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ABSTRACT ARTICLE HISTORY
Classical reverse-mode automatic differentiation (AD) imposes only a Received 19 March 2017
small constant-factor overhead in operation count over the original ~ Accepted 12 March 2018

computation, but has storage requirements that grow, in the worst

R N A . KEYWORDS

case, in proportion to the time consumed by the original computa- Reverse-mode automatic
tion. This storage blowup can be ameliorated by checkpointing, a differentiation; binomial

process that reorders application of classical reverse-mode AD over checkpointing; treeverse;

an execution interval to tradeoff space vs. time. Application of check- programming language
pointing in a divide-and-conquer fashion to strategically chosen theory; compiler theory;
nested execution intervals can break classical reverse-mode AD into ~ lambda calculus
stages which can reduce the worst-case growth in storage fromlinear  Ams suBJECT

to sublinear. Doing this has been fully automated only for computa- CLASSIFICATIONS

tions of particularly simple form, with checkpoints spanning execu- 68N20; 68N 18; 65F50; 65D25;
tion intervals resulting from a limited set of program constructs. Here 46G05; 58C20

we show how the technique can be automated for arbitrary compu-

tations. The essential innovation is to apply the technique at the level

of the language implementation itself, thus allowing checkpoints to

span any execution interval.

1. Introduction

Reverse-mode automatic differentiation (AD) traverses the run-time dataflow graph of
a calculation in reverse order, in a so-called reverse sweep, so as to calculate a Jacobian-
transpose-vector product of the Jacobian of the given original (or primal) calculation [22].
Although the number of arithmetic operations involved in this process is only a con-
stant factor greater than that of the primal calculation, some values involved in the primal
dataflow graph must be saved for use in the reverse sweep, thus imposing considerable
storage overhead. This is accomplished by replacing the primal computation with a for-
ward sweep that performs the primal computation while saving the requisite values on a
data structure known as the tape. A technique called checkpointing [25] reorders portions of
the forward and reverse sweeps to reduce the maximal length of the requisite tape. Doing
so, however, requires (re)computation of portions of the primal and saving the requisite
program state to support such as snapshots. Overall space savings result when the space
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Figure 1. Checkpointing in reverse-mode AD. See text for description.

saved by reducing the maximal length of the requisite tape exceeds the space cost of stor-
ing the snapshots. Such space saving incurs a time cost in (re)computation of portions of
the primal. Different checkpointing strategies lead to a space-time tradeoff.

We introduce some terminology that will be useful in describing checkpointing. An
execution point is a point in time during the execution of a program. A program point is a
location in the program code. Since program fragments might be invoked zero or more
times during the execution of a program, each execution point corresponds to exactly
one program point but each program point may correspond to zero or more execution
points. An execution interval is a time interval spanning two execution points. A pro-
gram interval is a fragment of code spanning two program points. Program intervals are
usually constrained so that they nest, i.e. they do not cross one boundary of a syntactic pro-
gram construct without crossing the other. Each program interval may correspond to zero
or more execution intervals, those execution intervals whose endpoints result from the
same invocation of the program interval. Each execution interval corresponds to at most
one program interval. An execution interval might not correspond to a program interval
because the endpoints might not result from the same invocation of any program interval.

Figures 1 and 2 illustrate the process of performing reverse-mode AD with and without
checkpointing. Control flows from top to bottom, and along the direction of the arrow
within each row. The symbols u, v, and po,...,ps denote execution points in the pri-
mal, u being the start of the computation whose derivative is desired, v being the end of
that computation, and each p; being an intermediate execution point in that computation.
Reverse mode involves various sweeps, whose execution intervals are represented as hori-
zontal green, red, and blue lines. Green lines denote (re)computation of the primal without
taping. Red lines denote computation of the primal with taping, i.e. the forward sweep
of reverse mode. Blue lines denote computation of the Jacobian-transpose-vector prod-
uct, i.e. the reverse sweep of reverse mode. The vertical black lines denote collections of
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Figure 2. Divide-and-conquer checkpointing in reverse-mode AD. See text for description.

execution points across the various sweeps that correspond to execution points in the pri-
mal, each particular execution point being the intersection of a horizontal line and a verti-
calline. In portions of Figures 1 and 2 other than Figure 1(a) we refer to execution points for
other sweeps besides the primal in a given collection with the symbols u, v, and py, . . ., ps
when the intent is clear. The vertical violet, gold, pink, and brown lines denote execution
intervals for the lifetimes of various saved values. Violet lines denote the lifetime of a value
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saved on the tape during the forward sweep and used during the reverse sweep. The value
is saved at the execution point at the top of the violet line and used once at the execution
point at the bottom of that line. Gold and pink lines denote the lifetime of a snapshot.!
The snapshot is saved at the execution point at the top of each gold or pink line and used
at various other execution points during its lifetime. Green lines emanating from a gold or
pink line indicate restarting a portion of the primal computation from a saved snapshot.

Figure 1(a) depicts the primal computation, y = f(x), which takes ¢ time steps, with x
being a portion of the program state at execution point # and y being a portion of the pro-
gram state at execution point v computed from x. This is performed without taping (green).
Figure 1(b) depicts classical reverse mode without checkpointing. An uninterrupted for-
ward sweep (red) is performed for the entire length of the primal, then an uninterrupted
reverse sweep (blue) is performed for the entire length. Since the tape values are consumed
in reverse order from which they are saved, the requisite tape length is O(¢). Figure 1(c)
depicts a checkpoint introduced for the execution interval [po, p3). This interrupts the for-
ward sweep and delays a portion of that sweep until the reverse sweep. Execution proceeds
by a forward sweep (red) that tapes during the execution interval [u, po), a primal sweep
(green) without taping during the execution interval [po, p3), a taping forward sweep (red)
during the execution interval [ps3, v), a reverse sweep (blue) during the execution interval
[v, p3), a taping forward sweep (red) during the execution interval [po, p3), a reverse sweep
(blue) during the execution interval [ps3, po), and then a reverse sweep (blue) during the
execution interval [po, u). The forward sweep for the execution interval [po, p3) is delayed
until after the reverse sweep for the execution interval [v, p3). As a result of this reorder-
ing, the tapes required for those sweeps are not simultaneously live. Thus the requisite tape
length is the maximum of the two tape lengths, not their sum. This savings comes at a
cost. To allow such out-of-order execution, a snapshot (gold) must be saved at py and the
portion of the primal during the execution interval [pg, p3) must be computed twice, first
without taping (green) then with (red).

A checkpoint can be introduced into a portion of the forward sweep that has been
delayed, as shown in Figure 1(d). An additional checkpoint can be introduced for the exe-
cution interval [p1,p2). This will delay a portion of the already delayed forward sweep
even further. As a result, the portions of the tape needed for the three execution intervals
[p1,p2)> [p2, p3), and [p3, v) are not simultaneously live, thus further reducing the requisite
tape length, but requiring more (re)computation of the primal (green). The execution inter-
vals for multiple checkpoints must either be disjoint or must nest; the execution interval of
one checkpoint cannot cross one endpoint of the execution interval of another checkpoint
without crossing the other endpoint.

Execution intervals for checkpoints can be specified in a variety of ways.

program interval

Execution intervals of specified program intervals constitute checkpoints.
subroutine call site

Execution intervals of specified subroutine call sites constitute checkpoints.
subroutine body

Execution intervals of specified subroutine bodies constitute checkpoints [25].

Nominally, these have the same power; with any one, one could achieve the effect of the
other two. Specifying a subroutine body could be accomplished by specifying all call sites
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Figure 3. A binary checkpoint tree.

to that subroutine. Specifying some call sites but not others could be accomplished by hav-
ing two variants of the subroutine, one whose body is specified and one whose is not,
and calling the appropriate one at each call site. Specifying a program interval could be
accomplished by extracting that interval as a subroutine.

TAPENADE [12] allows the user to specify program intervals for checkpoints with
the c$ad checkpoint-start and c$ad checkpoint-end pragmas. TAPENADE, by
default, checkpoints all subroutine calls [8]. This default can be overridden for named
subroutines with the -nocheckpoint command-line option and for both named sub-
routines and specific call sites with the c$ad nocheckpoint pragma.

Recursive application of checkpointing in a divide-and-conquer fashion, i.e. ‘treeverse’,
can divide the forward and reverse sweeps into stages run sequentially [9]. The key idea
is that only one stage is live at a time, thus requiring a shorter tape. However, the state
of the primal computation at various intermediate execution points needs to be saved as
snapshots, in order to (re)run the requisite portion of the primal to allow the forward and
reverse sweeps for each stage to run in turn. This process is illustrated in Figure 2. Consider
a root execution interval [u,v) of the derivative calculation. Without checkpointing, the
forward and reverse sweeps span the entire root execution interval, as shown in Figure 2(a).
One can divide the root execution interval [u, v) into two subintervals [u, p) and [p, v) at
the split point p and checkpoint the first subinterval [u, p). This divides the forward (red)
and reverse (blue) sweeps into two stages. These two stages are not simultaneously live. If
the two subintervals are the same length, this halves the storage needed for the tape at the
expense of running the primal computation for [u, p) twice, first without taping (green),
then with taping (red). This requires a single snapshot (gold) at u. This process can be
viewed as constructing a binary checkpoint tree (Figure 3) whose nodes are labelled with
execution intervals, the intervals of the children of a node are adjacent, the interval of a
node is the disjoint union of the intervals of its children, and left children are checkpointed.

One can construct a left-branching binary checkpoint tree over the same root execution
interval [u, v) with the split points p, p1, and p, (Figure 4(a)). This can also be viewed as
constructing an n-ary checkpoint tree where all children but the rightmost are checkpointed
(Figure 4(b)). This leads to nested checkpoints for the execution intervals [u, po), [, p1),
and [u, p>) as shown in Figure 2(c). Since the starting execution point u is the same for
these intervals, a single snapshot (gold) with longer lifetime suffices. These checkpoints
divide the forward (red) and reverse (blue) sweeps into four stages. This allows the storage
needed for the tape to be reduced arbitrarily (i.e. the red and blue segments can be made
arbitrarily short), by rerunning successively shorter prefixes of the primal computation
(green), without taping, running only short segments (red) with taping. This requires an
O(t) increase in time for (re)computation of the primal (green).

Alternatively, one can construct a right-branching binary checkpoint tree over the same
root execution interval [u, v) with the same split points pg, p1, and p, (Figure 5). This
also divides the forward (red) and reverse (blue) sweeps into four stages. With this, the
requisite tape length (the maximal length of the red and blue segments) can be reduced
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Figure 4. (a) a left-branching binary checkpoint tree and (b) equivalent n-ary checkpoint tree.
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Figure 5. A right-branching checkpoint tree.

arbitrarily while running the primal (green) just once, by saving more snapshots (gold and
pink), as shown in Figure 2(d), This requires an O(f) increase in space for storage of the
live snapshots (gold and pink).

Thus we see that divide-and-conquer checkpointing can make the requisite tape arbi-
trarily small with either left- or right-branching binary checkpoint trees. This involves a
space-time tradeoff. The left-branching binary checkpoint trees require a single snapshot
butan O(t) increase in time for (re)computation of the primal (green). The right-branching
binary checkpoint trees require an O(t) increase in space for storage of the live snapshots
(gold and pink) but (re)run the primal only once.

