. A non strand-specific de novo transcriptome assembly was
produced with Trinity (v2.4.0)[66] using default parameters exception the following: (--min_glue
2 --min_kmer_cov 2 --jaccard_clip --no_normalize_reads --trimmomatic). Peptides were
predicted from the de novo transcripts via Transdecoder (v5.0.2; default parameters). De novo
transcripts were then aligned to the 1. luminosus genome (llumi1.1) using the PASA pipeline
with blat (v36x2) and gmap (v2017-09-11) (--aligners blat,gmap), parameters for alternative
splice analysis and strand specificity (--ALT_SPLICE --transcribed_is_aligned_orient), and input
of the previously extracted Trinity accessions (--tdn tdn.accs). Importantly, it was necessary to
set (--NUM_BP_PERFECT_SPLICE_BOUNDARY=0) for the validate alignments_in_db.dbi
step, to ensure transcripts with natural variation near the splice sites were not discarded. Direct
coding gene models (DCGMs) were then produced with the Transdecoder
‘cdna_alignment_orf_to_genome_orf.pl” utility script, with the PASA assembly GFF and
transdecoder predicted peptide GFF as input. The resulting DCGM GFF3 file was manually
lifted over to the llumi1.2 assembly. The unaligned de novo transcriptome assembly is dubbed
“ILUMI_Trinity_unstranded”, whereas the aligned direct coding gene models are dubbed
“llumi1.2_Trinity_unstranded-DCGM”.

3.7.2 Reference guided transcriptome alignment and assembly

A reference guided transcriptome was produced from all available /. luminosus RNA-seq
reads (head+prothorax, mesothorax+metathorax, abdomen - both lllumina and BGISEQ-500)
using HISAT2 (v2.0.5)[72] and StringTie (v1.3.3b)[73]. Reads were first mapped to the /.
luminosus draft genome with HISAT2 (parameters: -X 2000 --dta --fr). Then StringTie
assemblies were performed on each separate .bam file corresponding to the original libraries
using default parameters. Finally, the produced .GTF files were merged using StringTie (--
merge). A transcript fasta file was produced from the StringTie GTF file with the transdecoder
“gtf_genome_to_cdna_fasta.pl” utility script, and peptides were predicted for these transcripts
using Transdecoder (v5.0.2) with default parameters. The StringTie .GTF was converted to GFF
format with the Transdecoder “gtf to alignment_gff3.pl” utility script, and direct coding gene
models (DCGMs) were then produced with the Transdecoder
“cdna_alignment_orf _to_genome_orf.pl” utility script, with the StringTie-provided GFF and
transdecoder predicted peptide GFF as input. The resulting DCGM GFF3 file was manually
lifted over to the Illumi1.2 assembly. The reference guided transcriptome assembled was
dubbed “ILUMI_Stringtie_unstranded”, whereas the aligned direct coding gene models were
dubbed “llumi1.2_Stringtie_unstranded-DCGM”

3.7.3 Transcript expression analysis
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I. luminosus RNA-Seq reads (Table S3.5.3) were pseudoaligned to the ILUMI_0GS1.2
geneset CDS sequences using Kallisto (v0.44.0)[74] with 100 bootstraps (-b 100), producing
transcripts-per-million reads (TPM). Kallisto expression quantification analysis results are
available on FigShare (10.6084/m9.figshare.5715157).

3.8 Official coding geneset annotation (ILUMI_OGS1.2)

We annotated the coding gene structure of /. luminosus by integrating direct coding gene
models produced from the de novo transcriptome (Supplementary Text 3.7.1) and reference
guided transcriptome (Supplementary Text 3.7.2), with a lower weighted contribution of ab initio
gene predictions, using the Evidence Modeler (EVM) algorithm (v1.1.1)[67]. First, Augustus
(v3.2.2)[75] was trained against llumi1.0 with BUSCO (parameters: -| endopterygota_odb9
--long --species tribolium2012). Augustus predictions of Ilumi1.0 were then produced through
the MAKER pipeline, with hints derived from MAKER blastx/exonerate mediated protein
alignments of peptides from Drosophila melanogaster (NCBI
GCF_000001215.4_Release 6 plus_ISO1_MT _protein.faa), Tribolium castaneum (NCBI
GCF_000002335.3_Tcas5.2_protein), Photinus pyralis (PPYR_OGS1.0; this report), Aquatica
lateralis (AlatOGS1.0; this report), the I. luminosus de novo transcriptome translated peptides,
and MAKER blastn/exonerate transcript alignments of the /. luminosus de novo transcriptome
transcripts.

We then integrated the ab initio predictions with our de novo and reference guided direct
coding gene models, using EVM. In the final version, eight sources of evidence were used for
EVM: de novo transcriptome direct coding gene models (llumi1.1_Trinity_unstranded-DCGM,;
weight=8), reference guided transcriptome direct coding gene models
(lumi1.1_Stringtie_unstranded-DCGM; weight=4), MAKER/Augustus ab initio predictions
(lumi1.1_maker_augustus_ab-initio; weight=1), protein alignments (P. pyralis, A. lateralis, D.
melanogaster, T. castaneum, I. luminosus; weight=1 each). A custom script[79] was used to
convert the input MAKER GFF to an EVM compatible GFF format.

Lastly, gene models for luciferase homologs, P450s, and de novo methyltransferases
(DNMTs) which were fragmented or were incorrectly assembled (e.g. adjacent gene fusions)
were manually corrected based on the evidence of the de novo and reference guided direct
coding gene models (Supp. Text 3.7.1; 3.7.2). Manual correction was performed by performing
TBLASTN searches with known good genes from these gene families within
SequencerServer(v1.10.11)[80], converting the TBLASTN results to gff3 format with a custom
script[81], and viewing these TBLASTN alignments alongside the alternative direct coding gene
models and the official geneset in Integrative Genomics Viewer (v2.4.8)[82]. The official gene
set models .gff3 file was then manually modified based on the observed evidence. Different
revision numbers of the official geneset (e.g. ILUMI_OGS1.0, ILUMI_OGS1.1) represent the
improvement of the geneset over time due to these continuing manual gene annotations.
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3.9 Repeat annotation

A de novo species-specific repeat library for I. luminosus was constructed using
RepeatModeler (v1.0.9), and Tandem Repeat Finder (v4.09; settings: 2 7 7 80 10)[110]. Only
tandem repeats from Tandem Repeat Finder with a repeat block length >5 kb (annotated as
“‘complex tandem repeat”) were added to the RepeatModeler library. This process yielded a
final library of 2259 interspersed repeats. We then used this library and RepeatMasker
(v4.0.5)[138] to identify and mask interspersed and tandem repeats in the genome assembly.
This repeat library is dubbed the Ignelater Iluminosus Official Repeat Library 1.0
(ILUMI_ORLA1.0).

Table S3.9.1: Annotated repetitive elements in I. luminosus

Repeat class family counts bases % of assembly
DNA All 158853 71221843 8.45
Helitrons 344 139863 0.016
LTR All 23433 11341577 1.35
Non-LTR All 151788 50394853 4.75
LINE 97703 40052840 4.75
SINE 0 0 0
Unknown interspersed 757206 159587269 18.93
Complex tandem repeats 4976 848992 0.1
Simple repeat 108914 4439967 0.52
rRNA 0 0 0
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3.10 Mitochondrial genome assembly and annotation

The mitochondrial genome sequence of I. luminosus was assembled by a targeted sub-
assembly approach. First, Chromium linked-reads were mapped to the previously sequenced
mitochondrial genome of the Brazilian elaterid beetle Pyrophorus divergens (NCBI ID:
NC_009964.1)[179], using Bowtie2 (v2.3.1; parameters: --very-sensitive-local)[114]. Although
these reads still contain the 16 bp Chromium library barcode on read 1 (R1), Bowtie2 in local
mapping mode can accurately map these reads. Mitochondrial mapping R1 reads with a
mapping read 2 (R2) pair were extracted with "samtools view -bh -F 4 -f 8", whereas mapping
R2 reads with a mapping R1 pair were extracted with "samtools view -bh -F 8 -f 4". R1 & R2
singleton mapping reads were extracted with "samtools view -bh -F 12" for diagnostic purposes,
but were not used further in the assembly. The R1, R2, and singleton reads in .BAM format
were merged, sorted, and converted to FASTQ format with samtools and "bedtools bamtofastq"
respectively. The resultant R1 and R2 FASTQ files containing only the paired mapped reads
(995523 pairs, 298 Mbp) were assembled with SPAdes[180] without error correction and with
the plasmidSPAdes module[181] enabled (parameters: -t 16 --plasmid -k55,127 --cov-cutoff
1000 --only-assembler). The resulting “assembly_graph.fastg” file was viewed in Bandage[182],
revealing a 16,088 bp node with 1119x average coverage that circularized through two possible
paths: a 246 bp node with 252x average coverage, or a 245 bp node with 1690x coverage. The
lower coverage path was observed to differ only in a “T” insertion after a 10-nucleotide poly-T
stretch when compared to the higher coverage path. Given that increased levels of insertions
after polynucleotide stretches are a known systematic error of lllumina sequencing, it was
concluded that the lower coverage path represented technical error rather than an authentic
genetic variant and was deleted. This produced a single 16,070 bp circular contig. This contig
was “restarted” with seqkit(v0.7.0)[61] to place the FASTA record break in the AT-rich region,
and was submitted to the MITOSv2 mitochondrial genome annotation web server. Small mis-
annotations (e.g. low scoring additional predictions of already annotated mitochondrial genes)
were manually inspected and removed. This annotation indicated that all expected features
were present on the contig, including subunits of the NAD" dehydrogenase complex (NAD1,
NAD2, NAD3, NAD4, NAD4I, NAD5, NADG6), the large and small ribosomal RNAs (rrnL, rrS),
subunits of the cytochrome ¢ oxidase complex (COX1, COX2, COX3), cytochrome b oxidase
(COB), ATP synthase (atp6, atp8), and tRNAs. BLASTN of the Ignelater luminosus
mitochondrial genome against published complete mitochondrial genomes from beetles
indicated 96-89% alignment with 86-73% nucleotide identity, with poor or no sequence level
alignment in the A-T rich region. Like other reported elaterid beetle genomes, the I. luminosus
mitochondrial genome does not contain the tandem repeat unit (TRU) previously reported in
Lampyridae[183].
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Figure S3.10.1: Mitochondrial genome of I. luminosus
The mitochondrial genome of /. luminosus was assembled and annotated as described. in the
Supplementary Text 3.10. Figure produced with Circos[63].
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SUPPLEMENTARY TEXT 4: Comparative analyses

4.1 Assembly statistics and comparisons

The level of non-eukaryote contamination of the raw read data for each P. pyralis library
was assessed using kraken v1.0[184] using a dust-masked minikraken database to eliminate
comparison with repetitive sequences. Overall contamination levels were low (Table S4.1.1), in
agreement with a low level of contamination in our final assembly (Fig S1.6.4.2.1, Fig S2.5.2.1,
Fig S.3.5.2.1). On average, contamination was 3.5% in the PacBio reads (whole body) and
1.6% in the lllumina reads (only thorax) (Table S4.1.1). There was no support for Wolbachia in
any of the P. pyralis libraries, with the exception of a single read from a single library which had
a kraken hit to Wolbachia. QUAST version 4.3[185], was used to calculate genome quality
statistics for comparison and optimization of assembly methods (Table S4.1.2). BUSCO
(v3.0.2)[186] was used to estimate the percentage of expected single copy conserved orthologs
captured in our assemblies and a subset of previously published beetle genome assemblies
(Table S4.1.3). The endopterygota_odb9 (metamorphosing insects) BUSCO set was used. The
bacteria_odb9 gene set was used to identify potential contaminants by screening contigs and
scaffolds for conserved bacterial genes. For genome predictions from beetles, the parameter “--
species tribolium2012” was used to improve the BUSCO internal Augustus gene predictions.
For non-beetle insect genome predictions, “--species=fly” was used.
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Table S$4.1.1: Genomic sequencing library statistics

ID: NCBI BioProject or Gene Expression Omnibus (GEO) ID. N: Number of individuals used for sequencing. Date: collection date for wild-caught
individuals. Locality: GSMNP: Great Smoky Mountains National Park, TN, USA; MMNJ: Mercer Meadows, Lawrenceville, NJ, USA; IY90:
laboratory strain lkeya-Y90; MAPR: Mayagliez, Puerto Rico. Tissue: Thr: thorax; WB: whole-body; Type: Sl: lllumina short insert; MP: lllumina
mate pair; PB: Pacific Biosciences, RSIl P6-C4; HC: Hi-C; BS: Bisulfite; CH: 10x Chromium; ONT: Oxford Nanopore MinlON R9.4. Reads: PE:
paired-end, CLR: continuous long read. Number: number of reads. Cov: Mode of autosomal coverage (mode of putative X chromosome, LG3a,
coverage), determined from mapped reads with QualiMap (v2.2). ND: Not Determined. Insert size: Mode of insert size after alignment (orientation:
FR: forward, RF: reverse), determined from mapped reads with QualiMap. Contamination: Percent contamination as estimated by kraken v1.0.

Library SRAID N Date Locality SexTissueType Reads Number Cov Insert size (Ori) Contamination
Photinus pyralis

8369° SRR6345451/ 1 6/13/11GSMNP M Thr Sl 101x101 PE 203,074,230 98 (49) 354 bp (FR) 0.28

SRR2127932

8375_3K" SRR6345448 1 6/13/11GSMNP M Thr MP 101x101 PE 101,624,630 21 2155 bp (RF) 2.63
8375_6K® SRR6345457 1 6/13/11GSMNP M Thr MP 101x101 PE 23,564,456 5 4889 bp (RF) 3.36
83_3K® SRR6345450 3 6/13/11GSMNP M Thr MP 101x101 PE 121,757,858 13 2247 bp (RF) 0.79
83 _6K® SRR6345455 3 6/13/11GSMNP M Thr MP 101x101 PE 17,905,700 1 4877 bp (RF) 1.38
1611_PpyrPB1 SRX3444870 4 7/9M6 MMNJ M WB PB CLR-PB 3,558,201 38 (21) 7 Kbp® 3.5
1704 SRR6345456 2 7/916 MMNJ M WB HC 80x80PE 93,850,923 ND ND ND
1705 GSE107177 1 7/916 MMNJ M WB BS 150 SE 113,761,746 ~16x° ND ND

Aquatica lateralis

FFGPE_PE200 DRR119296 1 NA IYO0 F WB S| 126x126 PE 561,450,686 72 180 bp (FR) ND
FFGPE_PES800 DRR119297 WB Sl 126x126 PE 218,830,950 20 476 bp (FR) ND
FFGMP_MPGF DRR119298 WB MP 101x101 PE 358,601,808 31 2300 bp (RF) ND
Ignelater luminosus

1610_llumiHiSegX® SRR6339837 1 MAPR M' WB CH 151x151 PE 408,838,927 99 339 bp (FR) ND
1706_llumiHiSeq2500° SRR6339836 WB CH 150x150 PE 145,250,480 48 334 bp (FR) ND
18 lib1 SRR6760567 ONT CLR 824,248 ~2X 2984°

a

b

: Mean of 3 sequencing lanes

: Mean of 2 sequencing lanes

: Mean subread (PacBio) or read (Oxford Nanopore) length after alignment
d: Estimate from quantity of mapped reads

°: Same library, different instruments

" Inferred from specimens collected at the same time and locality

C
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1716  Table S4.1.2: Assembly statistics

Assembly Libraries Assembly Assembly*/ Scaffold/ | Contig Scaffold | BUSCO
scheme measured** Contig NG50*** NG50*** | statistics
genome size | (#) (Kbp) (Kbp)
(Gbp)
Ppyr0.1-PB | PacBio (61 Canu (no 721/422 25986/ 86 86 C:93.8%
RSII SMRT polishing) 25986 [S:65.2%,
cells) D:28.6%],
F:3.3%,
M:2.9%
Ppyr1.1 Short read MaSuRCA + 473/422 8065/ 193.4 202 C:97.2%
Mate Pair redundancy 8285 [S:88.8%,
PacBio reduction D:8.4%],
F:1.9%,
M:0.9%
Ppyr1.2 Short Ppyr1.1 + Phase | 473/422 2535/ 193.4 50,607 C:97.2%
Genomics 7823 [S:88.8%,
scaffolder (in- D:8.4%],
. house) F:1.9%,
PacBio M:0.9%
Hi-C
Ppyr1.3 Short read Ppyr1.2 + 472/422 2160/ 192.5 49,173 C:97.2%
Mate Pair Blobtools + 7533 [S:88.8%,
PacBio manual filtering D:8.4%],
F:1.9%,
M:0.9%
Alat1.2 Short read ALLPATHS-LG 920/940 7313/ 38 673 C:97.4%
Mate Pair 36467 [S:96.2%,
D:1.2%],
F:1.8%,
M:0.8%
Alat1.3 Short read Alat1.2 + 909/940 5388/ 38 670 C:97.4%
Mate Pair Blobtools + 34298 [S:96.2%,
manual filtering D:1.2%],
F:1.8%,
M:0.8%
llumi1.0 Linked-read | Supernova 845/764 91560/ 31.6 116.5 C:93.7%
105589 [S:92.3%,
D:1.4%],
F:4.3%,
M:2.0%,
llumi1.2 Linked read | llumi1.0 + 842/764 91305/ 345 115.8 C:94.8%
+ nanopore Blobtools + 105262 [S:93.4%,
Pilon indel & D:1.4%],
gap polishing. F:3.5%,
Manual M:1.7%
scaffolding
1717 * Calculated from genome assembly file with “seqkit stat”
1718 ** Measured via flow cytometry of propidium iodide stained nuclei. See Supplementary Text 1.4, 2.4, 3.4.
1719 *** Calculated with QUAST (v4.5)[185], parameters “-e --scaffolds --est-ref-size X --min-contig 0” and the measured genome size for

1720 “est-ref-size”
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Table S4.1.3: Comparison of BUSCO conserved gene content with other insect
genome assemblies

vespilloides
[118]

Release 1.0

F:2.1%,M:1.1%,n:2442

Species Genome version Note Genome BUSCO Protein geneset BUSCO
(NCBI assemblies) (endopterygota_odb9) (endopterygota_odb9)**
Drosophila GCA_000001215.4 Model insect C:99.4%[S:98.7%,D:0.7%], C:99.6%[S:92.8%,D:6.8%],
melanogaster Release 6 F:0.4%,M:0.2%,n:2442 F:0.3%,M:0.1%,n:2442
Tribolium GCF_000002335.3 Model beetle C:98.4%[S:97.9%,D:0.5%], C:98.0%[S:95.8%,D:2.2%],
castaneum Release 5.2 F:1.2%,M:0.4%,n:2442 F:1.6%,M:0.4%,n:2442
Photinus pyralis* | Ppyr1.3* North C:97.2%[S:88.8%,D:8.4%], C:94.2%[S:84.0%,D:10.2%],
American F:1.8%,M:1.0%,n:2442 F:1.2%,M:4.6%,n:2442
firefly
Aquatica Alat1.3* Japanese C:97.4%[S:96.2%,D:1.2%], C:90.0%[S:89.1%,D:0.9%],
lateralis™ firefly F:1.8%,M:0.8% F:3.2%,M:6.8%,n:2442
Nicrophorus GCF_001412225.1 Burying beetle | C:96.8%[S:95.3%,D:1.5%], C:98.7%[S:69.4%,D:29.3%],

F:0.8%,M:0.5%,n:2442

Agrilus

GCF_000699045.1

Emerald Ash

C:92.7%[S:91.8%,D:0.9%],

C:92.1%[S:64.1%,D:28.0%],

planipennis [187] | Release 1.0 Borer beetle F:4.6%,M:2.7%,n:2442 F:4.5%,M:3.4%,n:2442

Ignelater llumi1.2 Puerto Rican C:94.8%[S:93.4%,D:1.4%], C:91.8%[S:89.8%,D:2.0%],

luminosus* bioluminescent | F:3.5%,M:1.7%,n:2442 F:4.4%,M:3.8%,n:2442
click beetle

*=This report , **=Protein genesets downloaded from the NCBI Genome resource associated with the mentioned assembly in the
2nd column, or in the case of D. melanogaster, and T. castaneum, protein genesets were produced from Uniprot Reference
Proteomes which had been heuristically filtered down to “canonical” isoforms with a custom script and BLASTP against the D.
melanogaster, T. castaneum, Apis melifera, Bombyx mori, Caenorhabditis elegans, and Anopheles gambiae protein genesets
associated with their more recent genome assembly on NCBI. See Supplementary Text 4.1.2 for more detail.

