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Abstract. Random rough textures can increase the absorbing efficiency of solar cells
by trapping the optical light and increasing the optical path of photons. In this paper,
we are concerned with optimal design of random rough surfaces in thin-film solar
cells. We formulate the design problem as a random PDE constrained optimization
problem and employ gradient-based methods for solving the problem numerically. To
evaluate the gradient of the objective function, the Monte-Carlo method is used for
sampling the probability space and the adjoint state method is employed to calculate
the gradient at each sample. Numerical examples are shown to test the efficiency of the
proposed algorithm. It is demonstrated that optimally obtained random textures yield
an enormous absorption enhancement and a higher photon absorptance than that of
existing random textures.
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1 Introduction

Photovoltaics (PV), which directly convert solar energy into electricity, offer a practical
and sustainable solution to the challenge of meeting the increasing global energy de-
mand. A typical photovoltaic system employs solar panels, each consisting a number of
solar cells to generate electrical power from sun light that can be used to power equip-
ment or to recharge a battery [21]. One representative cell configuration is the so-called
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Figure 1: A schematic plot of thin-film solar cells.

thin-film solar cell, which is made of hydrogenated amorphous silicon (a-Si:H) and micro-
crystalline silicon (µc-Si:H). A typical a-Si:H cell structure is shown in Figure 1, where the
intrinsic a-Si:H is the absorbing layer that has a thickness of a few hundred nanometers.
Compared to traditional crystalline silicon solar cells, thin-film cells offer several distinc-
tive features such as much smaller thickness, low cost in production, and special optical
properties of a-Si:H and µc-Si:H [26].

The mass production of stable a-Si:H cells requires that the maximum thickness of
their light absorbing layer is often limited to about 300 nm [26]. Such a layer is sufficiently
absorptive at smaller optical wavelengths and all the incoming light in that frequency
band can be effectively absorbed. However, at larger wavelengths (typically >600 nm),
a-Si:H is poorly absorptive and most photon energy escapes. Consequently, the overall
efficiencies of thin-film solar cells are low, and their optical structures have to be engi-
neered in a way so as to increase the absorption and enhance their performance.

There exist various ways to increase the absorption efficiency of solar cells, for in-
stance, antireflection coating, fluorescent dyes, dielectric gratings, photonic crystals, and
plasmonic nanoparticles, etc [3, 4, 7, 13, 28]. However, it is still unclear whether such de-
sign will find their way into commercial photovoltaic devices because of their high costs.
Another way to increase the efficiency of photon absorption is using randomly nanotex-
tured interfaces to trap the optical light [1, 11, 12, 17, 27]. The randomly textured surfaces
lower the reflection losses at the entrance facet and scatter the light, thereby increasing
the optical path of each photon in the solar cell. In thin-film solar cells, this is usually
achieved by texturing the surface of the transparent conductive oxide (TCO) layer as
shown in Figure 1 (see also [22]). Very importantly, in practice the control and fabrication
of the TCO interface in a random manner can be achieved at very low cost by control-
ling the deposition parameter of TCO films sputtered on glass substrates [18, 23]. Such
cost-effective feature offers significant advantages in real fabrications compared to other
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structures. Thus commercialized cells of this sort, such as the Asahi-U substrate, the
Jülich substrate, and the Neuchǎtel substrate, have been developed. Meanwhile, to in-
crease the absorption efficiency, numerical studies have also been carried out to optimize
the randomness of TCO layer surfaces [11, 12, 17, 27]. The readers are referred to [19, 29]
and references therein for the optimal design of deterministic textures in solar cells †. We
also refer to [8,9,14,15,30] for other deterministic shape optimization problems that arise
in physics and engineering.

Previous studies on the optimization of random textures are mostly performed by
certain ad hoc procedures [11, 12, 17, 27]. They involve computing the absorptance for
several chosen statistical parameters and then choosing the ones that yield the largest ab-
sorptance among all computed values. Such ad hoc schemes are computationally ineffi-
cient. Furthermore, the obtained optimal solutions heavily depend on the set of statistical
parameters being chosen, and the real global optimal statistical parameters that yield the
highest solar absorptance can easily fall out of this set. In this paper, we formulate the
optimal design of random surface textures as a random PDE constrained problem. The
gradient-based algorithm is applied to solve the random optimization problem, and for
obtaining the statistical parameters of the optimal random textures. In order to evalu-
ate the gradient of the objective function, the Monte-Carlo method is used for sampling
the probability space and the adjoint state method is applied for computing the gradient
at each sample. It is demonstrated that new random textures give rises to a significant
absorption enhancement and their photon absorptance is higher than that of existing ran-
dom textures.

