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Abstract—The operation of critical infrastructures, such
as the electrical power grid, cellphone towers, and financial
institutions relies on precise timing provided by station-
ary global positioning system (GPS) receivers. These GPS
devices are vulnerable to a type of spoofing called time syn-
chronization attack (TSA), whose objective is to maliciously
alter the timing provided by the GPS receiver. The objec-
tive of this letter is to design a tuning-free, low memory
robust estimator to mitigate such spoofing attacks. The
contribution is that the proposed method dispenses with
several limitations found in the existing state-of-the-art
methods in the literature that require parameter tuning,
availability of the statistical distributions of noise, real-
time optimization, or heavy computations. Specifically, we:
1) utilize an observer design for linear systems under
unknown inputs; 2) adjust it to include a state-correction
algorithm; 3) design a realistic experimental setup with real
GPS data and sensible spoofing attacks; and 4) showcase
how the proposed tuning-free, low memory robust estima-
tor can combat TSAs. Numerical tests with real GPS data
demonstrate that accurate time can be provided to the user
under various attack conditions.

Index Terms—Robust state estimation, observer design,
GPS spoofing, time synchronization attacks, low memory
estimation.

[. INTRODUCTION AND MOTIVATION

HE GLOBAL Positioning System (GPS) is widely uti-

lized in an abundance of applications. The study [1] in
particular emphasizes how critical infrastructures such as com-
munications, the power grid, transportation, and even financial
services can be disrupted if the integrity of the GPS is
compromised.

Since most systems rely on non-encrypted civilian GPS
signals [2], the GPS is vulnerable to intentional attacks.
There are two types of deliberate attacks on GPS: jamming
and spoofing [3]. While jamming completely blocks signal
reception by transmitting high power noise, spoofing changes
the transmitted signal or data to deceive the GPS receiver.
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Various experiments have shown that different types of spoof-
ing attacks such as data level spoofing, signal level spoofing,
delaying, and record-and-reply attacks [4]-[6] could affect
off-the-shelf GPS receivers.

A Time Synchronization Attack (TSA) is a particular class
of spoofing attacks on stationary GPS receivers that pro-
vide precise timing in various applications, including phasor
measurement units (PMUs), cellphone towers, and financial
institutions [7], [8]. The objective of the attack is to mislead
the time estimated by the receiver which, in the case of the
power grid for example, can disrupt the reliable monitoring of
the grid’s cyber-physical status.

Countermeasures against spoofing attacks have been
proposed in [9]-[11] and include techniques that rely on
multiple GPS receivers [12], [13] or check the magnitude of
error in the GPS data [9]; see [5] for a review of anti-spoofing
techniques. Another approach to mitigate and detect spoofing
TSAs is through robust, dynamic state estimation routines that
are designed to deal with outliers and malicious attacks.

The robust state estimation literature is indeed rich with
two main classes of methods. The first class is based on
robust observers and Lyapunov theory which often does
not assume any statistical distribution for unknown inputs
or noise [14], [15]. The second class is based on Kalman
filter and its derivatives, that often assume statistical distri-
bution of noise [16]-[18]. Relevant to the robust estimation
problem under TSAs, a novel anti-spoofing particle filter is
devised to find the receiver position even under spoofing
interference [10]. In our recent work [11], we develop a
real-time optimization method to detect and mitigate TSAs
using weighted ¢; minimization. The aforementioned meth-
ods all require either tuning of some parameters, real-time
optimization, or availability of the statistical distribution of
noise.

The objective of this letter is to design a robust state estima-
tor that combats TSAs while being endowed with the following
properties: (i) It is a tuning-free method that does not require
any training; (i) it has low memory requirement in the sense
no heavy computations are needed in real-time; and (iii) the
designed tuning-free, low-memory robust estimator can cor-
rectly reconstruct the actual physical state of the receiver using
a realistic testbed. We note here that our objective is not to
develop a generalized theory for robust estimation, but rather
to build on the recent theoretical advancement in this field
and adapt it to the GPS spoofing problem through a realistic
testbed. The robust state estimation method presented in this
letter is an adaptation of the method in [19]. The motivation

2475-1456 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



146

IEEE CONTROL SYSTEMS LETTERS, VOL. 4, NO. 1, JANUARY 2020

for using this estimator is provided in great detail in the next
sections; this letter’s organization is given next.