One can also construct a complete binary checkpoint tree over the same root execu-
tion interval [u, v) with the same split points pg, p1, and p, (Figure 6). This constitutes
application of the approach from Figure 2(b) in a divide-and-conquer fashion as shown in
Figure 2(e). This also divides the forward (red) and reverse (blue) sweeps into four stages.
One can continue this divide-and-conquer process further, with more split points, more
snapshots, and more but shorter stages, as shown in Figure 2(f). This leads to an O(log t)
increase in space for storage of the live snapshots (gold and pink) and an O(log t) increase
in time for (re)computation of the primal (green). Variations of this technique can tradeoft
between different improvements in space and/or time complexity, leading to overhead in
a variety of sublinear asymptotic complexity classes in one or both. In order to apply this
technique, we must be able to construct a checkpoint tree of the desired shape with appro-
priate split points. This in turn requires the ability to interrupt the primal computation at
appropriate execution points, save the interrupted execution state as a capsule, and restart
the computation from the capsules, sometimes repeatedly.?

Any given divide-and-conquer decomposition of the same root execution interval
with the same split points can be viewed as either a binary checkpoint tree or an n-ary
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Figure 6. A complete binary checkpoint tree.
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Figure 7. Figure 2(e) interpreted as (a) a binary checkpoint tree and as (b) an n-ary checkpoint tree.
Figure 2(f) interpreted as (c) a binary checkpoint tree and as (d) an n-ary checkpoint tree.

checkpoint tree. Thus Figure 2(e) can be viewed as either Figure 7(a) or Figure 7(b). Sim-
ilarly, Figure 2(f) can be viewed as either Figure 7(c) or Figure 7(d). Thus we distinguish
between two algorithms to perform divide-and-conquer checkpointing.

binary An algorithm that constructs a binary checkpoint tree.
treeverse The algorithm from [9, Figures 2 and 3] that constructs an n-ary checkpoint
tree.

There is, however, a simple correspondence between associated binary and n-ary check-
point trees. The n-ary checkpoint tree is derived from the binary checkpoint tree by
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coalescing each maximal sequence of left branches into a single node. Thus we will see,
in Section 5, that these two algorithms exhibit the same properties.

Note that (divide-and-conquer) checkpointing does not incur any space or time over-
head in the forward or reverse sweeps themselves (i.e. the number of violet lines and
the total length of red and blue lines). Any space overhead results from the snapshots
(gold and pink) and any time overhead results from (re)computation of the primal
(green).

Several design choices arise in the application of divide-and-conquer checkpointing in
addition to the choice of binary vs. n-ary checkpoint trees.

e What root execution interval(s) should be subject to divide-and-conquer checkpoint-
ing?

e Which execution points are candidate split points? The divide-and-conquer pro-
cess of constructing the checkpoint tree will select actual split points from these
candidates.

e What is the shape or depth of the checkpoint tree, i.e. what is the termination criterion
for the divide-and-conquer process?

Since the leaf nodes of the checkpoint tree correspond to stages, the termination criterion
and the number of evaluation steps in the stage at each leaf node (the length of a pair of
red and blue lines) are mutually constrained. The number of live snapshots at a leaf (how
many gold and pink lines are crossed by a horizontal line drawn leftward from that stage,
the pair of red and blue lines, to the root) depends on the depth of the leaf and its posi-
tion in the checkpoint tree. Different checkpoint trees, with different shapes resulting from
different termination criteria and split points, can lead to a different maximal number of
live snapshots, resulting in different storage requirements. The amount of (re)computation
of the primal (the total length of the green lines) can also depend on the shape of the
checkpoint tree, thus different checkpoint trees, with different shapes resulting from differ-
ent termination criteria and split points, can lead to different compute-time requirements.
Thus different strategies for specifying the termination criterion and the split points can
influence the space-time tradeoff.

We make a distinction between several different approaches to selecting root execution
intervals subject to divide-and-conquer checkpointing.

loop Execution intervals resulting from invocations of specified DO loops are subject
to divide-and-conquer checkpointing.

entire derivative calculation The execution interval for an entire specified derivative
calculation is subject to divide-and-conquer checkpointing.

We further make a distinction between several different approaches to selecting candidate
split points.

iteration boundary Iteration boundaries of the DO loop specified as the root execution
interval are taken as candidate split points.

arbitrary Any execution point inside the root execution interval can be taken as a
candidate split point.
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We further make a distinction between several different approaches to specifying the
termination criterion and deciding which candidate split points to select as actual split
points.

bisection Split points are selected so as to divide the computation dominated by a
node in half as one progresses successively from right to left among children [9,
Equation (12)]. One can employ a variety of termination criteria, including that from
[9, p. 46]. If the termination criterion is such that the total number of leaves is a power
of two, one obtains a complete binary checkpoint tree. A termination criterion that
bounds the number of evaluation steps in a leaf limits the size of the tape and achieves
logarithmic overhead in both asymptotic space and time complexity compared with
the primal.
binomial Split points are selected using the criterion from [9, Equation (16)]. The ter-
mination criterion from [9, p. 46] is usually adopted to achieve the desired properties
discussed in [9]. Different termination criteria can be selected to control space-time
tradeoffs.

fixed space overhead One can bound the size of the tape and the number of

snapshots to obtain sublinear but superlogarithmic overhead in asymptotic time

complexity compared with the primal.

fixed time overhead One can bound the size of the tape and the (re)computation

of the primal to obtain sublinear but superlogarithmic overhead in asymptotic

space complexity compared with the primal.

logarithmic space and time overhead One can bound the size of the tape and obtain

logarithmic overhead in both asymptotic space and time complexity compared

with the primal. The constant factor is less than that of bisection checkpointing.

We elaborate on the strategies for selecting actual split points from candidate split points
and the associated termination criteria in Section 5.

Divide-and-conquer checkpointing has only been provided to date in AD systems in
special cases. For example, TAPENADE allows the user to select invocations of a specified
DO loop as the root execution interval for divide-and-conquer checkpointing with the
c$ad binomial-ckp pragma, taking iteration boundaries of that loop as candidate split
points. TAPENADE employs binomial selection of split points and a fixed space overhead
termination criterion. Note, however, that TAPENADE only guarantees this fixed space over-
head property for DO loop bodies that take constant time. Similarly ApoL-c [10] contains
a nested taping mechanism for time-integration processes [17] that also performs divide-
and-conquer checkpointing. This only applies to code formulated as a time-integration
process.

Here, we present a framework for applying divide-and-conquer checkpointing to arbi-
trary code with no special annotation or refactoring required. An entire specified derivative
calculation is taken as the root execution interval, rather than invocations of a specified DO
loop. Arbitrary execution points are taken as candidate split points, rather than iteration
boundaries. As discussed below in Section 5, both binary and n-ary (treeverse) check-
point trees are supported. Furthermore, as discussed below in Section 5, both bisection
and binomial checkpointing are supported. Additionally, all of the above termination cri-
teria are supported: fixed space overhead, fixed time overhead, and logarithmic space and
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time overhead. Any combination of the above checkpoint-tree generation algorithms, split-
point selection methods, and termination criteria are supported. In order to apply this
framework, we must be able to interrupt the primal computation at appropriate execution
points, save the interrupted execution state as a capsule, and restart the computation from
the capsules, sometimes repeatedly. This is accomplished by building divide-and-conquer
checkpointing on top of a general-purpose mechanism for interrupting and resuming com-
putation. This mechanism is similar to engines [13] and is orthogonal to AD. We present
several implementations of our framework which we call cHECKPOINTVLAD. In Section 6,
we compare the space and time usage of our framework with that of TAPENADE on an
example.

Note that one cannot generally achieve the space and time guarantees of divide-and-
conquer checkpointing with program-interval, subroutine-call-site, or subroutine-body
checkpointing unless the call tree has the same shape as the requisite checkpoint tree.
Furthermore, one cannot generally achieve the space and time guarantees of divide-and-
conquer checkpointing for DO loops by specifying the loop body as a program-interval
checkpoint, as that would lead to a right-branching checkpoint tree and behaviour analo-
gous to Figure 2(d). Moreover, if one allows split points at arbitrary execution points, the
resulting checkpoint execution intervals may not correspond to program intervals.

Some form of divide-and-conquer checkpointing is necessary. One may wish to take the
gradient of a long-running computation, even if it has low asymptotic time complexity. The
length of the tape required by reverse mode without divide-and-conquer checkpointing
increases with increasing run time. Modern computers can execute several billion floating
point operations per second, even without GPUs and multiple cores, which only exacerbate
the problem. If each such operation required storage of a single eight-byte double precision
number, modern terabyte RAM sizes would fill up after a few seconds of computation.
Thus without some form of divide-and-conquer checkpointing, it would not be possible to
efficiently take the gradient of a computation that takes more than a few seconds.

Machine learning methods in general, and deep learning methods in particular, require
taking gradients of long-running high-dimension computations, particularly when train-
ing deep neural networks in general or recurrent neural networks over long time series.
Thus variants of divide-and-conquer checkpointing have been rediscovered and deployed
by the machine learning community in this context [6,11]. These implementations are far
from automatic, and depend on compile-time analysis of the static primal flow graphs.

The general strategy of divide-and-conquer checkpointing, the n-ary treeverse
algorithm, the bisection and binomial strategies for selecting split points, and the termina-
tion criteria that provide fixed space overhead, fixed time overhead, and logarithmic space
and time overhead were all presented in [9]. Furthermore, TAPENADE has implemented
divide-and-conquer checkpointing with the n-ary treeverse algorithm, the binomial strat-
egy for selecting split points, and the termination criterion that provides fixed space
overhead, but only for root execution intervals corresponding to invocations of specified
DO loops that meet certain criteria with split points restricted to iteration boundaries of
those loops. To our knowledge, the binary checkpoint-tree algorithm presented here and
the framework for allowing it to achieve all of the same guarantees as the n-ary treeverse
algorithm is new. However, our central novel contribution here is providing a frame-
work for supporting either the binary checkpoint-tree algorithm or the n-ary treeverse
algorithm, either bisection or binomial split point selection, and any of the termination
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criteria of fixed space overhead, fixed time overhead, or logarithmic space and time over-
head in a way that supports taking the entire derivative calculation as the root execution
interval and taking arbitrary execution points as candidate split points, by integrating the
framework into the language implementation.

Some earlier work [14,15,23] prophetically presaged the work here. This work seems
to have received far less exposure and attention than deserved. Perhaps because the ideas
therein were so advanced and intricate that it was difficult to communicate those ideas
clearly. Moreover, the authors report difficulties in getting their implementations to be
fully functional. Our work here formulates the requisite ideas and mechanisms carefully
and precisely, using methods from the programming-language community, like formula-
tion of divide-and-conquer checkpointing of a function as divide-and-conquer application
of reverse mode to two functions whose composition is the original function, formula-
tion of the requisite decomposition as a precise and abstract interruption and resumption
interface, formulation of semantics precisely through specification of evaluators, use of
CPS evaluators to specify an implementation of the interruption and resumption inter-
face, and systematic derivation of a compiler from that evaluator via CPS conversion, to
allow complete, correct, comprehensible, and fully general implementation.