The rest of the paper is organized as follows. In Section 2 we introduce the mathe-
matical model for the optical scattering problem by random rough surfaces. The optimal
design problem is formulated in Section 3, and the computation of the shape derivative
and the gradient for the cost function is elaborated. Several numerical experiments are
presented in Section 4 to demonstrate the efficiency of the numerical method, followed
by several general concluding remarks.

2 Mathematical formulation

2.1 Optical scattering problem

We consider the two-dimensional model as depicted in Figure 2, by assuming that the
cell is invariant along the x3 direction. Since the goal is to optimize the random textures
for the TCO layer, and the index contrast between the glass substrate and the TCO is
rather low, for simplicity we don’t explicitly consider glass substrate and assume that
the cell consists of two layers only. That is, an absorbing layer (e.g., a-Si:H) sits at the

†It should be pointed out that, although typically the overall efficiency of the optimal deterministic interface
would yield a higher absorption efficiency than the average absorption efficiency of random ones, the for-
mer may loose its attractiveness in real applications due to the high cost to fabricate the complete optimal
structure.
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bottom and a transparent conducting oxide (TCO) layer lies on the top. Let us denote
the permittivity of the cell by ε= εrε0, where ε0 is the permittivity in the vacuum and εr

is the relative permittivity value. The absorbing layer and the TCO layer attain a relative
permittivity value of εr,1 and εr,2, respectively. The interface between the two layers is
textured in a random manner. Let Ω be the sample space. For each random sample
ω ∈ Ω, we define Γ(ω) := {(x1,x2) | x2 = f (ω;x1)} and denote the random interface by
Γ(ω). The cell is closed with a perfect reflector at the bottom, thus no transmission of the
optical light occurs. It is also assumed that the whole structure is periodic with the size
of the period Λ. Then in the reference period DΛ :=(0,Λ)×R

+, the domains for the TCO
and absorbing layers are given by

D1(ω) :={(x1,x2) | x1∈ (0,Λ),0< x2< f }
and

D2(ω) :={(x1,x2) | x1∈ (0,Λ), f < x2<∞}
respectively.

D2 (TCO layer)

random texture

D1 (a-Si:H layer)

perfect reflector

Figure 2: Schematic plot of the geometry.

We consider the transverse electric (TE) case for which the electric field E= (0,0,u).
The random structure is illuminated by an incident time–harmonic plane wave ui =
eik0q2d·x, where k0 is the free-space wavenumber, q2(:=

√
εr,2) is the refractive index of

the TCO layer, and d is the propagation direction. For clarity of presentation, we re-
strict the discussion of the optimal design under the normal incidence, or d = [0,−1]T.
The mathematical formulation and numerical algorithm introduced here can be extended
straightforwardly to the case of the oblique incidence. The total field u after the scattering
consists of the incident wave ui and the scattered wave us. For each sample ω, it satisfies











∆u(ω;·)+k2
0εru(ω;·)=0 in DΛ\Γ(ω),

u(ω;0,x2)=u(ω;Λ,x2),

u(ω;x1,0)=0, 0< x1<Λ,

(2.1)
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where the relative permittivity

εr =

{

εr,1, x2< f (ω;x1),
εr,2, x2> f (ω;x1).

Along the surface Γ(ω), the continuity of the electric field and magnetic field implies that

u+(ω;x1, f (ω,x1)) = u−(ω;x1, f (ω,x1)), (2.2)

∂νu+(ω;x1, f (ω,x1)) = ∂νu−(ω;x1, f (ω,x1)), (2.3)

where ν denotes the unit normal vector along Γ(ω) pointing toward D2(ω), u± and ∂νu±
denote the limits of u and ∂νu from above and below the surface respectively. In addition,
the scattered field us is outgoing in the domain D2(ω) that lies above the interface Γ(ω)
[2, 5].

D1

x2 = 0

x2 = b

D2

x2 = f(ω;x1)

Figure 3: Scattering problem in the bounded domain D :={(x1,x2) |0< x1 <Λ,0< x2 <b}.