Section II presents the dynamic modeling of bias and drift
in GPS receivers and showcases how TSA attacks can be
modeled and designed to mislead standard state estimators.
Section III presents a robust state estimator in addition to a
state correction and TSA reconstruction routine. Section IV
concludes this letter with realistic numerical tests on real GPS
data. For reproducibility, the data used in the numerical tests
and the results are all provided through a Github link.

Il. DYNAMIC MODELING UNDER GPS SPOOFING

The primary goal of GPS localization is to accurately esti-
mate the position, velocity, clock bias, and clock drift of the
receiver in every time step—conventionally referred to as the
position, velocity, and time (PVT) solution.

The position of the GPS receiver (user) in Earth Centered
Earth Fixed coordinates is denoted by p, = [xu, Yu, za]". To
estimate the receiver’s location and velocity, the GPS exploits
the known location of satellites and the distance from each
satellite to the receiver. Let N denote the number of fixed satel-
lites visible by the receiver, then p, = [x,(t,), Yu(tn), Zn )17
for n = 1,2,...,N is the satellite position at the time of
transmission #,. Also, we consider that g models the arrival
time of transmitted signal at the receiver. The approximate
distance between each satellite and the receiver can be writ-
ten as p, = c(tg — t,), where c is the speed of light and
on is commonly known as the pseudorange [20]. The pseu-
doranges differ from the true distances because fz and ¢, are
offset by clock biases denoted by b, and b,,. This relationship
is established as

tR=15"" +bu, tn=17" +b, (1)

where tlg’PS defines the reception time in the absolute GPS
time, while ISPS is the signal transmission time in GPS time.
Then, if d, represents the true distance from the receiver to
each satellite, it holds that d,, = c(t3"S —1SS) using the unbi-
ased transmission and reception times. Alternatively, d,, can be
expressed by taking the 2-norm of position difference between
the satellite and the receiver, given by d,, = ||py — pul|2- The
following pseudorange equation is generated by combining the
previous two equations for d,, [20]

Pn = ”Pn _pu||2 +c(by — by) + €0, 2)

where €, captures atmospheric effects and receiver noise.

In addition to the pseudoranges, the GPS receiver can also
measure the rate at which the pseudoranges vary over time,
denoted by p,, and called pseudorange rate. The pseudorange
rates are expressed in terms of the satellite velocities v, and
the user (GPS receiver) velocity v, as

T Py — Dy

+ by + €, 3)
”pn _pu ”

Pn = Wp —vy)

where b, represents the GPS receiver clock drift and e, is
the noise. In (2) and (3), the unknown PVT variables ()user
position (p,), user velocity (vy), clock bias (b,), and clock
drift (b,)] are usually computed using nonlinear weighted least
squares.

The random walk model captures the dynamics relating
variables in (2) and (3) for stationary applications [20]. The
following is the stationary random walk model:

Xu [k + 1] xu[k]
Yulk + 1] Bxs)  O3x2 || yulk]
wlk+1] | = 0 1 Ar || zalk] | +wlk] ()
bulk + 1] 23001 bulk]
bulk + 1] | bylk]

where k is the time index; At is the time resolution; and w is
noise in the system. Generally, stand-alone receivers like those
present in PMUs, use the Extended Kalman Filter (EKF) to
estimate the PVT solution [20].

Since the receiver is stationary, the position (p,) can be
treated as known constant while the receiver velocity (vy)
is known to be zero. Thus, the only variables to be‘esti—
mated are in fact the clock bias and drift, by[k] and by[k].
Based on (2), (3) and the dynamic model in (4), the funda-
mental plant model is constructed as follows using p[k] =

[pilkl, ..., pnIKIIT and Akl = [A1lK], . ... oIk T:
chylk + 11| | cbylk]
[cbu[k + 1]} = A[cbu[k]} ik ©)
plkl| _ [ cbulk]
[[)[k]} = C[cbu[k]] + cilk] + €[k] (6)
where LA . 0
_ ! _ [ 1ax1 Onxi
A_|:0 17 0w Ly

i lp 1 [k] = pulk]ll — cbi[k] ]