2. The limitations of divide-and-conquer checkpointing with split points at
fixed syntactic program points like loop iteration boundaries

Consider the example in Figure 8. This example, y = f(x;1, ¢), while contrived, is a sim-
ple caricature of a situation that arises commonly in practice: modelling a physical system
with an adaptive grid. An initial state vector x : R" is repeatedly transformed by a state
update process R” — R" and, upon termination, an aggregate property y of the final state
is computed by a function R" — R. We wish to compute the gradient of that property y
relative to the initial state x. Here, the state update process first rotates the value pairs at
adjacent odd-even coordinates of the state x by an angle 6 and then rotates those at adja-
cent even-odd coordinates. The rotation 6 is taken to be proportional to the magnitude
of x. The adaptive grid manifests in two nested update loops. The outer loop has dura-
tion /, specified as an input hyperparameter. The duration m of the inner loop varies wildly
as some function of another input hyperparameter ¢ and the outer loop index 7, perhaps
2Ug(D]~Llg(1+(1013[3%)i mod )] 'that js small on most iterations of the outer loop but O(/) on
a few iterations. If the split points were limited to iteration boundaries of the outer loop, as
would be common in existing implementations, the increase in space or time requirements
would grow larger than sublinearly. The issue is that for the desired sublinear growth prop-
erties to hold, it must be possible to select arbitrary execution points as split points. In other
words, the granularity of the divide-and-conquer decomposition must be primitive atomic
computations, not loop iterations. The distribution of run time across the program is not
modularly reflected in the static syntactic structure of the source code, in this case the loop
structure. Often the user is unaware of, or even unconcerned with, the micro-level struc-
ture of atomic computations, and does not wish to break the modularity of the source code
to expose it. Yet the user may still wish to reap the sublinear space or time overhead bene-
fits of divide-and-conquer checkpointing. Moreover, the relative duration of different paths
through a program may vary from loop iteration to loop iteration in a fashion that is data
dependent, as shown by the above example, and not even statically determinable. We will



function ilog2(1)
ilog2 = dlog(real(l, 8))/dlog(2.0d0)
end

subroutine rotate(theta, x1, x2, xlp, x2p)
double precision theta, xi, x2, xip, x2p, c,
c = cos(theta)

s = sin(theta)

x1p c*xl-s*x2

x2p s*x1+c*x2

end

subroutine rotl(theta, n, x)
double precision theta, x, x1p, x2p
dimension x(n)
do k = 1, n-1, 2
call rotate(theta, x(k), x(k+1), xip, x2p)

x(k) = x1p
x(k+1) = x2p
end do

end

subroutine rot2(theta, n, x)
double precision theta, x, x1p, x2p
dimension x(n)
do k = 2, n-2, 2
call rotate(theta, x(k), x(k+1), xilp, x2p)

x(k) = x1p
x(k+1) = x2p
end do

end

subroutine magsqr(n, x, y)
double precision x, y
dimension x(n)
y = 0.0d0
do k =1, n
y = y+x (k) *x (k)
end do
end
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subroutine f(n, x, 1, phi, y)
double precision phi, x, y, x1
dimension x(n), x1(1000)
n

do k = 1,
x1(k) = x(k)

end do

c$ad binomial-ckp 1+1 40 1

doi=1, 1
m = 2%x(ilog2(1)-

¥ ilog2 (1+int (mod (1013.0d0*3.0d0**phi*real (i, 8),

+ real(l, 8)))))

do j =1, m
call magsqr(m, x1, y)
y = sqrt(y)
call rotl(1.2d0*y, n, x1)
call rot2(1.4d0*y, n, x1)
end do
end do
call magsqr(m, x1, y)
y = y/2.0d0
end

program main
double precision phi, x, xb,
dimension x(1000), xb(1000)
read *, n
read *, 1
read *, phi
do k =1, n

x(k) = n+1-k

xb(k) = 0.0d0

vy, yb

call f(n, x, 1, phi, y)
print *, y
call f_b(n, x, xb, 1, phi, y, yb)
do k =1, n
print *, xb(k)
end do
end

Figure 8. ForTRAN example. This example is rendered in cHECkPOINTVLAD in Figure 28. Space and time
overhead of two variants of this example when run under TAPENADE are presented in Figure 29. The
pragma used for the variant with divide-and-conquer checkpointing of the outer DO loop is shown. This
pragma is removed for the variant with no checkpointing.

now proceed to discuss an implementation strategy for divide-and-conquer checkpointing
that does not constrain split points to loop iteration boundaries or other syntactic pro-
gram constructs and does not constrain checkpoints to program intervals or other syntactic
program constructs. Instead, it can take any arbitrary execution point as a split point and
introduce checkpoints at any resulting execution interval.

3. Technical details of our method

Implementing divide-and-conquer checkpointing requires the capacity to

(1) measure the length of the primal computation,

(2) interrupt the primal computation at a portion of the measured length,
(3) save the state of the interrupted computation as a capsule, and

(4) resume an interrupted computation from a capsule.

For our purposes, the second and third operations are always performed together and can
be fused into a single operation. These can be difficult to implement efficiently as library
routines in an existing language implementation (see Section 7.1). Thus we design a new
language implementation, CHECKPOINTVLAD, with efficient support for these low-level

operations.

3.1. Corelanguage

CHECKPOINTVLAD adds builtin AD operators to a functional pre-AD core language. In the
actual implementation, this core language is provided with a ScHEME-like surface syntax.?
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But nothing turns on this; the core language can be exposed with any surface syntax. For
expository purposes, we present the core language here in a simple, more traditional, math-
like notation.

CHECKPOINTVLAD employs the same functional core language as our earlier VLAD sys-
tem [21]. Support for AD in general, and divide-and-conquer checkpointing in particular,
is simplified in a functional programming language (see Section 7.2). Except for this sim-
plification, which can be eliminated with well-known techniques (e.g. monads [26] and
uniqueness types [1]) for supporting mutation in functional languages, nothing turns on
our choice of core language. We intend our core language as a simple expository vehi-
cle for the ideas presented here; they could be implemented in other core languages (see
Section 7.1).

Our core language contains the following constructs:

ex=c|x|Axe]|e e |if e; thene, elsee; | ce| e @e; (1)

Here, e denotes expressions, ¢ denotes constants, x denotes variables, e; e, denotes function
application, ¢ denotes builtin unary operators, and e denotes builtin binary operators. For
expository simplicity, the discussion of the core language here omits many vagaries such
as support for recursion and functions of multiple arguments; the actual implementation
supports these using standard mechanisms that are well known within the programming-
language community (e.g. tupling or Currying).

3.2. Direct-style evaluator for the core language

We start by formulating a simple evaluator for this core language (Figure 9) and extend it to
perform AD and ultimately divide-and-conquer checkpointing. This evaluator is written
in what is known in the programming-language community as direct style, where functions
(in this case &, denoting ‘eval’ and .4, denoting ‘apply’) take inputs as function-call argu-
ments and yield outputs as function-call return values [18]. While this evaluator can be
viewed as an interpreter, it is intended more as a description of the evaluation mechanism;
this mechanism could be the underlying hardware as exposed via a compiler. Indeed, as
described below in Section 3.14, we have written three implementations, one an interpreter,
one a hybrid compiler/interpreter, and one a compiler.

A((Az.e),p)v=E p[z—v]e (2a)

Epc=c (2b)

Epx=px (2¢)

Ep (Az.e) ={((\x.e),p) (2d)
Ep(erea)=A(Eper) (Epe) (2e)

E p (if ey then ey else e3) =if (€ pey) then (€ pey) else (€ pe3) (2f)
Ep(ee)=0o(Epe) (28)
Epleroer)=(Eper)e(Epes) (2h)

Figure 9. Direct-style evaluator for the core cHeckPOINTVLAD language.
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With any evaluator, one distinguishes between two language evaluation strata: the target,
the language being implemented and the process of evaluating programs in that language,
and the host, the language in which the evaluator is written and the process of evaluat-
ing the evaluator itself. In our case, the target is CHECKPOINTVLAD, while the host varies
among our three implementations; for the first two it is SCHEME while for the third it is the
underlying hardware, achieved by compilation to machine code via c.

In the evaluator in Figure 9, p denotes an environment, a mapping from variables to
their values, pg denotes the empty environment that does not map any variables, p x
denotes looking up the variable x in the environment p to obtain its value, p[x > v]
denotes augmenting an environment p to map the variable x to the value v, and £ p e
denotes evaluating the expression e in the context of the environment p. There is a clause
for £ in Figure 9, (2b-h), for each construct in (1). Clause (2b) says that one evaluates
a constant by returning that constant. Clause (2c) says that one evaluates a variable by
returning its value in the environment. The notation (e, p) denotes a closure, a lambda
expression e together with an environment p containing values for the free variables in e.
Clause (2d) says that one evaluates a lambda expression by returning a closure with the
environment in the context that the lambda expression was evaluated in. Clause (2e)
says that one evaluates an application by evaluating the callee expression to obtain a
closure, evaluating the argument expression to obtain a value, and then applying the
closure to the value with A. A, as described in (2a), evaluates the body of the lambda
expression in the callee closure in the environment of that closure augmented with the
formal parameter of that lambda expression bound to the argument value. The remain-
ing clauses are all analogous to clause (2h), which says that one evaluates an expression
e1 @ ey in the target by evaluating e; and e to obtain values and then applying e in the host
to these values.

3.3. Adding AD operators to the core language

Unlike many AD systems implemented as libraries, we provide support for AD by aug-
menting the core language to include builtin AD operators for both forward and reverse
mode [21]. This allows seamless integration of AD into the language in a completely gen-
eral fashion with no unimplemented or erroneous corner cases. In particular, it allows

nesting [19]. In cHECKPOINTVLAD, we adopt slight variants of the 7 and ? operators
previously incorporated into vLAD. (Nothing turns on this. The variants adopted here are
simpler, better suit our expository purposes, and allow us to focus on the issue at hand.) In
CHECKPOINTVLAD, these operators have the following signatures.

% ’ ’ e ~ ~
Jifxx— 0y, J: fxy— (X (3)

We use the notation X and X to denote tangent or cotangent values associated with the
primal value x, respectively, and the notation (x, y) to denote a pair of values. Since in
CHECKPOINTVLAD, functions can take multiple arguments but only return a single result,
which can be an aggregate like a pair, the AD operators take the primal and the associated
(co)tangent as distinct arguments but return the primal and the associated (co)tangent as
a pair of values.
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—
The J operator provides the portal to forward mode and calls a function f on a primal x

with a tangent X to yield a primal y and a tangent . The (j operator provides the portal
to reverse mode and calls a function f on a primal x with a cotangent y to yield a primal y
and a cotangent x.* Unlike the original vLAD, here, we restrict ourselves to the case where
(co)tangents are ground data values, i.e. reals and (arbitrary) data structures containing
reals and other scalar values, but not functions (i.e. closures). Nothing turns on this; it
allows us to focus on the issue at hand.

The implementations of vLAD and cCHECKPOINTVLAD are disjoint and use completely
different technology. The STALINV [21] implementation of VLAD is based on source-code
transformation, conceptually applied reflectively at run time but migrated to compile time
through partial evaluation. The implementation of CHECKPOINTVLAD uses something
more akin to operator overloading. Again, nothing turns on this; this simplification is for
expository purposes and allows us to focus on the issue at hand (see Section 7.1).

In cHECKPOINTVLAD, AD is performed by overloading the arithmetic opera-
tions in the host, in a fashion similar to FaDBAD++ [5]. The actual method
used is that employed by R6rs-AD® and DirrSHARPS. The key difference is that
FADBAD++ uses c++  templates to encode a hierarchy of distinct forward-
mode types (e.g. F<double>, F<F<double> >, ...), distinct reverse-
mode types (e.g. B<double>, B<B<double> >, ...), and mixtures thereof
(e.g. F<B<double> >,B<F<double> >, ...)whilehere, weuseadynamic,
run-time approach where numeric values are tagged with the nesting level [19,24]. Tem-
plate instantiation at compile-time specializes code to different nesting levels. The dynamic
approach allows a single interpreter (host), formulated around unspecialized code, to
interpret different target programs with different nesting levels.