4.2 Comparative analyses

4.2.1 Protein orthogroup clustering

Orthologs were identified by clustering the P. pyralis, A. lateralis, and I. luminosus geneset
peptides with the D. melanogaster (UP000007266) and T. castaneum (UP000000803)
reference Uniprot protein genesets using the OrthoFinder (v2.2.6)[188] pipeline with parameters
“M msa -A mafft -T fasttree -1 1.5”. The pipeline was executed with NCBI blastp+ v.2.7.1, mafft
7.313, and FastTree v2.1.10 with Double precision (No SSE3). The Uniprot reference
proteomes were first filtered using a custom script to remove multiple isoforms-per-gene using a
custom script[189], which utilized blastp evidence against either the Drosophila melanogaster or
Tribolium castaneum NCBI datasets (whichever species was not being filtered), and the Apis
melifera, Bombyx mori, Caenorhabditis elegans, Anopheles gambiae NCBI peptide genesets.
Not all redundant isoforms are removed as there may not have been sufficient evidence to
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1742
1743
1744
1745

1746
1747

1748
1749
1750
1751
1752
1753
1754
1755
1756

support a particular isoform as the canonical isoform, or there were unusual annotation
situations (alternative splice variants annotated as separate genes). OrthoFinder clustering
results are available on FigShare (DOI: 10.6084/m9.figshare.5715136). Species specific
overlaps are shown in Fig S4.2.1.1.

(Orthogroups)

Figure $4.2.1.1: Venn diagram of P. pyralis, A. lateralis, I. luminosus, T. castaneum,
and D. melanogaster orthogroup relationships.

Orthogroups were calculated between the PPYR_0GS1.1, AQULA _0OGS1.0, ILUMI_0OGS1.2,
genesets, and the T. casteneum and D. melanogaster filtered Uniprot reference proteomes
using OrthoFinder[188]. See Supplementary Text 4.2.1 for description of clustering method.
*=Not completely filtered to single peptide per gene. Figure produced with InteractiVenn [190].
Intermediate scripts and species specific overlaps are available on FigShare
(10.6084/m9.figshare.6671768).

4.2.2 Comparative RNA-Seq differential expression analysis (Fig 5.)
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For differential expression testing, Kallisto transcript expression results for P. pyralis
(Supp. Text 1.9.4) and A. lateralis (Supp. Text 2.7.3) were independently between-sample
normalized using Sleuth (v0.30.0)[191] with default parameters, producing between-sample-
normalized transcripts-per-million reads (BSN-TPM). Differential expression (DE) tests for P.
pyralis (adult male dissected fatbody vs. adult male dissected lantern - 3 biological replicates
per condition), and for A. lateralis (adult male thorax + abdominal segments 1-5 vs. adult male
dissected lantern - 3 biological replicates per condition), were performed using the Wald test
within Sleuth. Genes whose mean BSN-TPM across bioreplicates was above the 90th
percentile were annotated as “highly expressed” (HE). Genes with a Sleuth DE g-value < 0.05
were annotated as “differentially expressed.” (DE). Enzyme encoding (E/NotE) genes were
predicted from the InterProScan functional annotations using a custom script[192] and
GOAtools[193], with the modification that the enzymatic activity GO term was manually added to
select InterPro annotations: IPR029058, IPR036291, and IPR001279. These enzyme lists are
available as supporting files associated with the official geneset filesets. Orthogroup
membership was determined from the OrthoFinder analysis (Supp. Text 4.2.1). The enzyme
HE/DE/E+NotE gene filtering and overlaps (Fig 5) were performed using custom scripts. These
custom scripts and results of the differential expression testing are available on FigShare
(10.6084/m9.figshare.5715151).

4.2.3 Comparative methylation analyses

] onmTi 1.0 ] AOA139WNY8 TRICA

[ onwr2 XP 017781711.1

. ONMT3 ILUMI 05406-PA
PPYR 02208-PA

AQULA 006675-PA
PPYR 03377-PA

P. pyralis- Q9VKB3 DROME
A. lateralis D6WXT9 TRICA

I. luminosus

T castaneum XP 017782245.1

D. melanogaster ILUMI 01550-PA

N. vespilloides AQULA 004889-PA

PPYR 13116-PA
XP 017770102.1
ILUMI 27559-PA
@ bootstrap > 90% AQULA 007699-PA
® 70% < bootstrap < 90% PPYR 06588-PA
PPYR 05848-PA
PPYR 02985-PA

Figure S$4.2.3.1: DNA and tRNA methyltransferase gene phylogeny

Levels and patterns of mCG in P. pyralis are corroborated by the presence of de novo and
maintenance DNMTs (DNMT3 and DNMT1, respectively). Notably, P. pyralis possesses two
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copies of DNMT1, and 3 copies of DNMTS3, in contrast to a single copy of DNMT1 and DNMT3
in the firefly Aquatica lateralis. The evolutionary history was inferred by using the Maximum
Likelihood method with the LG+G (5 gamma categories)[194]. Evolutionary analyses were
conducted in MEGA7 [195]. Size of circles at nodes corresponds to bootstrap support (100
bootstrap replicates). Branch lengths are in amino acid substitutions per site. T. castaneum=
Tribolium castaneum, D. melanogaster= Drosophila melanogaster, N. vespilloides= Nicrophorus
vespilloides. The multiple sequence alignment and phylogenetic topology are available on
FigShare (10.6084/m9.figshare.6531311)

4.2.3.2: CpG oy methylation analysis

CpGjok is a non-bisulfite sequencing metric that captures spontaneous deamination of
methylated cytosines [196], and confidently recovers the presence/absence of DNA methylation
in insects [197]. In a mixture of loci that are DNA methylated and low to un-methylated, a
bimodal distribution of CpGjor values is expected. Conversely, a unimodal distribution is
suggestive of a set of loci that are mostly low to un-methylated.

CpGjo Was estimated for each annotated gene in the official gene set of A. lateralis, I.
luminosus, and P. pyralis. Additionally, CpGog; Was estimated for each annotated gene for a
true positive and negative coleopteran (Nicrophorus vespilloides
[https://i5k.nal.usda.gov/nicrophorus-vespilloides] and Tribolium castaneum
[https://iSk.nal.usda.gov/tribolium-castaneum], respectively), and a true negative dipteran
(Drosophila melanogaster [http://flybase.org/]).

The modality of CpGjos distributions was tested using Gaussian mixture modeling in R
(https://www.r-project.org/: mclust v5.4 and mixtools v1.0.4). Two modes were modeled for each
CpGo/g distribution, and the subsequent means and 95% confidence interval (CI) of the means
were compared with overlapping or nonoverlapping Cl’s signifying unimodality or bimodality,
respectively.
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Figure $4.2.3.3: Detection of DNA methylation using CpGos

Distributions of CpGjor(Supp. Text 4.2.3.2) within sequenced species (P. pyralis, A.
lateralis, and I. luminosus), other coleopterans (N. vespilloides and T. castaneum), and
the dipteran D. melanogaster. Curves represent two independently modeled Gaussian
distributions, and the solid vertical lines and shaded areas represent the mean and 95%
confidence interval (Cl) of the mean of each distribution. Modality of the distributions
accurately predicts presence (+)/blue square or absence (—)/red square of DNA
methylation in each species.

4.2.4 CYP303 evolutionary analysis (Fig. 6C)

Candidate P450s were identified using BLASTP (e-value: 1x10?°) of a P. pyralis CYP303 family
member (PPYR_OGS1.0: PPYR_14345-PA) against the P. pyralis, A. lateralis, and I. luminosus
reference set of peptides, and the D. melanogaster (NCBI GCF_000001215.4) and T.
castaneum (NCBI GCF_000002335.3) geneset peptides. Resulting hits were merged, aligned
with MAFFT E-INS-i (v7.243)[198], and a preliminary neighbor-joining (NJ) tree was generated
using MEGA7[195]. Genes descending from the common ancestor of the CYP303 and CYP304
genes were selected from this NJ tree, and the peptides within this subset re-aligned with
MAFFT using the L-INS-i algorithm. Then the maximum likelihood evolutionary history of these
genes was inferred within MEGA?7 using the LG+G model (5 gamma categories (+G, parameter
= 2.4805). Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT
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model, and then selecting the topology with the best log likelihood value. The resulting tree was
rooted using D. melanogaster Cyp6al17 (NP_652018.1). The tree shown in Figure 6C was
truncated in Dendroscope (v3.5.9)[199] to display only the CYP303 clade. The multiple
sequence alignment FASTA files and newick files of the full and truncated tree are available on
FigShare (DOI: 10.6084/m9.figshare.5716045).

4.3 Luciferase evolution analyses

4.3.1 Luciferase genetics overview

The gene for firefly luciferase was first isolated from the North American firefly P. pyralis
[3,200,201] and then identified from the Japanese fireflies Luciola cruciata [202] and Aquatica
lateralis [203]. To date, firefly luciferase genes have been isolated from more than 30 lampyrid
species in the world. Two different types of luciferase genes, Luc?1 and Luc2, have been
reported from Photuris pennsylvanica [204] (Photurinae), L. cruciata [205] (Luciolinae), A.
lateralis [206] (Luciolinae), Luciola parvula [207] (Luciolinae), and Pyrocoelia atripennis [208]
(Lampyrinae).

Luciferase genes have also been isolated from members of the other luminous beetles
families: Phengodidae, Rhagophthalmidae, and Elateridae [209-212] with amino acid identities
to firefly luciferases at >48%[213]. The chemical structures of the substrates for these enzymes
are identical to firefly luciferin. These results that the bioluminescence systems of luminous
beetles are essentially the same, supports a single origin of the bioluminescence in elateroid
beetles. Recent molecular analyses based on the mitochondrial genome sequences strongly
support a sister relationship between the three luminous families: Lampyridae, Phengodidae,
and Rhagophthalmidae[214] [215], suggesting the monophyly of Elateroidea and a single origin
of the luminescence in the ancestor of these three lineages [213]. However, ambiguity in the
evolutionary relationships among luminous beetles, including luminous Elaterids, does not yet
exclude multiple origins.

Molecular analyses have suggested that the origin of Lampyridae was dated back to late
Jurassic [159] or mid-Cretaceous periods [216]. Luciolinae and Lampyrinae was diverged at the
basal position of the Lampyridae [217] and the fossil of the Luciolinae firefly dated at
Cretaceous period was discovered in Burmese amber [218,219]. Taken together, the
divergence of Luciola and Lampyridae is dated back at least 100 Mya.
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Figure S4.3.1.1: Intron-exon structure of beetle luciferases.

(A) Intron-exon structure of P. pyralis & A. lateralis Luc1 & Luc2 from Ppyr1.3 and Alat1.3, and
llumLuc from llumi1.2. Between fireflies and click-beetles, the structure of the luciferase genes
are globally similar, with 7 exons, similar intron lengths, and identical splice junction locations
(Fig. S4.3.1.2). The intron-exon structure of /lumLuc is consistent with the reported intron-exon
structure of Pyrophorus plagiophthalamus luciferase [220].
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PpyrLucl ATG-———————~i GAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCTCTAGAGGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCT
AlatLucl ATGGAAAACATGGAGAACGATGAARATATTGTATATGGTCCTGAACCATTTTACCCTATTGAAGAGGGATCTGCTGGAGCACAATTGCGCARGTATATGGATCGATATGC-~~ARAACTT

PpyrLuc2 —-—-GARAATAAGAATATCTTGTATGGACCTAAACCATTTTATCCTGTTTCGGATGGTACGGCAGGCGAGGAGATATTTAGGGCACTTARAAAGTATGCAAGGATACCA
AlatLuc2 AACAAGAATATATTATACGGTCCACCACCGGTACACCCTCTTGACGATGGGACGGGTGGTGAACAATTGTACAAATGTATTTTARAATACGCTCAAATTCCC
PpyrLucl GGAACAATTGCTTTTgtgagt—— —-atttetgte---tgatttetttegagttaacgaaatgttettaatgtttetttagACAGATGCACATATCGAGGTGAACATCACGTACGC

AlatLucl GGAGCAATTGCTTTTgtaagttcgaaattaatttttataaaaaaattecttctaaactcaattttttgtattaaactaaaatttagACTAACGCACTTACCGGTGTCGATTATACGTACGC

PpyrLuc2 GGTTGTATTGCTATGgtaage-———- ttgtacctatgea- -cattgcttgcagettgttcaaacattttttagACGAACGCGCATACTAAAGAARATCTGCTGTATGA
AlatLuc2 GGATGCATTGCTTTGgtaagtacc--ttttatttttata- ----ttaagtcgttagetttttttatactttagACAAGTGCGCATACTARAGAARATATGCTATATAA
PpyrLucl GGAATACTTCGARATGTCCGTTCGGTTGGCAGAAGCTATGARACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGG
AlatLucl CGAATACTTAGAAAAATCATGCTGTCTAGGAGAGGCTTTAAAGAATTATGGTTTGGTTGTTGATGGAAGAATTGCGTTATGCAGTGARAATTGTGAAGAATTCTTTATTCCTGTATTAGC
PpyrLuc2 AGACGTACTGACATTAACCACTCGATTGGCGGTTGCTTACAARARCTACGGTCTCGACATTAACAGCACAATTGCGGTGTGCAGCGAAAACAGCTTGCAATTCTTTCTACCAGTGATCGC
AlatLuc2 AGACTTATTACARATCAACATGCCGATTAGCCGAAAGTTTAAAAAAATATGGAATTACAACAAATAGCACAATTGCCGTGTGCAGTGARAATAACTTACAGTACTTTATTCCTGTTATTGC
PpyrLucl CGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAACgtaagcaccctecgecatcagacccaaagg--gaatgacgtatttaat--ttttaagGTGAATTGCTC
AlatLucl CGGTTTATTTATAGGTGTCGGTGTGGCTCCAACTAATGAGATTTACACTCTACgtaagcacctaaacgtttagtagaacgtagtatttacagtaaacaaa--tttttagGTGAATTGGTT
PpyrLuc2 CGCCTTATACCTCGGAGTGACCGTTGCGTCCATAAATGACAAGTACACCGAGCgtaagta— --aagtgctcggtattg--ctgaaaagaaaacaat--attttagGTGAACTACTT
AlatLuc2 AGCTTTATACATCGGAGCTGCTACCGCAGCTGTTAACGACAAATACAATGAACgtaagaacgtaagaatgtaatagaaactg--actagctttataaaataatttttagGAGAGTTAATT
PpyrLucl AACAGTATGAACATTTCGCAGCCTACCGTAGTGTTTGTTTCCAAARAAGGGGTTGCAARAAATTTTGAACGTGCAAAARAAATTACCAATARTCCAGAAAATTATTATCATGGATTCTAAA
AlatLucl CACAGTTTAGGCATCTCTAAGCCAACAATTGTATTTAGTTCTAAAAAAGGATTAGATAAAGTTATAACTGTACAAAARACGGTAACTGCTATTAAAACCATTGTTATATTGGACAGCAAA
PpyrLuc2 CATAACTTTGAGATARCGAAACCTAGCGTGGTTTTCTGTTCCARAAGGGCCGTAAAGAACATTCAGACAGTGAAGCACCGGCTAACTTACATTAATACAGTGGTCATATTGGATGACATC
AlatLuc2 AARTTGTTTAAATTTATCAAAACCGACTTTTTTATTCTGTTCAAAAGAAACTTGGCCARAARATACGTCAAGCTAAAAARARACTAGATTTTATTAAAARRATAATTATTCTTGATAATARR
PpyrLucl ACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTACCAGAGTCCTTTGATCGTGACAARACAATTGCACTGATA
AlatLucl GTGGATTATAGAGGTTATCAATCCATGGACAACTTTATTAARRAARRACACTCCACCAGGTTTCARAGGATCARGTTTTAAAACTGTAGAAGTTAACCGCAAAGARCAAGTTGCGCTTATA
PpyrLuc2 ACCGACTGGCAAGATTTCCCTTGCCTAAACAACTTCATTTTGAAGTTTTGCGATCCARATTTARATATTGGAGATTTCAAGCCCAATTCGTTCGATCGTGATAACCAAGTTGCACTTGTT
AlatLuc2 ARCGACAGTGATTCACCACAATCCTTAGAAARATTTTATTTTTCAAAATTGTGACAAAGATTTTAACGTAAGTCAATTTAAACCAARATATATTTAACCGCGATGAGCACGTTGCATTGATA
PpyrLucl ATGAATTCCTCTGGATCTACTGGGTTACCTAAGGGTGTGGCCCTTCCGCATAGAACTGCCTGCGTCAGATTCTCGCATGCCAGgtat —————— gtcgta-taacaagagattaagtaatg
AlatLucl ATGAACTCTTCGGGTTCTACCGGTTTGCCARAAGGTGTGCAACTTACTCATGAARAATGCAGTCACTAGATTTTCTCACGCTAGgtacatattagttata-tagtaaaaagtctatattta
PpyrLuc2 ATGTACTCATCTGGCACAACAGGCGTGTCTAAAGGTGTCATGATAACCCATAAGAACATCATTGCTCGATTTTCGCACTGCARgtcE—————~ gtaatactegcatcgegettgttaace
AlatLuc2 TTAAATTCGTCGGGGTCGAGTGGATTGCCTAAAGGTGTAATGTTAACACATARAAACTTAGCGGTGAGATTTTGTCATTGCARgtaa—————~ gtaaaa-aaattacacatgctttttet
PpyrLucl ttgetacacacattgtagAGATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGAT
AlatLucl taattte- -tattagAGATCCAATTTATGGAAACCAAGTTTCACCAGGCACGGCTATTTTAACTGTAGTACCATTCCATCATGGTTTTGGTATGTTTACTACTTTAGGCTATCTAAC
PpyrLuc2 acgctat-aatttttcagAGATCCGACTTTTGGGAACCAAATCAATCCGACCACTGTCATTTTAACGGTGGTACCATTCCAACACAGCTTTGGTATGTTTACAAGTCTAGGATACATGAC
AlatLuc2 ttacgtttaacacttaagGGATCCCATTTTTGGTAATCAAATAAGTCCGGGTACTGCAATTTTAACAGTTATACCATTTCACCATGGATTTGGAATGTTCACTACTTTGGGATATTTTAC
PpyrLucl ATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTTTACGATCCCTTCAGGATTACARAATTCAAAGTGCGTTGCTAGTACCARCCCTATTTTCATTCTTCGCCAR
AlatLucl TTGTGGTTTTCGTATTGTCATGTTAACAARATTTGACGAAGARACTTTTTTAAAAACACTGCAAGATTACARATGTTCAAGCGTTATTCTTGTACCGACTTTGTTTGCAATTCTTAATAG
PpyrLuc2 CTGCGGATTTCGAATCGTCGTATTAACCACGTTTGATGAAAAGCTCTTTTTGCAATCCCTTCAAGATTATARAGTGGCAAGCACTTTACTAGTGCCTACCCTGATGTCCTTGTTCGCARR
AlatLuc2 ATGCGGGTTTCGAATTGTTTTAATGCATACATTTGAAGAACATTTGTTTTTACAATCATTACAAGATTATAAAGTTAARAGTACTTTGTTGGTACCTACGTTAATGACTTTTTTTGCCAR
PpyrLucl AAGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCTGGGGGCGCACCTCTTTCGARAGAAGTCGGGGAAGCGGTTGCAAAACGgtgagttaagegeattgetag
AlatLucl AAGTGAATTACTCGATAAATATGATTTATCAAATTTAGTTGAAATTGCATCTGGCGGAGCACCTTTATCTARAGARATTGGTGAAGCTGTTGCTAGACGgtaatttttgtttataaattt
PpyrLuc2 AAGCGCAATCGTCGAGAACTACGATCTGTCGCACTTGGAAGAGATCGCCTCGGGTGGAGCACCTTTATCCAAGCAAATCAGCGATGCGGTTAGGARACGgtgagtctgoggagtttttty
AlatLuc2 AAGTCCATTAGTAGACAAATTTCATTTGCCTTATTTACACGAAATTGCGTCGGGAGGTGCACCTCTGTCAAAAGAAATTGGTGAAGCTGTTGCACTAAGgtaatattttttgaattattt
PpyrLucl tatttcaa--ggctctaaaacggegegtagCTTCCATCTTCCAGGGATACGACAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGG
AlatLucl ttaatcaaatactttataaatctgttgecagTTTTAATTTACCGGGTGTTCGTCAAGGCTATGGTTTAACAGAAACAACCTCTGCAATTATTATCACACCGGAAGGCGATGATAAACCAGG
PpyrLuc2 —-cctettatetteccagtacagATTTAAGCTARACCAGATCAGGCAAGGATACGGGCTCACCGAAACTACCTCGGCAGTGTTAATTACGCCAGATACCGGCGTCATACCGGG
AlatLuc2 -attaattacgtaaagtttagATTTAAATTGAAATCAATTAGACAAGGTTATGGTTTAACCGAAACAACTTCGGCTATTTTATTAACACCTGAAGGAGAAATAGTACCTGG
PpyrLucl CGCGGTCGGTAAAGTTGTTCCATTTTTTGAAGCGARGGTTGTGGATCTGGATACCGGGAARAACGCTGGGCGTTAATCAGAGAGGCGAATTATGTGTCAGAGGACCTATGATTATGTCCGG
AlatLucl TGCTTCTGGCAAAGTTGTGCCATTATTTARAGCAARAGTTATCGATCTTGATACTAARAAAACTTTGGGCCCGAACAGACGTGGAGAAGTTTGTGTARAGGGTCCTATGCTTATGAAAGG
PpyrLuc2 CTCTACCGGARAAATTGTCCCCTTTCACGCCGTAARAGTTGTCGATACAGCTACTGGAGAARACTTGGGGCCCAATCGAACTGGCGAATTGTATTTCARAGGTGACATGATARTGAAGGG
AlatLuc2 ATCGACAGGAAAAGTAGTACCCTTTTTTGCAGCTARAGTTGTAGATAACGACACTGGTAGAATACTAGGACCAARATGAAGTTGGAGAATTGTGCTTTARAAGGAGATATGAATATGAARGG
PpyrLucl TTATGTAAARCARTCCGGAAGCGACCARACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGAAGACGARCACTTCTTCATAGTTGACCGCTTGAAGTC
AlatLucl TTATGTAGATAATCCAGAAGCAACAAGAGAAATCATAGATGAAGAAGGTTGGTTGCACACAGGAGATATTGGGTATTACGATGAAGAAAAACATTTCTTTATCGTGGATCGTTTGAAGTC
PpyrLuc2 CTACTGTAACAACGCCCCAGCTACCGACGCAATTATTGACCCAAATGGGTGGTTGCGATCCGGCGACATCGGCTATTACGATGGGAARTGGARATTTTTTCATCGTGGACAGAATTARATC
AlatLuc2 TTACTGTAATGATATCAAAGCTACCAACGCTATTATTGATAAAGAAGGATGGTTACATTCAGGTGATCTCGGATATTATGACGARAACGAACATTTTTTTATTGTTGATCGACTAARATC
PpyrLucl TTTAATTARATACAAAGGATATCAGgtaatgaagatttttacatgcacacacgetacaatace tgtag CCCCGCTGAATTGGAATCGATATTGTTACAACACCCCAACA
AlatLucl TTTAATCARATACAAAGGATATCAAgtaatattttttaaccgataaaaataattctaaatatt---taatttagGTACCACCTGCTGAATTAGAATCTGTTCTTTTGCAACATCCAAATA
PpyrLuc2 ACTAATARAGTACAAGGGCTTCCAGgcaggttttectacagttttggtegattttaaaatg-----tattgtagGTTGCACCCGCCGAAATTGAAGCAGTACTACTGCAACACCCGGACA
AlatLuc2 TTTAATCARATACAAAGGATACCAGgtacgttttttaaagtcatttetttgtgttattttgtecgatgetttagGTTGCTCCTGCCGAATTGGAAGGAATATTATTAACTCATCCAAGTA
PpyrLucl TCTTCGACGCGGGCGTGGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGCACGGAAAGACGATGACGGAAARAGAGATCGTGGATTACGTCGCCA
AlatLucl TTTTTGATGCCGGCGTTGCTGGCGTTCCAGATCCTATAGCTGGTGAGCTTCCGGGAGCTGTTGTTGTACTTGAAARAGGAAAATCTATGACTGAAARAGAAGTAATGGATTACGTTGCAR
PpyrLuc2 TTCTCGACGCGGGCGTTACGGGTATTAAAGACGACGAAGCGGGCGAAATACCGGCGGCGGCTATAGTCATARAGARAGGCGCACATTTAGACGAAGAAGACGTGAAGAAATACGTTGARAR
AlatLuc2 TCATGGACGCGGGTGTTACTGGTATACCGGATGAACACGCTGGTGAACTTCCAGCAGCATGTGTCGTAGTTAAACCAGGGCGARACCTCACTGAAGARAATGTCATAAATTACGTCTCAA
PpyrLucl gtaaatgaat- --tcgttttacgttactcgtactaca-attcttttcatagGTCAAGTARCAACCGCGAARRAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGT
AlatLucl gtaactattattcaacactagttaaagtaaatactactaca---tttttgtgtagGTCAAGTTTCAAATGCAAAACGTTTGCGTGGTGGTGTCCGTTTTGTGGACCGAAGTGCCTAAAGGT
PpyrLuc2 gtaagtgtcg-gcatcaagaggccgacgaactaatttt------tcggttttcagGCCAAATGTCTTCGACAAGGTGGTTACGGGGCGGTGTGCGCTTTTTGGATGAAATCCCARAAGGT
AlatLuc2 gtaattcttt-tttatattggtattttttaatatttatatataattttctattagGCCAGGTATCTTCTTCGAAGAGATTGCGTGGAGGTGTTCGTTTTATAGATAACATTCCAAAAGGA
PpyrLucl CTTACCGGAAAACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAAATTGTAA

