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Tuning-Free, Low Memory Robust Estimator to
Mitigate GPS Spoofing Attacks

Junhwan Lee, Ahmad F. Taha , Nikolaos Gatsis , and David Akopian

Abstract—The operation of critical infrastructures, such
as the electrical power grid, cellphone towers, and financial
institutions relies on precise timing provided by station-
ary global positioning system (GPS) receivers. These GPS
devices are vulnerable to a type of spoofing called time syn-
chronization attack (TSA), whose objective is to maliciously
alter the timing provided by the GPS receiver. The objec-
tive of this letter is to design a tuning-free, low memory
robust estimator to mitigate such spoofing attacks. The
contribution is that the proposed method dispenses with
several limitations found in the existing state-of-the-art
methods in the literature that require parameter tuning,
availability of the statistical distributions of noise, real-
time optimization, or heavy computations. Specifically, we:
1) utilize an observer design for linear systems under
unknown inputs; 2) adjust it to include a state-correction
algorithm; 3) design a realistic experimental setup with real
GPS data and sensible spoofing attacks; and 4) showcase
how the proposed tuning-free, low memory robust estima-
tor can combat TSAs. Numerical tests with real GPS data
demonstrate that accurate time can be provided to the user
under various attack conditions.

Index Terms—Robust state estimation, observer design,
GPS spoofing, time synchronization attacks, low memory
estimation.

I. INTRODUCTION AND MOTIVATION

T
HE GLOBAL Positioning System (GPS) is widely uti-

lized in an abundance of applications. The study [1] in

particular emphasizes how critical infrastructures such as com-

munications, the power grid, transportation, and even financial

services can be disrupted if the integrity of the GPS is

compromised.

Since most systems rely on non-encrypted civilian GPS

signals [2], the GPS is vulnerable to intentional attacks.

There are two types of deliberate attacks on GPS: jamming

and spoofing [3]. While jamming completely blocks signal

reception by transmitting high power noise, spoofing changes

the transmitted signal or data to deceive the GPS receiver.
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Various experiments have shown that different types of spoof-

ing attacks such as data level spoofing, signal level spoofing,

delaying, and record-and-reply attacks [4]–[6] could affect

off-the-shelf GPS receivers.

A Time Synchronization Attack (TSA) is a particular class

of spoofing attacks on stationary GPS receivers that pro-

vide precise timing in various applications, including phasor

measurement units (PMUs), cellphone towers, and financial

institutions [7], [8]. The objective of the attack is to mislead

the time estimated by the receiver which, in the case of the

power grid for example, can disrupt the reliable monitoring of

the grid’s cyber-physical status.

Countermeasures against spoofing attacks have been

proposed in [9]–[11] and include techniques that rely on

multiple GPS receivers [12], [13] or check the magnitude of

error in the GPS data [9]; see [5] for a review of anti-spoofing

techniques. Another approach to mitigate and detect spoofing

TSAs is through robust, dynamic state estimation routines that

are designed to deal with outliers and malicious attacks.

The robust state estimation literature is indeed rich with

two main classes of methods. The first class is based on

robust observers and Lyapunov theory which often does

not assume any statistical distribution for unknown inputs

or noise [14], [15]. The second class is based on Kalman

filter and its derivatives, that often assume statistical distri-

bution of noise [16]–[18]. Relevant to the robust estimation

problem under TSAs, a novel anti-spoofing particle filter is

devised to find the receiver position even under spoofing

interference [10]. In our recent work [11], we develop a

real-time optimization method to detect and mitigate TSAs

using weighted ℓ1 minimization. The aforementioned meth-

ods all require either tuning of some parameters, real-time

optimization, or availability of the statistical distribution of

noise.

The objective of this letter is to design a robust state estima-

tor that combats TSAs while being endowed with the following

properties: (i) It is a tuning-free method that does not require

any training; (ii) it has low memory requirement in the sense

no heavy computations are needed in real-time; and (iii) the

designed tuning-free, low-memory robust estimator can cor-

rectly reconstruct the actual physical state of the receiver using

a realistic testbed. We note here that our objective is not to

develop a generalized theory for robust estimation, but rather

to build on the recent theoretical advancement in this field

and adapt it to the GPS spoofing problem through a realistic

testbed. The robust state estimation method presented in this

letter is an adaptation of the method in [19]. The motivation
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for using this estimator is provided in great detail in the next

sections; this letter’s organization is given next.

