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ABSTRACT: A dual catalytic strategy for the synthesis of enamides
and enecarbamates directly from easily accessible and inexpensive
amino acids has been realized. This mild and efficient protocol makes
use of an organic photoredox catalyst and a cobaloxime catalyst to
achieve decarboxylative elimination using hydrogen evolution to drive
the oxidation. Thus, the reaction occurs without a stoichiometric oxi-
dant or the forcing conditions previously employed in attempts to
achieve similar eliminations.

Enamides and enecarbamates possess synthetic utility as stable nucle-
ophilic building blocks in addition to the motif itself being present in bi-
ologically active compounds.! Methods toward their synthesis include
classical protocols such as the acylation of imines, condensation of
amines with aldehydes, and through the Curtius rearrangement of acyl
azides as well as more modern transition metal catalyzed cross-coupling
reactions with amides and activated/stereo-defined olefins.> Another
appealing route is the direct synthesis of functionally diverse enamides
from readily available and inexpensive amino acids.® Herein, we describe
anoble metal-free procedure that accomplishes the direct conversion of
N-acyl amino acids to enamides via a sequential radical decarboxylation
and hydrogen evolution process facilitated by the cooperation of an or-
ganophotoredox catalyst and cobaloxime catalyst. This decarboxylative
elimination strategy operates under neutral conditions and bypasses the
need for a stoichiometric terminal oxidant and the pre-activation of the
carboxylic acid moiety.* The marriage of the decarboxylation and hydro-
gen evolution chemistry has allowed for a mild, operationally simple,
and economical route for enamide synthesis.

Kochi pioneered the direct conversion of carboxylic acids into olefins
via decarboxylative elimination (Scheme 1A).> However, the utility of
Kochi’s elimination is limited by the requirement of a stoichiometric
toxic lead oxidant, often forcing conditions, and significant limitations
in scope. Additionally, these reactions tend to produce complex product
mixtures.>® Most notably, this elimination was not successful when ap-
plied to the o-amino acid substrates of interest to us.”

In approaching the decarboxylative elimination of o-amino acids, we
were inspired by Sorensen’s dehydrogenation of alkanes (Scheme 1B)
The dehydrogenation involves hydrogen atom transfer (HAT) to gen-
erate an alkyl radical followed by a second HAT reaction to generate the
alkene. The need to initiate olefin formation via a hydrogen atom trans-

fer (HAT) reaction limits the reaction scope because it is highly depend-
ent on C-H bond strength and thus, not very selective when many sim-
ilar C-H bonds are present. Sorensen recognized this limitation and has
utilized aldehydes as initiating groups that can be selectively activated
due to their low C-H bond strength.” We envisioned that olefin for-
mation could be achieved using oxidative decarboxylation to generate a
radical intermediate followed by a HAT reaction. Such use of photocata-
lytic decarboxylation would allow us to site-specifically engage widely-
available carboxylic acids in elimination reactions without the need to
rely on differential bond strengths. Furthermore, crafting a cooperative
catalytic system utilizing a photoredox catalyst and cobaloxime catalyst
would allow for enamides and enecarbamates to be directly accessed
from N-acyl amino acids under mild conditions without stoichiometric
oxidants (Scheme 1C).

Scheme 1:
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C. Decarboxylative Elimination via Dual Catalysis (This Work)
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The decarboxylative elimination was envisaged to be initiated via pro-
tonation of a Co(I) species by an ai-amino acid (pK. ~ 2, Scheme 2). It
is well-documented that the basicity of Co(I) can be exploited to gener-
ate a Co(11I)-hydride species (pK. = 7.7) via deprotonation of common
acids.’® Thus, protonation of Co(I) will provide an o-amino carbox-
ylate. Photo-oxidation of the carboxylate, facilitated by a photoredox
catalyst, followed by decarboxylation will furnish an 0-amino radical.'*



