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1.  INTRODUCTION

Grouping is a common feature of numerous animal
taxa that can confer diverse benefits, including protec-
tion (Seghers 1974, Pulliam & Caraco 1984, Molvar &
Bowyer 1994). In some cases, the presence of con-
specifics can also decrease stress and energy consump-
tion, presumably because it minimizes the need for in-
dividuals to be vigilant (Martin et al. 1980, Hennessy et
al. 2009). For instance, the routine metabolic demand of
several species of social marine fishes, i.e. species that
form interacting shoals that exhibit antipredator and
foraging group behaviors (Pitcher 1983), is substantially
reduced (27−57%) when individuals are in the pres-
ence of conspecifics compared to individuals in iso -
lation (Parker 1973, Nadler et al. 2016). However, the
extent to which grouping influences energy demand
has not been investigated in other social marine taxa.

Squid are abundant, highly motile cephalopods
that arguably constitute one of the largest predatory
biomasses on the planet (Boyle & Rodhouse 2005).
Exceptionally high metabolic rates, in addition to
other physiological constraints including energeti-
cally costly locomotion and limited blood oxygen car-
rying capacity (O’Dor & Webber 1986, Pörtner 2002,
Seibel 2016), suggest that some squids may not be
adaptively suited to oceanographic shifts in oxygen
availability (Rosa & Seibel 2008, Seibel 2015, Breit-
berg et al. 2018). To our knowledge, all previous
measurements of metabolic rate in squid have
involved experiments on individual animals, even
though many of the squids studied spend the vast
majority of their lives in groups (Table S1 in Supple-
ment 1 at www.int-res. com/ articles/ suppl/ m612 p141
_ supp/). There are often substantial differences in
metabolic rates between seemingly similar individu-
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als of a given species (McLean et al. 2018), and
grouping is thought to dampen this individual vari-
ability (Burton et al. 2011). As in the case of fish
(Parker 1973, Nadler et al. 2016), incorporating
grouping behavior into laboratory studies may pro-
vide a more ecologically relevant estimate of squid
metabolic demand, particularly in regard to environ-
mentally driven changes in spatial distributions that
may expose the animals to hypoxic environments
(Deutsch et al. 2015).

We used swim tunnel respirometry to investigate
how grouping is related to metabolism in the Califor-
nia market squid Doryteuthis opalescens, a near-
shore social loliginid (Fig. 1) (Zeidberg 2013). Like
many other squids, D. opalescens is thought to regu-
larly operate near functional limits in terms of envi-
ronmental oxygen availability (O’Dor & Webber
1986, Pörtner 2002, Seibel 2016): it engages in high-
intensity aerobic behaviors under normoxic condi-
tions (O’Dor 1988, Zeidberg 2004) and encounters
regions of acute hypoxia during vertical migrations
(Stewart et al. 2014). We compared energy demand
under routine activity (routine metabolic rate, RMR)
measured in solitary individuals versus groups. As a
measure of physiological performance under hy -
poxia, we also measured the critical oxygen partial
pressure below which a stable rate of oxygen uptake
could not be maintained (Pcrit) (Rogers et al. 2016) for
comparison between solitary individuals and groups.
Based on studies of fish (Parker 1973, Nadler et al.
2016), we hypothesized that RMR would be reduced
when squid were in the presence of conspecifics.

2.  MATERIALS AND METHODS

2.1.  Specimen capture

Doryteuthis opalescens was captured over spawn -
ing grounds in nearshore waters of Monterey
Bay, CA, from June to November 2017 using
luminescent barbless jigs. Only undamaged squid
caught by the sucker cups on the arms were
retained for this study. After capture, specimens
were immediately transported in aerated seawa-
ter to an indoor aquarium facility at Hopkins
Marine Station, Pacific Grove, CA. There they
were kept together, typically in a group of 20 to
40 animals, for 24 to 72 h in a 3200 l circular
tank with flow-through seawater (20 l min−1) at
ambient temperature (13−16°C) and fed live rosy
red fathead minnows Pimephales promelas once
daily. Al though these fish are not natural prey
for D. opalescens, they provide sufficient suste-
nance for short periods in captivity (Fiorito et al.
2015). Prior to each experiment, squid were not
fed for 24 h. No injuries were observed in any
animals used in experiments. Standard morpho-
metric measurements, including dorsal mantle
length, mantle diameter at the widest point, wet
weight, and sex, were recorded for all experi-
mental specimens (Table S2 in Supplement 2).
Squid mass in our experiments ranged from 17.4
to 81.1 g, with an average (±SD) of 44.1 ± 13.6 g;
both males (n = 150) and females (n = 23) were
used. All squid used in this study were mature.