Section II presents the dynamic modeling of bias and drift

in GPS receivers and showcases how TSA attacks can be

modeled and designed to mislead standard state estimators.

Section III presents a robust state estimator in addition to a

state correction and TSA reconstruction routine. Section IV

concludes this letter with realistic numerical tests on real GPS

data. For reproducibility, the data used in the numerical tests

and the results are all provided through a Github link.

II. DYNAMIC MODELING UNDER GPS SPOOFING

The primary goal of GPS localization is to accurately esti-

mate the position, velocity, clock bias, and clock drift of the

receiver in every time step—conventionally referred to as the

position, velocity, and time (PVT) solution.

The position of the GPS receiver (user) in Earth Centered

Earth Fixed coordinates is denoted by pu = [xu, yu, zu]⊤. To

estimate the receiver’s location and velocity, the GPS exploits

the known location of satellites and the distance from each

satellite to the receiver. Let N denote the number of fixed satel-

lites visible by the receiver, then pn = [xn(tn), yn(tn), zn(tn)]
⊤

for n = 1, 2, . . . , N is the satellite position at the time of

transmission tn. Also, we consider that tR models the arrival

time of transmitted signal at the receiver. The approximate

distance between each satellite and the receiver can be writ-

ten as ρn = c(tR − tn), where c is the speed of light and

ρn is commonly known as the pseudorange [20]. The pseu-

doranges differ from the true distances because tR and tn are

offset by clock biases denoted by bu and bn. This relationship

is established as

tR = tGPS
R + bu, tn = tGPS

n + bn (1)

where tGPS
R defines the reception time in the absolute GPS

time, while tGPS
n is the signal transmission time in GPS time.

Then, if dn represents the true distance from the receiver to

each satellite, it holds that dn = c(tGPS
R − tGPS

n ) using the unbi-

ased transmission and reception times. Alternatively, dn can be

expressed by taking the 2-norm of position difference between

the satellite and the receiver, given by dn = ||pn − pu||2. The

following pseudorange equation is generated by combining the

previous two equations for dn [20]

ρn = ‖pn − pu‖2 + c(bu − bn) + ǫρn (2)

where ǫρn captures atmospheric effects and receiver noise.

In addition to the pseudoranges, the GPS receiver can also

measure the rate at which the pseudoranges vary over time,

denoted by ρ̇n, and called pseudorange rate. The pseudorange

rates are expressed in terms of the satellite velocities vn and

the user (GPS receiver) velocity vu as

ρ̇n = (vn − vu)
⊤ pn − pu

‖pn − pu‖
+ ḃu + ǫρ̇n (3)

where ḃu represents the GPS receiver clock drift and ǫρ̇n is

the noise. In (2) and (3), the unknown PVT variables ()user

position (pu), user velocity (vu), clock bias (bu), and clock

drift (ḃu)] are usually computed using nonlinear weighted least

squares.

The random walk model captures the dynamics relating

variables in (2) and (3) for stationary applications [20]. The

following is the stationary random walk model:
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+ w[k] (4)

where k is the time index; �t is the time resolution; and w is

noise in the system. Generally, stand-alone receivers like those

present in PMUs, use the Extended Kalman Filter (EKF) to

estimate the PVT solution [20].

Since the receiver is stationary, the position (pu) can be

treated as known constant while the receiver velocity (vu)

is known to be zero. Thus, the only variables to be esti-

mated are in fact the clock bias and drift, bu[k] and ḃu[k].

Based on (2), (3) and the dynamic model in (4), the funda-

mental plant model is constructed as follows using ρ[k] =
[ρ1[k], . . . , ρN[k]]⊤ and ρ̇[k] = [ρ̇1[k], . . . , ρ̇N[k]]⊤:

[

cbu[k + 1]

cḃu[k + 1]

]

= A

[
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]

+ w[k] (5)
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and w[k] and ǫ[k] represent process/measurement noise; vec-

tor cl[k] is based on the known satellite position, velocity

and clock characteristics—a time-varying, known quantity.