To formulate the scattering problem in a bounded domain, let us introduce the Dirichlet-
to-Neumann map on the line x2 = b>max f (cf. Figure 3, [2]). For a fixed sample ω, by
virtue of the well-known Rayleigh expansion, the scattered field above Γ(ω) can be ex-
pressed as

us(ω;·)=
∞

∑
n=−∞

ûs
n(ω;b) eiκnx1+iηn(x2−b), (2.4)

where κn :=
2πn

Λ
for n∈Z and

ηn =















√

k2
0εr,2−κ2

n, k>κn,

i
√

κ2
n−k2

0εr,2, k<κn.

(2.5)
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ûs
n(ω;b) are the Fourier coefficients of us(ω;x1,b) defined by

ûs
n(ω;b)=

1

Λ

∫ Λ

0
us(ω;x1,b)e−iκnx1 dx1. (2.6)

It then follows that for x2=b,

∂us

∂x2
(ω;x1,b)=

∞

∑
n=−∞

iηnûs
n(ω;b)eiκnx1 =: T[us(ω;x1,b)]. (2.7)

By notating that u=ui+us and following a direct calculation, we obtain

∂u

∂x2
(ω;x1,b)=T(u(ω;x1,b))+g,

where g=−2ik0q2e−ik0q2b. Therefore, for each sample ω, the scattering problem can be
formulated in a bounded domain D as



























∆u(ω;·)+k2
0εru(ω;·)=0 in D\Γ(ω),

u(ω;0,x2)=u(ω;Λ,x2), 0< x2<b,

u(ω;x1,0)=0, 0< x1<Λ

∂u

∂x2
(ω;x1,b)=T(u(ω;x1,b))+g 0< x1<Λ.

(2.8)

Additionally, the continuity conditions (2.2) - (2.3) are imposed along the interface Γ(ω).

2.2 Modeling of random surfaces

Let x2 = a be the reference surface with the height a> 0. The random texture profile is
represented as

f (ω;x1)= a+h(ω;x1),

where h(ω;x1) is the deviation of the random surface from the reference surface. It is
assumed that h(ω;x1) is a stationary Gaussian process with zero mean and a continuous
and bounded covariance C(x1,y1)=c(x1−y1). Two widely used covariance functions for
the modeling of rough surfaces are

c(x1−y1)=σ2exp(−|x1−y1|q/`q) forq=1,2,

where σ is the root mean square (RMS) height of the surface and ` is the correlation
length [25]. Here we consider the Gaussian type correlation by letting q=2 and 0<`�Λ.

We adopt the well–known Karhunen–Loève expansion to represent the random pro-
cess h(ω;x1) [20]. In more detail, since h(ω;x1) is Λ-periodic, we may expand its covari-
ance function c(x1) as a Fourier series. By noting that c(x1) is even, it follows that

c(x1)=σ2

[

ĉ0

2
+

∞

∑
p=1

ĉp cos

(

2pπx1

Λ

)

]

,
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where ĉ0, ĉ1, ĉ1, ··· are the Fourier cosine expansion coefficients of the correlation function
exp(−|x1−y1|2/`2). It can be shown explicitly that the covariance operator

Kϕ(x1) :=
∫ Λ

0
c(x1−y1) ϕ(y1)dy,

possesses the eigenvalues

λj =
σ2Λĉj

2
, j=0,1,2,··· .

The corresponding eigenfunctions are

ϕj(x1)=































√

1

Λ
, j=0,

√

2

Λ
cos

(

2jπx1

Λ

)

, j>1,even
√

2

Λ
sin

(

2jπx1

Λ

)

, j>1,odd.

The Karhunen–Loève representation of the random process h(ω;x1) is given by

h(ω;x1)=
√

λ0ξ0(ω)

√

1

Λ
+

∞

∑
j=1

√

λj

[

ξ j,s(ω)

√

2

Λ
sin

(

2jπx1

Λ

)

+ξ j,c(ω)

√

2

Λ
cos

(

2jπx1

Λ

)

]

,

(2.9)
where ξ0, ξ j,c and ξ j,s are i.i.d. Gaussian random variables with zero mean and unit co-
variance.

Alternatively, by letting

λj =σ2λ̄j where λ̄j =
Λĉj

2
,

we may express the profile of the random surface by

h(ω;x1)=σ· h̄(ω;x1), (2.10)

where

h̄(ω;x1)=
√

λ̄0ξ0(ω)

√

1

Λ
+

∞

∑
j=1

√

λ̄j

[

ξ j,s(ω)

√

2

Λ
sin

(

2jπx1

Λ

)

+ξ j,c(ω)

√

2

Λ
cos

(

2jπx1

Λ

)

]

.

