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a b s t r a c t 
In Mishra et al. (2019, [12]) a classical three-species modified Leslie-Gower system is considered, with 
mutual interference and prey-defense. The existence of a globally attracting invariant set is established for 
the system, under certain parametric restrictions. We show that the claimed invariant set is not globally 
attracting, and that finite time blow-up can occur for sufficiently large or small initial data. We further 
show that the invariant set cannot contain any interior equilibrium. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 
1.1. Background 

In [12] the following three species food chain ODE model is pro- 
posed, 
du 
dt = a 0 u − a 1 u 2 − w 1 ! u v 

iu 2 + d 1 
"
, (1) 

dv 
dt = − δv + w 2 ! u v 

iu 2 + d 1 
"
− w 3 ! v p 

v + bp + d 2 
"
, (2) 

dp 
dt = cp 2 − w 4 p 2 

v + d 3 . (3) 
This model is based on a modified Leslie-Gower formulation [3] , 

and considers the interactions between a generalist top predator 
p , depredating on a specialist middle predator v , that in turn is 
depredating on a prey u , where ( u, v, p ) are solutions to the above 
system (1) –(3) . Similar models have generated a plethora of past 
and current research interest [1,2,4–6,10,14–26] . Also see [7,8,11,27] . 
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The novelties in the current model are that the prey u is equipped 
with defense ability, via a Monod-Haldane functional response for 
the interaction between prey u and middle predator v . The middle 
predator v serves as favorite food for top predator p , modeled fol- 
lowing a Beddington-DeAngelis functional response. The dynamics 
of the top predator are modeled via a modified Leslie-Gower for- 
mulation [3,9] . For a detailed description of the modeling formula- 
tion the reader is referred to Mishra et al. [12] . 
1.2. Past results 

In [12] various theorems on the boundedness of the system (1) –
(3) are proved, and the existence of an invariant globally attracting 
set is established. In particular, we recall the following result from 
[12] , 
Theorem 1.1. If condition w 4 >  c η holds and set 
# = #u (t) , v (t) , p(t) : u (t) ≤ a 0 

a 1 , 0 ≤ S 1 (t) ≤ a 0 
a 1 + a 2 0 

4 δa 2 1 , 0 
≤ S 2 (t) ≤ a 0 

a 1 + a 2 0 
4 δa 2 1 + M 

δ

$
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Fig. 1. (a) Simulation with parameters in (16) starting from the IC = [1 , 5 , 5] ∈ #. We see a [ u ∗ , v ∗ , 0] equilibrium. (b) Simulation with parameters in (18) starting from 
the IC = [0 . 1 , 0 . 1 , 0 . 1] ∈ #. We see a [ u ∗ , 0, 0] equilibrium. (c) Simulation with parameters in (18) starting from the IC = [0 . 85 , 15 . 18 , 282 . 3] ∈ #. Again we see a [ u ∗ , 0, 0] 
equilibrium (d) Simulation with parameters in (18) starting from the IC = [0 . 853658536585366 , 18 , 282 . 3] / ∈ #, blows up at time t ≈ 0.028. 

is positively invariant set and attracts all solutions initiating in the 
interior of positive octant, then all the positive solutions of the system 
(1) –(3) are uniformly bounded, where η = a 0 w 1 

a 1 w 2 + a 2 0 w 2 
4 δa 2 1 w 1 + d 3 and 

M = 1 
4(w 4 − cη) . Moreover, the system (1) –(3) , is dissipative in R 3 + . 

We note that S 1 (t) = u (t ) + w 1 
w 2 v (t ) , S 2 (t ) = u (t ) + w 1 

w 2 v (t ) + 
αp(t) and α = 1 

ηa 2 1 . 
Thus the authors in [12] claim, 

• # is positively invariant. 
• # is attracting. That is all solutions initiating in R 3 + of (1) –(3) 

are uniformly bounded and eventually enter #. 
• System (1) –(3) is dissipative. 

In the current manuscript we show, 

• # is not attracting. In particular for various initial data in R 3 + , 
finite time blow-up occurs. Thus system (1) –(3) is not dissipa- 
tive. These are shown via Theorems 2.2 and 2.3 and Fig. 1 . 

• # is invariant only for boundary equilibrium. That is # as con- 
structed, cannot contain a feasible interior equilibrium ( u ∗, v ∗, 
p ∗). This is shown via Theorem 2.1 . 

2. The invariant set and finite time blow-up 
2.1. No interior equilibrium in #
Theorem 2.1. Consider the three species food chain model (1) –(3) , 
and # as defined in Theorem 1.1 . For ∀ ( u 0 , v 0 , p 0 ) ∈ #, p goes extinct 
eventually, and the only dynamics are boundary equilibrium [ u ∗, 0, 
0], [ u ∗, v ∗, 0] or a closed loop in the v − p plane. 
Proof. From the form of # we see that we require, 
w 1 
w 2 v 0 ≤ S 1 (t) ≤ a 0 

a 1 + a 2 0 
4 δa 2 1 . (4) 
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Standard estimates (see [12] ) show 
lim 
t→∞ max (v (t)) ≤ w 2 a 0 

w 1 a 1 + w 2 (a 0 ) 2 
4 w 1 δ(a 1 ) 2 . (5) 

Note, the upper bound for v is as above, and not w 1 a 0 
w 2 a 1 + 

w 2 (a 0 ) 2 
4 w 1 δ(a 1 ) 2 , as claimed in [12] . The bound in [12] is the result of a 
simple algebraic error, as is apparent from equation (3.2) in [12] . 

