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the system, under certain parametric restrictions. We show that the claimed invariant set is not globally
attracting, and that finite time blow-up can occur for sufficiently large or small initial data. We further
show that the invariant set cannot contain any interior equilibrium.
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1. Introduction
1.1. Background

In [12] the following three species food chain ODE model is pro-

posed,
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This model is based on a modified Leslie-Gower formulation [3],
and considers the interactions between a generalist top predator
p, depredating on a specialist middle predator v, that in turn is
depredating on a prey u, where (u, v, p) are solutions to the above
system (1)-(3). Similar models have generated a plethora of past
and current research interest [1,2,4-6,10,14-26]. Also see [7,8,11,27].
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The novelties in the current model are that the prey u is equipped
with defense ability, via a Monod-Haldane functional response for
the interaction between prey u and middle predator v. The middle
predator v serves as favorite food for top predator p, modeled fol-
lowing a Beddington-DeAngelis functional response. The dynamics
of the top predator are modeled via a modified Leslie-Gower for-
mulation [3,9]. For a detailed description of the modeling formula-
tion the reader is referred to Mishra et al. [12].

1.2. Past results

In [12] various theorems on the boundedness of the system (1)-
(3) are proved, and the existence of an invariant globally attracting
set is established. In particular, we recall the following result from
[12],

Theorem 1.1. If condition wy > cn holds and set

i do [¢1y) a(z)
A= {u(t),v(t), p(®) s u(t) < a,O <Si1(t) < @ + 45(1%,0
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Fig. 1. (a) Simulation with parameters in (16) starting from the IC =[1,5,5] € A. We see a [u*, v*, 0] equilibrium. (b) Simulation with parameters in (18) starting from
the IC =[0.1,0.1,0.1] € A. We see a [u*, 0, 0] equilibrium. (c) Simulation with parameters in (18) starting from the IC =[0.85, 15.18,282.3] € A. Again we see a [u*, 0, 0]
equilibrium (d) Simulation with parameters in (18) starting from the IC = [0.853658536585366, 18,282.3] ¢ A, blows up at time t ~ 0.028.

is positively invariant set and attracts all solutions initiating in the
interior of positive octant, then all the positive solutions of the system
ApWw1q a%WZ

aywp 48a%w1

(1)-(3) are uniformly bounded, where n =

1
M= —
4(wy —cn)

+d3 and

. . . . . 3
. Moreover, the system (1)-(3), is dissipative in R3.

We note that S;(t) = u(t) + —Lu(t), Sy(t) =u(t) + —Lu(t) +
wy w)

ap(t) and o = %
naj

Thus the authors in [12] claim,
e A is positively invariant.
e A is attracting. That is all solutions initiating in Ri of (1)-(3)

are uniformly bounded and eventually enter A.
o System (1)-(3) is dissipative.

In the current manuscript we show,

e A is not attracting. In particular for various initial data in R3,
finite time blow-up occurs. Thus system (1)-(3) is not dissipa-
tive. These are shown via Theorems 2.2 and 2.3 and Fig. 1.

e A is invariant only for boundary equilibrium. That is A as con-
structed, cannot contain a feasible interior equilibrium (u*, v*,
p*). This is shown via Theorem 2.1.

2. The invariant set and finite time blow-up

2.1. No interior equilibrium in A

Theorem 2.1. Consider the three species food chain model (1)-(3),
and A as defined in Theorem 1.1. For Y(uq, Vo, po) € A, p goes extinct
eventually, and the only dynamics are boundary equilibrium [u*, O,
0], [u*, v*, 0] or a closed loop in the v — p plane.