It is clear that h̄ is independent of the RMS height σ.
In practical computations, a finite–term Karhunen–Loève expansion is adopted such

that the contribution from the truncated terms is negligibly small. Figure 4 shows the
decay of the eigenvalues λ̄j when the period is Λ=1 and the correlation length is `=0.02.
We see that the first 50 terms of the Karhunen–Loève expansion to represent h̄ would give
an accuracy of about 10−3.
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Figure 4: Eigenvalues for the Gaussian covariance operator when Λ=1 and `=0.02.

3 Optimal design of random rough surface

3.1 Optimal design problem

For each sample ω, let R(ω) and A(ω) denote the reflectivity in the TCO layer and the
absorptance in the absorbing layer, respectively. From the conservation of energy, it is
clear that

R(ω)+A(ω)=1.

The optimal design problem seeks to maximize the mean absorptance E[A], or equiva-
lently, to minimize the mean reflectivity E[R]. To define the reflectivity R(ω), in light of
the Rayleigh expansion (2.4), we rewrite the scattered field as

us(ω;·)=
∞

∑
n=−∞

rn(ω) eiκnx1+iηnx2 ,

where the reflection coefficient rn(ω)= ûs
n(ω;b)e−iηnb, and ûs

n are the Fourier coefficients
of the scattered field us as defined in (2.6). Alternatively, by a direct calculation, it can be
shown that

rn(ω)=

{

ûn(ω;b)e−iηnb, n 6=0

ûn(ω;b)e−ik1b−e−2ik1b, n=0,
(3.1)

where ûn(ω;b) are the Fourier coefficients of the total field u(ω;·) on the boundary x2=b.

Let N :=
{

n∈Z | k2
0εr,2−κ2

n >0
}

be the set of indices for all propagating modes in the
Rayleigh expansion. For each sample ω∈Ω, the reflectivity associated with the solar cell
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is given by

R(ω; f )= ∑
n∈N

ηn

η0
|rn(ω)|2 ,

where ηn is defined in (2.5). Thus the mean reflectivity is

E[R] :=
∫

Ω
∑

n∈N

ηn

η0
|rn(ω)|2 dP(ω).

Recall that Ω and P denotes the random sample space and the probability measure, re-
spectively.

Let α :=(σ,`) be a vector with two components. We define the cost function

J(α) :=E [R(ω, f )].

Then the optimal design problem is to minimize the mean reflectivity J(α), or equiva-
lently, to solve the optimization problem

min
α∈Uα

J(α) (3.2)

over an admissible set Uα ⊂R
2. In this paper, we apply the gradient-based method to

solve the optimization problem (3.2). The Armijo’s line search method is used to find a
suitable step length [24]. To this end, the gradient of the cost function ∇α J needs to be
calculated during each iteration. This is discussed in details in what follows.

3.2 Computation of the gradient ∇α J

For each sample ω, by the chain rule, the gradient of R(ω; f (α)) is

∇αR=∇ f R·∇α f .

∇ f R is the shape derivative of R with respect to the surface (cf. [30]), and ∇α f is the gradi-
ent of f with respect to the statistical parameters α. The shape derivate is a key ingredient
of any gradient based shape control algorithms (cf. [10]). Here the shape derivative ∇αR
can be evaluated by the adjoint state approach (cf. [16]) and its formula is given in the
following theorem.

Theorem 3.1. The gradient ∇αR can be expressed as

∇αR=
2k2

0

Λ
∑

n∈N

ηn

η0
Re

[

(ûn(ω;b)−αne−ik1b)·(εr,1−εr,2)·
∫ Λ

0
[ūu∗

n]|(x1, f ) ·∇α f dx1

]

, (3.3)
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where α0 = 1 and αn = 0 if n 6= 0. u is the solution to the forward problem (2.8), and u∗
n

solves the adjoint problem















































∆u∗
n(ω;·)+k2

0εru∗
n(ω;·)=0 in D\Γ(ω),

u∗
n(ω;0,x2)=u∗

n(ω;Λ,x2), 0< x2<b,

u∗
n(ω;x1,0)=0, 0< x1<Λ,

∂u∗
n

∂x2
(ω;x1,b)=T∗(u∗

n(ω;x1,b))+eiκnx1 0< x1<Λ,

(u∗
n)+(ω;x1, f (ω,x1))=(u∗

n)−(ω;x1, f (ω,x1)) 0< x1<Λ,

(∂νu∗
n)+(ω;x1, f (ω,x1))=(∂νu∗

n)−(ω;x1, f (ω,x1)) 0< x1<Λ.