Pkl _pu[[kk]]” - clfg][k]
(1 [K] — wolkp) TP P
p1[k] — pylk]|
[k] — p,[K]
(o Ik] = v [k T L Pl kg
: TR AT
and w[k] and €[k] represent process/measurement noise; vec-
tor ¢;[k] is based on the known satellite position, velocity
and clock characteristics—a time-varying, known quantity.
Equations (5) and (6) can be written as

chy[k]

x[k + 1] = Ax[k] + w[k]
ylk] = Cx[k] + c/[k] + €[k]. @)

The state space model (7), however, does not model poten-
tial spoofing attacks. While many different physical spoofing
mechanisms are devised to deceive the victim receiver [6],
time synchronization attack (TSA) is applied on the station-
ary GPS receiver. In practical sense, TSA alters the timestamp
estimate by inserting the spoofing signal into the authentic
pseudorange signals:

pslk] = plk] + splk], ps[k] = plk] +s,[k].

where s,[k] and s,4[k] denote the spoofing attacks, and p[k]
and ps[k] are the spoofed measurements.

Specifically, there are two different types of TSAs according
to the shape of s,. While Type I attack injects an abrupt signal,
e.g., Splk > o] = 8000 m where « indicates the initial time
of attack, Type II attack modifies the clock bias in gradual
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manner manipulated by s,[k] = sp[k — 1] +s,4[k]At; see [21].
The actual effect of each type of attack on the clock state is
thoroughly reviewed in [22].

As an example, in order for the spoofing signal to be con-
sidered as intentional attack on a PMU, it has to satisfy
certain conditions. According to the IEEE C37.118 Standard,
the attack has to result in 1% total variation error, which is
equivalent to 26.65 us clock bias error, or 7989 m of distance
equivalent bias error in order for the attack to be considered
infringing [23]. These types of spoofing attacks—regardless
of their physical mechanism—impact the state dynamics as

x[k + 1] = Ax[k] + d[k]

where d[k] = [d;[k] da[k]]T models and lumps TSAs and
any process noise. Concrete examples of TSAs are given in
Section III. In our previous work [11, Sec. III], we show how
specific forms of d[k] can mislead the receiver.

I1l. ROBUST STATE ESTIMATOR

In this section, we present a state estimation algorithm that
is endowed with the following properties: (i) It is a tuning-
free method that does not require any knowledge of noise
distribution, initial parameters or states, or other coefficients;
(ii) it has low memory requirements in the sense no heavy
computations are needed which is befitting to devices with
limited computational power and limited Internet connectivity;
(iii) it is robust to GPS spoofing, time-synchronization attacks.

A. GPS Clock Model and Estimator Dynamics

The plant model under the spoofing attack based on the
previous can be written as

x[k + 1] = Ax[k] 4 d[k]
ylk] = Cx[k] + ci[k] + €[k] (®)

where x[k] € R2 represents the state vector of clock bias and
drift at time k; y[k] € R?" represents a single column vector
of pseudoranges and pseudorange rates where N indicates the
fixed number of visible satellites at every time index; d[k] €
RR? is the unknown spoofing attack applied to the bias and drift
which also includes process noise; state-space matrices A, C,
¢; are discussed in the previous section.

Consider now a new modified state vector x,,[k] € R2 which
represents the state vector without spoofing attack and follows
the following dynamics:

Xmlk + 1] = x[k + 1] — d[k] = Ax[k]. C))
The left-hand side of (9) essentially represents the origi-
nal state vector considering that the spoofing attack d[k] is
removed. The modified state vector x,,[k] propagates through
to y[k]. This yields:

Xplk + 1] = Axy, k] + Adlk — 1]

ylk] = Cx,,[k] 4 ¢i[k] + Cd[k — 1]. (10)

The presented state estimator in this letter is an adaptation of
the observer from [19] and follows the difference equation:
RobustEstimator
Emlk + 1] = A%, [k] + Ad[k — 1] + Ly (y[k] — $[k])
Jlk] = Cxlk] + ¢i[k] + Cd[k — 1]

e[k] = y[k] — y[k]

d[k] = d[k — 1] + LoC "e[k] (a1

where %,,[k] € R? is a state estimate of corrected state vector
Xmlk] at tirAne k; ylk] € R2N is the estimate vector of observa-
tion y[k]; d[k] i§ an estimate of the spoofing attack d[k]. We
note here that d[ — 1], x,,[0], and y[0] should be initialized
before iteration starts at k = 0 with arbitrary initial conditions.
Matrices L; € RZ*2N and L, € R**? are optimization vari-
ables where L is akin, in principle, to a Luenberger gain that
is designed here to ensure robustness of the state estimation
to spoofing attacks.