Equations (5) and (6) can be written as

x[k + 1] = Ax[k] + w[k]

y[k] = Cx[k] + cl[k] + ǫ[k]. (7)

The state space model (7), however, does not model poten-

tial spoofing attacks. While many different physical spoofing

mechanisms are devised to deceive the victim receiver [6],

time synchronization attack (TSA) is applied on the station-

ary GPS receiver. In practical sense, TSA alters the timestamp

estimate by inserting the spoofing signal into the authentic

pseudorange signals:

ρs[k] = ρ[k] + sρ[k], ρ̇s[k] = ρ̇[k] + sρ̇[k].

where sρ[k] and sρ̇[k] denote the spoofing attacks, and ρs[k]

and ρ̇s[k] are the spoofed measurements.

Specifically, there are two different types of TSAs according

to the shape of sρ . While Type I attack injects an abrupt signal,

e.g., sρ[k > α] = 8000 m where α indicates the initial time

of attack, Type II attack modifies the clock bias in gradual
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manner manipulated by sρ[k] = sρ[k − 1] + sρ̇[k]�t; see [21].

The actual effect of each type of attack on the clock state is

thoroughly reviewed in [22].

As an example, in order for the spoofing signal to be con-

sidered as intentional attack on a PMU, it has to satisfy

certain conditions. According to the IEEE C37.118 Standard,

the attack has to result in 1% total variation error, which is

equivalent to 26.65 µs clock bias error, or 7989 m of distance

equivalent bias error in order for the attack to be considered

infringing [23]. These types of spoofing attacks—regardless

of their physical mechanism—impact the state dynamics as

x[k + 1] = Ax[k] + d[k]

where d[k] = [d1[k] d2[k]]⊤ models and lumps TSAs and

any process noise. Concrete examples of TSAs are given in

Section III. In our previous work [11, Sec. III], we show how

specific forms of d[k] can mislead the receiver.

III. ROBUST STATE ESTIMATOR

In this section, we present a state estimation algorithm that

is endowed with the following properties: (i) It is a tuning-

free method that does not require any knowledge of noise

distribution, initial parameters or states, or other coefficients;

(ii) it has low memory requirements in the sense no heavy

computations are needed which is befitting to devices with

limited computational power and limited Internet connectivity;

(iii) it is robust to GPS spoofing, time-synchronization attacks.

A. GPS Clock Model and Estimator Dynamics

The plant model under the spoofing attack based on the

previous can be written as

x[k + 1] = Ax[k] + d[k]

y[k] = Cx[k] + cl[k] + ǫ[k] (8)

where x[k] ∈ R
2 represents the state vector of clock bias and

drift at time k; y[k] ∈ R
2N represents a single column vector

of pseudoranges and pseudorange rates where N indicates the

fixed number of visible satellites at every time index; d[k] ∈
R

2 is the unknown spoofing attack applied to the bias and drift

which also includes process noise; state-space matrices A, C,

cl are discussed in the previous section.

Consider now a new modified state vector xm[k] ∈ R
2 which

represents the state vector without spoofing attack and follows

the following dynamics:

xm[k + 1] = x[k + 1] − d[k] = Ax[k]. (9)

The left-hand side of (9) essentially represents the origi-

nal state vector considering that the spoofing attack d[k] is

removed. The modified state vector xm[k] propagates through

to y[k]. This yields:

xm[k + 1] = Axm[k] + Ad[k − 1]

y[k] = Cxm[k] + cl[k] + Cd[k − 1]. (10)

The presented state estimator in this letter is an adaptation of

the observer from [19] and follows the difference equation:

RobustEstimator

x̂m[k + 1] = Ax̂m[k] + Ad̂[k − 1] + L1(y[k] − ŷ[k])

ŷ[k] = Cx̂m[k] + cl[k] + Cd̂[k − 1]

e[k] = y[k] − ŷ[k]

d̂[k] = d̂[k − 1] + L2C⊤e[k] (11)

where x̂m[k] ∈ R
2 is a state estimate of corrected state vector

xm[k] at time k; ŷ[k] ∈ R
2N is the estimate vector of observa-

tion y[k]; d̂[k] is an estimate of the spoofing attack d[k]. We

note here that d̂[ − 1], x̂m[0], and ŷ[0] should be initialized

before iteration starts at k = 0 with arbitrary initial conditions.

Matrices L1 ∈ R
2×2N and L2 ∈ R

2×2 are optimization vari-

ables where L1 is akin, in principle, to a Luenberger gain that

is designed here to ensure robustness of the state estimation

to spoofing attacks.