(3.4)

In the above theorem, [u∗
nū]|(x1, f ) denotes the restriction of u∗

nū to the surface Γ(ω).
T∗ is the adjoint operator of T such that

〈Tu,v〉= 〈u,T∗v〉,

where 〈·,·〉 stands for the inner product over the function space L2(0,Λ). We postpone
the proof of the theorem to Section 3.3.

It now follows that the gradient of the cost function J(α) is given by

∇α J=
∫

Ω
∇αR(ω, f )dP(ω). (3.5)

We apply the Monte-Carlo method for sampling over the probability space Ω in the above
formula. From (3.3), the calculation of ∇αR requires the evaluation of the gradient ∇α f ,
the solution of the forward scattering problem u and the solution of the adjoint problem
u∗

n. Note that ∇α f can be calculated directly from the Karhunen–Loève expansion (2.9).
The forward scattering problem (2.8) and the adjoint problem (3.4) are solved by the finite
element method [6].

3.3 Proof of Theorem 3.1

We first derivate the shape derivative ∇ f R. To this end, one needs to derive the pertur-
bation of the reflectivity, δR, due to the perturbation of the interface by δ f . This can be
obtained by the following two lemmas.

Lemma 3.2. Let the interface f be perturbed by δ f , and δεr be the change of the permit-
tivity due to the perturbation of the interface. Then for any test function v∈ L2(D), there
holds

(v,δεr)=
∫ Λ

0
v(x1, f (x1)) (εr,1−εr,2)·δ f dx.



11

Proof Let the new interface be denoted by f δ := f +δ f . First, it is observed that for any
test function v∈L2(D), the inner product

(v,δεr) :=
∫

D
v(x)δεr(x)dx=

∫

symdiff(D1,Dδ
1)

v(x)δεr(x)dx.

Here D1 and Dδ
1 are the corresponding absorbing layers with the interfaces f and f δ

respectively, and the symmetric difference of two sets D1 and Dδ
1 is given by

symdiff(D1,Dδ
1)=(D1∪Dδ

1)\(D1∩Dδ
1).

Now in view of the fact that the relative permittivity of the absorbing and TCO layers are
εr,1 and εr,1 respectively, the above inner product can be simplified as

(v,δεr)=
∫ Λ

0
v(x1, f (x1)) (εr,1−εr,2)·δ f dx

for an infinitesimal δ f .

Lemma 3.3. Let δR be the change of the reflectivity R due to the perturbation of the
interface by δ f , and δεr be the perturbation of the relative permittivity. Then

δR=
2k2

0

Λ
∑

n∈N

ηn

η0
Re

[

(ûn(ω;b)−αne−ik1b)·
∫

D
δ̄εrūu∗

n dx
]

+O(δ f 2),

where α0=1 and αn=0 if n 6=0. u and u∗
n is the solution to the forward problem (2.8) and

the adjoint problem (3.4), respectively.

Proof For the perturbed interface f δ := f +δ f so that the permittivity in the solar cell
becomes εδ

r := εr+δεr, the reflectivity at sample ω is

Rδ(ω, f ) = ∑
n∈N

ηn

η0
|rn+δrn|2

= ∑
n∈N

ηn

η0

{

|rn|2+2Re[rnδrn]+|δrn|2
}

= R(ω, f )+2 ∑
n∈N

ηn

η0
Re[rnδrn]+O(δ f 2).

We see that the perturbation of the reflectivity is

δR=2 ∑
n∈N

ηn

η0
Re[rnδrn]+O(δ f 2). (3.6)

For each term rnδrn, by virtue of (3.1), it follows that

rnδrn =











ûn(ω;b)· 1

Λ

∫ Λ

0
eiκnx1 δu(ω;x1,b)dx1, n 6=0

(

ûn(ω;b)−e−ik1b
)

· 1

Λ

∫ Λ

0
eiκnx1 δu(ω;x1,b)dx1, n=0.

(3.7)
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In the above, δu denotes the perturbation of the total field.
From a perturbation analysis, it is clear that δu solves the following boundary value

problem:















































∆δu(ω;·)+k2
0εrδu(ω;·)=−k2

0δεru(ω;·) in D\Γ(ω),

δu(ω;0,x2)=δu(ω;Λ,x2), 0< x2<b,

δu(ω;x1,0)=0, 0< x1<Λ

∂δu

∂x2
(ω;x1,b)=T(δu(ω;x1,b)) 0< x1<Λ,

(δu)+(ω;x1, f (ω,x1))=(δu)−(ω;x1, f (ω,x1)) 0< x1<Λ,

(∂νδu)+(ω;x1, f (ω,x1))=(∂νδu)−(ω;x1, f (ω,x1)) 0< x1<Λ.