AlatLucl CTTACTGGTAAAATTGACGGTAAAGCAATTAGAGARATACTGAAGAAA CCAGTTGCTAAGATGTAA

PpyrLuc2 CCGACCGGTAAAATTGATGGAAAAGCCATACGGGAAATATTTGAGAAG-——————————- CAAAAATCTAAGCTGTAA

AlatLuc2 TCTACCGGCAAAATTGACACAAAAGCTTTAAAACARATTTTACAAAARA CAAAAATCCAAGTTATAA

Figure S4.3.1.2: Multiple sequence alignment of firefly luciferase genes

MAFFT[99] L-INS-i multiple sequence alignment of luciferase gene nucleotide sequences from
PpyrOGS1.1 and AlatOGS1.0 demonstrates the location of intron-exon junctions (bolded blue
text) is completely conserved amongst the 4 luciferases. Exonic sequence is capitalized,
whereas intronic sequence is lowercase.

4.3.2 Luciferase homolog gene tree (Fig. 3C)

From our reference genesets, a protein BLAST search detected 24, 20, 32, and 2
luciferase homologs (E-value < 1x10°°) to P. pyralis luciferase (PpyrLuc1; Genbank accession
AAA29795) from the P. pyralis, A. lateralis, |. luminosus genesets, and Drosophila
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melanogaster respectively. We defined the luciferase co-orthology as followings; (1) shows an
BLASTP E-value lower than 1.0x10® towards DmelPACS (CG6178), (2) phylogenetically sister
to DmelPACS, which is the most similar gene to firefly luciferase in D. melanogaster, based on
a preliminary maximum likelihood (ML) phylogenetic reconstruction (Fig. S4.3.2.1). Preliminary
ML phylogenetic reconstruction was performed as follows: The sequences of luciferase
homologs from Mengenilla moldrzyki, Pediculus humanus, Limnephilus lunatus, Ladona fulva,
Frankliniella occidentalis, Zootermopsis nevadensis, Onthophagus taurus, Anoplophora
glabripennis, Agrilus planipennis, Harpegnathos saltator, Blattella germanica, Acyrthosiphon
pisum, Tribolium castaneum, Bombyx mori, Anopheles gambiae, Apis mellifera, Leptinotarsa
decemlineata, and Dendroctonus  ponderosae  were obtained from OrthoDB
(https://www.orthodb.org)[221]. The sequences which show 99% similarity were filtered by CD-
HIT (v4.7)[222]. The resulting sequences and beetle luciferases were aligned using (MAFFT
v7.309)[198] using the BLOSUM62 matrix and filtered for spurious sequences and poorly
aligned regions using trimAl (v.1.2rev59)[223] (parameters: -strict). The final alignment was 385
blocks and 264 sequences. Then, the best fit amino acid substitution model, LG+F Gamma,
was estimated by Aminosan (v1.0.2016.11.07)[224] using the Akaike Information Criterion.
Finally, a maximum likelihood gene phylogeny was estimated using RAxML (v8.2.9; 100
bootstrap replicates)[225]. Supporting files such as multiple sequence alignment, gene
accession numbers, and other annotations are available on FigShare (DOI:
10.6084/m9.figshare.6687086).

To more closely examine luciferase evolution, an independent maximum likelihood gene
tree was constructed for luciferase co-orthologous genes defined above (highlighted clade as
grey in Fig. S4.3.2.1) with well important genes: non-luminescent luciferase homolog from two
model insect D. melanogaster (DmelPACS and DmelACS as outgroup) and T. castaneum
(TcasPACSs and TcasACSs), biochemically characterized non-luminescent PACS
(LcruPACS1&2 from Luciola cruciata, DmelPACS, and PangPACS from Pyrophorus angustus)
and biochemically characterized luciferases from Lampyrinae (PatrLuc1&2: Pyrocoelia
atripennis), Ototoretinae (DaxiLuc1 and SazulLuc1: Drilaster axillaris and Stenocladius azumai),
Phausis (PretLuc1: Phausis reticulata) from Lampyridae, Rhagophthalmidae (RohbLuc:
Rhagophthalmus ohbai), Phengodeidae (PhirLucG&R: Phrixothrix hirtus), and Elateridae
(PangLucD&V: P. angustus). Then co-orthologous genes were confirmed to be phylogenetically
sister to DmelPACS (CG6178) and their evolution examined using a maximum likelihood (ML)
gene phylogeny approach. First, amino acid sequences were aligned using (MAFFT
v7.308)[198] using the BLOSUM®62 matrix (parameters: gap open penalty = 1.53, offset value =
0.123) and filtered for spurious sequences and poorly aligned regions using trimAl[223]
(parameters: gt = 0.8). The final alignment was 533 blocks and 67 sequences. Then, the best fit
amino acid substitution model, LG+F Gamma, was estimated by Aminosan
(v1.0.2016.11.07)[224] using the Akaike Information Criterion. Finally, a maximum likelihood
gene phylogeny was estimated using RAXML (v8.2.9; 100 bootstrap replicates)[225]. The tree
was rooted using DmelACS as an outgroup. The peroxisomal targeting signal 1 (PST1) was
predicted using the regular expressions provided by the Eukaryotic Linear Motif database[226]
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1916 and verified using the mendel PTS1 prediction server[227,228]. Supporting files such as
1917  multiple sequence alignment, gene accession numbers, and other annotation and expression
1918 values are available on FigShare (DOI: 10.6084/m9.figshare.5725690).

1919

Tree scale: 0.1 — L

1920 Sessnsnsnct?®
1921  Figure S4.3.2.1: Preliminary maximum likelihood phylogeny of luciferase homologs

1922 A preliminary maximum likelihood tree was reconstructed from a 385 amino acid multiple
1923  sequence alignment, generated via a BLASTP and orthoDB search using P. pyralis luciferase
1924 as query (e-value: 1.0 x 107-60). Members of the clade that includes both known firefly
1925 luciferase and CG6178 of D. melanogaster (bold) are defined as luciferase co-orthologous
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genes (highlighted in gray), and were selected and used for the independent maximum
likelihood analysis in Figure 3C (Supp. Text 4.3.2). Branch length represents substitutions per
site. Genes found from this study are indicated in blue. Lampyridae Luc1-type and Luc2-type
luciferases are highlighted in yellow-green and green. Rhagophthalmidae and Phengodidae
luciferases are highlighted in lime-green. Elateridae luciferases are highlighted in yellow.
Genbank accession numbers of luciferase orthologs genes are indicated after the species
name. OrthoDB taxon and protein IDs of luciferase co-orthologs are indicated after species
name. Bootstrap values are indicated on the nodes. The genes from Coleoptera are indicated
as purple strip. Grey closed circles indicate genes that have PTS1.

4.3.3 Ancestral state reconstruction of luciferase activity (Fig. 4A)

We performed an ancestral character state reconstruction of luciferase activity on the
luciferase homolog gene tree within Mesquite (v3.31)[229], using an unordered parsimony
analysis, and maximum likelihood (ML) analyses. First, the gene tree from Fig. 3C in Newick
format was filtered using Dendroscope(v3.5.9)[199] to include only the clade descending from
the common ancestor of TcasPACS4 and PpyrLuc1. TcasPACS4 was set as the rooting
outgroup. Luciferase activity of these extant genes was coded as a character state within
Mesquite with: (0=no luciferase activity, 1=luciferase activity, ?=undetermined). A gene was
given the 1-state if it had been previously characterized as having luciferase activity, or was
orthologous to a gene with previously characterized luciferase activity against firefly D-luciferin.
A gene was given the O-state if it had been previously characterized as a non-luciferase, or was
orthologous to a gene previously characterized to not have luciferase activity towards firefly D-
luciferin. The non-luciferase activity determination for TcasPACS4 was inferred via orthology to
the previously characterized non-luciferase Tenebrio molitor enzyme Tm-LL2[230]. The non-
luciferase activity of AlatPACS4 (AQULA_005073-PA) was inferred via orthology to the non-
luciferase enzyme LcruPACS2[231]. The non-luciferase activity of lumPACS4 (ILUMI_06433-
PA) was inferred via orthology to the non-luciferase Pyrophorus angustus enzyme PangPACS
[161,232]. llumLuc luciferase activity was inferred via orthology to the P. angustus dorsal and
ventral luciferases[161]. The luciferase activity of PpyrLuc2 (PPYR_00002-PA) was inferred
via orthology to other Luc2s, e.g. A. lateralis Luc2[206]. The luciferase activity of the included
phengodid[210,233,234], rhagopthalmid [212,235], and firefly luciferases[236—238] were
annotated from the literature. We then reconstructed the ancestral luciferase activity character
state over the tree, using an unordered parsimony model, and a maximum likelihood (ML)
model. ML analyses were performed under the AsymmMk model with default parameters (i.e.
Root State Frequencies Same as Equilibrium). NEXUS files with presented parsimony and ML
reconstructions are available on FigShare (DOI: 10.6084/m9.figshare.6020063).

4.3.4 Testing for ancestral selection of elaterid ancestral luciferase (Fig. 4B)

Discovery
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Peptide sequences for elaterid luciferase homologs descending from the putative
common ancestor of firefly and elaterid luciferase as determined by a preliminary maximum
likelihood molecular evolution analysis of luciferase homologs (not shown), were selected from
Uniprot, whereas their respective CDS sequences were selected from the European Nucleotide
Archive (ENA) or National Center for Biotechnology Information (NCBI). These sequences
include: The dorsal (PangLucD; ENA ID=BAI66600.1) and ventral (PangLucV; ENA ID=
BAI66601.1) luciferases, and a luciferase-like homolog without luciferase-activity (PangPACS;
ENA ID=BAI66602.1) from Pyrophorus angustus [161], and two unpublished but database
deposited luciferase homologs without luciferase-activity (data not shown) from Cryptalaus
berus (CberPACS; ENA ID =BAQ25863.1) and Pectocera fortunei fortunei (PffPACS; ENA
ID=BAQ25864.1). The peptide and CDS sequence of the Pyrearinus termitilluminans luciferase
(PtermLuc) were manually transcribed from the literature[211], as these sequences were
seemingly never deposited in a publically accessible sequence database. The dorsal
(PmeLucD; NCBI ID=AF545854.1) and ventral (PmeLucV; NCBI ID=AF545853.1) luciferases of
Pyrophorus mellifluus [239]. The dorsal (AF543412.1) and ventral (AF543401.1) luciferase
alleles of Pyrophorus plagiophthalmus [239], which were most similar to that of Pyrophorus
mellifluus in a maximum likelihood analysis (data not shown). The CDS sequence of the
complete 1. luminosus luciferase (llumLuc; ILUMI_00001-PA), two closely related paralogs
(lumPACS9: ILUMI_26849-PA, IlumPACSS8: ILUMI_26848-PA), and 2 other paralogs
(HumPACS2: ILUMI_02534-PA; llumPACS1: ILUMI_06433-PA), and the CDS for Photinus
pyralis luciferase (PpyrLuc1: PPYR_00001-PA) was added as an outgroup sequence.

Alignment and Gene Phylogeny

The 20 merged CDS sequences were multiple-sequenced-aligned with MUSCLE [240]
in “codon” mode within MEGAT7[195], using parameters (Gap Open = -.2.9; Gap Extend = O;
Hydrophobicity Multiplier 1.2, Clustering Method= UPGMB, Min Diag Length (lambda)=24,
Genetic Code = Standard), producing a nucleotide multiple-sequence-alignment (MSA). A
maximum likelihood gene tree was produced from the nucleotide MSA within MEGAY using the
General Time Reversible model[241], with 5 gamma categories (+G, parameter = 0.8692). The
analysis involved 20 nucleotide sequences. Codon positions included were
1st+2nd+3rd+Noncoding. There were a total of 1659 positions in the final dataset. Initial tree(s)
for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ
algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood
(MCL) approach, and then selecting the topology with the superior log likelihood value. The tree
with the highest log likelihood (-16392.22) was selected. 1000 bootstrap replicates were
performed to evaluate the topology, and the percentage of trees in which the associated taxa
clustered together is shown next to the branches in Fig 4B.

Tests of selection: aBSREL
An adaptive branch-site REL test for episodic diversification was performed on the
previously mentioned gene-tree and nucleotide MSA using the adaptive branch-site REL test for
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episodic diversification (aBSREL) method[242] within the HyPhy program (v2.3.11)[243]. The
input MSA contained 20 sequences with 553 sites (codons). All 37 branches of the gene
phylogeny were formally tested for diversifying selection. The aBSREL analysis found evidence

of episodic diversifying selection on 3 out of 37 branches in the phylogeny. Significance was
assessed using the Likelihood Ratio Test at a threshold of p < 0.01, after the Holm-Bonferroni
correction for multiple hypothesis testing. The intermediate files and results of this analysis,
including the nucleotide MSA, GTR based gene-tree, and aBSREL produced adaptive rate class

model gene tree are available on FigShare (DOI: 10.6084/m9.figshare.5691277).

Tests of selection: MEME

After identification of the selected branch via the aBSREL method, we turned to the
MEME method within the HyPhy program (v2.3.11)[243], to identify those sites which may have
adaptively evolved. We tested the branch leading to EAncLuc, which was previously identified
as under selection in the aBSREL analysis. A single partition was recovered with 28 sites under
episodic diversifying positive selection at p <= 0.1. Input files and full results are available on
FigShare (10.6084/m9.figshare.6626651).

Tests of selection: PAML

To validate our findings from aBSREL and MEME using a different method, we applied
Phylogenetic Analysis by Maximum Likelihood (PAML) branch by site analysis to the luciferase
sequences. We tested the alternative hypothesis, that there is a class of sites under selection
(w > 1) on the branches identified as under selection in the aBSREL analysis (EAncLuc,
PmeLucV, PanglLucV) against the null hypotheses, that all classes of sites on all branches are
evolving either under constraint (w < 1) or neutrality (w = 1). A likelihood ratio test supported the
alternative hypothesis, that 20% of sites in luciferase were in a positively selected class (w =
3.08). Subsequent Bayes Empirical Bayes estimation identified 72 sites with evidence of
selection on these branches, 25 of which were significant. Full results are available on FigShare
(10.6084/m9.figshare.6725081).

Tests of selection: Overlap
19 of the overall sites were shared between the MEME analysis, and are shown in Table
4.3.4.2. The extant amino acids at these sites are shown in Figure 4.3.4.3.

Table 4.3.4.1 Results of PAML branch x sites analysis

Proportion indicates the proportion of sites in each site class (0, 1, 2a, 2b). Site classes
0 and 1 are those in the constrained and neutral classes, respectively. 2a are sites that were
constrained on the background branches, but are either neutral (HO) or in the selective class
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(HA) on the foreground branches. 2b are sites that were neutral on the background branches,
but are either neutral (HO) or in the selective class (HA) on the foreground branches.

Hypothesis Site class: 0 1 2a 2b InL

HO: no selection proportion 0.62 0.10 0.24 0.04 -15850.97

background 0.12 1 0.12 1

w
foreground w 0.12 1 1 1
HA: selection proportion 0.69 0.11 0.17  0.03 -15833.50*

background 0.12 1 0.12 1
w

foreground  0.12 1 3.08 3.08

* significant (LRT: 34.94, df = 1)

Table 4.3.4.2 Sites identified as under selection on foreground branches using both Bayes
Empirical Bayes (BEB) and Mixed Effects Model of Evolution (MEME). ' = amino acid. 2=All
recovered sites in a single partition.