The reduced photoredox catalyst can in turn reduce Co(I1I) to Co(II),
which is an excellent HAT acceptor that targets the weak C-H bonds
adjacent to the radical center (Scheme 2).!2'3 This HAT would provide
the desired olefin and subsequent hydrogen evolution (HER) would
complete the cycle. Ultimately the transformation would produce CO-
and H: as the only stoichiometric byproducts and would utilize visible
light as an economical and environmentally friendly energy input.™

Scheme 2: Hypothetical Mechanism
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To initiate studies, the elimination of N-Boc-phenylalanine (1a) was
investigated using several organic photoredox catalysts combined with
commercially available cobaloxime, Co(dmgH).CIPy (Figure 1). To
generate the Co(I) nucleophile, the starting Co(III) was reduced with
one equivalent of zinc before being subjected to the reaction mixture.
The choice in photoredox catalyst was narrowed down to the Fukuzumi
family of acridiniums'S and the fluorophore, 4CzIPN*¢ (Figure 1). These
photocatalysts appeared as the logical choices as a result of their favora-
ble oxidation potentials (Eij2= > +2.0 V vs. SCE for acridiniums and
+1.35 V vs. SCE for 4CzIPN)!7*!6 for the oxidation of amino carbox-
ylates (E1/2 = +0.95 V vs. SCE)"'® and their lower expense compared to
commonly employed iridium photocatalysts. Additionally, a favorable
reduction potential for the reduction of Co(III) to Co(II) (E2=-0.68
V vs. SCE)'” must be considered. In this regard, 4CzIPN has a much
more negative reduction potential (E;2=-1.21 V vs. SCE)*" while the
common acridinium catalyst (Mes-Acr-Me*) has a more closely
matched reduction potential (Ei/2=-0.57 Vvs. SCE).'7¢

Figure 1: Potential Cooperative Catalysts Screened
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Preliminary reactions suggested that the highest conversion towards
the desired olefin product was achieved with the acridinium photocata-
lysts screened (>75% conversion), while poor conversion was observed
with 4CzIPN (32% conversion).'® Of the acridinium catalysts that were
investigated, Mes-2,7-Mez-Acr-Ph* was found to perform the best (95%
conversion) and thus was used in further screenings.'’

Next, the effect of catalyst loading on the decarboxylative elimination
was studied. Upon doing so, it became immediately apparent that a
slight excess of photocatalyst compared to cobaloxime is vital to the re-
action’s success (Table 1, entries 1-3). Ultimately, a 3:S ratio of cobalt
to photocatalyst was determined to be optimal. Isolated yields were fur-
ther increased through a solvent change from acetonitrile to methanol
(Table 1, entry 7).

Table 1: Optimization of Catalyst Loadings

COOH Mes-2,7-Me,-Acr-Ph*BF \ n\
Co(dmgH),CIPy Boc
—_—

AN Goe 32 W Blue LED
1a 38°C, 16 h, Ar 2a

Entry Co(l)> Mes-2,7-Me,-Acr-Ph  Solvent  Yield®

(mol %) (mol %)

1 3 3 MeCN  29%
2 3 5 MeCN  57%¢
3 5 3 MeCN  28%
4 6 10 MeCN  54%
5 1. 3 MeCN  30%
6 0.75 15 MeCN  15%
7 3 5 MeOH  68%
8 5 Et,0 16%
9 3 5 DMF 0%

*Co(dmgH).CIPy reduced with Zn (1 equiv.) and NaCl (3.3 equiv.) in
0.5 mL MeCN. ®0.2 mmol scale in MeCN (2 mL) under argon. ¢Iso-
lated yields; products isolated as a mix of E/ Z-isomers. ‘Isomer ratio
(39:61E:Z).

Having established the optimal catalyst loadings and solvent choice,
the initial reduction of Co(IIT) to Co(I) was explored. Classically, this
reduction had been performed with an excess of sodium borohydride
(NaBHy4).1%20 However, it was hypothesized that any active reductant
in the final reaction mixture would interrupt the catalysts’ performance.