(3.8)

By multiplying the PDE in the adjoint problem (3.4) by δu and the PDE in (3.8) by u∗
n, and

integrating over the domain D1 and D2 respectively, it follows that
∫

Dj

(∆u∗
n+k2

0εru∗
n)δu−u∗

n (∆δu+k2
0εrδu)dx=

∫

Dj

u∗
nk2

0δεru dx, j=1,2.

An application of the Green’s second identity for the left-hand sides and adding the
above two equations together yields

∫

Γ(ω)
(∂νu∗

n)−(δu)−−(u∗
n)−(∂νδu)−ds+

∫

Γ(ω)
(u∗

n)+(∂νδu)+−(∂νu∗
n)+(δu)+ds

+
∫ Λ

0
eiκnx δu(ω;x1,b)dx1= k2

0

∫

D1∪D2

δ̄εrūu∗
n dx,

where we have used the boundary conditions in (3.4) and (3.8). This can be further re-
duced to the following from the continuity condition along the interface Γ(ω):

∫ Λ

0
eiκnx δu(ω;x1,b)dx1= k2

0

∫

D
δ̄εrūu∗

n dx.

Therefore, by substituting into (3.7), we have

rnδrn =















ûn(ω;b)· k2
0

Λ

∫

D
δ̄εrūu∗

n dx, n 6=0,

(

ûn(ω;b)−e−ikb
)

· k2
0

Λ

∫

D
δ̄εrūu∗

n dx, n=0.

(3.9)

Consequently, in light of (3.6), the perturbation of the reflectivity is expressed by

δR=
2k2

0

Λ
∑

n∈N

ηn

η0
Re

[

(ûn(ω;b)−αne−ik1b)·
∫

D
δ̄εrūu∗

n dx
]

+O(δ f 2).
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Proof of Theorem 3.1: Suppose that the interface f be perturbed by δ f . A combination
of Lemmas 3.2 and 3.3 leads to the perturbation of reflectivity, which is given by

δR=
2k2

0

Λ
∑

n∈N

ηn

η0
Re

[

(ûn(ω;b)−αne−ik1b)·(εr,1−εr,2)·
∫ Λ

0
[ūu∗

n]|(x1, f ) ·δ f dx1

]

+O(δ f 2).

The desired formula (3.3) for ∇αR then follows by the chain rule.

4 Numerical experiments

In this section, we present several numerical examples to demonstrate the efficiency of
the numerical algorithms for solving the optimal design problem. The first numerical
example tests the accuracy of the finite element solver for the scattering problem, whereas
in the second and third examples, we test the convergence of the optimization algorithm,
and compare the absorbance of the solar cell using the obtained optimal random textures
with that of the existing commercialized substrates at two different optical wavelengths.

In all examples, the height of the reference surface, or equivalently the average thick-
ness of the absorbing layer, is set as a=300 nm, and the size of the periodic cell Λ=1500
nm. The number of random samples used in the Monte Carlo sampling is set as M=1000,
and the calculation of derivative ∇αR(ω) for different samples are run in parallel.

Example 1 In this example, we test the accuracy of the numerical solver for the scattering
problem. Let us assume that the free space wavelength λ0=500 nm. The refractive index
is q1=2.0 and q2=1.2 in D1 and D2, respectively.

We first consider the case when the interface between the TCO layer and absorbing
layer is free of random perturbation. Then for a normal incident time–harmonic plane
wave ui= e−ik0q2x2 , where k0 is the free-space wavenumber, the analytical solution for the
total field of the scattering problem (2.1) takes the form of

u(x)=







e−ik0q2x2+c2eik0q2x2 , x∈D2,

c1(e
ik0q1x2−e−ik0q1x2), x∈D1,

where

c1=
2q2e−ik0q2a

q2(eik0q1a−e−ik0q1a)−q1(eik0q1a+e−ik0q1a)
,

and

c2=
(eik0q1a−e−ik0q1a)

eik0q1a
·c−e−i2k0q2a.

We apply the linear finite element to solve the scattering problem with the mesh size
∆ = 12 nm,6 nm,3 nm,1.5 nm, and the corresponding L2-norm of numerical errors are
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Figure 5: Triangulation of the domain D with ∆=12nm.