Furthermore, the parametric restriction as required for # is 
c <  w 4 

η
= w 4 

w 2 a 0 
w 1 a 1 + w 2 (a 0 ) 2 

4 w 1 δ(a 1 ) 2 + d 3 . (6) 
This implies, 

v ≤ max (v (t)) ≤ w 2 a 0 
w 1 a 1 + w 2 (a 0 ) 2 

4 w 1 δ(a 1 ) 2 <  w 4 
c − d 3 (7) 

while 
v 0 ≤ w 2 a 0 

w 1 a 1 + w 2 (a 0 ) 2 
4 w 1 δ(a 1 ) 2 <  w 4 

c − d 3 . (8) 
Thus, via (7) - (8) the coefficient of p 2 in (3) , !c − w 4 

v + d 3 " is 
enforced to be negative initially and subsequently for all time, 
and so the only dynamics possible for p , via the restrictions of 
Theorem 1.1 , is that p → 0 eventually. This reduces (1) –(3) to a 2- 
species subsystem in u, v only. Standard theory [13] yields that the 
only dynamics are [ u ∗, 0, 0], [ u ∗, v ∗, 0] or a closed loop in the v − p
plane. !

2.2. Finite time blow-up 
We state the following theorem, 

Theorem 2.2. Consider the three species food chain model (1) –(3) , 
and any set of parameters under which there exists a feasible inte- 
rior equilibrium. Even if c <  w 4 

η , p will blow-up in finite time for any 
data large or small as long as the data meets the following sufficiency 
requirement 
(p 0 ) 1 β
( v 0 ) >  

% 
β
&

w 2 a 1 
a 1 d 1 − δ

'

c(v min ) β
( 1 

β

. 
Proof. WLOG, we consider the case b = 0 , if b >  0, and there are 
predator interference effects, then the propensity to blow-up is in- 
creased, see Theorem 3.3 [26] . We consider the following func- 
tion, 
&(t) = p α

v β , α >  0 , β >  0 . 
Standard estimates upon taking α = 1 , 

d 
dt & = )c + * βw 3 

v + d 2 − w 4 
v + d 3 

+,
v β&2 + β- δ − w 2 u 

iu 2 + d 1 
. 
&. 

Suppose that d 2 >  d 3 , we choose β >  w 4 
w 3 D 2 

D 3 , as this yields 
β >  w 4 

w 3 d 2 d 3 >  w 4 
w 3 
*

v + d 2 
v + d 3 

+
. 

On the other hand if d 3 >  d 2 , we choose β >  w 4 
w 3 d 3 

d 2 , as this 
yields 
β >  w 4 

w 3 d 3 d 2 >  w 4 
w 3 
*

v + d 2 
v + d 3 

+
. 

In either case, an appropriate choice of β yields, 
*

βw 3 
v + d 2 − w 4 

v + d 3 
+
>  0 . 

Note from feasibility δ <  w 2 u ∗
i (u ∗) 2 + d 1 , see [12] . Thus, since u is 

bounded by a 0 
a 1 , standard estimates yield, 

δ <  w 2 u ∗
i (u ∗) 2 + d 1 <  w 2 u ∗

d 1 <  w 2 a 0 
a 1 d 1 . 

Thus by choosing β appropriately we have 
d 
dt & ≥ cv β&2 + β- δ − w 2 u 

iu 2 + d 1 
. 
& >  cv β&2 − β

!
w 2 a 0 
a 1 d 1 − δ

"
&. 

This yields 
d 
dt & >  c(v min ) β&2 − β

!
w 2 a 0 
a 1 d 1 − δ

"
&. 

Thus we have finite time blow-up for any data large or small, 
as long as, 
&(0) >  β

!
w 2 a 0 
a 1 d 1 − δ

"

c(v min ) β . 
!

2.3. Alternate proof for finite time blow-up 
Theorem 2.3. Consider the three species food chain model (1) –(3) , 
and any 0 <  δ1 <  c. Even if c <  w 4 

η , p will blow-up in finite time for 
any data large or small as long as the data meets the following suffi- 
ciency requirement, 
p 0 ln * v 0 

w 4 
c− δ1 − d 3 

+
>  δ + w 3 

b 
δ1 , v 0 >  w 4 

c − δ1 − d 3 . 
Proof. We consider (1) –(3) . Note that via simple comparison 
dv 
dt = − δv + w 2 ! u v 

iu 2 + d 1 
"
− w 3 ! v p 

v + bp + d 2 
"
≥ − δv − w 3 !v 

b 
"
. 