2.2.  Respirometry experiments

Squid from holding tanks were arbi-
trarily (i.e. with no particular criteria)
assigned to solitary or group treat-
ments. Fourteen solitary (1 squid) and
14 group (8−13 squid) experiments
were conducted in 10 and 185 l swim
tunnel respirometers (Loligo Systems),
respectively. Each respirometer was
immersed in a large buffer tank filled
with flow-through ambient seawater
for temperature control. Test sections
for respirometry measurements had
dimensions of 40 × 10 × 10 cm (4 l vol-
ume) in the small and 87.5 × 25 × 25
cm (54.7 l volume) in the large re -
spirometer. Squid were individually
introduced to the test section tail first
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Fig. 1. Group of California market squid Doryteuthis opalescens in captivity. 
Photo credit: Diana Li (used with permission)
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and allowed to adjust for 1.5 h (the average duration
used in previous studies of squid, Table S1 in Supple-
ment 1) with aerated seawater from the buffer tank
flowing through at a rate of 3 to 5 l min−1. To ensure
mixing during closed respirometry, water was circu-
lated in both respirometers at a rate of 5.3 to 6 cm s−1

after correcting for the blocking of flow by test ani-
mals (Brett 1964, Bell & Terhune 1970). These flows
were not sufficient to force squid to actively swim to
maintain position, and they were able to hover, swim
forward or backward, or rest on the bottom.

All closed respirometry experiments occurred be-
tween sunrise and sunset under the same lighting
condition with an average duration of 5.5 h. Respirom-
eters were visually shielded with opaque plastic
sheeting suspended over the tank and enclosing the
circumference, but squid could be observed through a
small opening without disturbance to ascertain skin
color changes generated by chromatophores as dis-
cussed in Section 2.6. When the oxygen concentration
reached 0.5 mg l−1, or squid started showing obvious
signs of fatigue, the experiment was terminated, and
animals were removed and euthanized following se-
dation in a 1 to 2% solution of ethanol in seawater to
ascertain morphometric measurements.

Oxygen concentration and saturation were re -
corded in the large respirometer at 0.1 Hz with a
HQ40D multimeter and LDO101 oxygen sensor
(Hach) and at 1 Hz in the small respirometer with a
Witrox 1 oxygen meter and dipping probe mini sen-
sor (Loligo Systems). For consistency, both instru-
ments were simultaneously calibrated immediately
before each experiment under the same atmospheric
pressure, temperature, and salinity conditions to 0%
oxygen saturation using 1 to 2% sodium sulfite in
seawater and to 100% using seawater mixed for 10
min on a magnetic stir plate.

Experiments were conducted at the temperature of
the ambient flow-through seawater that ranged from
13 to 16°C over the course of the study, but during an
experiment, temperature in the respirometers rarely
fluctuated by more than 0.1°C. Average experimen-
tal temperature (14.6 and 15.0°C in group and soli-
tary, respectively) was not different between treat-
ments (p = 0.2, 2-sample t-test). The Hach multimeter
was capable of live temperature and atmospheric
pressure correction, and we manually entered these
corrections into the Witrox meter, using atmospheric
pressure recorded by the Hach multimeter and tem-
perature measured with a digital thermometer (51 II,
Fluke). None of these small variations within single
experiments substantially altered oxygen values or
calculated uptake rates.

Control experiments containing no squid were
conducted to quantify microbial background respira-
tion. In the 185 l swim tunnel, no background respi-
ration over experimentally relevant durations was
detected, and in the 10 l tunnel, the background rate
was negligible (less than 0.1% of squid rates). There-
fore, we did not perform any correction to specimen
rates for background respiration.