Site numbering MEME? PAML
Episodic
HlumLuc selection # BEB site class BEB
MSA llumLuc site AA’ a B+ p+ LRT p-value branches| probability significance
49 47 I 0.93 7924 1.000 3.8 0.0692 0 0.95
50 48 G 0.57 3332.3 1.000 4.8 0.0427 0 1.00 *
72 70 N 0.55 3333.1 1.000 3.1 0.0998 0 0.61
105 103 \Y 044 6.8 1.000 4.3 0.0549 0 0.69
118 116 C 0.30 3333.1 1.000 7.4 0.0109 1 0.51
226 222 T 144 296 1.000 4.8 0.0427 0 0.92
234 230 I 113 9.6 1.000 3.1 0.0991 0 1.00 *
315 311 L 0.69 295 1.000 5.1 0.0362 0 0.88
337 333 P 0.26 13.3 1.000 6.3 0.0198 0 0.83
365 361 L 0.58 7.6 1.000 44 0.0520 0 0.87
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2050

2051

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073

369 365 T 021 6.8 1.000 6.6 0.0169 0 0.99 *
383 379 E 0.00 2.8 1.000 4.1 0.0594 0 0.74
398 394 P 0.96 1999.2 1.000 4.5 0.0500 0 0.96 *
406 402 N 0.58 55 1.000 3.7 0.0745 0 1.00 >
441 437 Y 143 393 1.000 4.2 0.0573 0 0.93
478 474 \ 0.00 10.3 1.000 6.9 0.0139 1 1.00 **
502 498 Y 0.50 1790.4 1.000 4.9 0.0393 0 0.59
541 537 Q 0.00 1999.2 1.000 10.4 0.0024 1 0.54
550 542 T 0.74 33329 1.000 4.3 0.0541 0 0.70

4.4 Non-enzyme highly and differentially expressed genes of the firefly lantern

PPYR_04589, a predicted fatty acid binding protein is almost certainly orthologous to the
light organ fatty acid binding protein reported from Luciola cerata [244]. This fatty acid binding
protein was previously reported to bind strongly to fatty acids, and weakly to luciferin. Notably,
PPYR 04589 is the most highly expressed gene in the P. pyralis adult lantern, ahead of firefly
luciferase. Three G-coupled protein receptors (GCPRs) with similarity to annotated
octopamine/tyramine receptors were also detected to be highly and differentially expressed in
the P. pyralis light organ (PPYR_11673-PA, PPYR_11364-PA, PPYR_12266-PA). Octopamine
is known to be the key effector neurotransmitter of the adult and larval firefly lantern and this
identified GPCR likely serves as the upstream receptor of octopamine activated adenylate
cyclase, previously reported as abundant in P. pyralis lanterns[245].

The neurobiology of flash control, including regulation of flash pattern and intensity, is a
fascinating area of behavioral research. Our data generate new hypotheses regarding the
molecular players in flash control. A particularly interesting highly and differentially expressed
gene in both P. pyralis and A. lateralis is the full length “octopamine binding secreted
hemocyanin”(PPYR_14966; AQULA_008529; Table S4.4.1) previously identified from P. pyralis
light organ extracts via photoaffinity labeling with an octopamine analog and partial N-terminal
Edman degradation[245]. This protein is intriguing as hemocyanins are typically thought to be
oxygen binding. We speculate that this octopamine binding secreted hemocyanin, previous
demonstrated to be abundant, octopamine binding, and secreted from the lantern (presumably
into the hemolymph of the light organ), could be triggered to release oxygen upon octopamine
binding, thereby providing a triggerable O, store within the light organ under control of
neurotransmitter involved in flash control. As O is believed to be limiting in the light reaction,
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2074  such a release of O, could enhance flash intensity or accelerate flash kinetics. Further research
2075 is required to test this hypothesis.

2076 Table S4.4.1: Highly expressed (HE), differentially expressed (DE), non-enzyme
2077 annotated (NotE), lantern genes whose closest relative in the opposite species is also
2078 HE, DE, NotE. BSN-TPM = between sample normalized TPM

2079
2080
P. pyralis ID Predicted Ppyr Ppyr Orthogroup  Alat Alat A. lateralis ID
(0GSs1.1) function expression BSN-TPM expression BSN-TPM (0GS1.0)
rank rank

PPYR_04589  Fatty-acid binding 1 70912 0G0000524 2 31943 AQULA_005253
protein

PPYR_04589  Fatty-acid binding 1 70912 0G0000524 8 10464 AQULA_005257
protein

PPYR_04589 Fatty-acid binding 1 70912 0G0000524 10 8520 AQULA_005259
protein

PPYR_05098 Peroxisomal 15 4005 0OG0001490 26 3294 AQULA_005466
biogenesis factor
11 (PEX11)

PPYR_14966  Octopamine 34 2353 0G0000369 21 3658 AQULA_008529
binding secreted
hemocyanin

PPYR_11733  MFS transporter 42 1853 0G0000980 84 1335 AQULA_012209
superfamily

PPYR_07633 Reticulon 56 1556 0G0004764 109 1123 AQULA_005090

PPYR_09394 lysosomal Cystine 87 1098 0G0000847 69 1494 AQULA_ 009474
Transporter

PPYR_08979  PF03670 114 860 0OG0003009 340 411 AQULA_012099
Uncharacterised

protein family

PPYR_05852  Vacuolar ATP 118 836 0OG0001039 287 475 AQULA_001418
synthase 16kDa
subunit

PPYR_11443  RNA-binding 134 782 0G0004268 1221 108 AQULA_003174

domain superfamily

PPYR_02465  Peroxin 13 189 581 0G0001667 196 710 AQULA_010288
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Figure S4.4.2: Maximum likelihood gene tree of the combined adenylyl-sulfate kinase & sulfate
adenylyltransferase (ASKSA) orthogroup.

Peptide sequences from P. pyralis, A. lateralis, I. luminosus, T. castaneum, and D.
melanogaster were clustered (orthogroup # 698), multiple sequence aligned, and refactored into
a species rooted maximum likelihood tree, via the OrthoFinder pipeline (Supplementary Text
4.2.1). As this is a genome-wide analysis where bootstrap replicates would be computationally
prohibitive, no bootstrap replicates were performed to evaluate the support of the tree topology.
PTS1 sequences were predicted from the peptide sequence using the PTS1 predictor server
[228]. Figure produced with iTOL [246].

4.5 Opsin analysis

Opsins are G-protein-coupled receptors that, together with a bound chromophore, form
visual pigments that detect light, reviewed here [247]. While opsin genes are known for their
expression in photoreceptors and function in vision, they have also been found to be expressed
in other tissues, suggesting non-visual functions in some cases. Insects generally use
rhabdomeric opsins (r-opsins) for vision, while mammals generally use ciliary opsins (c-opsins)
for vision, products of an ancient gene duplication [247,248]. Both insects and mammals may
retain the alternate opsin type, generally in a non-visual capacity. The ancestral insect is
hypothesized to have 3 visual opsins - one sensitive to long-wavelengths of light (LW), one to
blue-wavelengths (B), and one to ultraviolet light (UV). Previously, two opsins, one with
sequence similarity to other insect LW opsins and one with similarity to other insect UV opsins,
were identified as highly expressed in firefly heads [64,249]. A likely non-visual c-opsin was also
detected, though not highly expressed [64,249].

To confirm the previously documented opsin presence and expression patterns, we
collected candidate opsin genes via BLASTP searches (e-value threshold: 1x10%) of the
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PPYR_OGS1.0, AQULA_OGS1.0 and ILUMI_OGS1.0 reference genesets against UV opsin of
P. pyralis (Genbank Accession: ALB48839.1), as well as collected non-firefly opsin sequences
via literature searches, followed by maximum likelihood phylogenetic reconstruction (Fig.
S4.5.1A), and expression analyses of the opsins (Fig. S4.5.1.B). The amino acid sequences of
opsin were multiple aligned using MAFFT and trimmed using trimAL (parameters: -gt 0.5). The
amino acid substitution model for ML analysis was estimated using Aminosan
(v1.0.2016.11.07)[224]. In P. pyralis, A. lateralis, and . luminosus, we detected three r-opsins,
including LW, UV, and an r-opsin homologous to Drosophila Rh7 opsin, and one c-opsin. While
LW and UV opsins were highly and differentially expressed in heads of both fireflies, c-opsin
was lowly expressed, in P. pyralis head tissue only (Figure S4.5.1.B). In contrast, Rh7 was not
expressed in the P. pyralis light organ, but was differentially expressed in the light organ of A.
lateralis (Fig. S4.5.1B). The detection of Rh7 in our genomes is unusual in beetles[250], though
emerging genomic resources across the order have detected it in two taxa: Anoplophora
glabripennis [251] and Leptinotarsa decemlineata [252]. Rh7 has an enigmatic function - a
recent study in Drosophila melanogaster showed that Rh7 is expressed in the brain, functions in
circadian photoentrainment, and has broad UV-to-visible spectrum sensitivity [253,254].
Extraocular opsin expression has been detected in other eukaryotes: a photosensory organ is
located in the genitalia at the posterior abdominal segments in butterfly (Lepidoptera)[255]. In
the bioluminescent Ctenophore Mnemiopsis leidyi, three c-opsins are co-expressed with the
luminous photoprotein in the photophores[256]. In the bobtail squid, Euprymna scolopes, one of
the c-opsin isoforms is expressed in the bacterial symbiotic light organ[257,258]. Thus, it is
possible that Rh7 has a photo sensory function in the lantern of A. lateralis, though this putative
function is seemingly not conserved in P. pyralis. Future study will confirm and further explore
the biological, physiological, and evolutionary significance of Rh7 expression in the light organ
across firefly taxa.
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Figure S4.5.1: ML tree and gene expression levels of opsin genes.

a, Opsin Maximum likelihood (ML) tree. Collected opsin sequences were multiple sequence
aligned with MAFFT L-INS-i[99] with default parameters. Gaps and ambiguous sequences were
filtered with trimAL software[259] (parameter: -gt =0.5), and the ML tree reconstructed with
MEGA7[195] with LG+G (5 gamma categories (+G, parameter = 1.3856) substitution model
using 362 aa of multiple amino acid alignment. 100 bootstrap replicates were performed.
HsapGPR was used as the outgroup sequence. Black circles on each node indicate bootstrap
values. Scale bar equals substitutions per site. Taxon abbreviation: Hsap: Homo sapiens,
Mnem: Mnemiopsis leidyi Agam: Anopheles gambiae, Sfre: Sympetrum frequens, llum:
Ignelater luminosus, Bmor: Bombyx mori, Ppyr: Photinus pyralis, Tcas: Tribolium castaneum,
Dmel: Drosophila melanogaster. The tree in Newick format, multiple sequence alignment files,
and an excel document linking the provided gene names to the original sequence accession IDs
and species name is available on FigShare (DOI: 10.6084/m9.figshare.5723005) b, Bar graphs
indicate the gene expression levels in each body parts of averaged both male and female adult.
The gene expressions in A. lateralis are tested with Tukey-Kramer method (three experimental
replicates). UV and LW opsins are significantly highly expressed in the head (p < 0.005). On the
other hand, Rh7 was significantly highly expressed in the lantern (p < 0.001). No significance
was detected in c-opsin expression between all three body parts (p > 0.5 - 0.9) Error bar
represents standard error.

Fallon, Lower et al. 2018 - Supplementary Materials 89


https://paperpile.com/c/fHp9OK/XIBW
https://paperpile.com/c/fHp9OK/xEPT
https://paperpile.com/c/fHp9OK/Qi6A
https://figshare.com/s/c74a6623494f6addbdd4

2154

2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193

4.6 LC-HRAM-MS of lucibufagin content in P. pyralis, A. lateralis, and I. luminosus

We assayed the hemolymph of adult P. pyralis and A. lateralis, as well as body extracts
from P. pyralis and A. lateralis larvae, and I. luminous adult male thorax, for lucibufagin content
using liquid-chromatography high-resolution accurate-mass mass-spectrometry (LC-HRAM-MS)
and MS? spectral similarity networking approaches. We chose to analyze extracted hemolymph
from both P. pyralis, and A. lateralis for lucibufagin content, as lucibufagins are known to
accumulate in the adult hemolymph and hemolymph samples give less complex extracts than
tissue extracts. For P. pyralis and A. lateralis larvae, and I. luminousus thorax, tissue extracts
were sampled as we do not have a reliable hemolymph extraction protocol for these life stages
and species. Specific tissues were chosen for extracts to enable a smaller quantity of tissue to
go into the metabolite extraction, and to explore possible difference in compound abundance
across tissues, but we expected that defense compounds like lucibufagins would be roughly
equally abundant present in all tissues.

Adult male P. pyralis and A. lateralis hemolymph was extracted by the following
methods: A single live adult P. pyralis male was placed in a 1.5 mL microcentrifuge tube with a
5 mm glass bead underneath the specimen, and centrifuged at maximum speed (~20,000xg) for
30 seconds in a benchtop centrifuge. This centrifugation crushed the specimen on top of the
bead, and allowed the hemolymph to collect at the bottom of the tube. Approximately 5 uL was
obtained. The extracted hemolymph was diluted with 50 uL methanol to precipitate proteins and
other macromolecules. For A. lateralis adult hemolymph, three adult male individuals were
placed in individual 1.5 mL microcentrifuge tubes with 5 mm glass beads, and spun at 5000
RPM for 1 minute in a benchtop centrifuge. The pooled extracted hemolymph (~5 uL), was
diluted with 50 yL MeOH, and air dried. The P. pyralis extracted hemolymph was filtered
through a 0.2 ym PFTE filter (Filter Vial, P/No. 15530-100, Thomson Instrument Company),
whereas the A. lateralis hemolymph residue was redissolved in 100 uL 50% MeOH, and then
filtered through the filter vial.

For extraction of P. pyralis larval partial body, the posterior 2 abdominal segments were
first cut off from a single laboratory reared larvae (Supplementary Text 1.3.2), and the remaining
partial body was placed in 180 uL 50% acetonitrile, and macerated with a pipette tip. The
extract was sonicated in a water bath sonicator for ~10 minutes, not letting the temperature of
the bath go above 50°C. The extract was then centrifuged (20,000 x g for 10 minutes), and
filtered through a 0.2 ym PFTE filter (Filter Vial, P/No. 15530-100, Thomson Instrument
Company).

For extraction of A. lateralis larval whole body, laboratory reared A. lateralis larvae were
flash frozen in liquid N,, lyophilized, and the whole body (dry weight: 29.1 mg) was placed in
200 uL 50% methanol, and macerated with a pipette tip. The extract was sonicated in a water
bath sonicator for 30 minutes, centrifuged (20,000xg for 10 minutes), and filtered through a 0.2
pum PFTE filter (Filter Vial, P/No. 15530-100, Thomson Instrument Company).

For extraction of I. luminosus adult thorax, the mesothorax through the 2 most anterior
abdominal segments (ventral lantern containing segment + 1 segment) of a lyophilized /.
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luminosus adult male (Supplementary Text 3.3), was separated from the prothorax plus head
and posterior 3 abdominal segments. This mesothorax + abdomen fragment was then placed in
0.5 mL 50% methanol, and macerated with a pipette tip. The extract was then sonicated in a
water bath sonicator for ~10 minutes, not letting the temperature of the bath go above 50°C,
centrifuged (20,000xg for 10 minutes), and filtered through a 0.2 ym PFTE filter (Filter Vial,
P/No. 15530-100, Thomson Instrument Company).

Injections of these filtered extracts (P. pyralis adult male hemolymph 10 uL; A. lateralis
adult male hemolymph 5 uL; P. pyralis partial larval body extract 5 uL; A. lateralis whole larval
body 5 uL; . luminosus thorax extract 20 uL) were separated and analyzed using an UltiMate
3000 liquid chromatography system (Thermo Scientific) equipped with a 150 mm C18 Column
(Kinetex 2.6 um silica core shell C18 100A pore, P/No. 00F-4462-Y0, Phenomenex, USA)
coupled to a Q-Exactive mass spectrometer (Thermo Scientific, USA). Two different instrument
methods were used, a slow ~44 minute method, and an optimized ~28 minute method.
Chromatographically both methods are identical up to 20 minutes.

P. pyralis hemolymph compounds were separated by the optimized method (28 minute),
with separation via reversed-phase chromatography on a C18 column using a gradient of
Solvent A (0.1% formic acid in H,O) and Solvent B (0.1% formic acid in acetonitrile); 5% B for 2
min, 5-40% B until 20 min, 40-95% B until 22 minutes, 95% B for 4 min, and 5% B for 5 min;
flow rate 0.8 mL/min. All other sample extracts were separated by the slow (44 minute)
reversed-phase chromatography method, using a C18 column with a gradient of Solvent A
(0.1% formic acid in H,O) and Solvent B (0.1% formic acid in acetonitrile); 5% B for 2 min, 5-
80% B until 40 min, 95% B for 4 min, and 5% B for 5 min; flow rate 0.8 mL/min.

The mass spectrometer was configured to perform one MS' scan from m/z 120-1250
followed by 1-3 data-dependent MS? scans using HCD fragmentation with a stepped collision
energy of 10, 15, 25 normalized collision energy (NCE). Positive mode and negative mode MS'
and MS? data were obtained in a single run via polarity switching for the optimized method, or in
separate runs for the slow method. Data was collected as profile data. The instrument was
always used within 7 days of the last mass accuracy calibration. The ion source parameters
were as follows: spray voltage (+) at 3000 V, spray voltage (-) at 2000 V, capillary temperature
at 275°C, sheath gas at 40 arb units, aux gas at 15 arb units, spare gas at 1 arb unit, max spray
current at 100 (uA), probe heater temp at 350°C, ion source: HESI-Il. The raw data in Thermo
format was converted to mzML format using ProteoWizard MSConvert[260]. Data analysis was
performed with Xcalibur (Thermo Scientific) and MZmine2 (v2.30)[261]. Raw LC-MS data is
available on MetaboLights (Accession: MTBLS698).

Within MZmine2, data were from all 5 samples on positive mode, and were first cropped
to 20 minutes in order to compare data which was obtained with the same LC gradient
parameters. Profile MS' data was then converted to centroid mode with the Mass detection
module(Parameters: Mass Detector = Exact mass, Noise level = 1.0E4), whereas MS? data was
converted to centroid mode with (Noise level=1.0E1). lons were built into chromatograms using
the Chromatogram Builder module with parameters (min_time_span = 0.10,min_height = 1.0E4,
m/z tolerance = 0.001 m/z or 5 ppm. Chromatograms were then deconvolved using the
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Chromatogram deconvolution module with parameters (Algorithm = Local Minimum Search,
Chromatographic threshold = 5.0%, Search Minimum in RT range=0.10 min, Minimum relative
height = 1%, Minimum absolute height =1.0EOQ, Min ratio of peak top/edge = 2, Peak duration
range = 0.00-10.00). Isotopic peaks were annotated to their parent features with the Isotopic
peaks grouper module with parameters (m/z tolerance = 0.001 or 5 ppm, Retention time
tolerance = 0.2 min, Monotonic shape=yes, Maximum charge = 2, Representative isotope=Most
intense). The five peaklists (P. pyralis hemolymph, P. pyralis larval partial body, A. lateralis adult
hemolymph, A. lateralis larval whole body, /. luminous thorax) were then joined and retention
time aligned using the RANSAC algorithm with parameters (m/z tolerance = 0.001 or 10 ppm,
RT tolerance = 1.0 min, RT tolerance after correction = 0.1 min, RANSAC iterations = 100,
Minimum number of points = 5%, Threshold value = 0.5). These aligned peaklists were then
gap-filled. Systematic mass accuracy error was determined with the endogenous tryptophan
[M+H]" ion (m/z=205.09 , RT=3.5-4.5 mins), and was measured to be +0.6 ppm, +9.9 ppm, +1.6
ppm, +1.1 ppm, and +0.6ppm, for P. pyralis adult hemolymph, P. pyralis partial larval body
extract, A. lateralis adult hemolymph, A. lateralis larval body extract, and I. luminosus thorax
extract respectively.
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Figure S4.6.1: Positive mode MS' total-ion-chromatogram (TIC) of P. pyralis adult
hemolymph LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure S4.6.4: Negative mode MS' total-ion-chromatogram (TIC) of P. pyralis larval
whole body minus 2 posterior segments LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure S4.6.5: Positive mode MS' total-ion-chromatogram (TIC) of A. lateralis adult
hemolymph LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure S4.6.6: Negative mode MS' total-ion-chromatogram (TIC) of A. lateralis adult
hemolymph LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure $4.6.7: Positive mode MS' total-ion-chromatogram (TIC) of A. lateralis larval
whole body LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure S4.6.8: Negative mode MS' total-ion-chromatogram (TIC) of A. lateralis larval
whole body extract LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure $4.6.9: Positive mode MS' total-ion-chromatogram (TIC) of /. luminosus
mesothorax+abdomen extract LC-HRAM-MS data.