Proof. From the form of A we see that we require,

(4)

2
W1 do ao
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Standard estimates (see [12]) show

. wadp | W(dp)?

lim max(v(t)) < . 5
Jim max(v(t)) = wia, " Aw,8(a,)? (5)

. w1dp
Note, the upper bound for v is as above, and not wod +
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2

%, as claimed in [12]. The bound in [12] is the result of a

simple algebraic error, as is apparent from equation (3.2) in [12].
Furthermore, the parametric restriction as required for A is

e M . (6)
N waag . w(ao) +d
wia; | 4wid(ap)?
This implies,
v <max(v(t)) < W29 + 1C < W _ d (7)
- T wiay 4W18(Gl)2 Cc 3
while
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Thus, via (7)-(8) the coefficient of p2? in (3), (c— U%g) is
enforced to be negative initially and subsequently for all time,
and so the only dynamics possible for p, via the restrictions of
Theorem 1.1, is that p— 0 eventually. This reduces (1)-(3) to a 2-
species subsystem in u, v only. Standard theory [13] yields that the
only dynamics are [u*, 0, 0], [u*, v*, 0] or a closed loop in the v — p
plane. O

2.2. Finite time blow-up

We state the following theorem,

Theorem 2.2. Consider the three species food chain model (1)-(3),
and any set of parameters under which there exists a feasible inte-
rior equilibrium. Even if c < ¥4, p will blow-up in finite time for any
data large or small as long as the data meets the following sufficiency
requirement

1
1 B
(o)t _ (Plad — 9]
(UO) C(Umin)ﬂ .
Proof. WLOG, we consider the case b=0, if b>0, and there are
predator interference effects, then the propensity to blow-up is in-

creased, see Theorem 3.3 [26]. We consider the following func-
tion,

pOt
173,

Standard estimates upon taking o =1,

d_ Bws Wy B2 whu
dtd)_[CJr(erdz_erdg)}} ® +’3[8_iu2+d1]¢'

O(t) = oa>06>0.

Suppose that d, > ds, we choose 8 > %%’ as this yields
wad, wyfv+d,
B>—-"->— .
w3 d3 w3 \ V+ d3
On the other hand if d3>d,, we choose 8 > ﬂ—;‘%, as this
yields
Wy d3

B>

Wy Wy v+d;
W3d2>W3 U+d3 ’

In either case, an appropriate choice of 8 yields,
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Thus we have finite time blow-up for any data large or small,
as long as,
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2.3. Alternate proof for finite time blow-up

Theorem 2.3. Consider the three species food chain model (1)-(3),
and any 0 <681 <c. Even if ¢ < %, p will blow-up in finite time for
any data large or small as long as the data meets the following suffi-

ciency requirement,

Vo 8+% Wy
poln<w4 —d3>> 81 ,U0>m—d3.
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Proof. We consider (1)-(3). Note that via simple comparison

dv = —5v+w2<,$) —w3<L) > —8v—w3<y).
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Thus
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Now consider ¢ < % then ¢ < ‘3’—;‘. In order for p to blow-up in

finite time it suffices for
Wi 8 -0 (11)

T v+ds

c

fort e [0, ﬁ] This follows via simple comparison with,

d
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In order for (11) to hold we use (10) to yield,
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Now if t > 61170’ blow-up is ensured.
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Thus if we choose the initial data s.t.,

1 In Yo t> 1
> >
S+ o3 —ds 81po
we have the following sufficient condition for finite time blow-up
of p,

Vo s+
poln<w4 d3)> 5

—&

(15)

O

Remark 1. Theorem 3 in [12] is also incorrect. Therein, via equa-
tions (3.16), (3.17) and (3.19) the state variables u, v are required
to be bounded. In order to prove a global result, one cannot bound
the state variables in the first place - rather one needs to prove
these bounds, from the enforced parametric restrictions. In par-
ticular, (3.19) in [12] enforces v < % —ds3. As we have pointed
out in Theorem 2.1, this trivially causes p to decay to 0. This
would not occur if vg> >1, which would cause p to blow-up
in finite time. Thus there is no global asymptotic stability for

(1)-(3).
3. Numerical simulations

We consider the following parameter set,

ap = 0.55,a; =0.04,d; =8.7,d, =3,d3 =4,¢=0.05,i = 0.001,
b=0.025,w; =0.6,w, =025, w3 =0.7, wy = 11.7,5 = 0.1.