Although we did not measure CO2 concentration
(or pH) during experiments, the buildup of this meta-
bolic byproduct is unavoidable in closed-system
respirometry. The high pH sensitivity of hemocyanin,
the respiratory protein of squid, has led to the con-
cern that changes in seawater pH may impact squid
metabolism (Rosa & Seibel 2008, Seibel 2016). How-
ever, recent studies examining the loliginid squids
Sepioteuthis lessoniana and D. pealeii have reported
no effect of lowered pH on metabolic rate and Pcrit,
presumably due to the regulation of blood pH (Hu et
al. 2014, Birk et al. 2018). Wood (2018) suggests that
closed-system respirometry is preferred because it is
more ecologically realistic, as natural hypoxia typi-
cally involves simultaneous CO2 buildup.

2.3.  Data analysis

We analyzed data in R (R Core Team 2018), prima-
rily using functions in the package respR (Harianto et
al. 2019). Unless otherwise noted, all tests described
herein were 2-tailed and met appropriate test
assumptions.

2.4.  RMR

RMR for both solitary squid and groups was calcu-
lated as the lowest rate sustained during 40 min over
a specific range of oxygen concentration (7−5 mg O2

l−1) that was well above Pcrit and where the oxygen
uptake rate was relatively consistent (Fig. 2). The
average time after an experiment started when RMR
was determined (1.6 and 1.7 h in groups and solitary
animals, respectively) was not different between
groups or solitary squid (p = 0.65, 2-sample t-test).
RMR was therefore determined over 3 h after any
handling had occurred. Respiration rates for most
specimens were consistent from experiment start
until Pcrit was reached and so remained stable for 4.5
to 7 h after handling. As in other studies of the
metabolism of squid (Table S1) and fish (Parker 1973,
Herskin 1999, Nadler et al. 2016), we used wet
weight to determine a mass-specific RMR.
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For solitary individuals, we normalized the meas-
ured rate to a standard mass (44.1 g) using the mass-
scaling exponent for the family Loliginidae (b =
0.916) (Seibel 2007). For each group, we estimated
the normalization constant, or intercept (b0) of the
rate−mass power relationship (Eq. 1),

(1)

by apportioning total group RMR (B) among individ-
uals within the group based on their masses (M)
using the same mass-scaling exponent (b). The

resulting mass−metabolic rate equations (in the for-
mat of Eq. 1, Seibel 2007) then calculated the effec-
tive rate for a single idealized squid from each group
at the standard weight of 44.1 g. Mass-normalized
RMR was therefore compared between 14 squid in
groups and 14 solitary squid (Table 3 in Supplement 2).

The first goal of this study was to determine if squid
in groups consumed less oxygen per unit mass than
solitary squid, the null hypothesis being that squid in
groups did not consume oxygen at a lower mass-spe-
cific rate. The directional nature of this question,
which we based on what is known from studies of
fish (Parker 1973, Nadler et al. 2016), warranted 1-
tailed testing. We therefore used an ANCOVA, a test
that relies on the F distribution and is therefore 1
tailed, to compare mass-normalized RMR between
social condition treatments while removing variation
attributable to differences in experimental tempera-
ture (Fig. 3A, Table A1 in the Appendix).

Variance in the RMR values for grouped squid was
lower than that for solitary squid, a phenomenon also
noted in studies of fish (Burton et al. 2011). This sug-
gests that squid were more relaxed within groups,
maintaining more consistent RMRs and therefore dis-
playing lower variance in group RMR. However, it is
also possible this is a result of a dampening effect
where individuals within groups displayed similarly
high and low RMRs, but this variance was masked as
a result of examining them as a group. To further
assess if RMR was lower in groups compared with
solitary squid, while accounting for the possibility
that grouped squid had the same RMR variance as
solitary squid, we adjusted the mass-normalized
RMR of solitary and grouped squid to a standard
temperature (14°C) using the squid-specific temper-
ature coefficient (Q10) of 2.0 (Rosa & Seibel 2010,
Trueblood & Seibel 2013). We then compared aver-
ages using a 1-tailed 2-sample t-test, with the vari-
ance for grouped squid set equal to the larger value
for solitary squid.