Figure produced using MZmine2[261].
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Figure S4.6.10: Negative mode MS' total-ion-chromatogram (TIC) of /. luminosus
mesothorax+abdomen extract LC-HRAM-MS data.

Figure produced using MZmine2[261].

4.6.5 MS? similarity search for P. pyralis lucibufagins

We first performed a MS? similarity search within P. pyralis adult hemolymph for ions that
showed a similar MS? spectra to the MS? spectra arising from the diacetylated lucibufagin
[M+H]" ion from the same run ([M+H]" m/z 533.2385, RT = 15.10 mins) (Fig. S4.6.5.1). This
search was performed through the MS? similarity search module of MZmine2 (v2.30) with
parameters (m/z tolerance: 0.0004 m/z or 1 PPM; minimum # of ions to report: 3). This MS?
similarity search revealed 9 putative lucibufagin isomers with highly similar MS? spectra (Fig.
S4.6.5.2), which expanded to 17 putative lucibufagin isomers when considering features without
MS? spectra, but with identical exact masses and close retention times (ART < 2 min) to the
previously identified 9 (Table S4.6.5.3). Chemical formula prediction was assigned to each
precursor ion using the Chemical formula search module of MZmine2, whereas chemical
formula predictions for product ions was performed within MZmine2 using SIRUIS (v3.5.1)[262].
The structural identity of the 9 putative lucibufagins detected via the MS2 spectra similarity
search was easily interpreted in light that the different chemical formula represented the core
lucibufagins that had undergone acetylation (COCHj3) or propylation (COCH2CHs), in different
combinations. Notably the most substituted isomers, dipropylated lucibufagin ([M+H] m/z
561.2695, RT = 19.54 mins) were close to the edge of the cropped data (20 minutes), thus it
may be possible that more highly substituted lucibufagins with a longer retention times are
present, but not detected in the current analysis.
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We then performed a MS? similarity search within P. pyralis partial body extract for ions
that showed a MS? spectra similar to that of the dipropylated lucibufagin [M+H]* ion from the
same run ([M+H]* m/z 561.2738, RT=19.53). This search was performed through the MS?
similarity search module of MZmine2 (v2.30) with parameters (m/z tolerance: 0.0004 m/z or 1
PPM; minimum # of ions to report: 5). This MS? similarity search revealed 14 putative
lucibufagin isomers with highly similar MS? spectra (Table S4.6.5.3). Complexes, and
fragments were manually removed from the analysis. Comparison of the theoretical and
observed exact mass indicated that this experimental run had an unusual degree of systematic
m/z error, of ~ +10 ppm. After manual correction m/z, chemical formula prediction revealed a
several putative lucibufagins of unknown structure with nitrogen in their chemical formula,
suggesting that the nitrogen containing lucibufagins reported by by Gronquist and colleagues
from Lucidota atra [263] may be present in P. pyralis larvae.

3 [M+H] m/z: 533.2385 Fuxe | [M+H] m/z: 561.9695
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Figure S4.6.5.1: Positive mode MS? spectra of (A) diacetylated lucibufagin [M+H]" and
(B) dipropylated lucibufagin [M+H]".
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Figure S4.6.5.2: MS? spectral similarity network for P. pyralis adult hemolymph
lucibufagins.
(A) MS? similarity network produced with the MZmine2 MS? similarity search module. Nodes
represent MS? spectra from the initial dataset, whereas edges represent an MS? similarity match
between two MS2 spectra. Thickness / label of the edge represents the number of ions matched
between the two MS2 spectra. (B) Table of matched ions between diacetylated lucibufagin (m/z:

533.2385 RT:15.1), and core (unacetylated) lucibufagin (m/z: 449.2171 RT:10.8 min). MS'
adducts and complexes of the presented ions were manually removed.

Table $4.6.5.3: Putative lucibufagin compounds from LC-HRAM-MS of P. pyralis adult
hemolymph.

Retention time and m/z values are not calibrated to the other samples.

Assigned ion identity lontype = Chemical Expected Measured m/z error* Retention Feature
formula m/z m/z (ppm) time (mins) area (arb)
Core lucibufagin isomer 1 [M+H]* Ca4H330s  449.2175 449.2171 -0.89 7.9 6.7E+05
Core lucibufagin isomer 2 9.3 1.1E+07
Monoacetylated CH3s09  491.2281 491.2277 -0.81 10.2 4.2E+07

lucibufagin isomer 1

Core lucibufagin isomer 3 " Ca4H3305  449.2175 449.2171 -0.89 10.8 1.7E+07

Monoacetylated Ca6H3s09  491.2281 491.2277 -0.81 114 1.1E+06
lucibufagin isomer 2
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Monoacetylated 11.9 1.8E+07
lucibufagin isomer 3

Monoacetylated 13.0 2.7E+08
lucibufagin isomer 4

Monoacetylated 13.2 6.0E+07
lucibufagin isomer 5

Monoacetylated 14.5 6.2E+06
lucibufagin isomer 6

Diacetylated lucibufagin " CasH37010  533.2387 533.2385 -0.37 15.1 4.0E+09
isomer 1

Diacetylated lucibufagin 15.4 1.9E+09
isomer 2

Monoacetylated, mono CoH39010  547.2543 547.2542 -0.18 17.0 1.5E+07
propylated lucibufagin
isomer 1

Monoacetylated, mono 17.4 2.8E+08
propylated lucibufagin
isomer 2

Monoacetylated, mono " " 17.7 1.2E+08
propylated lucibufagin
isomer 3

Dipropylated lucibufagin CaoH41010  561.2700 561.2695 -0.89 18.9 1.4E+08
isomer 1

Dipropylated lucibufagin " " 19.5 3.9E+07
isomer 2

Dipropylated lucibufagin " " 19.8 1.8E+08
isomer 3

2350

2351 Table S4.6.5.4: Putative lucibufagin compounds from LC-HRAM-MS of P. pyralis larval
2352  partial body extracts.

2353  Retention time and m/z values are not calibrated to the other samples. *=m/z error and expected m/z
2354  extrapolated from ions with similar m/z, and chemical formula predicted from resulting extrapolated m/z.
2355  **=Likely chemical formula cannot be determined due to many possible chemical formula from the
2356  expected m/z.

Assigned ion identity lon type Chemical Expected Measured m/z error Retention Feature
formula m/z m/z (ppm) time (mins) area (arb)

Core lucibufagin isomer 2 [M+H]+ C24H3308 449.2175 449.2215 +8.9 9.15 8.5E+06

Monoacetylated Ca6H3509 491.2277 491.2326 +9.9 10.04 1.2E+07

lucibufagin isomer 1
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Unknown unknown C28H39010* 535.2543*  535.2592 +9.1* 12.40 1.6E+07

Unknown unknown  CyH3sNOgs*  436.2695*  436.2735 +9.1* 13.30 2.2E+07
Unknown unknown  CyHssNOg*  525.3173*  525.3221 +9.1* 13.35 1.3E+08
Unknown unknown  CyHsNO;*  454.2799*  454.2840 +9.1* 13.73 1.3E+07
Diacetylated lucibufagin [M+H]* C28H37010 533.2387 533.2426 +7.3 14.93 1.7E+09
isomer 1
Diacetylated lucibufagin [M+H] 533.2426 +7.3 15.16 3.5E+08
isomer 2
Unknown Unknown  CyHsNOg*  536.3216*  536.3256 +7.3* 16.57 4 1E+07
Unknown Unknown  Unknown**  563.2854*  563.2896 +7.3* 16.80 1.3E+07
Unknown Unknown C26H3107 455.2056 455.2097 +9.1* 17.22 5.8E+07
Dipropylated lucibufagin Unknown C30H41010 561.2700 561.2738 +6.7 19.53 2.0E+09
isomer 3
Dipropylated lucibufagin Unknown CaoH41010 561.2700 561.2738 +6.7 19.82 2.2E+08
isomer 4

2357

2358

2359

2360

2361

2362

2363 Table S4.6.5.5: Putative lucibufagin [M+H]" exact masses adjusted for instrument run
2364  specific systematic m/z error (Fig. 6B).

2365 Used for multi-ion-chromatogram (MIC) traces in Fig 6B. *= Chemical formula assigned for structurally
2366  unclear putative lucibufagins

Chemical Predicted Exact mass Exact mass Exact mass Exact mass Exact mass
formula exact adjusted to adjusted to adjusted to adjusted to adjusted to
mass P. pyralis P. pyralis partial A. lateralis A. lateralis larval  I. luminosus
hemolymph larval body data hemolymph data  body data thorax data
data (+0.6 ppm)  (+9.9 ppm) (+1.6 ppm) (+1.1 ppm) (+0.6 ppm)
C24H3308 449.2175 449.2178 449.2219 449.2182 449.2180 449.2178
Ca24H3sNOg* 436.2699 436.2702 436.2742 436.2706 436.2704 436.2702
C24H4oNO7* 454.2804 454.2807 454.2849 454.2811 454.2809 454.2807
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2367

2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385

Ca6H3107 455.2069 455.2072 455.2114 455.2076 455.2074 455.2072

C26H3509 491.2281 491.2284 491.2330 491.2289 491.2286 491.2284
Co7H4sN208* 525.3175 525.3178 525.3227 525.3183 525.3181 525.3178
CasH37010 533.2386 533.2389 533.2439 533.2395 533.2392 533.2389
CasH3g010* 535.2543 535.2546 535.2596 535.2552 535.2549 535.2546
Ca2gH3g010 547.2543 547.2546 547.2597 547.2552 547.2549 547.2546
C29H4sNOg* 536.3223 536.3226 536.3276 536.3232 536.3229 536.3226
C30H41010 561.2699 561.2702 561.2755 561.2708 561.2705 561.2702

4.6.7 MS? similarity search for A. lateralis lucibufagins

Although our earlier LC-HRAM-MS analysis (Fig 6B; Supplementary Text 4.6) indicated
A. lateralis adult male hemolymph does not contain detectable quantities of the P. pyralis
lucibufagins, this does not exclude that structurally unknown lucibufagins with chemical formula
not present in P. pyralis, are present in A. lateralis. To address this, we performed a MS?
similarity search against the A. lateralis adult male hemolymph MS2 spectra, with the MS?
spectra of lucibufagin C (m/z 533.2385, RT=15.1) as bait, using the MZmine2 similarity search
module with parameters (m/z tolerance= 0.001 or 10 ppm, Minimum # of matched ions=10).
After filtering to those precursors that were mostly likely to be the [M+H]" of a lucibufagin-like
molecule (m/z 350-800, RT=8-20 mins), 9 MS? spectra were matched (Table S4.6.7.1). None of
these features were detected in P. pyralis (Table S4.6.7.1). Chemical formula prediction was
difficult due to the high m/z of the ions, but in those cases where it was successful, the additions
of nitrogens and/or phosphorus to the chemical formula was confident. Notably, the most
confident chemical formula predictions reported <23 carbons, and as the core lucibufagin of P.
pyralis contains 24 carbons, it is unlikely that these ions are lucibufagins. The notable degree of
MS? similarity may be due to the A. lateralis compounds also being steroid derived compounds.
That being said, the identity and role of the compound giving rise to ion 460.2462 is intriguing,
as it is highly abundant in the A. lateralis adult hemolymph, is absent from the P. pyralis adult
hemolymph, and is possibly a steroidal compound.
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2386 Table S4.6.7.1: Relative quantification of features identified by lucibufagin MS2
2387  similarity search

Assigned m/z Chemical RT Similarity # of ions A. lateralis feature P. pyralis feature
identity formula (mins)  score matched area (arb) area (arb)
Unknown 460.2462  CyH3sNO/P*; 15.27 410E+11 34 7.04E+08 0.00E+00
CZSH29N702*

657.2229  N.D. 12.01 9.50E+11 29 6.13E+07
414.2043 N.D. 18.07 1.20E+11 25 5.61E+06
381.2176  Cy3HsN,O5* 15.77 3.80E+11 18 1.22E+08
476.1839  N.D. 1593 3.80E+11 16 9.87E+06
456.2148 N.D. 19 2.30E+11 14 5.03E+06
351.228 N.D. 1942 260E+11 13 1.56E+07
479.1948 N.D. 19.83 2.20E+11 12 1.11E+07

2388  * Determined with Sirius (MS? analysis), and MZmine2 (isotope pattern analysis).
2389  N.D., Not determined
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SUPPLEMENTARY TEXT 5: Holobiont analyses

5.1 Assembly and annotation of the complete Entomoplasma luminosum subsp.
pyralis genome

The complete genome of the molicute (Phylum: Tenericutes) Entomoplasma luminosum
subsp. pyralis was constructed by a long-read metagenomic sequencing and assembly
approach from the P. pyralis PacBio data. First, BUSCO v.3 with the bacterial BUSCO set was
used to identify those contigs from the PacBio only Canu assembly (Ppyr0.1-PB) which
contained conserved bacterial genes. A single 1.04 Mbp contig with 73 bacterial BUSCO genes
was the only contig identified with more than 1 BUSCO hit. Inspection of the Canu produced
assembly graph with Bandage v0.8.1[182], revealed that the contig had a circular assembly
path. BLASTN alignment of the contig to the NCBI nt database indicated that this contig had a
high degree of similarity to annotated Mycoplasmal genomes. Together this data suggested that
this contig represented a complete Mycoplasmal genome. Polishing of the contig was performed
by mapping and PacBio consensus-calling using SMRTPortal v2.3.0.140893 with the
“‘RS_Resequencing.1” protocol with default parameters. The median coverage was ~50x. The
resulting consensus sequence was restarted with seqgkit[61] to place the FASTA record junction
180° across the circular chromosome, and reentered into the polishing process to enable
efficient mapping across the circular junction. This mapping, consensus calling, and rotation
process was repeated 3 times total, after which no additional nucleotide changes occurred. The
genome was “restarted” with seqkit such that the FASTA start position began between the
ribosomal RNAs, and annotation was conducted through NCBI using their prokaryotic gene
annotation pipeline (PGAP). Analysis with BUSCO v.3 of the peptides produced from the
aforementioned genome annotation indicated that 89.8% of expected Tenericutes single-copy
conserved orthologs were captured in the annotation (C:89.8%[S:89.8%,D:0.0%], F:2.4%,
M:7.8%, n:166). Comparison of the predicted 16S RNA gene sequence to the NCBI 16S RNA
gene database indicated that this gene had 99% identity to the E. luminosum 16S sequence
(ATCC 49195 - formerly Mycoplasma luminosum; NCBI Assembly ID ASM52685v1)[264,265],
leading to our description of this genome as the genome of Enfomoplasma luminosum
subspecies (subsp.) pyralis. Protein overlap comparisons using the OrthoFinder pipeline
(v1.1.10)[188] between our predicted protein geneset for E. luminosum var. pyralis and the
protein geneset of Entomoplasma luminosum (ATCC 49195 - formerly M. luminosum; NCBI
Assembly ID ASM52685v1), indicated that 94% (670/709) of the previously annotated E.
luminosum proteins are present in our genome of E. luminosum subsp. pyralis.

5.2 Assembly and annotation of Phorid mitochondrial genome

The complete mitochondrial genome of the dipteran parasatoid Apocephalus
antennatus, first detected via BLASTN of mtDNAs as a concatemerized sequence in the Canu
PacBio only assembly (Ppyr0.1-PB) was constructed in full by a long-read metagenomic
sequencing and assembly approach. First, PacBio reads were mapped to the NCBI set of
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mitochondrial genomes concatenated with the P. pyralis mitochondrial genome assembly
reported in this manuscript (NCBI accession KY778696.1), using GraphMap v0.5.2 with
parameters “align -C -t 4 -P”. Of the mitochondrially mapped reads (45949 reads), 98% (45267
reads) were partitioned to the P. pyralis mtDNA. The next most abundant category at 1.1% (531
reads), was partitioned to the mtDNA of the Phorid fly Megaselia scalaris (NCBI accession:
KF974742.1). The next most abundant category at 0.11% (53 reads) was partitioned to the
mitochondrion of the Red algae Galdieria sulphuraria (NCBI accession: NC_024666.1). The
reads were then split into 3 partitions: P. pyralis mapping, M. scalaris mapping, and other, and
input into Canu (v1.6+44) [57] for assembly. Each partitioned assembly by Canu produced a
single circular contig, notably the “other” and Megaselia partitions produced highly similar
sequences, whereas the P. pyralis partition produced a circular sequence that was highly similar
to P. pyralis DNA. We inspected the M. scalaris partition further as it was produced with more
reads. Notably, although an inspection of the contig was circular, and showed a high degree of
similarity upon blastn to the M. scalaris mtDNA, the contig was ~2x larger than expected
(29,821 bp). An analysis of contig’s self-complementarity with Gepard (v1.40)[178], indicated
that this contig had 2x tandem repetitive regions, and was duplicated overall twice. Similarly,
the .GFA output of Canu noted an overlap of 29,821, indicating that the assembler was unable
to determine an appropriate overlap, other than the entire contig. Manual trimming of the contig
to the correct size, 180° restarting with seqkit, and polishing using SMRTPortal v2.3.0.140893
with the “RS_Resequencing.1” protocol with default parameters, followed by 180° seqkit
“restarting”, followed by another round of polishing, produced the final mtDNA (18,674 bp; Fig.
S5.2.1). This mtDNA was taxonomically identified in a separate analysis to originate from A.
antennatus (Supplementary Text 5.3). Coding regions, tRNAs, and rRNAs were predicted via
the MITOSv2 mitochondrial genome annotation web server[62]. Small mis-annotations (e.g. low
scoring additional predictions of already annotated mitochondrial genes) were manually
inspected and removed. Tandem repetitive regions were manually annotated. The complete A.
antennatus genome annotation plus assembly is available on NCBI Genbank (Accession:
MG546669).
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Figure S5.2.1: Mitochondrial genorr*ne of Apocephalus antennatus.

The mitochondrial genome of A. antennatus was assembled and annotated as described in the

Supplementary Text 5.2, and taxonomically identified as described in Supplementary Text 5.3.
Figure produced with Circos[63].

5.3 Taxonomic identification of Phorid mitochondrial genome origin

After the successful metagenomic assembly of the mitochondrial genome of an unknown
Phorid fly species from the P. pyralis PacBio library (Supplementary Text 5.2), we sought to
characterize the species of origin for this mitochondrial genome. We planned to achieve this by
collecting the Phorid flies which emerged from adult P. pyralis, taxonomically identifying them,
and performing targeted mitochondrial PCR and sequencing experiments to correlate their
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mitochondrial genome sequence to our mtDNA assembly. We successfully obtained phorid fly
larvae emerging from P. pyralis adult males collected from MMNJ (identical field site to PacBio
collection), and Rochester, NY (RCNY), in the summer of 2017. The MMNJ phorid larvae did
not successfully pupate, however we obtained 5 adult specimens from successful pupations of
the RCNY larvae. Two adults from this batch were identified as A. antennatus (Malloch), by
Brian V. Brown, Entomology Curator of the Natural History Museum of Los Angeles County.
DNA was extracted from one of the remaining 3 specimens and a COI fragment was PCR-
amplified and Sanger sequenced. The forward primer was 5-TTTGATTCTTCGGCCACCCA-3,
the reverse primer 5-AGCATCGGGGTAGTCTGAGT-3'. This COI fragment from had 99%
identity (558/563 nt) to the COIl gene of our mitochondrial assembly. This sequenced COI
fragment has been submitted to GenBank (GenBank Accession: MG517481). We conclude that
this is sufficient evidence to denote that our assembled Phorid mitochondrial genome is the
mitochondrial genome of A. antennatus. Notably, A. antennatus was previously reported by
Lloyd [266] to be a parasite of several firefly species in genera Photuris, Photinus, and
Pyractomena, from collection sites ranging from Florida to New York. To our knowledge, this is
the first report of a mitochondrial genome which was first assembled via an untargeted
metagenomic approach and then later correlated to its species of origin.