(16)

We choose the following initial condition [1, 5, 5]. It can easily be
seen via Theorem 1.1, this IC lies in the claimed invariant set A.
We check this next,

ws = 11.7 > 11.6970 = cn, u(t) = 1 < % — 13.75,
1

dg a(z)

0 < S51(t) =13 <486.4063 = — + —,

=50 - ai + 45a?
[¢1)) (1% M

0 <S,(t)=263581<13212= — + —5 + .

=50 - a1+48a%+8
The above calculations show that, the IC [1, 5, 5] is in A.

We consider another parameter set,

ap=0.7,a¢ =082,d, =10,d, =10,d3 =13,c=1.2,i=0.1,
b=0.024, w; =0.06, w, = 0.5, w3 = 0.2, ws = 20,6 = 0.1,

(18)

with different ICs [0.1, 0.1, 0.1], [0.85, 15.18, 282.3] and

[0.853658536585366, 18, 282.3].

Simple calculations as in (17) show that the ICs [0.1, 0.1, 0.1]
and

[0.85, 15.18, 282.3] are in A but [0.853658536585366, 18,
282.3] is not.

4. Conclusion

In the current manuscript we show finite time blow-up in (1)-
(3). Thus the claimed invariant globally attracting set for (1)-(3),
A, as constructed in [12], is not globally attracting. It is invariant,
only to contain boundary equilibrium or closed loops in the v — p.
We caution against trying to prove global boundedness results in
systems, where the top predator is modeled using the modified
Leslie-Gower scheme. A much more promising research direction
for such systems is the restriction of initial data that will lead
to globally existing solutions, or damping mechanisms that would

yield the same, such as [27]. Furthermore, the construction of an
invariant set that could contain feasible interior equilibrium solu-
tions, remains an open challenge for the type of system considered
here, or three species models where the top predator is modeled
via the modified Leslie-Gower scheme in general, in both the ODE
or PDE cases.

Acknowledgments

The authors Said Kouachi and Rana D. Parshad gratefully ac-
knowledge Qassim University, represented by the Deanship of Sci-
entific Research, on the material support for this research un-
der the number (1327-cos-2016-1-12-1 ) during the two academic
years 1438-1440 AH | 2017-2019 AD.

Rana D. Parshad and Eric Takyi also acknowledge valuable par-
tial support from the National Science Foundation via awards DMS-
1715377 and DMS-1839993.

References

[1] Aziz-Alaoui MA. Study of a leslie-gower type tri-trophic population model.
Chaos Solitons Fractals 2002;14(8):1275-93.

[2] Letellier C, Aziz-Alaoui MA. Analysis of the dynamics of a realistic ecological
model. Chaos Solitons Fractals 2002;13:95-107.

[3] Leslie PH. Some further notes on the use of matricies in population mathe-
matics. Biometrika 1948;35:213-45.

[4] Kumari N. Pattern formation in spatially extended tritrophic food chain model
systems: generalist versus specialist top predator. ISRN Biomath 2013;2013. Ar-
ticle ID 198185.

[5] Parshad RD, Upadhyay RK. Investigation of long time dynamics of a diffusive
three species aquatic model. Dyn Partial Differ Equ 2010;7(3):217-44.

[6] Parshad RD, Abderrahmanne H, Upadhyay RK, Kumari N. Finite time blowup in
a realistic food chain model. ISRN Biomath 2013;2013. Article ID 424062.

[7] Parshad RD, Kumari N, Kouachi S. A remark on “study of a leslie-gower-
type tritrophic population model” [chaos. soliton. fract. 14 (2002) 1275-1293].
Chaos Soliton Fractals 2015;71(2):22-8.

[8] Upadhyay RK, Iyengar SRK, Rai V. Chaos: an ecological reality? Int ] Bifurc
Chaos 1998;8:1325-33.