B. Design of Robust Gains L1 »

The design of the robust estimator gains L is based on
linear matrix inequalities (LMIs). Simply put, the objective
of the designed observer is to guarantee asymptotically stable
estimation error dynamics. That is, matrices L; and L, are
designed to guarantee that limy_, e[k] = 0 under non-zero
spoofing attack d[k] and bounded estimation error under spoof-
ing attacks. The ROBUSTESTIMATOR variables are designed
via solving this low-dimensional feasibility problem with one
linear matrix inequality (LMI), given as follows:

EstimatorDesign
find G e RZXZN,P c RZXZ, Q c R2N><2N’M c R2><2
P * * *
0 (0] * %
St lGec—PA GC—PA P« |9 (122)
MC'C MC'C-0Q0Q
{P.OQ.M}={P".Q" . M"} >0, (12b)

where the symbol  is used to represent symmetric compo-
nents in symmetric block matrices. After solving (12) for
positive definite matrix variables P, @, and M, and real matrix
variable G, the observer gains are computed as follows

L =P'G, L,=MQ". (13)

As mentioned earlier, the state estimator design is derived
from [19]; the reader is referred to that paper for the derivation
of the above LMIs. Note that no tuning is required to solve
ESTIMATORDESIGN, and this LMI can be solved analytically
via evaluating the Karush-Kuhn-Tucker conditions for feasibil-
ity [24]. Furthermore, any convex optimization toolbox or LMI
solver can be used to solve (12). These include MATLAB’s
LMI solver, CVX [25], and Yalmip [26].

We note the following. First, the necessary conditions for
existence of L, are standard. These conditions are (a) the
detectability of (A, C); (b) the classical rank matching condi-
tion stating that rank(CB,) = rank(B;) where B; = I, is the
matrix coefficient of d[k] in (8); and (c) bounded variations of
the unknown spoofing signal d[k]. Second, this robust estima-
tor not only estimates x[k], but also the spoofing attack d[k].
This is instrumental in mitigating and correcting the attack.
The next section showcases the design of the gain matrices.

C. State Correction Algorithm Under Spoofing

Upon solving the LMIs and running the
ROBUSTESTIMATOR from any arbitrary initial condi-
tions, the estimator is guaranteed theoretically to produce
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Algorithm 1: Robust Bias and Drift Estimation

1 input: Number of satellites N, matrices A and C
2 initialize: d[—1], £,[0], $[0]

3 Offline Computations

4 Compute G, P, Q, M given A and C by solving (12)
5 Obtain L; and Ly from (13)

6 Online Computations

7 while £ > 0 do

8 Obtain c¢;[k] from satellite measurements

9 Run (11) and obtain X,,,[k + 1] and zAi[k]

10 Perform spoofing attack correction (15)

11 Perform state and output correction (16)

12 k<—k+1

output: Attack-free x.[k], TSA estimates 30 [k]

[
w

bounded estimation error e[k], thereby estimating the then-
spoofed bias and drift, and reconstructing the spoofing attack
d[k]. With that in mind, this does not indicate that the bias
and drift are correctly estimated seeing that spoofing attack
had already changed the state through the state propagation
and difference equation. To that end, this section develops a
state correction algorithm to recover the authentic bias and
drift values in real-time.
To that end, the dynamics (9) can be written as

xmlk + 1] = Axp[k] + Ad[k — 1]

= A(Axplk — 1]+ Ad[k — 2]) + Ad[k — 1]. (14)

This relationship reveals that current spoofing during one
time instant comprises the cumulative attacks from the
previous time steps. Consequently, the disturbance estimate d
is not sufficient enough to correct the attacked states. Rather,
a new disturbance estimate vector d. is formulated to account
for the accumulated disturbances. Considering the estimate of
spoofing attacks 3[k] = [211 [k] Elz[k]]T computed by (11), we
propose estimating the new disturbance estimate vector d,. via