B. Design of Robust Gains L1, 2

The design of the robust estimator gains L1,2 is based on

linear matrix inequalities (LMIs). Simply put, the objective

of the designed observer is to guarantee asymptotically stable

estimation error dynamics. That is, matrices L1 and L2 are

designed to guarantee that limk→∞ e[k] = 0 under non-zero

spoofing attack d[k] and bounded estimation error under spoof-

ing attacks. The ROBUSTESTIMATOR variables are designed

via solving this low-dimensional feasibility problem with one

linear matrix inequality (LMI), given as follows:

EstimatorDesign

find G ∈ R
2×2N, P ∈ R

2×2, Q ∈ R
2N×2N, M ∈ R

2×2

s.t.

⎡

⎢

⎢

⎣

P ⋆ ⋆ ⋆

0 Q ⋆ ⋆

GC − PA GC − PA P ⋆

MC⊤C MC⊤C − Q 0 Q

⎤

⎥

⎥

⎦

≻ 0 (12a)

{P, Q, M} = {P⊤, Q⊤, M⊤} ≻ 0, (12b)

where the symbol ⋆ is used to represent symmetric compo-

nents in symmetric block matrices. After solving (12) for

positive definite matrix variables P, Q, and M, and real matrix

variable G, the observer gains are computed as follows

L1 = P−1G, L2 = MQ−1. (13)

As mentioned earlier, the state estimator design is derived

from [19]; the reader is referred to that paper for the derivation

of the above LMIs. Note that no tuning is required to solve

ESTIMATORDESIGN, and this LMI can be solved analytically

via evaluating the Karush-Kuhn-Tucker conditions for feasibil-

ity [24]. Furthermore, any convex optimization toolbox or LMI

solver can be used to solve (12). These include MATLAB’s

LMI solver, CVX [25], and Yalmip [26].

We note the following. First, the necessary conditions for

existence of L1,2 are standard. These conditions are (a) the

detectability of (A, C); (b) the classical rank matching condi-

tion stating that rank(CBd) = rank(Bd) where Bd = I2 is the

matrix coefficient of d[k] in (8); and (c) bounded variations of

the unknown spoofing signal d[k]. Second, this robust estima-

tor not only estimates x[k], but also the spoofing attack d[k].

This is instrumental in mitigating and correcting the attack.

The next section showcases the design of the gain matrices.

C. State Correction Algorithm Under Spoofing

Upon solving the LMIs and running the

ROBUSTESTIMATOR from any arbitrary initial condi-

tions, the estimator is guaranteed theoretically to produce
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Algorithm 1: Robust Bias and Drift Estimation

1 input: Number of satellites N, matrices A and C

2 initialize: d̂[−1], x̂m[0], ŷ[0]

3 Offline Computations

4 Compute G, P, Q, M given A and C by solving (12)

5 Obtain L1 and L2 from (13)

6 Online Computations

7 while k ≥ 0 do

8 Obtain cl[k] from satellite measurements

9 Run (11) and obtain x̂m[k + 1] and d̂[k]

10 Perform spoofing attack correction (15)

11 Perform state and output correction (16)

12 k ← k + 1

13 output: Attack-free x̂c[k], TSA estimates d̂c[k]

bounded estimation error e[k], thereby estimating the then-

spoofed bias and drift, and reconstructing the spoofing attack

d̂[k]. With that in mind, this does not indicate that the bias

and drift are correctly estimated seeing that spoofing attack

had already changed the state through the state propagation

and difference equation. To that end, this section develops a

state correction algorithm to recover the authentic bias and

drift values in real-time.

To that end, the dynamics (9) can be written as

xm[k + 1] = Axm[k] + Ad[k − 1]

= A(Axm[k − 1] + Ad[k − 2]) + Ad[k − 1]. (14)

This relationship reveals that current spoofing during one

time instant comprises the cumulative attacks from the

previous time steps. Consequently, the disturbance estimate d̂

is not sufficient enough to correct the attacked states. Rather,

a new disturbance estimate vector dc is formulated to account

for the accumulated disturbances. Considering the estimate of

spoofing attacks d̂[k] =
[

d̂1[k] d̂2[k]
]⊤

computed by (11), we

propose estimating the new disturbance estimate vector dc via

d̂c[k] =

⎡

⎢

⎣

∑k
l=1 d̂1[l] +

∑k−1
l=1 (k − l)d̂2[l]

k−1
∑

l=1

d̂2[l]

⎤

⎥

⎦
(15)

This equation acknowledges the fact that estimated state xm

is still contaminated by the attack from the past time step.