Table 2: Cobalt Catalyst Optimization

reductant
Co(dmgH),clpy -2ddifive1 __ ~.q)
reflux 50 min.

MeOH, Ar
Co(l) (3 mol%)
cooH Mes-2,7-Mey-Acr-Ph*BF, (5 mol%) H
additive 2 (7.5 mol%) X+ Ngoc
HN-Boc 32 W Blue LED, 16 h 2a
1a MeOH, Ar
Entry Reductant Additive 1 Additive 2 Yield®
(amt.) (amt.) (7.5 mol%)
1 Zn (3 mol%) NaCl (10 mol%) - 68%
2¢  NaBH, (2 mol%) B} - 20%
3 NaCNBHj3 (7.5 mol%) - 38%
4 STAB (7.5 mol%) - 52%
5 STAB (7.5 mol%) . H,0 70%
6  STAB (7.5 mol%) NayCOs (1 mol%) . 66%
7 STAB (7.5 mol%) NayCOg (1 mol%)  H,0 82%

*General conditions: Co(dmgH )>CIPy (3 mol%) and reductant refluxed
in methanol (0.5 mL) for SO min. The reduced cobalt catalyst solution
was added to N-Boc-phenylalanine (0.2 mmol) and Mes-2,7-Me;-Act-
Ph* (S mol%) then irradiated with blue LEDs for 16 h under argon. *I-
solated yields; isolated as a mix of E/Z-isomers. ‘Reduction performed
in acetonitrile.



Thus, the choice in reductant and the amount used in the initial catalyst
reduction could impact the success of the elimination reaction. In addi-
tion to zinc, NaBH4, sodium cyanoborohydride (NaCNBH3), and so-
dium triacetoxyborohydride (STAB) were screened (Table 2, entries 1-
4). Apart from zinc, STAB provided the highest isolated yield. The use
of a catalytic amount of sodium carbonate in the cobaloxime reduction
with STAB as well as the addition of water to the reaction solvent further
increased the yield (Table 2, entries 5-6). Upon utilizing these additives
in conjunction, an 82% isolated yield was achieved (Table 2, entry 7).

In addition to optimization studies, control experiments were also
conducted. Only a trace amount of alkene was observed in the absence
of photocatalyst and no product was observed in the absence of the co-
balt catalyst. While the reaction could be carried out under air, a de-
crease in yield to 60% was observed under aerobic conditions. Finally,
the reaction was found to reach completion in 16 hours with no change
in yield upon increasing the irradiation time to 24 hours.

With optimal conditions in hand, a variety of N-protected amino ac-
ids were investigated for the direct synthesis of enamides and enecarba-
mates (Table 3). Derivatives of phenylalanine were found to be useful
substrates for the elimination (2a-2i). Interchanging tert-butyloxycar-
bonyl (Boc) and acetyl protecting groups provided similar yields and
E:Z selectivity (2a, 2b). This allows a simple dipeptide to be utilized in
the elimination chemistry (2c). Additional functionalities on the aryl
substituent in the para and ortho positions were also tolerated and hav-
ing an electron-withdrawing substituent in the para-position provided a
slight increase in yield and E-selectivity. Conversely, an electron-donat-
ing para substituent lead to a decrease in yield (2d-2g).

Table 3: Scope of N-Acyl Amino Acids

Mes-2,7-Me,-Acr-Ph*BF 4~ (5 mol%) 3
COOH  Co(dmgH),CIPy (3 mol%) R
MeOH, H,0 (7.5 mol%), Ar

R!' HN-R? T HN-R®
32 W Blue LED, 16 h R HN-R
1a-x 2a-x

o~ oy o

2a R = Boc; 82%, (65:35) 5
2b R = Ac; 85%, (65 35, 26 77% (66:34)