S dill 4+ Y] (k= Dol
k—1

> il

=1

d.[k] = (15)

This equation acknowledges the fact that estimated state x,,
is still contaminated by the attack from the past time step.
Therefore, the corrected state x. and aqthentic observation
state y, could be retrieved by subtracting d. from x,,, and y as
follows:

Zelk] = &plk] — d [k], §.[k] = Ikl — Cd.[k]  (16)

Algorithm 1 showcases the overall problem design, robust
state estimation, and the reconstruction of the corrected bias
and drift of the GPS receiver. The algorithm takes as inputs:
the fixed number of satellites N, A and C, and satellites data
which is encoded through c;[k]. The algorithm is divided
into two stages—an offline stage and an online one. In the
offline stage, the ROBUSTESTIMATOR gains L; and L, are
computed via solving (11) and evaluating (13). The online
stage includes running the ROBUSTESTIMATOR (11) and the
cumulative corrections for the states and spoofing attacks. The

TABLE |
VECTOR NOMENCLATURE
[ Notation | Description |

TaT ground truth state vector
TEKF estimated state vector from EKF
ZTuen estimated state vector from Luenberger Observer
T modified state vector estimates

Te corrected state vector via (16)

d attack vector vector applied to

d. corrected spoofing attack vector via (15)

algorithm returns the attack-free, yet still slightly noisy esti-
mates of the bias and drift X.[k] and an estimate of the actual
spoofing attack d.[k].

It is noteworthy to mention the following. First, the offline
component of the algorithm—albeit offline—can be solved
analytically seeing that the problem dimension is very small,
when considering that only few satellite measurements are
needed. Second, the algorithm and the LMI feasibility problem
both only require a fixed number of satellites, rather than a
fixed satellite combination. This is important considering that
different satellites are visible each time. In short, the proposed
algorithm in this letter only assumes a minimum fixed num-
ber of satellites N, where these N satellites can be changing
in real time without impacting the algorithm or the design of
the robust estimator.

Third, Algorithm 1 works for any reasonable initial condi-
tions, that is, the estimation should converge regardless of the
initial conditions choice. Fourth, this method is truly tuning-
free: no prior knowledge of the statistical distribution of noise,
or prior knowledge or tuning of any parameters is needed. The
algorithm is also low-memory, as the only computation needed
to be performed online is running the ROBUSTESTIMATOR
and the correction models—both require a small number of
matrix-vector multiplications. This implies that the proposed
algorithm can be implemented in low-memory devices with-
out the need for any intensive computational effort or Internet
connectivity. Finally, we note that the proposed algorithm has
no stopping criterion seeing that it runs in real time.

IV. CASE STUDIES: A REALISTIC TESTBED

This section discusses the detection and mitigation of
TSAs via various approaches. First, the experimental pro-
cedure is discussed. Then, we compare the performance of
the extended Kalman filter (EKF)—which has long been
used in the literature [20] as a ground truth for esti-
mating the bias and drift—and the classical Luenberger
observer under spoofing attacks. Then, the performance of
the proposed robust estimator under TSAs is showcased, fol-
lowed by thorough comparison of the performance of the
approaches. The following link includes all codes and data
used to generate the results, including the acquired GPS da-
ta: github.com/junhwanlee95/Robust-Estimator.
Table I summarizes the important vector nomenclature.

A. Setup: Model Simulation & Obtaining Raw GPS Data

A Google Nexus 9 tablet, which has an embedded GPS
chipset, is used to collect real GPS signals, which are
recorded on November 4, 2018 at the University of Texas
at San Antonio main campus. The data are available for
the reader through the aforementioned Github link. While
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Fig. 1. Comparison of ground truth, EKF and Luenberger observer
estimates under Type | attack: (a) clock bias; (b) clock drift.

the receiver acquires the signal, the device remained still
to simulate the stationary scenario. Raw GPS data is post-
processed to obtain pseudorange and pseudorange rate data by
GNSS Logger, the Android application released by the Google
Android location team [27]. Then, Type I and II attacks are
injected into the pseudorange and pseudorange rate data to
simulate spoofing as discussed in Section II and shown in [11,
Sec. III]. The initial conditions for the robust estimator are
chosen to be different than the actual, ground truth conditions.