Therefore, the corrected state xc and authentic observation

state yc could be retrieved by subtracting d̂c from xm and ŷ as

follows:

x̂c[k] = x̂m[k] − d̂c[k], ŷc[k] = ŷ[k] − Cd̂c[k] (16)

Algorithm 1 showcases the overall problem design, robust

state estimation, and the reconstruction of the corrected bias

and drift of the GPS receiver. The algorithm takes as inputs:

the fixed number of satellites N, A and C, and satellites data

which is encoded through cl[k]. The algorithm is divided

into two stages—an offline stage and an online one. In the

offline stage, the ROBUSTESTIMATOR gains L1 and L2 are

computed via solving (11) and evaluating (13). The online

stage includes running the ROBUSTESTIMATOR (11) and the

cumulative corrections for the states and spoofing attacks. The

TABLE I
VECTOR NOMENCLATURE

algorithm returns the attack-free, yet still slightly noisy esti-

mates of the bias and drift x̂c[k] and an estimate of the actual

spoofing attack d̂c[k].

It is noteworthy to mention the following. First, the offline

component of the algorithm—albeit offline—can be solved

analytically seeing that the problem dimension is very small,

when considering that only few satellite measurements are

needed. Second, the algorithm and the LMI feasibility problem

both only require a fixed number of satellites, rather than a

fixed satellite combination. This is important considering that

different satellites are visible each time. In short, the proposed

algorithm in this letter only assumes a minimum fixed num-

ber of satellites N, where these N satellites can be changing

in real time without impacting the algorithm or the design of

the robust estimator.

Third, Algorithm 1 works for any reasonable initial condi-

tions, that is, the estimation should converge regardless of the

initial conditions choice. Fourth, this method is truly tuning-

free: no prior knowledge of the statistical distribution of noise,

or prior knowledge or tuning of any parameters is needed. The

algorithm is also low-memory, as the only computation needed

to be performed online is running the ROBUSTESTIMATOR

and the correction models—both require a small number of

matrix-vector multiplications. This implies that the proposed

algorithm can be implemented in low-memory devices with-

out the need for any intensive computational effort or Internet

connectivity. Finally, we note that the proposed algorithm has

no stopping criterion seeing that it runs in real time.

IV. CASE STUDIES: A REALISTIC TESTBED

This section discusses the detection and mitigation of

TSAs via various approaches. First, the experimental pro-

cedure is discussed. Then, we compare the performance of

the extended Kalman filter (EKF)—which has long been

used in the literature [20] as a ground truth for esti-

mating the bias and drift—and the classical Luenberger

observer under spoofing attacks. Then, the performance of

the proposed robust estimator under TSAs is showcased, fol-

lowed by thorough comparison of the performance of the

approaches. The following link includes all codes and data

used to generate the results, including the acquired GPS da-

ta: github.com/junhwanlee95/Robust-Estimator.

Table I summarizes the important vector nomenclature.

A. Setup: Model Simulation & Obtaining Raw GPS Data

A Google Nexus 9 tablet, which has an embedded GPS

chipset, is used to collect real GPS signals, which are

recorded on November 4, 2018 at the University of Texas

at San Antonio main campus. The data are available for

the reader through the aforementioned Github link. While



LEE et al.: TUNING-FREE, LOW MEMORY ROBUST ESTIMATOR TO MITIGATE GPS SPOOFING ATTACKS 149

(a)

(b)

Fig. 1. Comparison of ground truth, EKF and Luenberger observer
estimates under Type I attack: (a) clock bias; (b) clock drift.

the receiver acquires the signal, the device remained still

to simulate the stationary scenario. Raw GPS data is post-

processed to obtain pseudorange and pseudorange rate data by

GNSS Logger, the Android application released by the Google

Android location team [27]. Then, Type I and II attacks are

injected into the pseudorange and pseudorange rate data to

simulate spoofing as discussed in Section II and shown in [11,

Sec. III]. The initial conditions for the robust estimator are

chosen to be different than the actual, ground truth conditions.

B. EKF and Luenberger Performances Under Attacks

Here, we are interested in testing whether the EKF and

the classical Luenberger observer [28] can withstand TSAs

of Type I and II. After Type I and II attacks are applied from

t = 30 s to t = 400 s, the performance of the EKF and

Luenberger observer—which does not assume any statistical

distribution about the noise—are shown in Fig. 1 and 2.