2.5.  Pcrit

The second goal of this study was to determine if
there was a difference in hypoxia tolerance between
squid in groups and solitary squid. To accomplish
this, we used a segmented regression approach to
calculate the breakpoint of oxygen consumption
curves (Muggeo 2003) to determine Pcrit, the oxygen
partial pressure below which a stable rate of oxygen
uptake is not maintained (Rogers et al. 2016). In 2
individuals, Pcrit could not be reliably determined
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Fig. 2. Oxygen concentration in respirometers over time dur-
ing experiments with (A) solitary squid and (B) grouped
squid. Grey lines represent the oxygen traces of each exper-
iment, and black lines are the smoothed averages of all data
points from experiment start to the average time at which
Pcrit, the critical oxygen partial pressure, was reached in
each social condition treatment (4.2 h in solitary and 6.8 h in
grouped squid). The blue rectangle highlights the range of
oxygen concentration (7−5 mg l−1) over which we calculated
routine metabolic rate (RMR) as the lowest oxygen con-

sumption rate over a 40 min period
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because of the variable nature of the data, and these
individuals were excluded from the analysis. In 2
groups, experiments were not of sufficient duration
to reach a definitive Pcrit, and these were also
excluded. This left 12 Pcrit estimates in each social
condition treatment that were examined using a 2-
sample t-test (Fig. 3B). Because of differences in rel-
ative volume of the respirometers, groups tended to
take an average time of 6.8 h to reach Pcrit compared
to 4.2 h in solitary squid.

2.6.  Chromatic behaviors

To provide a behavioral context for the comparison
of metabolic features, we assessed differences in the
chromatic body patterning of squid in groups versus
solitary squid during experiments. During the
respirometry trials, we observed the behavior of soli-
tary squid and an arbitrarily selected individual
within all groups once every 1 to 3 h for 1 min and
recorded all chromatic displays described for this
species (Hurley 1977, Hunt et al. 2000) as being pres-
ent or absent during each observation period (Hunt
et al. 2000, Bush et al. 2009, Burford et al. 2015). The
frequencies of the 3 most commonly performed chro-

matic behaviors, countershading, pale
(clear), and dark arms (Hurley 1977,
Hunt et al. 2000), were calculated for
each observed squid by dividing the
number of occasions each pattern was
displayed by the total number of obser-
vations in that experiment. If fewer than
3 total behavioral observations were
made for a given solitary squid or group,
the corresponding behavioral data were
excluded from analysis. This left 97
observations of 13 groups and 56 obser-
vations of 11 solitary squid, over 2.5 h of
cumulative behavioral observation. For
comparison, the behavioral ethogram
established for D. opalescens was based
on 2 h of behavioral footage (Hunt et al.
2000). Although we did not directly
quantify it, the duration that any pattern
is displayed is also an important feature
of squid chromatic behavior (Hanlon &
Messenger 2018).

To examine how social condition was
related to the frequencies of each be -
havior, which were non-independent
measures, we performed 3 linear mixed
effects analyses with the frequency of

the different displays (countershading, pale, and
dark arms) as the dependent variable and social con-
dition (group or solitary) as the independent variable.
Social condition was the fixed effect, and to account
for variation among groups and individuals, by-
group and by-individual intercepts for the influence
of social condition on behavioral frequency were ran-
dom effects. We plotted the frequency of each chro-
matic pattern versus social condition (0 = group and
1 = solitary) and used the slope as determined by lin-
ear mixed effects analyses to assess the extent to
which each behavior was associated with social con-
dition (Fig. 4).

3.  RESULTS AND DISCUSSION

3.1.  RMR and chromatic behaviors

Previous studies of squid metabolism have all uti-
lized individual animals (Table S1 in Supplement 1),
and to ascertain the effect of grouping on metabolic
demand in Doryteuthis opalescens, a social squid, we
studied both solitary individuals and grouped ani-
mals. We found that the mass-normalized RMR of
grouped squid (0.34 ± 0.057 mg O2 g−1 h−1, mean ±
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Fig. 3. Influence of grouping on metabolic features of the California market
squid Doryteuthis opalescens. (A) Mass-normalized routine metabolic rate
(RMR) (mean ± SD) estimated for single squid within groups (gray) was 0.34
± 0.057 mg O2 g−1 h−1 versus 0.43 ± 0.12 mg O2 g−1 h−1 measured for individ-
uals isolated from conspecifics (white). (B) Critical oxygen partial pressure
(Pcrit) (mean ± SD) was 4.96 ± 1.03 kPa in squid groups (gray) and 4.79 ± 0.98
kPa in solitary animals (white). In both, dark horizontal lines show the me-
dian value, with boxes and vertical lines respectively representing the 2 in-
ner and outer quartiles of the data. *Significant difference between means 