[9] Upadhyay RK, Rai V. Why chaos is rarely observed in natural populations?
Chaos Solitons Fractals 1997;8(12):1933-9.

[10] Upadhyay RK, Iyengar SRK, Rai V. Stability and complexity in ecological sys-
tems. Chaos Solitons Fractals 2000;11:533-42.

[11] Upadhyay RK, Iyengar SRK, Rai V. Chaos: an ecological reality? Int ] Comput
Math 2010;87:199-214.

[12] Mishra P, Raw SN, Tiwari B. Study of a Leslie-Gower predator-prey model
with prey defense and mutual interference of predators. Chaos Solitons Frac-
tals 2019;120:1-16.

[13] Perko L. Differential equations and dynamical systems (vol. 7). Springer Science
& Business Media; 2013.

[14] Parshad RD, Kumari N, Kasimov AR, Abderrahmane HA. Turing patterns and
long time behavior in a three-species model. Math Biosci 2014;254:83-102.

[15] Upadhyay RK, Naji RK, Kumari N. Dynamical complexity in some ecological
models: effects of toxin production by phytoplanktons. Nonlinear Anal Model
Control 2007;12(1):123-38.

[16] Upadhyay RK, Iyengar SRK. Effect of seasonality on the dynamics of 2
and 3 species prey-predator systems. Nonlinear Anal Real World Appl
2005;6:509-30.

[17] Gakkhar S, Singh B. Complex dynamic behavior in a food web consisting of
two preys and a predator. Chaos Solitons Fractals 2005;24:789-801.

[18] Parshad RD, Basheer A. A note on “periodic solutions of a three-species food
chain model” [applied math e-notes, 9 (2009), 47-54]. Appl Math E-Notes
2016;16:45-55. May 2016.

[19] Parshad RD, Kouachi S, Kumari N. A comment on “mathematical study of
a Leslie-Gower type tritrophic population model in a polluted environment”
[modeling in earth systems and environment 2 (2016) 1-11.]. Model Earth Syst
Environ 2016;2(2):1-5.

[20] Parshad RD, Kouachi S, Gutierrez ]. Global existence and asymptotic behavior
of a model for biological control of invasive species via supermale introduc-
tion. Commun Math Sci 2013;11(4):23-44.

[21] Parshad RD, Bhowmick S, Quansah E, Upadhyay RK, Agrawal R. Finite time
blow up in a population model with competitive interference and time delay.
Int ] Simul Nonlinear Sci 2017;18(5):435-50.

[22] Parshad RD, Basheer A, Jana D, Tripathi JP. Do prey handling predators really
matter: subtle effects of a crowley-martin functional response. Chaos Solitons
Fractals 2017;103:410-21.

[23] Parshad RD, Upadhyay RK, Mishra S, Tiwari S, Sharma S. On the explosive in-
stability in a three species food chain model with modified holling type IV
functional response. Math Methods Appl Sci 2017;40(16):5707-26.



R.D. Parshad, E.M. Takyi and S. Kouachi/Chaos, Solitons and Fractals 123 (2019) 201-205 205

[24] Upadhyay RK, Sharma S, Parshad RD, Basheer A, Lyu J. An investigation of an
explosive food chain model with interference and inhibitory effects. IMA ] Appl
Math 2017;82(6):1209-37.

[25] Parshad R.D., Yao G., Li W. Another mechanism to control invasive species and
population explosion: “ecological” damping continued. Differential Equations
and Dynamical Systems, Appeared Online November 16" 2017, https://doi.org/
10.1007/s12591-017-0402-6.

[26] Parshad RD, Bhowmick S, Quansah E, Basheer A, Upadhyay RK. Predator inter-
ference effects on biological control: the “paradox” of the generalist predator
revisited. Commun Nonlinear Sci Numer Simul 2016;39:169-84.

[27] Parshad RD, Qansah E, Black K, Beauregard M. Biological control via “ecolog-
ical” damping: an approach that attenuates non-target effects. Math Biosci
2016;273:23-44.