3.4. Augmenting the direct-style evaluator to support the AD operators

We add AD into the target language as new constructs.

— <«
ex=Jerees| Jereres (4)

We implement this functionality by augmenting the direct-style evaluator with new clauses
for £ (Figure 10), clause (2k) for 7 and clause (21) for (j These clauses are all analogous
to clause (2h), formulated around 7 and ? operators in the host. These are defined in (24,
2j). The 7 and (j operators in the host behave like A except that they level shift to perform
AD. Just like (A f x) applies a target function f (closure) to a target value x, (7 fxx)

7 vy 0903 = let (vg b G5) = (A vy (va > 03)) in (vg,05) (2i)
T 010903 = let (vg a5) = (A vy v2) 43) in (vg, b5) (2i)
Ep(Tereres)=T (Eper) (Epea) (€ pes) (2K)
Ep(Tereres)=T (Eper) (Epea) (€ pes) (21)

Figure 10. Additions to the direct-style evaluator for cHeckpoINTVLAD to support AD.
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performs forward mode by applying a target function f (closure) to a target primal value x

and a target tangent value X, while (J f x y) performs reverse mode by applying a target
function f (closure) to a target primal value x and a target cotangent value .

As described in (2i), J operates by recursively walking v,, a data structure contain-
ing primals, in tandem with v3, a data structure containing tangents, to yield a single data
structure where each numeric leaf value is a dual number, a numeric primal value asso-
ciated with a numeric tangent value. This recursive walk is denoted as v, > v3. A is then
used to apply the function (closure) v; to the data structure produced by v, > ¥3. Since the
input argument is level shifted and contains dual numbers instead of ordinary reals, the
underlying arithmetic operators invoked during the application perform forward mode
by dispatching on the tags at run time. The call to .4 yields a result data structure where
each numeric leaf value is a dual number. This is then recursively walked to separate out
two data structures, one, vy4, containing the numeric primal result values, and the other,
Us, containing the numeric tangent result values, which are returned as a pair (v4, Us) This
recursive walk is denoted as let (v4 > VU5) = ...in ...

As described in (2j), J operates by recursively walking vy, a data structure containing
primals, to replace each numeric value with a tape node. A is then used to apply the func-
tion (closure) v; to this modified v,. Since the input argument is level shifted and contains
tape nodes instead of ordinary reals, the underlying arithmetic operators invoked during
the application perform the forward sweep of reverse mode by dispatching on the tags at
run time. The call to A yields a result data structure where each numeric leaf value is a tape
node. A recursive walk is performed on this result data structure, in tandem with a data
structure v3 of associated cotangent values, to initiate the reverse sweep of reverse mode.
This combined operation is denoted as ((A v} v2) <1 v3). The result of the forward sweep
is then recursively walked to replace each tape node with its numeric primal value and the
input value is recursively walked to replace each tape node with the cotangent computed
by the reverse sweep. These are returned as a pair (v4, v5). This combined operation is
denoted aslet (v4 < vs) =...in ...

3.5. An operator to perform divide-and-conquer checkpointing in reverse-mode
AD

v
We introduce a new AD operator 7 to perform divide-and-conquer checkpointing.” (For
expository simplicity, we focus for now on binary bisection checkpointing. In Section 5,
v
we provide alternate implementations of 7 that perform treeverse and/or binomial check-
va
pointing.) The crucial aspect of the design is that the signature (and semantics) of J is

<«
identical to [J ; they are completely interchangeable, differing only in the space/time com-
plexity tradeoffs. This means that code need not be modified to switch back and forth
between ordinary reverse mode and various forms of divide-and-conquer checkpointing,

) i <~ v
save interchanging calls to J and J.

v
Conceptually, the behaviour of 7 is shown in Figure 11. In this inductive definition, a
function f is split into the composition of two functions g and h in step (1), the capsule z
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To compute (y,2) :1/7 fxi: .
base case (f x fast): (y,2)=J fzy (step 0)
inductive case: hog=f (step 1)
z=gw (step 2)
W2 =Thzy  (step3)
(z,2) :{7 gz z (step 4)
Figure 11. Algorithm for binary checkpointing.
PRIMOPS f z Return the number [ of evaluation steps needed to com-
pute y = f(x).
INTERRUPT f x ]+~ z Run the first [ steps of the computation of f(z) and return
a capsule z.
RESUME z — y If z = (INTERRUPT f x [), return y = f(x).

Figure 12. General-purpose interruption and resumption interface.

is computed by applying g to the input x in step (2), and the cotangent is computed by

v
recursively applying J to h and g in steps 3 and 4. This divide-and-conquer behaviour is
terminated in a base case, when the function f is small, at which point the cotangent is

computed with ?, in step (0). If step (1) splits a function f into two functions g and h that
take the same number of evaluation steps, and we terminate the recursion when f takes
a bounded number of steps, the recursive divide-and-conquer process yields logarithmic
asymptotic space/time overhead complexity.

The central difficulty in implementing the above is performing step (1), namely splitting
a function f into two functions g and h, such that f = h o g, ideally where we can specify
the split point, the number of evaluation steps through f where ¢ transitions into h. A
sophisticated user can manually rewrite a subprogram f into two subprograms g and h. A
sufficiently powerful compiler or source transformation tool might also be able to do so,
with access to non-local program text. But an overloading system, with access only to local
information, would not be able to.

3.6. General-purpose interruption and resumption mechanism

We solve this problem by providing an interface to a general-purpose interruption and
resumption mechanism that is orthogonal to AD (Figure 12). This interface allows
(a) determining the number of evaluation steps of a computation, (b) interrupting a com-
putation after a specified number of steps, usually half the number of steps determined
by the mechanism in (a), and (c) resuming an interrupted computation to completion. A
variety of implementation strategies for this interface are possible. We present two in detail
below, in Sections 3.8 and 3.12, and briefly discuss another in Section 7.1.
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To compute (y,Z) = \/j fxy: _
base case: (y,2)=T fay (step 0)
inductive case: [ =PRIMOPS [ x (step 1)
z = INTERRUPT f z | L] (step 2)
(y,2) :{7 (Az.RESUME 2) z ¢ (step 3)
(z,2) - (Az.INTERRUPT fx |§]) 22 (step 4)

Figure 13. Binary bisection checkpointing via the general-purpose interruption and resumption inter-
face. Step (1) need only be performed once at the beginning of the recursion, with steps (2) and (4)
taking / at the next recursion level to be [//2] and step (3) taking / at the next recursion level to
be [1/2]. As discussed in the text, this implementation is not quite correct, because (Az.RESUME 2) in
step (3) and (Ax.INTERRUPT f x |//2]) in step (4) are host closures but need to be target closures. A proper
implementation is given in Figure 18.

Irrespective of how one implements the general-purpose interruption and resumption

interface, one can use it to implement the binary bisection variant of :9 in the host, as
shown in Figure 13. The function f is split into the composition of two functions g and h
by taking g as (AX.INTERRUPT f x [), where [ is half the number of steps determined by
(PRIMOPS f x), and h as (Az.RESUME z).

3.7. Continuation-passing-style evaluator

One way of implementing the general-purpose interruption and resumption interface is
to convert the evaluator from direct style to what is known in the programming-language

—_—
community as continuation-passing style (CPS) [18], where functions (in this case £, A, J,

and (‘7 in the host) take an additional continuation input k and instead of yielding outputs
via function-call return, do so by calling the continuation with said output as arguments
(Figures 14 and 15). In CPS, functions never return: they just call their continuation. With
tail-call merging, this corresponds to a computed go to and does not incur stack growth.
This crucially allows an interruption to actually return a capsule containing the saved state
of the evaluator, including its continuation, allowing the evaluation to be resumed by call-
ing the evaluator with this saved state. This ‘level shift’ of return to calling a continuation,
allowing an actual return to constitute interruption, is analogous to the way backtracking
is classically implemented in PROLOG, with success implemented as calling a continuation
and failure implemented as actual return. In our case, we further instrument the evaluator
to thread two values as inputs and outputs: the count n of the number of evaluation steps,
which is incremented at each call to £, and the limit ! of the number of steps, after which
an interrupt is triggered.

Figure 14 contains the portion of the CPS evaluator for the core language corresponding
to Figure 9, while Figure 15 contains the portion of the CPS evaluator for the AD constructs
corresponding to Figure 10. Except for (5b), the equations in Figures 9 and 10 are in one-to-
one correspondence to those in Figures 14 and 15, in order. Clauses (5c-e) are analogous
to the corresponding clauses (2b-d) except that they call the continuation k with the result,
instead of returning that result. The remaining clauses for £ in the CPS evaluator are all
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Aknl{(Qz.e),p)v=Eknlplx—v]e (5a)
Ekllpe= Hk><()‘*€)7p”] (5b)
Eknlpec=k(n+1)lc (5¢)
Eknlpr=kn+1)Il(px) (5d)

EknlpAxe)=k(n+1)l{(A\x.e),p) (5e)
Eknlp(erer)=E (Anluv. (5f)
(€ (Anlvs.
(Aknlvva))
nlpes))
(n+)lper
Eknlp(ife; theneselsees)=E (Anlv;. (5g)
(ifv1
then (Eknlpes)
else (Eknlipes)))
(n+)lpey
Eknlp(oe)=E (Anlwv. (5h)
(knl(ov)))
(n+1)lpe
Eknlp(eroey) =& (Anlwv. (51)
(& (Anlvs.
(knl(viev2)))
nlpez))
(n+1)lpe
Figure 14. CPS evaluator for the core cHEckPOINTVLAD language.
71)1 V2 133:A()\nl(v4l>1§5). (5J)
(v4,75))
0 oo U1 (UQ > 1}3)
T w1 vy 3 =A(Anlwv. (5k)
let (vg<a05) =v <3
in (U4,1\)5))
0 o0 v1 Vo
5knlp(7elegeg):5(Anlvl. (51)
(€ (Ml va.
(€ (Mnlvg.(knl (T vivsvs)))
nlpes))
nlpes))
(n+1)1 pey
Sknlp((jelegeg):é'(/\nlvl. (5m)
(& (Anl v,
(& (Mnlvs.(knl (T vyvav3)))
nlpes))
nlpes))
(n+1)Ilpe

Figure 15. Additions to the CPS evaluator for cHEckPOINTVLAD to support AD.
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variants of
Enlv(€ Anlvatknl .. ))nlpe)) n+1)1pe (6)

for one-, two-, or three-argument constructs. This evaluates the first argument e; and
calls the continuation (An [ vy....) with its value vy. This continuation then evaluates the
second argument e; and calls the continuation (An [ v;. .. .) with its value v,. This continu-
ation computes something, denoted by . . ., and calls the continuation k with the resulting
value.

The CPS evaluator threads a step count n and a step limit / through the evaluation
process. Each clause of £ increments the step count exactly once to provide a coherent
fine-grained measurement of the execution time. Clause (5b) of £ implements interrup-
tion. When the step count reaches the step limit, a capsule containing the saved state of the
evaluator, denoted [[k, f1], is returned. Here, f is a closure ((A_.e), p) containing the envi-
ronment p and the expression e at the time of interruption. This closure takes an argument
that is not used. The step count n must equal the step limit / at the time of interruption. As
will be discussed below, in Section 3.8, neither the step count nor the step limit need to be
saved in the capsule, as the computation is always resumed with different step count and
limit values.