(α = 0.05)
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SD) was lower than that of solitary squid (0.43 ± 0.12
mg O2 g−1 h−1) by 20.9% (0.09 mg O2 g−1 h−1, p =
0.013, ANCOVA) (Fig. 3A, Table A1). This difference
was also significant when the comparison was made
of grouped versus individual squid with the variance
in both cases set to the larger value from the individ-
ual experiments (p = 0.028, 1-tailed 2-sample t-test).
Sex composition had no apparent influence on group
RMR (Fig. A1, Table A1), and neither did group size
(range 8−13) (−0.001 mg O2 g−1 h−2 squid−1, p = 0.89,
linear regression).

Squid in groups also exhibited pale coloration more
frequently during the behavioral observations,
whereas those that were isolated from conspecifics
more often exhibited darker coloration (Fig. 4). Pale
coloration in all coleoid cephalopods is due to a
relaxed state of the radial muscle fibers that control
the size of chromatophores, and in D. opalescens and
many other species, pale skin color is associated with
a relaxed condition of the whole animal, in contrast to
dark coloration that indicates alertness or vigilance
(Hunt et al. 2000, Hanlon et al. 1994, Hanlon & Mes-

senger 2018). Thus, grouping in D.
opalescens, a naturally social species,
probably reduces stress, and this factor
could influence metabolic demand.

Mechanisms of energy saving by
grouping (Krause 1994) include hydro-
dynamic effects in schooling fish (Mar-
ras et al. 2015). In our experiments, a
significant contribution from this effect
is unlikely, because water was circu-
lated in the respirometers at very low
flow rates (5.3−6 cm s−1). This notion is
supported by Payne et al. (2011), who
found that metabolic rate and body
acceleration of giant Australian cuttle-
fish Sepia apama under similar flow
rates were not different than under no
flow. Because cuttlefish and squid have
different swimming kinematics (the for-
mer mainly uses finning; the latter uses
a combination of finning and jetting),
direct comparison between these taxa
is problematic. However, we saw little
indication during our experiments that
movements of D. opalescens at these
low flow rates were any different to
those observed in more static water in
the larger holding tanks (B. P. Burford &
N. Carey pers. obs.). During our expe -
riments, squid did not swim in a uni-
directional manner with or against the

current, and movements were always slow in com-
parison to peak velocities that this species can attain
(140 cm s−1 or ~10 mantle lengths s−1) (O’Dor 1988,
Neumeister et al. 2000). Nonetheless, the level of
activity was higher than that associated with stan-
dard or basal metabolic rate, and the variance of our
measured rates may reflect slight differences in
activity level. If hydrodynamic effects are relevant to
the energetics of squid grouping, it is likely that this
is true only at much faster swimming speeds than
those used in our study.

Not all group-forming animals experience a reduc-
tion in energy demand from social stimuli (Herskin
1999). Within those that do, there are a multitude of
factors that can alter the degree to which conspecifics
calm group members. For instance, some social spe-
cies acclimate to novel environments, and thus anxi-
ety can be reduced as an experiment progresses
(Hennessy et al. 2009). To ensure that our results
were comparable with previous work, the time
allowed for adjustment to experimental conditions
was kept similar to that in other metabolic studies of
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Fig. 4. Association between social condition and the 3 most commonly exhib-
ited chromatic behaviors of Doryteuthis opalescens observed during
respirometry experiments. Coefficients represent the slope of linear mixed
effects analyses relating the frequency of each behavior to social condition
while taking into account potential differences in the baseline behavioral
tendencies of each individual or group observed during experiments. Soli-
tary squid displayed countershading more frequently than squid within
groups (p < 0.005), which displayed pale coloring more frequently than soli-
tary squid (p = 0.0014); the frequency of dark arms was not related to social 

condition (p = 0.77)
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social cephalopods (Table S1). Following the period
of adjustment to the respirometers (1.5 h), the aver-
age time elapsed during experiments before RMR
was measured had a strong negative association with
group RMR (−0.08 mg O2 g−1 h−2, p = 0.00059, linear
regression) and no relationship with solitary squid
RMR. This suggests that groups adjust to experimen-
tal conditions faster than do solitary squid, as lone
squid must maintain heightened vigilance.