Cl H
N

2h 71%, (67:33) 2i 71%, (90:10)

e O

2mR = Ac; 90%, (85:15) 20 909
2n R = Boc; 34%, (80 20) ©90%

rR2 R®

2d X = CN; 85%, (81:19)
2e X = F; 70%, (69 31)
2 X = CI: 75%, (71:29)
2g X = OMe; 58%, (67:33)

H
N

AN R

2j R = Ac; 72%, (82:18)

2k R = Boc; 41%, (71:29)
2IR = Cbz; 52%, (71:29)

o o} N
O. o No
Y\HJ\LC)) /Y\NJ\/O\ O/ \[o]/\/ Boc
H

2p 66% 2q 73%, 64:36° 2r 45%, 67:33

o A~ .R H H
N N N
>r \([)]/\/\H bz NSNS

2s R = Ac; 80%, 75:25
2t R = Boc; 24%, >99:1

= N/AC
2u 77%, (76:24) H
2v 51%, (10:90)°

“Reactions were run on 0.2 mmol scale under argon. "Cobalt catalyst
was reduced with STAB (7.5 mol%) and Na;COs (1 mol%) in MeOH
(0.5 mL) at reflux for SO min and added via syringe to the reaction mix-
ture. “All yields reported are isolated yields. “Isomer ratios were deter-
mined by 'H NMR. *Major isomer determined by NOESY.

Amino acids other than phenylalanine derivatives provided consider-
ably higher yields when the nitrogen was acylated rather than substi-
tuted with a carbamate protecting group (2i-2n), and unprotected
amino acids failed to undergo the reaction. Aside from the protecting
group influences, various aliphatic side chains, including those with ester
and amine functionalities, led to good to excellent yields of enamides.
Additionally, trisubstituted alkenes (20-2q) could also accessed
through decarboxylative elimination.

To better understand the nature of the observed geometric ratios of
products, several additional experiments were conducted. It was specu-
lated that photo-isomerization of the alkenes could be a factor, either
through an electron transfer or energy transfer from the photocatalyst to
the alkene. Photoisomerizations of this nature have been described by
Weaver® using iridium photoredox catalysts but have not been previ-
ously reported with the acridiniums. To explore this, the E- and Z- iso-
mers of aspartic acid derivative (2n) were independently subjected to
the photocatalyst and irradiated in acetonitrile. Indeed, isomerization
was observed in each case, producing a steady-state mixture of ca. 45:55
E:Z (Scheme 3A).2»* The same isomerization does not occur upon ir-
radiation in the absence of a photocatalyst or at elevated temperature
(50 °C). Taken together, these observations support a hypothesis that
the product E: Z ratios represent the photostationary state of each prod-
uct under the reaction conditions.

Further mechanistic information was provided by the reaction of N-
Boc phenylalanine in CDsOD in a sealed NMR tube (Scheme 3B).
Analysis of the crude reaction mixture revealed the formation of H-D
and Hz in a 6:1 ratio. The H-D presumably results from coupling of the
exchangeable acid proton (Boc-NHCHBnCO:D) with the H-atom ab-
stracted in the HAT reaction. Since the exchange of the N-H proton
with deuterated solvent is slow under the reaction conditions, the H-D
hydrogen could originate from either the N-H or C-H positions a.-to the
radical. We favor the pathway involving HAT from the C-H bond be-
cause we see no evidence for imine formation. Moreover, subjecting a
tertiary amino acid, which lacks an N-H bond, to the standard reaction
conditions results in product formation (Scheme 3C). Interestingly, the
N-Me reactant exhibits a high selectivity for the E-olefin.

Scheme 3: Mechanistic Investigations
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In conclusion, a mild and direct decarboxylative elimination of readily
available amino acids for the production of enamides and enecarba-
mates has been realized. This protocol bypasses the use of stoichio-
metric oxidants, toxic and expensive reagents, and harsh conditions, all
of which are seen in related attempts to achieve this transformation. Fur-
ther explorations into the reaction mechanism and controlling the E/Z
selectivity are currently under investigation in our lab.
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