Figure 6: Real (top) and imaginary part (bottom) of the total field with ∆=3nm.
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Table 1: L2-norm of the error for the numerical solution at various mesh sizes and the corresponding convergence
order.

∆ 12 nm 6 nm 3 nm 1.5 nm

||u−u∆||L2(D) 0.2224 0.0539 0.0137 0.0034

convergence order 2.04 1.98 2.01

shown in Table 1. It is observed the convergence order of numerical method is about 2,
which is consistent with the convergence theory of the linear finite element method.

Next we consider a rough surface, which is one realization of the random surface
with the RMS height σ= 30 nm and the correlation length `= 24 nm. The domain D is
decomposed with the mesh size ∆=12nm,6nm,3nm,1.5nm, respectively. The triangula-
tion with ∆=12 nm is plotted in Figure 5. To test the convergence of the PDE solver, we
choose the numerical solution ũ with the mesh size ∆=0.6 nm as the reference solution,
and compute the L∞-norm error ||ũ−u∆||L∞ along the boundary x2 = b for the four dif-
ferent triangulations defined above. This is shown in Table 2, which clearly confirms the
convergence of the finite element method. To illustrate the scattering effect by the rough
surface, we also plot the total field for the scattering problem with ∆=3nm in Figure 6.

Table 2: ||ũ−u∆||L∞ for various mesh sizes along the boundary x2=b, where ũ is the reference solution obtained
with ∆=0.6nm.

∆ 12 nm 6 nm 3 nm 1.5 nm

||ũ−u∆||L∞ 0.2840 0.0738 0.0112 0.0059

Example 2 Assume that the free space wavenlength λ0=650 nm. The refractive index of
the TCO layer is 1.915, or equivalently, its relative permittivity εr,1=3.667 [11,17,27]. The
refractive index of the absorbing layer is set as 4.2+0.045i when λ0 = 650 nm [31]. This
implies that the relative permittivity εr,2=17.6380+0.3780i. We apply the steepest decent
algorithm to solve the optimization problem (3.2), where the gradient is computed via
formulas (3.3) and (3.5).

Figure 7 demonstrates the decrease of the cost function J(α) for each iteration when
the Armijo’s line search method is used. It takes 7 iterations to achieve a minimum of
J(α), and the RMS height and the correlation length for all iterations are shown in Table 3.
The obtained optimal RMS height and the correlation length are σ=65.64 nm and `=36.08
nm, respectively. Figure 8 shows one realization of random surfaces with the optimal
statistical parameters, and Figure 9 is the corresponding total field after the scattering by
the rough surface.
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Iterations

0 1 2 3 4 5 6 7

J

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 7: The cost function J(α) for all iterations.

Table 3: The values of σ and ` for all iterations.

Iteration 0 1 2 3 4 5 6 7

σ (nm) 15 23.65 44.45 57.43 62.96 65.21 65.48 65.64

` (nm) 30 30.47 33.18 34.02 34.33 36.07 36.07 36.08

0 300 600 900 1200 1500 nm
0

300

600 nm

Figure 8: Realization of the random surface with the obtained optimal statistical parameters.
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Figure 9: Real (top) and imaginary part (bottom) of the total field for the scattering by the surface shown in Figure 8.

It can be calculated that E[A], the average absorptance of the solar cell with the ob-
tained optimal random surface texture, is about 0.61. As a comparison, we also compute
the absorptance for the solar cell with a flat surface (with no random texture) and the
Asahi-U substrate, and collect all values in Table 4. The Asahi-U substrate, which has a
RMS height of 35 nm and a correlation length of 160 nm, has been shown to yield the
highest efficiency among the three commercialized solar cells (Namely, Asahi-U, Jülich,
and Neuchǎtel cells) [27]. It is seen that the absorptance for a flat surface is only 0.24.
Hence the absorption enhancement is 2.6 when the optimal randomized textures are em-
ployed along the interface of the TCO and the absorbing layers. By a direct calculation,
the Asahi-U cell yields an average absorptance of 0.45. Therefore, the random textures
obtained from solving optimization problem (3.2) yield a much higher absorptance than
the Asahi-U cell. It should be pointed out that the current comparison is performed for
two dimensional structures. Further investigation in three dimensions still need to be
carried out, and this will be reported elsewhere.