Under natural conditions, many active squids
including D. opalescens are thought to rapidly transi-
tion between different regions of the water column
that markedly differ in irradiance levels, hydro-
graphic properties, and the relative abundance and
composition of predators, prey, and competitors
(Santora et al. 2012, Zeidberg 2013). We hypothesize
that interactions with conspecifics could facilitate the
exploration and occupation of diverse habitats,
potentially by reducing stress-associated metabolic
reactions to novel stimuli.

3.2.  Pcrit and hypoxia tolerance

We found Pcrit (mean ± SD) in solitary and grouped
D. opalescens to be 4.96 ± 1.03 and 4.79 ± 0.98 kPa,
respectively, and hypoxia tolerance as measured
(Pcrit) was not significantly different between social
condition treatments (p = 0.67, 2-sample t-test)
(Fig. 3B). In some fish, hypoxia tolerance can be
increased (as indicated by a reduction in Pcrit)
through acclimatory responses to environmental
hypoxia (Timmerman & Chapman 2004) such as
reversible gill remodeling (Gilmour & Perry 2018).
Temperature can also modify hypoxia tolerance in
some fish by altering physiological processes (Pört-
ner & Lannig 2009), and for most species that have
been studied, Pcrit occurs at higher oxygen concentra-
tions at higher temperatures (Rogers et al. 2016). At
present, we have no information on this subject in
regard to squid.

D. opalescens migrates both vertically and horizon-
tally in the California Current (Zeidberg 2013), an
ecosystem that is spatially and temporally heteroge-
neous in terms of temperature and oxygen concen-
tration (Checkley & Barth 2009). Its nearshore
spawning areas are also subject to highly dynamic
changes in hydrographic properties, including
upwelling-related shifts in temperature and oxygen
concentration (Booth et al. 2012). We would thus
expect our sampling period (June−November) to be
associated with some degree of seasonal, weekly,
and daily variation of water column properties.

Moreover, squid collected on the spawning grounds
probably migrated to Monterey Bay from a variety of
offshore locations in the California Current. In either
case, animals might have acclimated to different
hydrographic conditions before capture. We found
that measured Pcrit values did not depend on the
month of capture (p = 0.81, ANOVA), suggesting that
the integrated environmental history of the squid we
sampled was reasonably consistent or that acclima-
tion may not be relevant to hypoxic tolerance in D.
opalescens as manifested in Pcrit.

Oxygen concentration on the spawning grounds
for D. opalescens in Monterey Bay rarely falls to a
level below that corresponding to Pcrit (1.9−2.0 mg l−1)
(Booth et al. 2012). We might therefore expect that
spawning adults are probably not seriously threat-
ened by such hypoxic events, at least as defined by
the Pcrit criterion. On the other hand, juveniles of this
species are regularly exposed to lower temperatures
(5−8°C) and oxygen concentrations (0.7−2.1 mg l−1) in
offshore waters during excursions to depths of
~300 m (Zeidberg 2013, Stewart et al. 2014). Our
observed value for the concentration equivalent of
Pcrit is thus higher than the oxygen concentration at
this lower depth, but how Pcrit might be affected by
the lower temperature is not known for this species.