While the ground truth clock bias and drift, xGT, are

acquired through EKF by processing the authentic pseudor-

ange data, the xEKF bias and drift are generated by applying

the EKF to the spoofed pseudoranges. Another comparison to

xGT is offered by the Luenberger observer estimate xLuen pro-

duced after designing the observer gain L1 such that the closed

loop system eigenvalues are at 0.5 and 0.7. The performances

of EKF and Luenberger observer are shown respectively in

Fig. 1 and Fig. 2. It is evident that both approaches fail to

estimate the correct states in the presence of the attack.

C. Robust Estimator Performance Under Type I/II TSAs

In this section, we test the proposed robust estimator and

run Algorithm 1 which contains an offline stage and an online

one. First, we set N = 4, i.e., we choose to sample data from

only four satellites. We solve the LMIs (12) for the estima-

tor gains. Using these estimator gains, the online portion of

Algorithm 1 is run. Pertaining to Type I attack, Fig. 3 show-

cases the performance of ROBUSTESTIMATOR. Due to the

attack at t = 30 s, the x̂c clock estimates are initially not

correct, but the clock bias and drift approach the respective

ground truth values within approximately 3 and 11 seconds

(see Fig. 3(a) and 3(b) respectively).

Under the same condition and procedure, Algorithm 1 is

applied on Type II attack to detect and correct the spoofed

(a)

(b)

Fig. 2. Comparison of ground truth, EKF and Luenberger observer
estimates under Type II attack: (a) clock bias; (b) clock drift.

(a)

(b)

Fig. 3. Comparison of ground truth and corrected state through the
correction (16) under Type I attack: (a) clock bias; (b) clock drift.

states. The results of obtaining the corrected state x̂c are shown

in Fig. 4. In order to accurately depict the performance of

ROBUSTESTIMATOR, the relative estimation error is calcu-

lated as
|x̂c−xGT|

xGT
for each of the two states in x over time. The

resulting graphs are shown in Fig. 5. Comparison between x̂c

and the xGT reveals that the maximum error between the two

biases is 952.09 m or 3.17 µs. It is thus demonstrated that

the Robust Estimator of Algorithm 1 successfully detects and

corrects the Type II attack.

In the interest of gauging the performance of each approach,

the root mean square error (RMSE) of the estimated clock bias

is calculated under both attack types. Let K denote the total

length of observation time (K = 400 in this experiment). The

RMSE is defined as RMSE =

√

1
K

∑K−1
k=0 (cb̂u[k] − cb̌u[k])2

where cb̌u[k] is the ground truth clock bias under normal

conditions, and cb̂u[k] equals to the estimated clock bias

value from each approach. Under Type II attack, the RMSE

for EKF and the Luenberger observer are RMSEEKF =
74344 m and RMSELuenberger = 74433 m respectively,

while that of the robust estimator is RMSERobustEstimator =
354.9 m. As for Type I attack, the RMSEs are as fol-

lows: RMSEEKF = 8477.3 m, RMSELuenberger = 8104.9 m,

and RMSERobustEstimator = 1029 m. This illustrates the

performance of this tuning-free, low-memory robust estimator



150 IEEE CONTROL SYSTEMS LETTERS, VOL. 4, NO. 1, JANUARY 2020

(a)

(b)

Fig. 4. Comparison of ground truth and corrected state through the
correction (16) under Type II attack: (a) clock bias; (b) clock drift.

Fig. 5. Relative estimation error for clock bias and drift defined as:

RE1 =
|x̂c(1)−xGT(1)|

xGT(1)
, RE2 =

|x̂c(2)−xGT(2)|

xGT(2)
.

in detecting spoofing attacks, while correctly reconstructing

the bias and drift states of the GPS receiver.

V. PAPER SUMMARY AND FUTURE WORK

In this letter, the design and realistic application of a low-

memory, real-time ROBUSTESTIMATOR is studied. Utilizing

the GPS receiver on a Google Nexus 9, real GPS data are col-

lected and post-processed by injecting time-synchronization

attacks to spoof the clock bias and drift of the device. Two

types of attacks are introduced, and tested by the designed

estimator. The estimator successfully detects and estimates the

spoofing attacks on each state, and mitigates the spoofing on

both types of attack by furnishing the corrected clock states to

the user. Future work will focus on developing robust estima-

tors under spoofing attacks for non-stationary GPS receivers,

which involve nonlinearities in the GPS measurement model.
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