Several things about this CPS evaluator are of note. First, all builtin unary and binary
operators are assumed to take unit time. This follows from the fact that all clauses for &,
as typified by (6), increment the step count by one. Second, the builtin unary and binary
operators in the host are implemented in direct style and are not passed a continuation.
This means that clauses (5h, 5i), as typified by (6), must call the continuation k on the
result of the unary and binary operators. Third, like all builtin operators, invocations of

— <~
the J and J operators, including the application of vj, are assumed to take unit time.
This follows from the fact that clauses (51, 5m), again as typified by (6), increment the

— <~
step count by one. Fourth, like all builtin operators, J and J in the host, in (5j, 5k), are
implemented in direct style and are not passed a continuation. This means that clauses (51,

5m), as typified by (6), must call the continuation k on the result of \_7> and (j Finally,
— <~

since J and J receive target functions (closures) for v;, they must apply these to their
arguments with A. Since A is written in CPS in the CPS evaluator, these calls to A in (5},
5k) must be provided with a continuation k, a step count #, and a step limit / as arguments.
The continuation argument simply returns the result. The step count, however, is restarted

— <«
at zero, and the step limit is set to co. This means that invocations of J and J are atomic
and cannot be interrupted internally. We discuss this further below in Section 7.3.

3.8. Implementing the general-purpose interruption and resumption interface
with the CPS evaluator

With this CPS evaluator, it is possible to implement the general-purpose interruption and
resumption interface (Figure 16). The implementation of PRIMOPS (7a) calls the evaluator
with no step limit and simply counts the number of steps to completion. The implementa-
tion of INTERRUPT (7b) calls the evaluator with a step limit that must be smaller than that
needed to complete so an interrupt is forced and the capsule [k, ((A_.e), p)] is returned.
The implementation of RESUME (7¢) calls the evaluator with arguments from the saved
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PRIMOPS fz=A (Anlv.n)0oco fx (7a)
INTERRUPT fzl=A(Mnlvv)0l fx (7b)
RESUME [k, f]=AkOoo f 1L (7c)

Figure 16. Implementation of the general-purpose interruption and resumption interface using the
CPS evaluator.

capsule. Since the closure in the capsule does not use its argument, an arbitrary value L is
passed as that argument.

Note that the calls to A in 7 (5)), 7 (5k), priMoPS (7a), INTERRUPT (7b), and
RESUME (7¢) are the only portals into the CPS evaluator. The only additional call to A
is in the evaluator itself, clause (5f) of £. All of the portals restart the step count at zero.
Except for the call in INTERRUPT (7b), none of the portals call the evaluator with a step
limit. In particular, RESUME (7¢) does not provide a step limit; other mechanisms detailed
below provide for interrupting a resumed capsule.

This implementation of the general-purpose interruption and resumption interface can-

va
not be used to fully implement 7 in the host as depicted in Figure 13. The reason is that
e
the calls to J in the base case, step (0), and INTERRUPT in step (2), must take a target
<«
function (closure) for f, because that is what is invoked by the calls to A in J (5k) and

INTERRUPT (7b). As written in Figure 13, the recursive calls to ‘\9 , namely steps (3) and (4),
pass (Az.RESUME z) and (Ax.INTERRUPT f x |I/2]) for f. There are two problems with this.
First, these are host closures produced by host lambda expressions, not target closures. Sec-
ond, these call the host functions RESUME and INTERRUPT that are not available in the target.
Thus it is not possible to formulate these as target closures without additional machinery.

Examination of Figure 13 reveals that the general-purpose interruption and resump-

tion interface is invoked four times in the implementation of :9 . PRIMOPS is invoked in
step (1), INTERRUPT is invoked in steps (2) and (4), and RESUME is invoked in step (3).
Of these, PriMOPs is invoked only in the host, RESUME is invoked only in the target, and
INTERRUPT is invoked in both the host and the target. Thus we need to expose INTERRUPT
and RESUME to the target. We do not need to expose PRIMOPS to the target; the implementa-
tion in Figure 13 only uses it in the host. For INTERRUPT, the call in step (2) can use the host
implementation (7b) in Figure 16 but the call in step (4) must use a new variant exposed to
the target. For RESUME, the call in step (3) must also use a new variant exposed to the target.
The host implementation (7c) in Figure 16 is never used since RESUME is never invoked in
the host.

We expose INTERRUPT and RESUME to the target by adding them to the target language
as new constructs.

e = interrupt e; e, e3 | resume e (8)

We implement this functionality by augmenting the CPS evaluator with new clauses for
& (Figure 17), clause (6p) for interrupt and clause (6q) for resume. We discuss the
implementation of these below. But we first address several other issues.
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I f1=((Az.(interrupt f x 1)), po[f = fI[l=1]) ~ (6n)

R = ((Mz.(resume z)), po) (60)
Eknlp (interrupt ej eg e3) =& (Anl vy. (6p)
(€ (Anl v,
(€ (Ml wvs.
if [ =00

then (A k0 wv3 vy v9)
elselet [k, f] = (A k01 v va)
in [, (Z f (v3-1))])
nlpes))
nlpes))
(n+1)lpe

Eknlp(resumee)=E Mnl[k, fl.(AKO0LfL)(n+1)ipe (6q)

Figure 17. Additions to the CPS evaluator for cHeckpOINTVLAD to expose the general-purpose interrup-
tion and resumption interface to the target.

va
To compute (y,2) =T [ x ¥:
-
base case: (y,2)=T fzy

inductive case: [ =PRIMOPS f x

R N
(y,2) =T RzY

( )
( )
z = INTERRUPT f z | §] (step 2)
( )
() =T @[5z (step )

Figure 18. Binary bisection checkpointing in the CPS evaluator. This is a proper implementation of
the algorithm in Figure 13 where the host closure (Az.RESUME Z) in step (3) is replaced with the tar-
get closure R and the host closure (AX.INTERRUPT f x [//2]) in step (4) is replaced with the target
closure (Z f |1/2]).

With appropriate implementations of interrupt and resume expressions in the tar-
get language, one can create target closures for the expressions (Az.RESUME z) and

(Ax.INTERRUPT f x |I/2]), and use these to formulate a proper implementation of 6 in the
host. We formulate a target closure to correspond to (Az.RESUME z) and denote this as R.
The definition is given in (60) in Figure 17. Note that since (Az.RESUME z) does not contain
any free variables, the closure created by ‘R is constructed from the empty environment p,.
Thus there is a single constant R. We similarly formulate a target closure to correspond to
(Ax.INTERRUPT f x [) and denote this as Z. The definition is given in (6n) in Figure 17.
Here, however, (Ax.INTERRUPT f x [) contains two free variables: f and I. Thus the closure
created by 7 contains a non-empty environment with values for these two variables. To
provide these values, Z is formulated as a function that takes these values as arguments.

With (Z f I) and R, it is now possible to reformulate the definition of :9 in the host from
Figure 13, replacing the host closure (Az.RESUME z) in step (3) with the target closure R and
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the host closure (Ax.INTERRUPT f x [I/2]) in step (4) with the target closure (Z f [1/2]).
This new, proper, definition of ‘\1/7 in the host is given in Figure 18.

In this proper implementation of 6 in the host, the interrupt and resume operations
need to be able to nest, even without nesting of calls to 6 in the target. The recursive

calls to 1/7 in the inductive case of Figure 18 imply that it must be possible to interrupt a
resumed capsule. This happens when passing R for f in step (3) and then passing (Z f ...)
for f in step (4), i.e. the left branch of a right branch in the checkpoint tree. The resulting
functionf = (Z R ...) will interrupt when applied to some capsule. It also happens when
passing (Z f ...) for f twice in succession in step (4), i.e. the left branch of a left branch
in the checkpoint tree. The resulting function f = (Z (Z f ...) ...) will interrupt and the
capsule produced will interrupt when resumed.

Consider all the ways that evaluations of interrupt and resume expressions can nest.
User code will never contain interrupt and resume expressions; they are created only by

invocations of 7 and ‘R. R is only invoked by step (3) of ﬁ in Figure 18. 7 is invoked two

v
ways: step (4) of J in Figure 18 and a way that we have not yet encountered, evaluation of
nested interrupt expressions in the else branch of clause (6p) in Figure 17.

v va
Consider all the ways that evaluations of Z and R can be invoked in 7 in Figure 18. 7 is
invoked with some user code for f, i.e. code that does not contain interrupt and resume

v
expressions. The inductive cases for [ create a binary checkpoint tree of invocations. The
leaf nodes of this binary checkpoint tree correspond to the base case in step (0) where the
<«
host J isinvoked. At internal nodes, the host INTERRUPT is invoked in step (2). The target

closure values that can be passed to the host (j and INTERRUPT are constructed from f, Z,
and R in steps (3) and (4). What is the space of all possible constructed target closures?
The constructed target closures invoked along the left spine of the binary checkpoint tree
look like the following

@ - TAflp)h) - li) b )

with zero or more nested callsto Z. Inthiscasel; < l;_; < --- < I} < Iy, because the recur-

v
sive calls to J in step (4) of Figure 18 always reduce I. The constructed target closures
invoked in any other node in the binary checkpoint tree look like the following

T - TARI)L) -~ L)) (10)

with zero or more nested calls to Z. In this case, again, ; < li_; < -+ < I} < Iy, for the

<«
same reason. These are the possible target closures f passed to J in step (0) or INTERRUPT

v
in step (2) of J in Figure 18. (We assume that the call to PRIMOPs in step (1) is hoisted out
of the recursion.)
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A string of calls to Z as in (9) will result in a nested closure structure whose invocation
will lead to nested invocations of interrupt expressions.
((hx.(interrupt f x 1)), (11)
polf — ((Ax.(interrupt f x I)),

(Ax.(interrupt f x 1)),

polf — ((Ax.(interrupt f x 1)),
polf = flll = DIl L] )= LD L)
A string of calls to Z as in (10) will also result in a nested closure structure whose invocation
will lead to nested invocations of interrupt expressions.

((Ax.(interrupt f x I)), (12)
polf = ((x.(interrupt f x I)),
polf = (...
(Ax.(interrupt f x I)),
polf = ((x.(interrupt f x [)),
polf > ((Az.(resume 2)), po)]
(L= DD hl.. )= LD L)

In both of these, l; < li_; < --- <} <y, so the outermost interrupt expression will
interrupt first. Since the CPS evaluator only maintains a single step limit, [; will be
that step limit during the execution of the innermost content of these nested closures,
namely f in (11) and ((Az.(resume z)), po) in (12). None of the other intervening interrupt
expressions will enforce their step limits during this execution. Thus we need to arrange
for the capsule created when the step limit /; is reached during the execution of f or
((Az.(resume z)), po) to itself interrupt with the remaining step limits /;_1, ..., [, lp. This
is done by rewrapping the closure in a capsule with interrupt expressions. The interruption
of f or ((Az.(resume z)), po) will produce a capsule that looks like the following

[k f1 (13)

where the closure f contains only user code, i.e. no interrupt or resume expressions. The f
in (13) is wrapped with calls to Z to reintroduce the step limits l;_j, ..., I3, .

k(L - ZZfl)h) - li-D)]l (14)
This will yield a capsule that looks like the following

[k, ((Ax.(interrupt f x 1)), (15)
(Ax.(interrupt f x [)),
polf = ((x.(interrupt f x [)),
polf = flll= DIl L].. )= L]

which will interrupt upon resumption. Each such interruption will peel off one interrupt
expression. Note that since the closure f in a capsule (13) contains only user code, it will
not contain a resume expression. Further, since the wrapping process (15) only introduces
interrupt expressions via calls to Z (14), and never introduces resume expressions, the
closures in capsules, whether wrapped or not, will never contain resume expressions.
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When there is no contextual step limit, i.e. when I = oo, the interrupt expression must
introduce v3, the step limit specified as the argument to the interrupt expression, as the
step limit. This is handled by the then branch of clause (6p) in Figure 17. When there is
a contextual step limit, i.e. when [ # o0, the interrupt expression must wrap the returned
capsule. This wrapping is handled by the else branch of clause (6p) in Figure 17. Since
capsule resumption restarts the step count at zero, the wrapping that handles nested step
limits is relativized to this restart by the v3 — [ in the else branch in clause (6p).