4.  CONCLUSIONS

Many group-forming cephalopods, including Do -
ryteuthis opalescens, are ecologically and economi-
cally important (Arkhipkin et al. 2015). Like other
pelagic taxa, they are subject to oceanic changes that
impact metabolism, specifically warming and deoxy-
genation (Levitus et al. 2000, Stramma et al. 2008).
Generally high metabolic rates, energetically costly
jetting, and low blood oxygen carrying capacity in
pelagic squids have been suggested to make this
group unduly sensitive to these ongoing changes
(O’Dor & Webber 1986, Pörtner 2002, Rosa & Seibel
2008, Seibel 2016), but physiological and behavioral
adaptations may serve as buffers to such challenges.
For example, the Humboldt squid Dosidicus gigas
greatly reduces its RMR in the face of severe hypoxia
(Gilly et al. 2006, Rosa & Seibel 2010) and engages in
long bouts of climb-and-glide swimming (Gilly et al.
2012), both of which allow it to spend the majority of
daytime hours at severely hypoxic depths associated
with the oxygen minimum zone (Stewart et al. 2014).
Our results are consistent with the idea that grouping
squid may have a lower RMR, because they are less
stressed than isolated individuals (Parker 1973, Mar-
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tin et al. 1980, Hennessy et al. 2009, Nadler et al.
2016). Given the lower overall metabolic rates in
groups, constraints related to oxygen supply may be
less likely to restrict the use of hypoxic zones.

In theory, an average energetic savings of 21%
across a squid’s lifetime conferred by the calming
effect of conspecifics could directly relate to en -
hanced foraging and predator evasion (Williams et
al. 2000), because squid would have more resources
available to divert to these tasks. This could poten-
tially enhance competitive ability under changing
ocean conditions (Breitberg et al. 2018). However,
our results additionally suggest that individual squid
separated from social groups likely incur substantial
metabolic consequences. A reliance on conspecifics
for protection may therefore be tied to the mainte-
nance of group cohesion during directed collective
movements (Hanlon & Messenger 2018). It remains
unknown how changes in environmental oxygen
availability impact the spatial organization capabili-
ties of squid groups.

Deutsch et al. (2015) defined a metabolic index
model to serve as a tool for predicting shifts in marine
ectotherm distribution resulting from changes in oxy-
gen availability. This model relies on the lab-derived
relationship between hypoxia tolerance (Pcrit) and
temperature to predict habitat shifts for a given spe-
cies. Given that the calculated value of Pcrit strongly
depends on the rate of oxygen uptake (Rogers et al.
2016, Wood 2018), factors that substantially impact
metabolic demand must be considered in designing
experiments to provide ecologically relevant input
data for the metabolic index model or similar
approaches. The effect of grouping on metabolic rate
provides an important example, particularly in re -
gard to highly active organisms like D. opalescens.

Further study of the nature and extent of a poten-
tial relationship between conspecifics and energy
consumption in social squids is clearly warranted. In
particular, a method based on the comparison of indi-
viduals with and without conspecific simulation
(Nadler et al. 2016) could be employed in conjunction
with longer acclimation periods to compare RMR and
basal metabolic rate measured over longer intervals.
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Analysis of covariance for RMR in Doryteuthis opalescens with social condition as
the independent variable and temperature as a covariate

Source of variation df MS F p

Social condition 1 0.07358 7.1448 0.0133
Temperature 1 0.014249 1.3836 0.251
Social condition × Temperature 1 0.00927 0.9002 0.3522
Residuals 24 0.010298

Analysis of covariance for RMR in Doryteuthis opalescens with wet mass as the
independent variable and the proportion of females as a covariate

Source of variation df MS F p

Wet mass 1 0.000057 0.0141 0.9079
Proportion of females 1 0.001722 0.427 0.5282
Wet mass × Proportion of females 1 0.000161 0.04 0.8455
Residuals 10 0.040334

Table A1. ANCOVA results. Significant factors affecting routine metabolic rate (RMR) 
(p < 0.05) in bold
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Fig. A1. Temperature-corrected routine metabolic rate (RMR) (14°C) plotted against mass for solitary (filled triangles, dashed
regression line) and grouped Doryteuthis opalescens (filled circles, solid regression line), with groups shaded based on the pro-
portion of female squid (all solitary squid were male). There was a minimal negative association between solitary squid RMR and
mass (slope = –0.003, p = 0.37, linear regression) and no apparent influence of sex on the neutral relationship between group RMR
and mass (slope = 0.0001, p = 0.9, ANCOVA) (Table A1). In the latter comparison, mass–metabolic rate equations for each group 

were used to calculate rates at randomly selected masses of squid from the solitary treatment
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