5.4 Photinus pyralis orthomyxo-like viruses

We identified the first two viruses associated to P. pyralis and the Lampyridae family.
The proposed Photinus pyralis orthomyxo-like virus 1 & 2 (PpyrOMLV1 & 2) present a
multipartite genome conformed by five RNA segments encoding a putative nucleoprotein (NP),
hemagglutinin-like glycoprotein (HA) and a heterotrimeric viral RNA polymerase (PB1, PB2 and
PA). The viral genomes for Photinus pyralis orthomyxo-like virus 1 & 2 are available on NCBI
Genbank with accessions MG972985-MG972994. Expression analyses on 24 RNA libraries of
diverse individuals/developmental stages/tissues and geographic origins of P. pyralis indicate a
dynamic presence, widespread prevalence, a pervasive tissue tropism, a low isolate variability,
and a persistent life cycle through transovarial transmission of PpyrOMLV1 & 2. Genomic and
phylogenetic studies suggest that the detected viruses correspond to a new lineage within the
Orthomyxoviridae family (ssRNA(-)) (Figure S5.4.1.A-1). The concomitant occurrence in the P.
pyralis genome of species-specific signatures of Endogenous viral-like elements (EVEs)
associated to retrotransposons linked to the identified Orthomyxoviruses, suggest a past
evolutionary history of host-virus interaction (Supplementary Text 5.5, Fig. S5.4.1.J). This
tentative interface is correlated to low viral RNA levels, persistence and no apparent phenotypes
associated with infection. We suggest that the identified viruses are potential endophytes of high
prevalence as a result of potential evolutionary modulation of viral levels associated to EVEs.
Photinus pyralis orthomyxo-like virus 1 and 2 (PpyrOMLV1 & PpyrOMLV2) share their genomic
architecture and evolutionary clustering (Fig. S5.4.1.A-H, Fig. S5.4.2). They are multipartite
linear ssRNA negative strand viruses, conformed by five genome segments generating a ca.
10.8 Kbp total RNA genome. Genome segments one through three (ca. 2.3-2.5 Kbp long)

Fallon, Lower et al. 2018 - Supplementary Materials107


https://paperpile.com/c/fHp9OK/wCjc

2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551

encode a heterotrimeric viral polymerase constituted by subunit Polymerase Basic protein 1 -
PB1 (PpyrOMLV1: 801 aa, 91 kDA; PpyrOMLV2: 802 aa, 91.2 kDA), Polymerase Basic protein
2 - PB2 (PpyrOMLV1: 804 aa, 92.6 kDA; PpyrOMLV2: 801 aa, 92.4 kDA) and Polymerase Acid
protein - PA (PpyrOMLV1: 754 aa, 86.6 kDA; PpyrOMLV2: 762 aa, 87.9 kDA). PpyrOMLV1 &
PpyrOMLV2 PB1 present a Flu_PB1 functional domain (Pfam: pfam00602; PpyrOMLV1:
interval= 49-741, e-value= 2.93e-69; PpyrOMLV2: interval= 49-763, e-value= 1.42e-62) which is
the RNA-directed RNA polymerase catalytic subunit, responsible for replication and transcription
of virus RNA segments, with two nucleotide-binding GTP domains. PpyrOMLV1 & PpyrOMLV2
PB2 present a typical Flu_PB2 functional domain (Pfam: pfam00604; PpyrOMLV1: interval= 26-
421, e-value= 5.10e-13; PpyrOMLV2: interval= 1-692, e-value= 1.57e-11) which is involved in 5'
end cap RNA structure recognition and binding to further initiate virus transcription (Supp Table
2). PpyrOMLV1 & PpyrOMLV2 PA subunits share a characteristic Flu_PA domain (Pfam:
pfam00603; PpyrOMLV1: interval= 122-727, e-value= 3.73e-07; PpyrOMLV2: interval= 117-
732, e-value= 5.63e-10) involved in viral endonuclease activity, necessary for the cap-snatching
process[267]. Genome segment four (1.6 Kbp size) encodes a Hemaglutinin protein — HA
(PpyrOMLV1: 526 aa, 59.7 kDA; PpyrOMLV2: 525 aa, 58.6 kDA) presenting a Baculo_gp64
domain (Pfam: pfam03273; PpyrOMLV1: interval= 108-462, e-value= 2.16e-15; PpyrOMLV2:
interval= 42-460, e-value= 1.66e-23), associated with the gp64 glycoprotein from baculovirus as
well as other viruses, such as Thogotovirus (Orthomyxoviridae - OMV) which was postulated to
be related to the arthropod-borne nature of these specific Orthomyxoviruses. In addition, HA as
expected, presents an N-terminal signal domain, a C terminal transmembrane domain, and a
putative glycosylation site. Lastly, genome segment five (ca. 1.8 Kbp size) encodes a putative
nucleocapsid protein — NP (PpyrOMLV1: 562 aa, 62.3 kDA; PpyrOMLV2: 528 aa, 58.5 kDA)
with a Flu_NP structural domain (Pfam: pfam00506; PpyrOMLV1: interval= 145-322, e-value=
1.32e-01; PpyrOMLVZ2: interval= 94-459, e-value= 1.47e-04) this single-strand RNA-binding
protein is associated to encapsidation of the virus genome for the purposes of RNA
transcription, replication and packaging (Fig. S5.4.1.E). Despite sharing genome architecture
and structural and functional domains of their predicted proteins, PpyrOMLV1 & PpyrOMLV2
pairwise identity of ortholog gene products range between 21.4 % (HA) to 49.8 % (PB1),
suggesting although a common evolutionary history, a strong divergence indicating separated
species, borderline to be considered even members of different virus genera (Fig. S5.4.2). The
conserved 3’ sequence termini of the viral genomic RNAs are (vgRNA ssRNA(-) 3’-end) 5'-
GUUCUUACU-3' for PpyrOMLV1, and and 5-(G/A)U(U/G)(G/U/C)(A/C/U)UACU-3'. for
PpyrOMLV2. The 5 termini of the vgRNAs are partially complementary to the 3’ termini,
supporting a panhandle structure and a hook like structure of the 5’ end by a terminal short stem
loop. PpyrOMLV1 & PpyrOMLV2 genome segments present an overall high identity in their
respective RNA segments ends (Figure S5.4.1 F). These primary and secondary sequence
cues are associated to polymerase binding and promotion of both replication and transcription.
In influenza viruses, and probably every OMV, the first 10 nucleotides of the 3' end form a stem-
loop or ‘hook’ with four base-pairs (two canonical base-pairs flanked by an A-A base-pair). This
compact RNA structure conforms the promoter, which activates polymerase initiation of RNA
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synthesis[268]. The presence of eventual orthologs of OMV additional genome segments and
proteins, such as Neuraminidase (NA), Matrix (M) and Non-structural proteins (NS1, NS2) was
assessed retrieving no results by TBLASTN relaxed searches, nor with in silico approaches
involving co-expression, expression levels, or conserved terminis. Given that the presence of
those additional segments varies among diverse OMV genera, and that 35 related tentative new
virus species identified in TSA did not present any additional segments, we believe that these
lineages of viruses are conformed by five genome segments. Further experiments based on
specific virus particle purification and target sequencing could corroborate our results. Based
on sequence homology to best BLASTP hits, amino acid sequence alignments, predicted
proteins and domains, and phylogenetic comparisons to reported species we assigned
PpyrOMLV1 & PpyrOMLV2 to the OMV virus family. These are the first viruses that have been
associated with the Lampyridae beetle family, which includes over 2,000 species. The OMV
virus members share diverse structural, functional and biological characters that define and
restrict the family. OMV virions are 80-120 nm in diameter, of spherical or pleomorphic
morphology. The virion envelope is derived from the host cell membrane, incorporating virus
glycoproteins and eventually non-glycosylated proteins (one or two in number). Typical virion
surface glycoprotein projections are 10—-14 nm in length and 4-6 nm in diameter. The virus
genome is multisegmented, has a helical-like symmetry, consisting of different size
ribonucleoproteins (RNP), 50-150 nm in length. Influenza RNPs can perform either replication
or transcription of the same template. Virions of each genus contain different numbers of linear
ssRNA (-) genome segments[269]. Influenza A virus (FLUAV), influenza B virus (FLUBV) and
infectious salmon anemia virus (ISAV) are conformed of eight segments. Influenza C virus
(FLUCV), Influenza D virus (FLUDV) and Dhori virus (DHOV) have seven segments. Thogoto
virus (THOV) and Quaranfil virus (QUAV) have six segments. Johnston Atoll virus (JAV)
genome is still incomplete, and only two segments have been described. Segment lengths
range from 736 to 2396 nt. Genome size ranges from 10.0 to 14.6 Kbp[269]. As described
previously, every OMV RNA segment possess conserved and partially complementary 5'- and
3'-end sequences with promoter activity[270]. OMV structural proteins are tentatively common to
all genera involving the three polypeptides subunits that form the viral RdARP (PA, PB1,
PB2)[271]; a nucleoprotein (NP), which binds with each genome ssRNA segment to form RNPs;
and the hemagglutinin protein (HA, HE or GP), which is a type | membrane integral glycoprotein
involved in virus attachment, envelope fusion and neutralization. In addition, a non-glycosylated
matrix protein (M) is present in most species. There are some species-specific divergence in
some structural OMVs proteins. For instance, HA of FLUAV is acylated at the membrane-
spanning region and has widespread N-linked glycans[272]. The HA protein of FLUCV, besides
its hemagglutinating and envelope fusion function, has an esterase activity that induces host
receptor enzymatic destruction[269]. In contrast, the HA of THOV is divergent to influenzavirus
HA proteins, and presents high sequence similarity to a baculovirus surface glycoprotein[273].
The HA protein has been described to have an important role in determining OMV host
specificity. For instance, human infecting Influenza viruses selectively bind to glycolipids that
contain terminal sialyl-galactosyl residues with a 2-6 linkage, in contrast, avian influenza viruses

Fallon, Lower et al. 2018 - Supplementary Materials109


https://paperpile.com/c/fHp9OK/XUBk
https://paperpile.com/c/fHp9OK/rOiR
https://paperpile.com/c/fHp9OK/rOiR
https://paperpile.com/c/fHp9OK/FKzv
https://paperpile.com/c/fHp9OK/nlv6
https://paperpile.com/c/fHp9OK/LUh5
https://paperpile.com/c/fHp9OK/rOiR
https://paperpile.com/c/fHp9OK/SEIS

2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633

bind to sialyl-galactosyl residues with a 2-3 linkage[269]. Furthermore, FLUAV and FLUBV
share a neuraminidase protein (NA), which is an integral, type Il envelope glycoprotein
containing sialidase activity. Some OMVs possess additional small integral membrane proteins
(M2, NB, BM2, or CM2) that may be glycosylated and have diverse functions. As an illustration,
M2 and BM2 function during un-coating and fusion by equilibrating the intralumenal pH of the
trans-Golgi apparatus and the cytoplasm. In addition, some viruses encode two nonstructural
proteins (NS1, NS2)[269]. OMV share replication properties, which have been studied mostly in
Influenza viruses. It is important to note that gene reassortment has been described to occur
during mixed OMV infections, involving viruses of the same genus, but not between viruses of
different genera[274]. This is used also as a criteria for OMV genus demarcation. Influenza virus
replication and transcription occurs in the cell nucleus and comprises the production of the three
types of RNA species (i) genomic RNA (VRNA) which are found in virions; (ii) cRNA molecules
which are complementary RNA in sequence and identical in length to vVRNA; and also (iii) virus
mMRNA molecules which are 5’ capped by cap snhatching of host RNAs and 3’ polyadenylated by
polymerase stuttering on U rich stretches. These remarkable dynamic multifunction characters
of OMV polymerases are associated with its complex tertiary structure, of this modular
heterotrimeric replicase[275]. We explored in detail the putative polymerase subunits of the
identified firefly viruses. The PB1 subunit catalyzes RNA synthesis in its internal active site
opening, which is formed by the highly conserved polymerase motifs I-lll. Motifs | and Il (Fig.
S5.4.1.H) present three conserved aspartates (PpyrOMLV1: Asp 346, Asp 491 and Asp 492;
PpyrOMLV2: Asp 348, Asp 495 and Asp 496) which coordinate and promote nucleophilic attack
of the terminal 3' OH from the growing transcript on the alpha-phosphate of the inbound
NTP[271]. Besides presenting, with high confidence, the putative functional domains associated
with their potential replicase/transcriptase function, we assessed whether the potential spatial
and functional architecture was conserved at least in part in FOML viruses. In this direction we
employed the SWISS-MODEL automated protein structure homology-modelling server to
generate a 3D structure of PpyrOMLV1 heterotrimeric polymerase. The SWISS server selected
as best-fit template the trimeric structure of Influenza A virus polymerase, generating a structure
for each polymerase subunit of PpyrOMLV1. The generated structure shared structural cues
related to its multiple role of RNA nucleotide binding, endonuclease, cap binding, and
nucleotidyl transferase (Fig. S5.4.1.G-H). The engendered subunit structures suggest a
probable conservation of PpyrOMLV1 POL, that could allow the predicted functional enzymatic
activity of this multiple gene product. The overall polymerase rendered structure presents a
typical U shape with two upper protrusions corresponding to the PA endonuclease and the PB2
cap-binding domain. The PB1 subunit appears to plug into the interior of the U and has the
distinctive fold of related viral RNA polymerases with fingers, palm and thumb adjacent to a
tentative central active site opening where RNA synthesis may occur[268,276]. OMV Pol activity
is central in the virus cycle of OMVs, which have been extensively studied. The life cycle of
OMVs starts with virus entry involving the HA by receptor-mediated endocytosis. For Influenza,
sialic acid bound to glycoproteins or glycolipids function as receptor determinants of
endocytosis. Fusion between viral and cell membranes occurs in endosomes. The infectivity
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and fusion of influenza is associated to the post-translational cleavage of the virion HA.
Cleavability depends on the number of basic amino acids at the target cleavage site[269]. In
thogotoviruses, no requirement for HA glycoprotein cleavage have been demonstrated[273].
Integral membrane proteins migrate through the Golgi apparatus to localized regions of the
plasma membrane. New virions form by budding, incorporating matrix proteins and viral RNPs.
Viral RNPs are transported to the cell nucleus where the virion polymerase complex synthesizes
MRNA species[277]. Another tentative function of the NP could be associated to the potential
interference of the host immune response in the nucleus mediated by capsid proteins of some
RNA virus, which could inhibit host transcription and thus liberate and direct it to viral RNA
synthesis[278]. mMRNA synthesis is primed by capped RNA fragments 10-13 nt in length that
are generated by cap snatching from host nuclear RNAs which are sequestered after cap
recognition by PB2 and incorporated to VRNA by PB1 and PA proteins which present viral
endonuclease activity[279]. In contrast, thogotoviruses have capped viral mRNA without host-
derived sequences at the 5' end. Virus mRNAs are polyadenylated at the 3’ termini through
iterative copying by the viral polymerase stuttering on a poly U track in the vRNA template.
Some OMV mRNAs are spliced generating alternative gene products with defined functions.
Protein synthesis of influenza viruses occurs in the cytoplasm. Partially complementary vRNA
molecules act as templates for new viral RNA synthesis and are neither capped nor
polyadenylated. These RNAs exist as RNPs in infected cells. Given the diverse hosts of OMV,
biological properties of virus infection diverge between species. Influenzaviruses A infect
humans and cause respiratory disease, and they have been found to infect a variety of bird
species and some mammalian species. Interspecies transmission, though rare, is well
documented. Influenza B virus infect humans and cause epidemics, and have been rarely found
in seals. Influenzaviruses C cause limited outbreaks in humans and have been occasionally
found on dogs. Influenza spreads globaly in a yearly outbreak, resulting in about three to five
million cases of severe illness and about 250,000 to 500,000 human deaths[280]. Influenzavirus
D has been recently reported and accepted and infects cows and swine[281]. Natural
transmission of influenzaviruses is by aerosol (human and non-aquatic hosts) or is water-borne
(avians). In contrast, Thogoto and Dhori viruses which also infect humans, are transmitted by,
and able to replicate in ticks. Thogoto virus was identified in Rhipicephalus sp. ticks collected
from cattle in the Thogoto forest in Kenya, and Dhori virus was first isolated in India from
Hyalomma dromedarri, a species of camel ticks[282,283]. Dhori virus infection in humans
causes a febrile illness and encephalitis. Serological evidence suggests that cattle, camel,
goats, and ducks might be also susceptible to this virus. Experimental hamster infection with
THOV may be lethal. Unlike influenzaviruses, these viruses do not cause respiratory disease.
The transmission of fish infecting isaviruses (ISAV) is via water, and virus infection induces the
agglutination of erythrocytes of many fish species, but not avian or mammalian
erythrocytes[284]. Quaranfil and Johnston Atoll are transmitted by ticks and infect avian
species[285].

We have limited biological data of the firefly detected viruses. Nevertheless, a significant
consistency in the genomic landscape and predicted gene products of the detected viruses in
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comparison with accepted OMV species sufficed to suggest for PpyrOMLV1 and PpyrOMLV2 a
tentative taxonomic assignment within the OMV family. Besides relying on the OMV structural
and functional signatures determined by virus genome annotation, we explored the evolutionary
clustering of the detected viruses by phylogenetic insights. We generated MAFFT alignments
and phylogenetic trees of the predicted viral polymerase of firefly viruses and the corresponding
replicases of all 493 proposed and accepted species of ssRNA(-) virus. The generated trees
consistently clustered the diverse sequences to their corresponding taxonomical niche, at the
level of genera. Interestingly, PpyrOMLV1 and PpyrOMLV2 replicases were placed
unequivocally within the OMV family (Fig. S5.4.1.B). When the genetic distances of firefly
viruses proteins and ICTV accepted OMV species were computed, a strong similarity was
evident (Fig. S5.4.1.B-D). Overall similarity levels of PpyrOMLV polymerase subunits ranged
between 11.03 % to as high as 37.30 % among recognized species, while for the more
divergent accepted OMV (ISAV - Isavirus genus) these levels ranged only from 8.54 % to
20.74 %, illustrating that PpyrOMLV are within the OMV by genetic standards. Phylogenetic
trees based on aa alignments of structural gene products of recognized species and PpyrOMLV
supported this assignment, placing ISAV and issavirus as the most distant species and genus
within the family, and clustering PpyrOMLV1 and PpyrOMLV2 in a distinctive lineage within
OMV, more closely related to the Quaranjavirus and Thogotovirus genera than the Influenza A-
D or Isavirus genera (Fig. S5.4.2). Furthermore, it appears that virus genomic sequence data,
while it has been paramount to separate species, in the case of genera, there are some
contrasting data that should be taken into consideration. For instance, DHOV and THOV are
both members of the Thogotovirus genus, sharing a 61.9 % and a 34.9 % identity at PB1 and
PB2, respectively. However, FLUCV and FLUDV are assigned members of two different genus,
Influenzavirus C and Influenzavirus D, while sharing a higher 72.2 % and a 52.2 % pairwise
identity at PB1 and PB2, respectively (Fig. S5.4.2). In addition, FLUAV and FLUBYV, assigned
members of two different genus, Influenzavirus A and Influenzavirus D present a comparable
identity to that of DHOV and THOV thogotoviruses, sharing a 61 % and a 37.9 % identity at PB1
and PB2, respectively. It is worth noting that similarity thresholds and phylogenetic clustering
based in genomic data have been used differently to demarcate OMV genera, hence there is a
need to eventually re-evaluate a series of consensus values, which in addition to biological data,
would be useful to redefine the OMV family. Perhaps, these criteria discrepancies are more
related to a historical evolution of the OMV taxonomy than to pure biological or genetic
standards. In contrast to FLUDV, JOV and QUAYV, the other virus members of OMV have been
described, proposed and assigned at least 34 years ago.