Capsule resumption happens in one place, the call to A in clause (6q) in Figure 17 for
a resume expression. Except for the contextual step limit /, this is the same as the call to A
in the implementation of RESUME in (7c) in Figure 16. Said resumption is performed by
applying the capsule closure f, a target closure, to _L, since the lambda expression in the
capsule closure ignores its argument. This call to 4 is passed the capsule continuation k" as
its continuation. Unlike the implementation of RESUME in (7¢), the step limit / is that which
is in effect for the execution of the resume expression. This is to allow capsule resumption
to itself interrupt. Because capsules are resumed with a step count of zero and the step limit
at the time of resumption, the step count and limit at the time of the interruption need not
be saved in the capsule.

As a result of this, all interrupt expressions will appear in one of two places. The first
is a preamble (11) or (12) wrapped around either a user function f by (9) or a resume

expression in R by (10), respectively. This will always be invoked either by 7 in the base
case, step (0), or by INTERRUPT in step (2), of Figure 18. The second is a preamble (15)
wrapped around the closure of a capsule by the else branch in clause (6p) of Figure 17,
i.e. (14). This will always be invoked during capsule resumption, i.e. clause (6q) of Figure 17.
We assume that the step limits are such that an interruption never occurs during either of
these preambles. This is enforced by ensuring that the termination criterion that triggers
the base case, step (0), of Figure 18 is sufficiently long so that the calls to A in (j in step (0)
and INTERRUPT in step (2) won't interrupt before completion of the preamble.

There is one further requirement to allow the CPS evaluator to support divide-and-
conquer checkpointing. The base case use of (j in step (0) of Figure 18 needs to be able
to produce cotangents z of capsules z in step (3) and consume them in step (4). A capsule
[[k,f] is the saved state of the evaluator. The value f is a target closure ((Ax.e), p) which
contains an environment with saved state. This state is visible to 7 . But the continuation k
is a host continuation, which is opaque. Any evaluator variables that it closes over are not
visible to ? Thus the implementation of host continuations in the CPS evaluator must
employ a mechanism to expose them. When we replace the CPS evaluator with a direct-
style evaluator applied to CPS-converted target code, in Sections 3.11 and 3.12, this will
no-longer be necessary since continuations will be represented as target closures which are

<«
visible to 7 .

3.9. Augmenting the CPS evaluator to support divide-and-conquer checkpointing

v
We can now add the [ operator to the target language as a new construct.

en= :9 e1 e e3 (16)
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Eknlp({Telegeg):S()\nlm. (6r)
(& (Anlvs.
(€ (Mnlwvs.

(knl (T vivs03)))
nlpes))
nlpes))
(n+1)lpe

Figure 19. Addition to the CPS evaluator for cHeckPOINTVLAD to support divide-and-conquer check-
pointing.

We implement this functionality by augmenting the CPS evaluator with a new clause (6r)
for £ (Figure 19).
With this addition, target programs can perform divide-and-conquer checkpointing

simply by calling :/7 instead of ? Note that it is not possible to add the :9 operator to
the direct-style evaluator because the implementation of binary bisection checkpointing
is built on the general-purpose interruption and resumption interface which is, in turn,
built on the CPS evaluator. We remove this limitation below in Section 3.12. Also note
that since the implementation of binary bisection checkpointing is built on the general-
purpose interruption and resumption interface which is, in turn, built on an evaluator, it
is only available for programs that are evaluated, i.e. for programs in the target, but not for
programs in the host. We remove this limitation below as well, in Section 3.13.

3.10. Some intuition

The algorithm in Figure 18 corresponds to Figure 2(b). The start of the computation of f
in Figure 18 corresponds to u in Figure 2(b). The computation state at u is x in Figure 18.
Collectively, the combination of f and x in Figure 18 comprises a snapshot, the gold line in
Figure 2(b). The end of the computation of f in Figure 18 corresponds to v in Figure 2(b).
The computation state at v is y in Figure 18. Step (1) computes |//2]| which corresponds to
the split point p in Figure 2(b). Step (2) corresponds to the green line in Figure 2(b), i.e. run-
ning the primal without taping from the snapshot f and x at « until the split point p which
is | I/2]. The capsule z in Figure 18 corresponds to the computation state at p in Figure 2(b).
Brown and pink lines in Figure 2 denote capsules. If step (3) would incur the base case,
step (0), in the recursive call, it would correspond to the right stage (pair of red and blue
lines) in Figure 2(b). If step (4) would incur the base case, step (0), in the recursive call, it
would correspond to the left stage (pair of red and blue lines) in Figure 2(b). Note that f
and x is used both in steps (2) and (4). Referring to this as a snapshot is meant to convey
that the information must be saved across the execution of step (3). And it must be possi-
ble to apply f to x twice, once in step (2) and once in step (4). In some implementations,
such a snapshot involves saving mutable state that must be restored. In our formulation
in a functional framework (Section 7.2), we need not explicitly save and restore state; we
simply apply a function twice. Nonetheless, the storage required for the snapshot is implicit

in the extended lifetime of the values f and x which extends from the entry into :9 , over
step (3), until step (4).
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Tkl o~k (17a)
tAze)kl ~ k(MK z.lelk") (17b)
(er e2)|k] ~ ler|(Azy.{ea|(Az2. (21 k 22))])] (17¢)

ey ~ Leo|(Az.x)] (17d)

Figure 20. CPS conversion for the untyped lambda calculus.

Note that recursive calls to \\9 in step (4) extend the lifetime of a snapshot. These are
denoted as the black tick marks on the left of the gold and pink lines. In the treeverse
algorithm from [9, Figures 2 and 3], the lifetime of one snapshot ends at a tick mark by a call
to retrieve in one recursive call to treeverse in the while loop of the parent and the lifetime
of a new snapshot begins by a call to snapshot in the next recursive call to treeverse in the
while loop of the parent. But since the state retrieved and then immediately saved again as
a new snapshot is the same, these adjacent snapshot execution intervals can conceptually
be merged.

Also note that recursive calls to :9 in step (3) pass R and a capsule z as the f and x
of the recursive call. Thus capsules from one level of the recursion become snapshots at
the next level, for all but the base case step (0). Pink lines in Figure 2 denote values that are
capsules at one level but snapshots at lower levels. Some, but not all, capsules are snapshots.
Some, but not all, snapshots are capsules. Gold lines in Figure 2 denote snapshots that are
not capsules. Brown lines in Figure 2 denote capsules that are not snapshots. Pink lines in
Figure 2 denote values that are both snapshots and capsules.

It is now easy to see that the recursive call tree of the algorithm in Figure 18 is isomorphic
to a binary checkpoint tree. The binary checkpoint tree in Figure 3 corresponds to the call
tree in Figure 21 produced by the algorithm in Figure 18. This depicts just one level of the
recursion. If one unrolls this call tree, one obtains a binary checkpoint tree.

3.11. CPS conversion

So far, we have formulated divide-and-conquer checkpointing via a CPS evaluator. This can
be - and has been - used to construct an interpreter. A compiler can be — and has been -
constructed by generating target code in CPS that is instrumented with step counting, step
limits, and limit checks that lead to interrupts. Code in direct style can be automatically
converted to CPS using a program transformation known in the programming language
community as CPS conversion. Many existing compilers, such as SML/NJ for sML, perform
CPS conversion as part of the compilation process [4].
We illustrate CPS conversion for the untyped lambda calculus (Figure 20).

ex=x|Ax.e| e e (18)

The notation | e|k denotes the transformation of the expression e to CPS so that it calls the
continuation k with the result. There is a clause for [ e|k | in Figure 20, (17a-c), for each con-
struct in (18). Clause (17a) says that one converts a variable x by calling the continuation k
with the value of that variable. Clause (17b) says that one converts a lambda expression
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z = (INTERRUPT f z [1])

T

(50)=(T(@fIL a2 (1,2)=(TRzp)

Figure 21. The call tree produced by the algorithm in Figure 18 that yields the binary checkpoint tree
in Figure 3.

(Ax.e) by adding a continuation variable k’ to the lambda binder, converting the body rel-
ative to that variable, and then calling the continuation k with that lambda expression.
Clause (17c) says that one converts an application (e; e2) by converting e; with a continu-
ation that receives the value x; of ej, then converts e, with a continuation that receives the
value x; of e, and then calls x; with the continuation k and x,. Clause (17d) says that the
top level expression ey can be converted with the identity function as the continuation.

This technique can be extended to thread a step count #n and a step limit / through the
computation along with the continuation k, and to arrange for the step count to be incre-
mented appropriately. Further, this technique can be applied to the entire target language
(Figure 22). Clauses (20a-j) correspond one-to-one to the CHECKPOINTVLAD constructs
in (1), (4), and (16). Since CPS conversion is only applied once at the beginning of compi-
lation, to the user program, and the user program does not contain interrupt and resume
expressions, since these only appear internally in the target closures created by Z and R,
CPS conversion need not handle these constructs. Finally, (e}« denotes a limit check
that interrupts and returns a capsule when the step count n reaches the step limit [. The
implementation of this limit check is given in (20k). Each of the clauses (20a-j) is wrapped
in a limit check.

3.12. Augmenting the direct-style evaluator to support CPS-converted code and
divide-and-conquer checkpointing

The direct-style evaluator must be modified in several ways to support CPS-converted
code and divide-and-conquer checkpointing (Figure 23). First, CPS conversion introduced
lambda expressions with multiple arguments and their corresponding applications. Con-
tinuations have three arguments and converted lambda expressions have four. Thus we
add several new constructs into the target language to replace the single argument lambda
expressions and applications from (1).

ex=Mnlxe|iknlxe|e ereses|erereseses (19)

Second, we need to modify £ to support these new constructs. We replace clause (2a) with
clauses (21a, 21b) to update .A and clauses (2d, 2e) with clauses (21c-f) to update £. Third,
we need to add support for interrupt and resume expressions, as is done with clauses (21g,
21h). These are direct-style variants of clauses (6p, 6q) from the CPS evaluator and are
needed to add support for the general-purpose interruption and resumption interface to
the direct-style evaluator when evaluating CPS code. Note that the calls to A from (6p, 6q)
are modified to use the converted form A4 of A (21b) in (21g, 21h). Similarly, the calls
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Wk, U~ (k(n+1) L eYpng
k (n + 1) l m)>k,n,l
E(n+1)l(Mknlzlelk,n, ) in
[61|()\3n [ Zq.
:€2|(/\3nl$2.
(z1 knlxg)),
n,l),
(TL+ 1)7lj>>k,n,l
(if e1 then ej else e3)|k,n, ] ~ (le1|(Asn [ x1.
(if.’l?l
then [eo)k,n, [
else [eslk,n, 1)),
(TL+ 1)7lj>>k,n,l
T(ee)|k,n, L~ (Te](Asn l .
(knl(ox))),
(n+ 1), Dkn
H(ep e ex)lk,m, I ~ (ler|(Asn l z1.
[€2|(/\3nll'2.
(knl(z1ex2))),
n’lj)’
(TL+ 1)’l:>>k,n,l

(T e ez ez)lk,n,ll ~ {{er](Asn l z1.
[€2|(/\3nlfl'2.
163|()\3TL l xs3.
(knl(J x12223))),
n,13),

|k, n, 1 ~
T(Az.e)|k,n, ] ~
Je1 e2)lk,n, 1} ~

_ N =

n, lj)v
(n + 1)7 lj»k,n,l

(T erezes)lk,n,l~ (Ter|(Asnl z1.
Z62|()\3nl$2.
(Enil(J x1 22 x3))),
n,l}),
n,l}),
(77,+ 1)7lj>>k',n,l

r \/ Rl r
(T erezes)lk,n, ]~ (ler|(Asnl z1.
z€2|()\3nlm2.
[63|()\3n l xs.