(9) 
Thus 

v ≥ v 0 e −
*

δ+ w 3 
b +t 

. (10) 
Now consider c <  w 4 

η , then c <  w 4 
d 3 . In order for p to blow-up in 

finite time it suffices for 
c − w 4 

v + d 3 >  δ1 >  0 (11) 
for t ∈ - 0 , 1 

δ1 p 0 . . This follows via simple comparison with, 
dp 
dt = δ1 p 2 , p(0) = p 0 . (12) 

In order for (11) to hold we use (10) to yield, 
v ≥ v 0 e −

*
δ+ w 3 

b +t 
>  w 4 

c − δ1 − d 3 >  w 4 
c − d 3 >  0 , (13) 

which implies 
1 

δ + w 3 
b ln * v 0 

w 4 
c− δ1 − d 3 

+
>  t. (14) 

Now if t >  1 
δ1 p 0 , blow-up is ensured. 



204 R.D. Parshad, E.M. Takyi and S. Kouachi / Chaos, Solitons and Fractals 123 (2019) 201–205 
Thus if we choose the initial data s.t., 
1 

δ + w 3 
b ln * v 0 

w 4 
c− δ1 − d 3 

+
>  t >  1 

δ1 p 0 , 
we have the following sufficient condition for finite time blow-up 
of p , 
p 0 ln * v 0 

w 4 
c− δ1 − d 3 

+
>  δ + w 3 

b 
δ1 . (15) 

!

Remark 1. Theorem 3 in [12] is also incorrect. Therein, via equa- 
tions (3.16), (3.17) and (3.19) the state variables u, v are required 
to be bounded. In order to prove a global result, one cannot bound 
the state variables in the first place - rather one needs to prove 
these bounds, from the enforced parametric restrictions. In par- 
ticular, (3.19) in [12] enforces v ≤ w 4 

c − d 3 . As we have pointed 
out in Theorem 2.1 , this trivially causes p to decay to 0. This 
would not occur if v 0 >  >  1, which would cause p to blow-up 
in finite time. Thus there is no global asymptotic stability for 
(1) –(3) . 
3. Numerical simulations 

We consider the following parameter set, 
#

a 0 = 0 . 55 , a 1 = 0 . 04 , d 1 = 8 . 7 , d 2 = 3 , d 3 = 4 , c = 0 . 05 , i = 0 . 001 , 
b = 0 . 025 , w 1 = 0 . 6 , w 2 = 0 . 25 , w 3 = 0 . 7 , w 4 = 11 . 7 , δ = 0 . 1 . 

(16) 
We choose the following initial condition [1, 5, 5]. It can easily be 
seen via Theorem 1.1 , this IC lies in the claimed invariant set #. 
We check this next, 
w 4 = 11 . 7 >  11 . 6970 = cη, u (t) = 1 ≤ a 0 

a 1 = 13 . 75 , 
0 ≤ S 1 (t) = 13 ≤ 486 . 4063 = a 0 

a 1 + a 2 0 
4 δa 2 1 , 

0 ≤ S 2 (t) = 26 . 3581 ≤ 1321 . 2 = a 0 
a 1 + a 2 0 

4 δa 2 1 + M 
δ
. (17) 

The above calculations show that, the IC [1, 5, 5] is in #. 
We consider another parameter set, 

#
a 0 = 0 . 7 , a 1 = 0 . 82 , d 1 = 10 , d 2 = 10 , d 3 = 1 . 3 , c = 1 . 2 , i = 0 . 1 , 
b = 0 . 024 , w 1 = 0 . 06 , w 2 = 0 . 5 , w 3 = 0 . 2 , w 4 = 20 , δ = 0 . 1 , 

(18) 
with different ICs [0.1, 0.1, 0.1], [0.85, 15.18, 282.3] and 

[0.853658536585366, 18, 282.3]. 
Simple calculations as in (17) show that the ICs [0.1, 0.1, 0.1] 

and 
[0.85, 15.18, 282.3] are in # but [0.853658536585366, 18, 

282.3] is not . 
4. Conclusion 

In the current manuscript we show finite time blow-up in (1) –
(3) . Thus the claimed invariant globally attracting set for (1) –(3) , 
#, as constructed in [12] , is not globally attracting. It is invariant, 
only to contain boundary equilibrium or closed loops in the v − p. 
We caution against trying to prove global boundedness results in 
systems, where the top predator is modeled using the modified 
Leslie-Gower scheme. A much more promising research direction 
for such systems is the restriction of initial data that will lead 
to globally existing solutions, or damping mechanisms that would 

yield the same, such as [27] . Furthermore, the construction of an 
invariant set that could contain feasible interior equilibrium solu- 
tions, remains an open challenge for the type of system considered 
here, or three species models where the top predator is modeled 
via the modified Leslie-Gower scheme in general, in both the ODE 
or PDE cases. 
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