The potential prevalence, tissue/organ tropism, geographic dispersion and lifestyle of
PpyrOMLV1 & 2 were assessed by the generation and analyses of 29 specific RNA-Seq
libraries of P. pyralis (refer to Specimens/libraries Table). As RNA was isolated from
independent P. pyralis individuals of diverse origin, wild caught or lab reared, the fact that we
found at least one of the PpyrOMLV present in 82 % of the libraries reflects a widespread
presence and potentially a high prevalence of these viruses in P. pyralis (Fig. S5.4.1J, Table
S5.4.5,S5.4.6). Wild caught individuals were collected in period spanning six years, and
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locations separated as much as 900 miles (New Jersey — Georgia, USA). Interestingly
PpyrOMLV1 & 2 were found in individuals of both location, and the corresponding assembled
isolate virus sequences presented negligible differences, with an inter-individual variability
equivalent to that of isolates (0.012%). A similar result was observed for virus sequences
identified in RNA libraries generated from samples collected in different years. We were not able
to identified fixed mutations associated to geographical or chronological cues. Further
experiments should explore the mutational landscape of PpyrOMLV1 & 2, which appears to be
significantly lower than of Influenzaviruses, specifically Influenza A virus, which are
characterized by high mutational rate (ca. 1 mutation per genome replication) associated to the
absence of RNA proofreading enzymes [286]. In addition we evaluated the presence of
PpyrOMLV1 & 2 on diverse tissues and organs of P. pyralis. Overall virus RNA levels were
generally low, with an average of 9.47 FPKM on positive samples. However, PpyrOMLV1 levels
appear to be consistently higher than PpyrOMLV2, with an average of 20.50 FPKM for
PpyrOMLV1 versus 4.22 FPKM for PpyrOMLV2 on positive samples. When the expression
levels are scrutinized by genome segment, HA and NP encoding segments appear to be, for
both viruses, at higher levels, which would be in agreement with other OMV such as
Influenzaviruses, in which HA and NP proteins are the most expressed proteins, and thus viral
MRNAs are consistently more expressed [269]. Nevertheless, these preliminary findings related
to expression levels should be taken cautiously, given the small sample size. Perhaps the more
remarkable allusion derived from the analyses of virus presence is related to tissue and organ
deduced virus tropism. Strikingly, we found virus transcripts in samples exclusively obtained
from light organs, complete heads, male or female thorax, female spermatheca, female
spermatophore digesting glands and bursa, abdominal fat bodies, male reproductive spiral
gland, and other male reproductive accessory glands (Table S5.4.5, S5.4.6), indicating a
widespread tissue/organ tropism of PpyrOMLV1 & 2. This tentatively pervasive tropism of
PpyrOMLV1 & 2 emerges as a differentiation character of these viruses and accepted OMV. For
instance, influenza viruses present a epithelial cell-specific tropism, restricted typically to the
nose, throat, and lungs of mammals, and intestines of birds. Tropism has consequences on host
restriction. Human influenza viruses mainly infect ciliated cells, because attachment of all
influenza A virus strains to cells requires sialic acids. Differential expression of sialic acid
residues in diverse tissues may prevent cross-species or zoonotic transmission events of avian
influenza strains to man[287]. Tropism has also influence in disease associated effects of OMV.
Some influenza A virus strains are more present in tracheal and bronchial tissue which is
associated with the primary lesion of tracheobronchitis observed in typical epidemic influenza.
Other influenza A virus strains are more prevalent in type Il pneumocytes and alveolar
macrophages in the lower respiratory tract, which is correlated to diffuse alveolar damage with
avian influenza[288]. The presence of PpyrOMLV1 & 2 virus RNA in reproductive glands raises
some potential of the involvement of sex in terms of prospective horizontal transmission. Given
that most libraries corresponded to 3-6 pooled individuals samples of specific organs/tissue,
direct comparisons of virus RNA levels were not always possible. However, this valuable data
gives important insights into the widespread potential presence of the viruses in every analyzed
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organ/tissue. Importantly, RNA levels of the putative virus segments shared co-expression
levels and a systematic pattern of presence/absence, supporting the suggested multipartite
nature of the viruses. We observed the presence of virus RNA of both PpyrOMLV1 & 2 in eight
of the RNA-Seq libraries, thus mixed infections appear to be common. Interestingly, we did not
observe in any of the 24 virus positive samples evidence of reassortment. Reassortment is a
common event in OMV, a process by which influenza viruses swap gene segments. Genetic
exchange is possible due to the segmented nature of the OMV viral genome and may occur
during mixed infections. Reassortment generates viral diversity and has been associated to host
gain of Influenzavirus[289]. Reassorted Influenzavirus have been reported to occasionally cross
the species barrier, into birds and some mammalian species like swine and eventually humans.
These infections are usually dead ends, but sporadically, a stable lineage becomes established
and may spread in an animal population[274]. Besides its evolutionary role, reassortment has
been used as a criterion for species/genus demarcation, thus the lack of observed gene swap in
our data supports the phylogenetic and sequence similarity insights that indicates species
separation of PpyrOMLV1 & 2.

In light of the presence of virus RNA in reproductive glands, we further explored the
potential life style of PpyrOMLV1 & 2 related to eventual vertical transmission. Vertical
transmission is extremely exceptional for OMV, and has only been conclusively described for
the Infectious salmon anemia virus (Isavirus) [290]. In this direction, we were able to generate a
strand-specific RNA-Seq library of one P. pyralis adult female PpyrOMLV1 virus positive
(parent), another library from seven eggs of this female at ~13 days post fertilization, and lastly
an RNA-Seq library of four 1st instar larvae (offspring). When we analyzed the resulting RNA
reads, we found as expected virus RNA transcripts of every genome segment of PpyrOMLV1 in
the adult female library. Remarkably, we also found PpyrOMLV1 sequence reads of every
genome segment of PpyrOMLV1 in both the eggs and larvae samples. Moreover, virus RNA
levels fluctuated among the different developmental stages of the samples. The average RNA
levels of the adult female were 41.10 FPKM, in contrast, the fertilized eggs sample had higher
levels of virus related RNA, averaging at 61.61 FPKM and peaking at the genome segment
encoding NP (104.49 FPKM). Interestingly, virus RNA levels appear to drop in 1% instar larvae,
in the sequenced library average virus RNA levels were of 10.42 FPKM. Future experiments
should focus on PpyrOMLV1 & 2 virus titers at extended developmental stages to complement
these preliminary results. However, it is interesting to note that the tissue specific library
corresponding to female spermatheca, where male sperm are stored prior to fertilization,
presented relatively high levels of both PpyrOMLV1 & 2 virus RNAs, suggesting that perhaps
during early reproductive process and during egg development virus RNAs tend to raise. This
tentatively differential and variable virus RNA titers observed during development could be
associated to an unknown mechanism of modulation of latent antiviral response that could be
repressed in specific life cycle stages. Further studies may validate these results and unravel a
mechanistic explanation of this phenomenon. Nevertheless, besides the preliminary
developmental data, the consistent presence of PpyrOMLV1 in lab-reared, isolated offspring of
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an infected P. pyralis female is robust evidence demonstrating mother-to-offspring vertical
transmission for this newly identified OMV.

One of many questions that remains elusive here is whether PpyrOMLV1 & 2 are
associated with any potential alteration of phenotype of the infected host. We failed to unveil
any specific effect of the presence of PpyrOMLV1 & 2 on fireflies. It is worth noting that subtle
alterations or symptoms would be difficult to pinpoint in these insects. Future studies should
enquire whether PpyrOMLV1 & 2 may have any influence in biological attributes of fireflies such
as fecundity, life span or life cycle. Nevertheless, we observed in our data some hints that could
be indicative of a chronic state status, cryptic or latent infection of firefly individuals: (i) virus
positive individuals presented in general relatively low virus RNA levels. (ii) virus RNA was
found in every assessed tissue/organ. (iii) vertical transmission of the identified viruses. The first
hint is hardly conclusive, it is difficult to define what a relatively low RNA level is, and high virus
RNA loads are not directly associated with disease on reported OMV. The correlation of high
prevalence, prolonged host infection, and vertical transmission observed in several new
mosquito viruses has resulted in their classification as “commensal” microbes. A shared
evolutionary history of viruses and host, based in strategies of immune evasion of the viruses
and counter antiviral strategies of the host could occasionally result in a modulation of viral
loads and a chronic but latent state of virus infection[291].
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Figure $5.4.1: Photinus pyralis viruses and endogenous viral-like elements.

(A) Phylogenetic tree based in MAFFT alignments of predicted replicases of Orthomyxoviridae
(OMV) ICTV accepted viruses (green stars), new Photinus pyralis viruses (underlined) and
tentative OMV-like virus species (black stars). ICTV recognized OMV genera: Quaranjavirus
(orange), Thogotovirus (purple), Issavirus (turquoise), Influenzavirus A-D (green). Silhouettes
correspond to host species. Asterisk denote FastTree consensus support >0.5. Question marks
depict viruses with unidentified or unconfirmed host. (B) Phylogenetic tree of OMV proposed
and recognized species in the context of all ssRNA (-) virus species, based on MAFFT
alignments of refseq replicases. Photinus pyralis viruses are portrayed by black stars. (C)
Phylogenetic tree of ICTV recognized OMV species and PpyrOMLV1 & 2. Numbers indicate
FastTree consensus support. (D) Genetic distances of concatenated gene products of OMV
depicted as circoletto diagrams. Proteins are oriented clockwise in N-HA-PB1-PB2-PA order
when available. Sequence similarity is expressed as ribbons ranging from blue (low) to red
(high). (E) Genomic architecture, predicted gene products and structural and functional domains
of PpyrOLMV1 & 2. (F) Virus genomic noncoding termini analyses of PpyrOLMV1 & 2 in the
context of ICTV OMV. The 3’ and 5" end, A and U rich respectively, partially complementary
sequences are associated to tentative panhandle polymerase binding and replication activity,
typical of OMV. (G) 3D renders of the heterotrimeric polymerase of PpyrOMLV1 based on
Swiss-Expasy generated models using as template the Influenza A virus polymerase structure.
Structure comparisons were made with the MatchAlign tool of the Chimera suite, and solved in
PyMOL. (H) Conserved functional motifs of PpyrOLMV1 & 2 PB1 and related viruses. Motif I-11I
are essential for replicase activity of viral polymerase. (I) Dynamic and prevalent virus derived
RNA levels of the corresponding PpyrOMLV1 & 2 genome segments, determined in 24 RNA
libraries of diverse individuals/developmental stages/tissues and geographic origins. RNA levels
are expressed as normalized TPM, heatmaps were generated by Shinyheatmap. Values range
from low (green) to high (red). (J) Firefly EVEs (FEVEs) identified in the P. pyralis genome
assembly mapped to the corresponding pseudo-molecules. A 15 Kbp region flanking
nucleoprotein like FEVES are depicted, enriched in transposable elements. Representative
products of a putative PB2 FEVE are aligned to the corresponding protein of PpyrOMLV 2.
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2849 Figure S5.4.2: Pairwise identity of OMLV viral proteins amongst identified OMLV
2850 viruses.
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2851 Table S5.4.3: Best hits from BLASTP of PpyrOMLYV proteins against the NCBI database

Gene
Genome Size product Query
Segment (nt) (aa) Best hit Best hit Taxonomy cover E value Identity
251
PpyrOMLV1-PB1 0 801 PB1  Wuhan Mothfly Virus ~ Orthomyxoviridae 83% 0.0 51%
234
PpyrOMLV1-PA 6 754 PA Hubei earwig virus 1 Orthomyxoviridae 98%  4.00E-137 35%
166
PpyrOMLV1-HA 7 526 HA  Tjuloc virus Orthomyxoviridae 91% 9.00E-25 25%
251
PpyrOMLV1-PB2 7 804 PB2 Hubei earwig virus 1 Orthomyxoviridae 91%  3.00E-118 31%
183
PpyrOMLV1-N 5 562 N Hubei earwig virus 1~ Orthomyxoviridae 93% 8.00E-74 30%
249 Hubei orthomyxo-like
PpyrOMLV2-PB1 5 802 PB1  virus 1 Orthomyxoviridae 93% 0.0 48%
234
PpyrOMLV2-PA 9 762 PA  Hubei earwig virus 1 Orthomyxoviridae 98%  1.00E-107 31%
166
PpyrOMLV2-HA 8 525 HA  Wellfleet Bay virus Orthomyxoviridae 82% 3.00E-40 26%
250
PpyrOMLV2-PB2 6 801 PB2 Hubei earwig virus 1 Orthomyxoviridae 96% 3.00E-86 27%
173
PpyrOMLV2-N 8 528 N Hubei earwig virus 1~ Orthomyxoviridae 95% 6.00E-82 32%
2852
2853
2854
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Table S$5.4.4: InterProScan domain annotation of PpyrOMLYV proteins

Genome InterPro
product Annotation Start End Length Database Id ID InterPro name
PpyrOMLV1- RNA_pol_PB1
PB1 Flu_PB1 48 752 705 PFAM PF00602 IPR001407 _influenza
RNA-
RDRP_SSRN PROSITE_PR dir_pol_NSviru
A 330 529 200 OFILES PS50525 IPR007099 s
PpyrOMLV2- RNA_pol_PB1
PB1 Flu_PB1 54 766 713 PFAM PF00602 IPR001407 _influenza
RNA-
RDRP_SSRN PROSITE_PR dir_pol_NSviru
A 337 539 203 OFILES PS50525 IPR007099 s
PpyrOMLV1- RNA_pol_PB2
PB2 Flu_PB2 13 421 409 PFAM PF00604 IPR001591  _orthomyxovir
PpyrOMLV2- RNA_pol_PB2
PB2 Flu_PB2 13 415 403 PFAM PF00604 IPRO01591  _orthomyxovir
PpyrOMLV1-HA  SignalP-noTM 1 19 19 SIGNALP_EUK  SignalP-noTM Unintegrated
Baculovirus_G
Baculo_gp64 108 432 325 PFAM PF03273 IPR004955 p64
PpyrOMLV2-HA  SignalP-noTM 1 21 21 SIGNALP_EUK  SignalP-noTM Unintegrated
Baculovirus_G
Baculo_gp64 66 426 361 PFAM PF03273 IPR004955 p64
RNA-
dir_pol_influen
PpyrOMLV1-PA Flu_PA 663 736 74 PFAM PF00603 IPR001009 zavirus
RNA-
dir_pol_influen
PpyrOMLV2-PA Flu_PA 667 740 74 PFAM PF00603 IPR0O01009 zavirus
PpyrOMLV1-
PB1 flu NP-like 94 459 366 SUPERFAMILY SSF161003 Unintegrated
PpyrOMLV2-
PB1 flu NP-like 363 483 121 SUPERFAMILY SSF161003 Unintegrated
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2859 Table S$5.4.5: FPKM of reads mapped to PpyrOMLV genome segments from P. pyralis
2860 RNA-Seq datasets

SRR SRR SRR SRR SRR SRR SRR SRR SRR SRR SRR SRR
3883773 3883772 3883758 3883771 3883770 3883769 3883768 3883767 3883765 3883764 3883763 3883762

Ppyr
oMLY
1HA 11

Ppyr
oMLY
1NP 0 321 0 141 0 0 523 0 0 0 120 1460

Ppyr
oMLY
1PA 3 256 0 95 0 0 306 1 0 5 100 660

Ppyr
oMLV

1PB1 1464

Ppyr
oMLV

1PB2 106 696

Ppyr
OMLV

2HA 232 710

Ppyr
oMLV

2NP 274 1067

Ppyr
oMLV

2PA 50 838

Ppyr
oMLV

2PB1 146 493

Ppyr
oMLV

2PB2 173 728

2861

SRR SRR SRR SRR SRR SRR SRR SRR SRR Ppyr_Femal
3883761 3883760 3883759 3883757 3883756 3883766 2103867 2103849 2103848 Ppyr_larvae e Ppyr_eggs

Ppyr
OMLV
1HA 0 2 6 867 0 0 0 0 1664 7826

Ppyr
OMLV
1NP 0 289 0 3 647 0 2 0 0 644 5216 6562

Ppyr
OMLV
1PA 0 124 0 2 626 0 0 0 0 1264 3692 9564

Ppyr
oMLV
1PB1 2 0 3 2 0 0 0 7144
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Ppyr
oMLV

1PB2 0 188 648 2562

Ppyr

oMLV

2HA 13 236 0 0 0

Ppyr

oMLV

2NP 248 0 0 0

Ppyr

oMLV

2PA 14 93 0 0 0
Ppyr

oMLV

2PB1 90 0 0 0
Ppyr

oMLV

2PB2 90 0 0 0

2862

2863 Table S$5.4.6: FPKM of reads mapped to PpyrOMLV genome segments from P. pyralis
2864 RNA-Seq datasets

SRR SRR SRR SRR SRR SRR SRR SRR SRR SRR SRR SRR
3883773 3883772 3883758 3883771 3883770 3883769 3883768 3883767 3883765 3883764 3883763 3883762

Ppyr
OMLV1
HA

Ppyr
OMLV1
NP

Ppyr
OMLV1
PA

Ppyr
OMLV1
PB1

Ppyr
OMLV1
PB2

Ppyr
OMLV2
HA

Ppyr
OMLV2
NP

Ppyr
OMLV2
PA

Ppyr
OMLV2
PB1
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Ppyr
OMLV2
PB2

SRR SRR SRR SRR SRR SRR SRR SRR SRR Ppyr_ Ppyr_ Ppyr_
3883761 3883760 3883759 3883757 3883756 3883766 2103867 2103849 2103848 larvae Female eggs

2865

Ppyr
OMLV
1HA

Ppyr
oMLV
1NP

Ppyr
OMLV
1PA

Ppyr
OMLV
1PB1

Ppyr
oMLV
1PB2

Ppyr
OMLV
2HA

Ppyr
OMLV
2NP

Ppyr
oMLV
2PA

Ppyr
oMLY
2PB1

Ppyr
OMLV
2PB2

2866 5.5 P. pyralis Endogenous virus-like Elements (EVEs)

2867 To gain insights on the potential shared evolutionary history of P. pyralis and the IOMV
2868 PpyrOMLV1 & 2, we examined our assembly of P. pyralis for putative signatures or
2869  paleovirological traces[292-294] that would indicate ancestral integration of virus related
2870 sequences into the firefly host. Remarkably, we found Endogenous virus-like Elements
2871  (EVEs)[295], sharing significant sequence identity with most PpyrOMLV1 & 2 genome
2872  segments, spread along four P. pyralis linkage-groups. Virus integration into host genomes is a
2873  frequent event derived from reverse transcribing RNA viruses (Retroviridae). Retroviruses are
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the only animal viruses that depend on integration into the genome of the host cell as an
obligate step in their replication strategy[296]. Viral infection of germ line cells may lead to viral
gene fragments or genomes becoming integrated into host chromosomes and subsequently
inherited as host genes.

Animal genomes are paved by retrovirus insertions[297]. These insertions, which are
eventually eliminated from the host gene pool within a few generations, and may, in some
cases, increase in frequency, and ultimately reach fixation. This fixation in the host species can
be mediated by drift or positive selection, depending on their selective value. On the other hand,
genomic integration of non-retroviral viruses, such as PpyrOMLV1 & 2, is less common. Viruses
with a life cycle characterized by no DNA stage, such as OMV, do not encode a reverse
transcriptase or integrase, thus are not retro transcribed nor integrated into the host genome.
However, exceptionally and recently, several non-retroviral sequences have been identified on
animal genomes; these insertions have been usually associated with the transposable elements
machinery of the host, which provided a means to genome integration[298,299]. Interestingly,
when we screened our P. pyralis genome assembly Ppyr1.2 by BLASTX searches (E-value
<1e107°) of PpyrOMLV1 & 2 genome segments, we identified several genome regions that could
be defined as Firefly EVEs, which we termed FEVEs (Fig. S5.1 J; Table S5.5.1-5.5.5). We
found 30 OMV related FEVEs, which were mostly found in linkage group one (LG1, 83 % of
pinpointed FEVEs). The majority of the detected FEVEs shared sequence identity to the PB1
encoding region of genome segment one of PpyrOMLV1 & 2 (ca. 46 % of FEVEs), followed by
N encoding genome segment five (ca. 33 % of detected FEVES). In addition we identified four
FEVEs related to genome segment three (PA region) and two FEVEs associated to genome
segment two (PB2 encoding region). We found no evidence of FEVEs related to the
hemagglutinin coding genome segment four (HA). The detected P. pyralis FEVEs represented
truncated fragments of virus like sequences, generally presenting frameshift mutations, early
termination codons, lacking start codons, and sharing diverse mutations that altered the
potential translation of eventual gene products. FEVEs shared sequence similarity to the coding
sequence of specific genome segments of the cognate FOLMV. We generated best/longest
translation products of the corresponding FEVEs, which presented an average length of ca.
21.86 % of the corresponding PpyrOMLV genome segment encoding gene region (Table
S5.5.1-5.5.5), and an average pairwise identity to the FOLMV virus protein of 55.08 %.
Nevertheless, we were able to identify FEVEs that covered as high as ca. 60 % of the
corresponding gene product, and in addition, although at specific short protein regions of the
putative related FOLMV, similarity values were as high as 89 % pairwise identity. In addition,
most of the detected FEVEs were flanked by Transposable Elements (TE) (Figure S5.4.1 J)
suggesting that integration followed ectopic recombination between viral RNA and transposons.
We found several conserved domains associated to reverse transcriptases and integrases
adjacent to the corresponding FEVEs, which supports the hypothesis that these virus-like
elements could be reminiscent of an OMV-like ancestral virus that could have been integrated
into the genome by occasional sequestering of viral RNAs by the TE machinery. The finding of
EVEs in the P. pyralis genome is not trivial, OMV EVEs are extremely rare. There has been only
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one report of OMV like sequences integrated into animal host genomes, which is the case of
Ixodes scapularis, the putative vector of Quaranfil virus and Johnston Atoll virus corresponding
to genus Quaranjavirus [295]. The fact that besides FEVEs, the only other OMV EVE
corresponded to an Arthropod genome, given the ample studies of bird and mammal genomes,
is suggestive that perhaps OMV EVEs are restricted to Arthropod hosts. Sequence similarity of
FEVEs and firefly viruses suggest that these viral ‘molecular fossils’ could have been tightly
associated to PpyrOLMV1 & 2 ancestors. Moreover, we found potential NP and PB1 EVEs in
our genome of light emitting click beetle Ignelater luminosus (Elateridae), an evolutionary distant
coleoptera. Sequence similarity levels of the corresponding EVEs averaging 52 %, could not be
related with evolutionary distances of the hosts. We were not able to generate conclusive
phylogenetic insights of the detected EVEs, given their partial, truncated and altered nature of
the virus like sequences. In specific cases such as PB1-like EVEs there appears to be a trend
suggesting an indirect relation between sequence identity and evolutionary status of the firefly
host, but this preceding findings should be taken cautiously until more gathered data is
available. The widespread presence of DNA sequences significantly similar to OMV in the
explored firefly and related genomes are an interesting and intriguing result. At this stage is
prudently not to venture to suggest more likely one of the two plausible explanations of the
presence of these sequences in related beetles genomes: (i) Ancestral OMV like virus
sequences were retrotranscribed and incorporated to an ancient beetle, followed by speciation
and eventual stabilization or lost of EVEs in diverse species. (ii) Recent and recursive
integration of OMV like virus sequences in fireflies and horizontal transmission between hosts.
These propositions are not mutually exclusive, and may be indistinctly applied to specific cases.
Future studies should enquire in this genome dark matter to better understand this interesting
phenomenon. When more data is available EVE sequences may be combined with phylogenetic
data of host species to expose eventual patterns of inter-class virus transmission. Either way,
more studies are needed to explore these proposals, Katzourakis & Gifford[295] suggested that
EVEs could reveal novel virus diversity and indicate the likely host range of virus clades.