(k01 (T 1222))),
n,13),
1),
(n+1), )k,
(eYkni ~ ifn=1then [k, \sknl_c]elsee

(20e)

(20h)

(20i)

(20k)

Figure 22. CPS conversion for the cHeckPOINTVLAD language that threads step counts and limits.
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Az (Asnlz.e),pyn' l'v=Epn-n]ll-1]xzr~v]e (21a)
Ay ((Mknlze),p) k' n'U'v=Eplk—kK]nen]l~1]z~v]e (21b)
Epsnlze)=((Asnlz.e),p) (21c)
EpMknlxe)=((Mknlz.e),p) (21d)
Eplereseses) =Asz(Eper) (Epez) (Epes) (Epes) (21e)
Eplerezeseses)=As(Eper) (Epez) (Epes) (Epes) (Epes) (21f)
Ep (interrupt e; ez e3) =let vy = (E pey) (21g)
vy =(Epea)
v3=(Epes)
k=pK
L=p
inif [ =00

then (A4 v1 k0 vs v)
elselet [k, f] = (Asv1 k01 vg)
in [k, (Z f (vs—1))]

E p(resumee) =let [k, f]=(Epe) (21h)
l=p0
in (A fK 01 1)
7 v1 vg U3 =let (vg > ¥5) = (Ag v1 (Asnlv.w),po) 000 (va>d3)) (211)
in (U4,1}5)

J vy vg b3 =let (vg 905) = ((Ag v1 ((Asnlv.v),po) 0 covg) ad3) (21)
in (1)4,1\}5)

PRIMOPS f z = Ay f ((Asnlv.n),po) 0 oo x (21k)
INTERRUPT fln=Ay f ((Asnlv.w),po) 0l (211)
Z fl=((Mknlzx.(interrupt f x 1)), po[f — fI[l ~1]) (21m)

R = ((Ak nl z.(resume z)), py) (21n)

Figure 23. Extensions to the direct-style evaluator and the implementation of the general-purpose
interruption and resumption interface to support divide-and-conquer checkpointing on target code that
has been converted to CPS.

to continuations from (6p, 6q) are modified to use the continuation form 43 of A (21a)
in (21g, 21h). Fourth, the calls to A4 must be modified in the host implementations of the

AD operators 7 and (j, as is done with (21i, 21j). Note that unlike the corresponding (2i,
2j), the calls to A4 here take target closures instead of host closures. Fifth, the general-
purpose interruption and resumption interface, (7a, 7b, 6n, 60), must be migrated from
the CPS evaluator to the direct-style evaluator as (21k-n). In doing so, the calls to A4 in
PRIMOPS and INTERRUPT are changed to use (21b), the host continuations are modified to
be target continuations in (21k, 211), and the lambda expressions in (21m, 21n) are CPS
converted.

3.13. Compiling direct-style code to C

One can compile target CHECKPOINTVLAD code, after CPS conversion, to c (Fig-
ures 24 and 25). Modern implementations of c, like GCC, together with modern mem-
ory management technology, like the Boehm-Demers—-Weiser garbage collector, allow
the compilation process to be a straightforward mapping of each construct to a small
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S 7 () =null constant (22a)

S 7 true = true_constant (22b)

S 7 false = false_constant (22¢)
S7(cr,c2)=cons((Smer), (Smer)) (22d)
Stn=n (22¢)

S 7 ‘k’ = continuation (22f)

S 7 ‘n’ = count (22¢g)
S7‘l’ =1limit (22h)

S 7 ‘x’ = argument (221)

S 7 x =as_closure(target)->environment [7 z] (22j)

St (Anlze)=H (22k)

thing function(thing target,
thing count,
thing limit,
thing argument) {

return (S (¢e)e);

}

thing lambda = (thing)GCmalloc(sizeof (struct {
enum tag tag;
struct {
thing (*function) ();
unsigned n;
thing environment [|¢ ¢l]
1))
}
set_closure(lambda) ;
as_closure(lambda)->function = &function;
as_closure(lambda)->n = |¢¢f;
as_closure(lambda)->environment [0] = S7 (¢ e)y

as_closure(lambda)->environment [|¢ ¢] =11 = S 7 (¢ €)|g¢|-1
lambda;
b

Figure 24. Compiler for the cHeckPoINTVLAD language when in CPS. Part I.

fragment of c code. In particular, garbage collection, GC_malloc, eases the implemen-
tation of closures and statement expressions, ({...}), together with nested functions,
ease the implementation of lambda expressions. Furthermore, the flow analysis, inlin-
ing, and tail-call merging performed by GCC generates reasonably efficient code. In
Figures 24 and 25, S denotes such a mapping from CHECKPOINTVLAD expressions e
to ¢ code fragments. Instead of environments p, S takes 7, a mapping from vari-
ables to indices in environment, the run-time environment data structure. Here, 7 x
denotes the index of x, 7; denotes the variable for index i, ¢ e denotes a mapping for
the free variables in e, and N denotes a mapping from a CHECKPOINTVLAD opera-
tor to the name of the c function that implements that operator. This, together with
a library containing the typedef for thing, the enum for tag, definitions for
null constant, true_constant, false constant, cons, as_closure,
set_closure,continuation_apply, converted_apply, is_false, andall
of the functions named by V' (essentially a translation of R6Rs-AD, the general-purpose
interruption and resumption interface from Figure 23, and the implementation of binary
bisection checkpointing from Figure 18 into c), allows arbitrary CHECKPOINTVLAD code
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St (Mknlze)=H (221)
thing function(thing target,
thing continuation,
thing count,
thing limit,
thing argument) {
return (S (de)e);
}

thing lambda = (thing)GC.malloc(sizeof (struct {
enum tag tag;
struct {
thing (*function) ();
unsigned n;
thing environment [|¢ ¢]
1)
}
set_closure(lambda) ;
as_closure(lambda)->function = &function;
as_closure(lambda)->n = [¢ ¢|;
as_closure(lambda)->environment[0] = S (¢ e€)

as_closure(lambda)->environment [|p e[ - 1] = S (¢ €)p -1

lambda;
H
S 7 (e1 ez e3e4) = continuation apply((Smeq), (22m)
(Smea),
(S s 63) N
(S7eq))
S (e1 ez e3eqe5)=converted_apply((Smey), (22n)
(S7ea),
(S e 63),
(Smeq),
(Smes))
S (ife; then eg else ez) = (1is false((Swer))?7(Smer): (Smes)) (220)
S7(oe)=(No)(Sme)) (22p)
Sm(ereer)=(Ne)(Smer), (Smez)) (22q)
Sw (7 erezez) =N 7)((8 mer), (Smez), (Smes)) (22r)
S (7 e1exe3)=(N ?)((S me1), (Sme2), (Swes)) (22s)
S (\/J er e e3) = (N{7)((S mer), (Smez), (Smes)) (22t)

Figure 25. Compiler for the cHeckPOINTVLAD language when in CPS. Part I.

to be compiled to machine code, via ¢, with complete support for AD, including forward
mode, reverse mode, and binary bisection checkpointing.

3.14. Implementations

We have written three complete implementations of CHECKPOINTVLAD. All three accept
exactly the same source language in its entirety and are able to run the example discussed
in Section 6. The first implementation is an interpreter based on the CPS evaluator
(Figures 14, 15, 17, and 19), where the evaluator, the operator overloading implemen-
tation of AD, the general-purpose interruption and resumption mechanism (Figure 16),
and the binary bisection checkpointing driver (Figure 18) are implemented in SCHEME.
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The second implementation is a hybrid compiler/interpreter that translates the cHECK-
POINTVLAD source program into CPS using CPS conversion (Figure 22) and then inter-
prets this with an interpreter based on the direct-style evaluator (Figures 9, 10, and 23),
where the compiler, the evaluator, the operator overloading implementation of AD, the
general-purpose interruption and resumption mechanism (Figure 23), and the binary
bisection checkpointing driver (Figure 18) are implemented in SCHEME. The third imple-
mentation is a compiler that translates the CHECKPOINTVLAD source program into CPS
using CPS conversion (Figure 22) and then compiles this to machine code via c using GCC,
where the compiler (Figures 24 and 25) is implemented in SCHEME, the evaluator is the
underlying hardware, and the operator overloading implementation of AD, the general-
purpose interruption and resumption mechanism (Figure 23), and the binary bisection
checkpointing driver (Figure 13) are implemented in c. The first implementation was used
to generate the results reported in [20] and presented at AD (2016). The techniques of
Figures 20 and 22 were presented at AD (2016). The third implementation was used to
generate the results reported here.

4. Complexity

The internal nodes of a binary checkpoint tree correspond to invocations of INTERRUPT
in step (2). The right branches of each node correspond to step (3). The left branches

of each node correspond to step (4). The leaf nodes correspond to invocations of ? in
the base case, step (0). Each leaf node corresponds to a stage, the red, blue, and violet
lines in Figure 2(g). The checkpoint tree is traversed in depth-first right-to-left preorder.
In our implementation, we terminate the recursion when the step limit / is below a fixed
constant. Consider a general primal computation f that uses maximal live storage w and
that runs for ¢ steps. This results in the following space and time complexities for reverse

<«
mode without checkpointing, including our implementation of 7, and for binary bisection

checkpointing, including our implementation of 6 .

Complexity
space time
forward reverse
Computation primal snapshots tape total overhead  recomputation  sweep sweep total  overhead
t
without O(w) o) Ow+1t O (&) O(t) o(t) O(t) o(1)
checkpointing w
binary bisection ~ O(w) O(wlogt) O(1) O(wlogt) O(logt) O(tlogt) O(t) O(t) O(tlogt) O(logt)

checkpointing

If we assume that O(t) > O(w), i.e. that the computation uses all storage, the total space
requirement without checkpointing becomes O(t) and the overhead becomes O(t).

5. Extensions to support treeverse and binomial checkpointing

v
The general-purpose interruption and resumption interface allows implementation of 7
using the treeverse algorithm from [9, Figure 4] as shown in Figure 26. This supports the
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TREEVERSE fxyadTfoop=ifc>p
then let z = INTERRUPT f « (0 - f3)
INnFIRSTRzya(d-1)T7Bo ¢
else FIRST frxyadT o ¢
FIRST fryadTfop=ifd-—0>and#+0AT#0
thenlet k=MID§ 70 ¢
(y,2) = TREEVERSE f 2y a0 T 0 K ¢
InREST fx2ayd(r-1)Bok
else 7 (Z f (p-0)) )
REST fayaydTBod=if¢p-0c>and#+0AT#0
thenlet k=MID§ 70 ¢
(,,2) =TREEVERSE fx §Jad T o K ¢
InREST fx2ayd(t-1)Bok
elselet (L,2) = (Zf(p-0))zy
in (y,2)
v/ A
J [ xy=1let n=PRIMOPS [z

PICK o dt
in TREEVERSE fx g adt00n

Figure 26. Implementation of TReeverse from [9, Figure 4] using the general-purpose interruption and
resumption interface, written in a functional style with no mutation. The variables §, z, 8, o, ¢, n, d,
and t have the same meaning as in [9]. The variables f, x, X, , ¥, z, and Z have the same meaning as earlier
in this paper. The variable & denotes an upper bound on the number of evaluation steps for a leaf node.
Different termination criteria allow the user to specify some of «, d, and t and compute the remainder as
a function of the ones specified, together with n.

full functionality of that algorithm with the ability to select arbitrary execution points as
split points. By selecting the choice of MID as either [9, Equation (12)] or [9, Equation (16)],
one can select between bisection and binomial checkpointing. By selecting which of 4, ,
and « the user specifies, computing the others from the ones specified, together with #,
using the methods described in [9] one can select the termination criterion to be either
fixed space overhead, fixed time overhead, or logarithmic space and time overhead.?
All of this functionality has been implemented in all three of our implementations: the
interpreter, the hybrid compiler/interpreter, and the compiler.