For comparison purpose, we also plot one realization of the Asahi-U surface and the
corresponding total field in Figure 10 and Figure 11, respectively. Clearly, the obtained
optimal surfaces have smaller correlation length than the Asahi-U surface, and are much
rougher as a result. On the other hand, the optimal RMS height are larger than the Asahi-
U surface. Consequently, as observed from Figure 9 and Figure 11, the multiple scattering
effect becomes more manifested for the wave field of the optimal surfaces. This may lead
to a higher obsorptance for the realization of the optimal surface, which has a value of
0.64, compared to 0.54 for the Asahi-U surface.
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Table 4: The absorptances of solar cells with three different types of surfaces.

flat surface Asahi-U substrate optimal surface

σ (nm) 0 35 65.64

` (nm) 160 36.08

E[A] 0.24 0.45 0.62

0 500 1000 1500 nm
200

250

300

350

400 nm

Figure 10: Realization of the Asahi-U random surface in one cell.

Figure 11: Real (top) and imaginary part (bottom) of the total field for the scattering by the Asahi-U surface.
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Example 3 In this example, we consider the optimization when the free space waven-
length λ0 =720 nm. The refractive index of the absorbing layer is 4+0.0035i [31]. Figure
12 demonstrates the decrease of the cost function J(α) during the steepest descent itera-
tion, and Table 5 are the corresponding σ and ` values. We see that the optimal correlation
length is close to that obtained for λ0 =650 nm, while the RMS height are quite different
for two cases. Numerical studies at other wavelengths also show that the optimal cor-
relation length is close to 40 nm. This is very useful in providing guidance to solve the
broadband optimal design problem, which is currently explored. One realization of ran-
dom surfaces with the obtained RMS height and the correlation length is plotted Figure
13, and Figure 14 shows the corresponding total field after the scattering by the rough
surface. Again, the multiple scattering effect for the wave field of the optimal surface
is more manifested than the Ashahi-U cell (see Figure 15) due to the roughness of the
former, and the aborptance is much higher (with a value of 0.28, compared to 0.04 for the
Ashahi-U cell).

The average absorptances of solar cells with three types of surfaces are shown in Table
6. We see that the average absorptance of the solar cell with the obtained optimal random
surface texture is about 0.3, while the absorptance of the cell with a flat surface is only
0.02. That is, an absorption enhancement of 15 is gained. On the other hand, the Asahi-U
substrate gives rise to an average absorptance of 0.11. Hence the absorption efficiency
for the solar cell with the random textures obtained by solving the optimization problem
(3.2) is much higher than that of the Asahi-U cell.

Table 5: The values of σ and ` for all iterations.

Iteration 0 1 2 3 4 5 6

σ (nm) 60 54.40 46.40 36.07 22.37 22.87 22.58

` (nm) 30 28.67 32.60 34.69 36.07 36.12 36.26

Table 6: The absorptances of solar cells with three different types of surfaces.

flat surface Asahi-U substrate optimal surface

σ (nm) 0 35 22.58

` (nm) 160 36.26

E[A] 0.02 0.11 0.3
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Iterations

0 1 2 3 4 5 6

J
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0.75

0.8

0.85

0.9

Figure 12: The cost function J(α) for all iterations.

0 300 600 900 1200 1500 nm
150

300

450 nm

Figure 13: Realization of the random surface with the obtained optimal statistical parameters.
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Figure 14: Real (top) and imaginary part (bottom) of the total field for the scattering by the surface shown in Figure 13.

Figure 15: Real (top) and imaginary part (bottom) of the total field for the scattering by the Asahi-U surface.
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5 Conclusions

In this paper, we have formulated the optimal design problem for random surface tex-
tures in thin-film solar cells and presented a gradient-based algorithm with the adjoint
state method to solve the problem numerically. It is shown that the optimal random tex-
tures obtained numerically would yield a significant absorption enhancement. The math-
ematical and numerical investigation presented here is the first study along this research
direction and we are currently exploring further to answer the following questions. In
terms of the formulation of the optimal design problems, first, in addition to optimize the
average of the absorptance, one may need to optimize its variance so that the efficiency of
all realization of optimal random surface would gain certain stability. Second, due to the
broadband nature of optical light, it would be desirable to perform optimization over a
band of optical frequency. Finally, the interface between the absorbing layer and perfect
reflector can also be textured in a random manner and is also subject to optimization.
In terms of the numerical approach, more efficient random sampling technique such as
multi-level Monte Carlo method will be employed. In addition, the numerical simula-
tions and the optimal design procedures will be carried out for the three-dimensional
models.
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