After identification and confirmation that firefly related EVEs are present in the host DNA
genome, an obvious question follows: Are these EVEs just signatures of an evolutionary vestige
of stochastic past infections; or could they be associated with an intrinsic function? It has been
suggested that intensity and prevalence of infection may be a determinant of EVEs integration,
and that exposure to environmental viruses may not[300]. Previous reports have suggested that
EVEs may firstly function as restriction factors in their hosts by conferring resistance to infection
by exogenous viruses, and the eventual counter-adaptation of virus populations of EVE positive
hosts, could reduce the EVE restriction mechanism to a non-functional status[301]. Recently, in
mosquitoes, a new mechanism of antiviral immunity against RNA viruses has been proposed,
relying in the production and expression of EVEs DNA[302]. Alternatively, eventual EVE
expression could lend to the production viral like truncated proteins that may compete in trans
with virus proteins from infecting viruses and limit viral replication, transcription or virion
assembly[303]. In addition, integration and eventual modulation in the host genome may be
associated with an interaction between viral RNA and the mosquito RNAi machinery[304]. The
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piRNA pathway mediates through small RNAs and Piwi-Argonaut proteins the repression of TE
derived nucleic acids based on sequence complementarity, and has also been associated to
regulation of arbovirus viral related RNA, suggesting a functional connection among resistance
mechanisms against RNA viruses and TEs[299,305]. Furthermore, arbovirus EVEs have been
linked to the production of viral derived piRNAs and virus-specific siRNA, inducing host cell
immunity without limiting viral replication, supporting persistent and chronic infection[302].
Perhaps an EVE dependent mechanism of modulation of virus infection could have some level
of reminiscence to the paradigmatic CRISPR/Cas system which mediates bacteriophage
resistance in prokaryotic hosts.

In sum, genomic studies are a great resource for the understanding of virus and host
evolution. Here we glimpsed an unexpected hidden evolutionary tale of firefly viruses and
related FEVEs. Animal genomes appear to reflect as a book, with many dispersed sentences,
an antique history of ancestral interaction with microbes, and EVEs functioning as virus related
bookmarks. The exponential growth of genomic data would help to further understand this
complex and intriguing interface, in order to advance not only in the apprehension of the
phylogenomic insights of the host, but also explore a multifaceted and dynamic virome that has
accompanied and even might have shifted the evolution of the host.

Table $5.5.1: FEVE hits from BLASTX of PpyrOMLV PB1

Scaffold Start End Strand P:O‘?\,I::.I:I E value Coverage FEVE

Ppyr1.2_LG1 12787323 12786796 (-) 56.30% 8.22E-50 39.10% EVE PB1 like-1
Ppyr1.2_LG1 13016647 13016120 (-) 56.30% 8.22E-50  39.10% EVE PB1 like-2
Ppyr1.2_LG1 34701480 34701560 (+) 37.00% 2.88E-26  26.70% EVE PB1 like-3
Ppyr1.2_LG1 34701562 34701774 (+) 37.60% 2.88E-26  30.20% EVE PB1 like-3
Ppyr1.2_LG1 34701801 34702214 (+) 45.30% 2.88E-26  34.00% EVE PB1 like-3
Ppyr1.2_LG1 35094645 35095094 (+) 28.10% 2.15E-10 9.50% EVE PB1 like-4
Ppyr1.2_LG1 35110084 35109956 (-) 53.50% 2.37E-14  4.40% EVE PB1 like-5
Ppyr1.2_LG1 35110214 35110107 (-) 75.00% 2.37E-14  14.70% EVE PB1 like-5
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Ppyr1.2_LG1 35110347 35110213 (-) 42.60% 2.37E-14 2.90% EVE PB1 like-5

Ppyr1.2_LG1 50031464 50031330 () 64.40%  1.18E-09 10.00%  EVE PB1 like-6
Ppyr1.2_LG1 50031498 50031457 () 71.40%  1.18E-09 11.60%  EVE PB1 like-6
Ppyr1.2_LG1 50613130 50612921  (+) 49.40%  3.71E-11  4.90%  EVE PB1 like-7
Ppyr1.2_LG1 50673211 50673621  (+) 38.50%  1.03E-12  9.70%  EVE PB1 like-8
Ppyr1.2_LG1 51208464 51207634 () 77.20% 0 56.40%  EVE PB1 like-9
Ppyr1.2_LG1 51209399 51208467 (- 68.50% 0 53.60%  EVE PB1 like-9
Ppyr1.2_LG1 51209556 51209398 () 71.70% 0 39.20%  EVE PB1 like-9
Ppyr1.2_LG1 61871682 61872158  (+) 31.10%  2.84E-23  36.00% EVE PB1 like-10
Ppyr1.2_LG1 61872158 61872319  (+) 46.30%  2.84E-23 28.30% EVE PB1 like-10
Ppyr1.2_LG1 61872355 61872456  (+) 41.20%  2.84E-23 27.00% EVE PB1 like-10
Ppyr1.2_LG1 61930528 61930205 (- 38.00%  3.58E-27 30.90% EVE PB1 like-11
Ppyr1.2_LG1 61930686 61930504  (-) 63.60%  3.58E-27 35.90% EVE PB1 like-11
Ppyr1.2_LG1 68038999 68039073  (+) 60.00%  7.73E-12  6.60%  EVE PB1 like-12
Ppyr1.2_LG1 68039072 68039314  (+) 40.70%  7.73E-12  5.00%  EVE PB1 like-12
Ppyr1.2_LG1 68039289 68039330  (+) 64.30%  7.73E-12  8.00%  EVE PB1 like-12
Ppyr1.2_LG1 68128820 68129008  (+) 51.50%  1.89E-06  4.90%  EVE PB1 like-13
Ppyr1.2_LG2 34545814 34545680 () 58.70%  3.84E-06 7.20%  EVE PB1 like-14
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Ppyr1.2_LG2 34546169 34545801 ) 52.80%  1.16E-31 34.10% EVE PB1like-14
2975

2976  Table S$5.5.2: FEVE hits from BLASTX of PpyrOMLV PB2

Scaffold Start End Strand P:O“I\,I::Rl E value Coverage FEVE

Ppyr1.2_LG1 50313869 50314219 (+) 82.10% 6.91E-54 48.30% EVE PB2 like-1
Ppyr1.2_LG1 50314216 50315016 (+) 82.40%  1.92E-142  57.90% EVE PB2 like-1
Ppyr1.2_LG1 50315772 50315002 (-) 89.10%  9.97E-145  60.60% EVE PB2 like-1
Ppyr1.2_LG1 58707403 58706942 (-) 52.60% 6.19E-42 35.80% EVE PB2 like-2

2977

2978  Table S5.5.3: FEVE hits from BLASTX of PpyrOMLV PA

Scaffold Start End Strand P:iovl\\ll::_lll E value  Coverage FEVE

Ppyr1.2_LG1 34977392 34977231 (-) 48.10% 7.73E-07 3.50% EVE PA like-1
Ppyr1.2_LG1 62052289 62052023 (-) 28.70%  8.92E-11 7.10% EVE PA like-2
Ppyr1.2_LG1 62117077 62116811 (-) 28.70% 1.22E-10 7.10% EVE PA like-3
Ppyr1.2_LG1 62117493 62117101 (-) 26.30% 1.22E-10 8.60% EVE PA like-3
Ppyr1.2_LG1 68122348 68122440 (+) 77.40% 3.40E-06 15.70% EVE PA like-4

2979

2980  Table S5.5.4: FEVE hits from BLASTX of PpyrOMLV HA
2981  (None detected)
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2982  Table S5.5.5: FEVE hits from BLASTX of PpyrOMLV NP

id with
PpOML

Scaffold Start End Strand Vv E value  Coverage FEVE
Ppyr1.2_LG1 181303 181404 (+) 79.40%  7.01E-09 17.90% EVE NP like-1
Ppyr1.2_LG1 1029425 1029568 (+) 93.80%  9.59E-21 27.40% EVE NP like-2
Ppyr1.2_LG1 2027860 2027438 (-) 35.50%  3.00E-21 30.80% EVE NP like-3
Ppyr1.2_LG1 36568324 36568551 +) 42.10%  8.99E-11 7.20% EVE NP like-4
Ppyr1.2_LG1 52877256 52877086 (-) 68.40%  3.87E-15 14.60% EVE NP like-5
Ppyr1.2_LG1 59927414 59927271 +) 93.80%  5.60E-20 26.40% EVE NP like-6
Ppyr1.2_LG3 17204346 17204122 (-) 46.70%  7.60E-13 7.10% EVE NP like-7
Ppyr1.2_LG3 31635344 31635030 (-) 35.80%  3.30E-08 10.00% EVE NP like-8
Ppyr1.2_LG3 50175821 50175922 (+) 79.40%  7.01E-09 17.90% EVE NP like-9
Ppyr1.2_LG4 27811681 27811758 (+) 38.50%  3.22E-13 2.50% EVE NP like-10
Ppyr1.2_LG4 27811853 27812179 (+) 39.00%  3.22E-13 10.90% EVE NP like-10

2983
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2987

2988

2989
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Table S6: Experiment.com donors

Liliana Bachrach | Doug Fambrough Benjamin Lower Luis Cunha Joshua Guerriero

Atsuko Fish Tom Alar Noreen Huefner David Esopi John Skarha

Rutong Xie Richard Hall Zachary Michel Jack Hynes Keith Guerin

Nathan Shaner Joe Doggett Joe T. Bamberg Michael McGurk | Pureum Kim

Sara Lewis Mark Lewis Lauren Solomon Peter Berx Milo Grika

Jing-Ke Weng Sarah Sander Dr. Husni Elbahesh | Matt Grommes | Daniel Zinshteyn

Peter Rodenbeck | Daniel Bear Kathryn Larracuente | Colette Dedyn Tom Brekke

Larry Fish Don Salvatore Matthew Cichocki Florencia Edoardo Gianni
Schlamp

Amanda Emily Davenport Marcel Bruchez Marie Lower Cindy Wu

Larracuente

Hunter Lower Ted Sharpe Robert Unckless Michael R. Christina Tran
McKain

Allan Kleinman David Plunkett Arvid Agren Ben Pfeiffer Eric Damon

Walters

Misha Koksharov

Tim Fallon

Margaret S Butler

Kathryn Keho

Geoffrey Giller

Sarah Shekher Edward Garrity Yasir Ahmed- Jenny Wayfarer | Fahd Butt
Braimah

Jared Lee Huaping Mo Ruth Ann Grissom Darby Thomas Christophe Mandy

Raphael De TimG Tomas Pluskal Emily Hatas

Cock
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SUPPLEMENTARY TEXT 7: Data availability

7.1 Files on FigShare:

(1) Photinus pyralis sighting records (Excel spreadsheet) - (10.6084/m9.figshare.5688826)
For reviewers: https://figshare.com/s/8508568ed8a4fcac7707

(2) 1lumi1.0 Blobtools results - (10.6084/m9.figshare.5688952) For reviewers:
https://figshare.com/s/5bba84434550fa53f297

(3) Alat1.2 Blobtools results - (10.6084/m9.figshare.5688928) For reviewers:
https://figshare.com/s/81c56e197832ae0deb17

(4) Ppyr1.2 Blobtools results - (10.6084/m9.figshare.5688982) For reviewers:
https://figshare.com/s/a59f5d7ee0d3a7c7dc64

(5) Nucleotide multiple sequence alignment for Elaterid luciferase homolog branch selection
test(Supplementary Note 4.3) - (10.6084/m9.figshare.5691277) For reviewers:
https://figshare.com/s/21a50b49b95b83f938¢c6

(6) Protein multiple sequence alignment for P450 tree - Supplementary Fig 1.10.1.1 -
(10.6084/m9.figshare.5697643) For reviewers:
https://figshare.com/s/f927956e3f92a8b61d1b

(7) Photinus pyralis orthomyxo-like virus 1 sequence and annotation -
(10.6084/m9.figshare.5714806) For reviewers:
https://figshare.com/s/a2d8b8c61c4e51ff5180

(8) Photinus pyralis orthomyxo-like virus 2 sequence and annotation -
(10.6084/m9.figshare.5714812) For reviewers:
https://figshare.com/s/f5041dc0d51aaf7b58fa

(9) OrthoFinder protein clustering analysis (Orthogroups) - (10.6084/m9.figshare.5715136)
For reviewers: https://figshare.com/s/7ba2e519a2acb87ba240

(10) PPYR_0OGS1.1 kallisto RNA-Seq expression quantification (TPM) -
(10.6084/m9.figshare.5715139) For reviewers:
https://figshare.com/s/b210bf1d3b854bf7c1f2

(11) AQULA_0OGS1.0 kallisto RNA-Seq expression quantification (TPM) -
(10.6084/m9.figshare.5715142) For reviewers:
https://figshare.com/s/335bbbdb105150c34cfa

(12) Figure 5. PPYR_OGS1.1 + AQULA_OGS1.0 Sleuth / differential expression

Venn diagram analysis (BSN-TPM) - (10.6084/m9.figshare.5715151) For reviewers:

https://figshare.com/s/6¢cb8c724917412668cc0

(13) llumi_OGS1.2 kallisto RNA-Seq expression quantification (TPM) -

(10.6084/m9.figshare.5715157) For reviewers:

https://figshare.com/s/1302eda060db2b70b19b
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(14) Figure 4C. CYP303 maximum likelihood gene tree -
(10.6084/m9.figshare.5716045) For reviewers:
https://figshare.com/s/e2661cb07a50750bd3ca

(15) Figure 3C. Maximum likelihood tree of luciferase homologs. -
(10.6084/m9.figshare.5725690) For reviewers:
https://figshare.com/s/1e0fe3cbb9b2e15170df

(16) Figure 4A. Supplementary Text 4.3.3 - NEXUS files. Newick file -
(10.6084/m9.figshare.6020063) For reviewers:
https://figshare.com/s/f2d5a1676b4a40e44e6d

(17) Fig. 2E, Fig. 4.2.1.1 Orthogroup Venn Diagram analysis -
(10.6084/m9.figshare.6671768) For reviewers: https://figshare.com/s/ba11d235ecfcedffa930
(18) Figure S4.2.3.1: DNA and tRNA methyltransferase gene phylogeny -

(10.6084/m9.figshare.6531311) For reviewers:
https://figshare.com/s/267ab9cbbbdba148eb38

(19) Figure S4.3.2.1 Preliminary maximum likelihood phylogeny of luciferase
homologs - (10.6084/m9.figshare.6687086) For reviewers:
https://figshare.com/s/9e530e0284cd0cc9e233

(20) Supplementary Video 1: A Photinus pyralis courtship dialogue -
(10.6084/m9.figshare.5715760) For reviewers:
https://figshare.com/s/c74a6623494f6addbdd4

(21) Supplementary Figure 4.5.1a Opsin gene tree - (10.6084/m9.figshare.5723005)
For reviewers: https://figshare.com/s/c74a6623494f6addbdd4
(22) Supplementary Text 4.3.4: MEME selected site analysis -

(10.6084/m9.figshare.6626651) For reviewers:
https://figshare.com/s/8fb1bb7411c318ea2466

(23) Supplementary Text 4.3.4: PAML-BEB selected site analysis -
(10.6084/m9.figshare.6725081) For reviewers:
https://figshare.com/s/fc9bb5a7080c573333a5

7.2 Files on www.fireflybase.orq / www.github.orq:

7.2.1 Photinus pyralis genome and associated files

e Ppyr1.3 genome assembly - (http://www.fireflybase.org/firefly _data/Ppyr1.3.fasta.zip)
e P. pyralis Official Geneset (OGS) GFF3 files -
(https://github.com/photocyte/PPYR _OGS)
o Official geneset gene-span nucleotide FASTA files
o Official geneset MRNA nucleotide FASTA files
o Official geneset CDS nucleotide FASTA files
o Official geneset peptide FASTA files
e Supporting Non-OGS files -
(https://github.com/photocyte/PPYR _OGS/tree/master/Supporting_non-OGS_data)
o Trinity/PASA direct coding gene models (DCGM) GFF3 file
m DCGM CDS FASTA file
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m  DCGM peptide FASTA file

Stringtie stranded direct coding gene model (DCGM) GFF3 file
m DCGM CDS FASTA file
m  DCGM peptide FASTA file

Stringtie unstranded direct coding gene model (DCGM) GFF3 file
m DCGM CDS FASTA file
m DCGM peptide FASTA file

Expression quantification (TPM)

InterProScan OGS functional annotation

PTS1 OGS annotation

Gaps GFF3 file

Repeat library FASTA and aligned GFF3 file.

Ab-initio gene models

7.2.2 Aquatica lateralis genome and associated files

e Alat1.3 genome assembly - (http://www.fireflybase.org/firefly data/Alat1.3.fasta.zip)
e A. lateralis Official Geneset (OGS) GFF3 files -
(https://github.com/photocyte/AQULA OGS)

@)

o

o

@)

Official geneset gene-span nucleotide FASTA files
Official geneset mRNA nucleotide FASTA files
Official geneset CDS nucleotide FASTA files
Official geneset peptide FASTA files

e Supporting Non-OGS files -
(https://github.com/photocyte/AQULA OGS/tree/master/Supporting non-OGS data)

o

o O O O O ©O

Trinity/PASA direct coding gene models (DCGM) GFF3 file
m DCGM CDS FASTA file
m  DCGM peptide FASTA file

Stringtie unstranded direct coding gene model (DCGM) GFF3 file
m DCGM CDS FASTA file
m  DCGM peptide FASTA file

Expression quantification (TPM)

InterProScan OGS functional annotation

PTS1 OGS annotation

Gaps GFF3 file

Repeat library FASTA and aligned GFF3 file.

Ab-initio gene models

7.2.3 Ignelater luminosus genome and associated files

e |lumi1.2 genome assembly - (http://www.fireflybase.org/firefly _data/llumii1.2.fasta.zip)
e | luminosus Official Geneset (OGS) GFF3 files -
(https://github.com/photocyte/ILUMI OGS)
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Official geneset gene-span nucleotide FASTA files
Official geneset mRNA nucleotide FASTA files
Official geneset CDS nucleotide FASTA files

o Official geneset peptide FASTA files

Supporting Non-OGS files -

(https://github.com/photocyte/ILUMI OGS/tree/master/Supporting non-OGS data)

o Trinity/PASA direct coding gene models (DCGM) GFF3 file
m DCGM CDS FASTA file
m DCGM peptide FASTA file
o Stringtie unstranded direct coding gene model (DCGM) GFF3 file
m DCGM CDS FASTA file
m DCGM peptide FASTA file

PTS1 OGS annotation
Gaps GFF3 file
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Ab-initio gene models

Expression quantification (TPM)
InterProScan OGS functional annotation

Repeat library FASTA and aligned GFF3 file.

7.3 Tracks on www.fireflybase.org JBrowse genome browser:

For each genome:
(1) Gaps

—_~ o~~~

2
3
4
5

~— — — ~—

Repeats

Direct gene-models (Stringtie)
Direct gene-models (Trinity)
Official geneset gene-models
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