B. EKF and Luenberger Performances Under Attacks

Here, we are interested in testing whether the EKF and
the classical Luenberger observer [28] can withstand TSAs
of Type I and II. After Type I and II attacks are applied from

= 30 s to t = 400 s, the performance of the EKF and
Luenberger observer—which does not assume any statistical
distribution about the noise—are shown in Fig. 1 and 2.

While the ground truth clock bias and drift, xgr, are
acquired through EKF by processing the authentic pseudor-
ange data, the xgkp bias and drift are generated by applying
the EKF to the spoofed pseudoranges. Another comparison to
xgt is offered by the Luenberger observer estimate X yen pro-
duced after designing the observer gain L; such that the closed
loop system eigenvalues are at 0.5 and 0.7. The performances
of EKF and Luenberger observer are shown respectively in
Fig. 1 and Fig. 2. It is evident that both approaches fail to
estimate the correct states in the presence of the attack.

C. Robust Estimator Performance Under Type I/Il TSAs

In this section, we test the proposed robust estimator and
run Algorithm 1 which contains an offline stage and an online
one. First, we set N = 4, i.e., we choose to sample data from
only four satellites. We solve the LMIs (12) for the estima-
tor gains. Using these estimator gains, the online portion of
Algorithm 1 is run. Pertaining to Type I attack, Fig. 3 show-
cases the performance of ROBUSTESTIMATOR. Due to the
attack at + = 30 s, the x. clock estimates are initially not
correct, but the clock bias and drift approach the respective
ground truth values within approximately 3 and 11 seconds
(see Fig. 3(a) and 3(b) respectively).

Under the same condition and procedure, Algorithm 1 is
applied on Type II attack to detect and correct the spoofed

x10°
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- =IGT
z ol =———TEKF |
e . TLuen
g Peegsm T |
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Fig. 2. Comparison of ground truth, EKF and Luenberger observer
estimates under Type Il attack: (a) clock bias; (b) clock drift.
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Fig. 3. Comparison of ground truth and corrected state through the
correction (16) under Type | attack: (a) clock bias; (b) clock drift.

states. The results of obtaining the corrected state X, are shown
in Fig. 4. In order to accurately depict the performance of
ROBUSTESTIMATOR, the relative estimation error is calcu-
lated as % for each of the two states in x over time. The
resulting graphs are shown in Fig. 5. Comparison between X,
and the xgr reveals that the maximum error between the two
biases is 952.09 m or 3.17 ws. It is thus demonstrated that
the Robust Estimator of Algorithm 1 successfully detects and
corrects the Type II attack.

In the interest of gauging the performance of each approach,
the root mean square error (RMSE) of the estimated clock bias
is calculated under both attack types. Let K denote the total
length of observation time (K = 400 in this experiment). The

RMSE is defined as RMSE = \/K Z (cb — cbylk])?

where cI;u[k] is t13e ground truth clock bias under normal
conditions, and cb,[k] equals to the estimated clock bias
value from each approach. Under Type II attack, the RMSE
for EKF and the Luenberger observer are RMSEgkp =
74344 m and RMSEpyenberger = 74433 m respectively,
while that of the robust estimator is RMSERobusEstimator =
3549 m. As for Type I attack, the RMSEs are as fol-
lows: RMSEgkr = 8477.3 m, RMSELyenperger = 8104.9 m,
and RMSEgrobustEstimator = 1029 m.  This illustrates the
performance of this tuning-free, low-memory robust estimator
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Fig. 4. Comparison of ground truth and corrected state through the
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in detecting spoofing attacks, while correctly reconstructing
the bias and drift states of the GPS receiver.

V. PAPER SUMMARY AND FUTURE WORK

In this letter, the design and realistic application of a low-
memory, real-time ROBUSTESTIMATOR is studied. Utilizing
the GPS receiver on a Google Nexus 9, real GPS data are col-
lected and post-processed by injecting time-synchronization
attacks to spoof the clock bias and drift of the device. Two
types of attacks are introduced, and tested by the designed
estimator. The estimator successfully detects and estimates the
spoofing attacks on each state, and mitigates the spoofing on
both types of attack by furnishing the corrected clock states to
the user. Future work will focus on developing robust estima-
tors under spoofing attacks for non-stationary GPS receivers,
which involve nonlinearities in the GPS measurement model.
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