But it turns out that the binary checkpointing algorithm from Figure 18 can be easily
modified to support all of the functionality of the treeverse algorithm, including the abil-
ity to select either bisection or binomial checkpointing and the ability to select any of the
termination criteria, including either fixed space overhead, fixed time overhead, or loga-
rithmic space and time overhead, with exactly the same guarantees as treeverse. The idea
is simple and follows from the observation that the right branch introduces a snapshot
and the left branch introduces (re)computation of the primal. One maintains two counts,
a right-branch count § and a left-branch count 7, decrementing them as one descends
into a right or left branch respectively, to limit the number of snapshots or the amount
of (re)computation introduced. The base case is triggered when either gets to zero or a
specified constant bound on the number of steps to be taped is reached. The binary check-
point tree so produced corresponds to the associated n-ary checkpoint tree produced by
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BINARY frzgadTd=ifp<avdi=0vr=0
then?fzg)
elselet k=MIDI 70 ¢
z = INTERRUPT f = K
(y,2) =BINARYR 2§ (6 -1) 7 (¢ — k)
(2,2) =BINARY (Z fr)xz 20 (T-1) K
in (y,2)
v A
J [ xy=1let n=PRIMOPS f x

PICK adt
in BINARY fzyadtn

Figure 27. Implementation of binary checkpointing using the general-purpose interruption and
resumption interface in a fashion that supports all of the functionality of TReeverse from [9, Figure 4]. The
variables 8, t, ¢, n, d, and t have the same meaning as in [9]. The variables f, x, x, y, ¥, z, and Z have the
same meaning as earlier in this paper. The variable « denotes an upper bound on the number of evalu-
ation steps for a leaf node. Different termination criteria allow the user to specify some of «, d, and t and
compute the remainder as a function of the ones specified, together with n.

treeverse, as discussed in Section 1. Again, this supports the full functionality of treeverse
with the ability to select arbitrary execution points as split points. By selecting the choice
of MID as either [9, Equation (12)] or [9, Equation (16)], one can select between bisection
and binomial checkpointing. By selecting which of d, t, and « the user specifies, computing
the others from the ones specified, together with n, using the methods described in [9] one
can select the termination criterion to be either fixed space overhead, fixed time overhead,
or logarithmic space and time overhead. All of this functionality has been implemented in
all three of our implementations: the interpreter, the hybrid compiler/interpreter, and the
compiler.

As per [9], with a binomial strategy for selecting split points, the termination criteria
can be implemented as follows. Given a measured number #n of evaluation steps, d, ¢, and «
are mutually constrained by a single constraint

n=PRIMOPS f x, n(d,t) = (d:_ t) , o= ’7 (Z t)—‘ (23)
n 5

One can select any two and determine the third. Selecting d and « to determine t = O(&/n)
yields the fixed space overhead termination criterion. Selecting ¢ and « to determine d =
O(«/n) yields the fixed time overhead termination criterion. Alternatively, one can further
constrain d = t. With this, selecting o to determine d and t yields the logarithmic space
and time overhead termination criterion.

6. An example

As discussed in Section 2, existing implementations of divide-and-conquer checkpointing,
such as TAPENADE, are limited to placing split points at execution points corresponding
to particular syntactic program points in the source code, i.e. loop iteration boundaries.
Our approach can place split points at arbitrary execution points. The example in Figure 8
illustrates a situation where placing split points only at loop iteration boundaries can fail to



(define
(define
(define
(define

(define

(car (cons car cdr)) car)

(cdr (cons car cdr)) cdr)

(first x) (car x))

(cdr x))

(second x) (first (rest x)))

>0 (cons n (iota (- n 1)))))
(ilog2 1) (floor (/ (log 1) (log 2))))

(define (rotate theta x1 x2)
(let ((c (cos theta)) (s (sin theta)))
(cons (- (* c x1) (* s x2)) (+ (x s x1) (* c x2)))))
(define (rotl theta x)
(if (or (null? x) (null? (rest x)))
(1et ((x12 (rotate theta (first x)
cons (car x12
(cons (cdr

(rest x)

(define (iota n) (if (zero? n)

(define

(second x))))

x12) (rotl theta (rest (rest x))))))))

(define (rot2 theta x)

(if (null? x) x (cons (first x) (rotl theta (rest x)))))

(define (mags

sqr
Gr 17 0 (» (+ (first x) (first x)) (magsqr (rest x)))))

OPTIMIZATION METHODS & SOFTWARE . 1323

(define (write-vector v

)
(if (null? v) () (cons (write-real (first v)) (write-vector (rest v)))))

(define (£ x 1 phi)
(let outer ((i 1)
(if (

(/ (nagsqr x1) 2)
(let ((m (expt
2

(x1 %))

(- (ilog2 1)
(ilog2
(+ 1 (modulo

(* (* 1013 (floor (expt 3 phi))) i) 1)))))))
(x1 x1))

(let
(if

inner ((j 1)
3
(outer (+ i 1) x1)
(inner (+ j 1)
(let ((y (sqn (magsqr x1))))
(rot2 (* y) (rotl (* 1.2 y) x1))))))))))

(let* ((n (read-real))

(1 (read-real))

(phi (read-real))

(x (iota n

(result (checkpoint-*j (lambda (x) (f x 1 phi)) x 1)))
(cons (write-real (car result)) (write-vector (cdr result))))

Figure 28. A rendering of the example from Figure 8 in cHECKPOINTVLAD. Space and time overhead
of two variants of this example when run under cHEckPOINTVLAD are presented in Figure 29. The
variant for divide-and-conquer checkpointing is shown. The variant with no checkpointing replaces

checkpoint-*7j with * 3.

space time
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Figure 29. Space and time usage of

reverse-mode AD with

and without divide-and-conquer

checkpointing for the example in Figures 8 and 28. Space and time usage was measured with
/usr/bin/time -verbose The centreand bottom rows repeat the information from the top row
just for TAPENADE and cHECKPOINTVLAD, overlaid with the theoretical asymptotic complexity fit to the actual
data by linear regression.
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yield the sublinear space overhead of divide-and-conquer checkpointing while placement
of split points at arbitrary execution points will yield the sublinear space overhead of divide-
and-conquer checkpointing. To illustrate this, we run the FORTRAN variant of this example
two different ways with TAPENADE:

(1) without checkpointing, by removing all pragmas and

(2) with divide-and-conquer checkpointing, particularly the treeverse algorithm applied
to a root execution interval corresponding to the invocations of the outer DO loop,
split points selected with the binomial criterion from execution points corresponding
to iteration boundaries of the outer DO loop, and a fixed space overhead termination
criterion, by placing the c$ad binomial-ckp pragma as shown in Figure 8.

For comparison, we reformulate this FORTRAN example in CHECKPOINTVLAD
(Figure 28) and run it two different ways:

(1) without checkpointing, by calling ?, written here as *j and

(2) with divide-and-conquer checkpointing, particularly the binary checkpointing
algorithm applied to a root execution interval corresponding to the entire derivative
calculation, split points selected with the bisection criterion from arbitrary execution

points, and a logarithmic space and time overhead termination criterion, by calling 7,
written here as checkpoint-«7.

For this example, n is the input dimension and [ is the number of iterations of the
outer loop. Using the notation from Section 4, the maximal space usage of the primal
for this example should be w = O(n). The time required for the primal for this exam-
ple should be t = O(l), since there are [ iterations of the outer loop and the inner loop
has average case O(1) iterations per iteration of the outer loop. The analysis in Sections 4
and 5 predicts the following asymptotic space and time complexity of the TAPENADE and
CHECKPOINTVLAD variants that compute gradients on this particular example:

Complexity
Computation space time
primal o(n) o)
Tapenade no checkpointing on+1) o
Tapenade divide-and-conquer checkpointing o(nly? O(I«W)
checkpointVLAD Nno checkpointing On—+1) o
checkpointvLAD divide-and-conquer checkpointing O(nlog/) O(llog /)

The efficacy of our method can be seen in the plots (Figure 29) of the observed space and
time usage of the above two FORTRAN variants and the above two CHECKPOINTVLAD vari-
ants with varying / and n = 1000. We observe that TAPENADE space and time usage grows

with [ for all cases. CHECKPOINTVLAD space and time usage grows with / with J . CHECK-
v
POINTVLAD space usage is sublinear with 7. CHECKPOINTVLAD time usage grows with [

with ﬁ .
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space
40000 T

T T T T T
Tapenade treeverse binomial checkpointing —+—
35000 checkpointVLAD binary bisection checkpointing

30000

25000

20000

15000

10000

5000

Maximum resident set size (kbytes)

0 | | | | | |
0 500 1000 1500 2000 2500 3000 3500

Figure 30. Comparison of space usage of the the example in Figures 8 and 28 when run with divide-
and-conquer checkpointing. cHEckPOINTVLAD achieves sublinear growth while TAPENADE does not, thus
for long enough run times, the space usage of TAPENADE exceeds that of CHECKPOINTVLAD.

The crucial aspect of this example is that we observe sublinear space usage over-
head with divide-and-conquer checkpointing in CHECKPOINTVLAD but not in TAPENADE
(Figure 30).1% The reason that we fail to observe sublinear space usage overhead with
divide-and-conquer checkpointing in TAPENADE is that the space overhead guarantees only
hold when the asymptotic time complexity of the loop body is constant. Since the asymp-
totic time complexity of the loop body is O(l), the requisite tape size grows with O(/) even
though the number of snapshots, and the size of those snapshots, is bounded by a constant.

7. Discussion

Our current implementations, as evaluated in Section 6, are expository prototypes and not
intended as practical artifacts. Nonetheless, technology exists that can support construc-
tion of large-scale practical and efficient implementations based on the conceptual ideas
presented here.

7.1. Implementation technologies

One can use PosIX fork () to implement the general-purpose interruption and resump-
tion interface, allowing it to apply in the host, rather than the target, and thus it could be
used to provide an overloaded implementation of divide-and-conquer checkpointing in a
fashion that was largely transparent to the user [9]. The last paragraph of [9] states:

For the sake of user convenience and computational efficiency, it would be ideal if reverse
automatic differentiation were implemented at the compiler level.
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We have exhibited such a compiler. Our implementation, however, is not as efficient as
TAPENADE. There can be a number of reasons for this. First, FORTRAN unboxes dou-
ble precision numbers whereas CHECKPOINTVLAD boxes them. This introduces storage
allocation, reclamation, and access overhead for arithmetic operations. Second, array
access and update in FORTRAN take constant time whereas access and update in CHECK-
POINTVLAD take linear time. Array update in cHECKPOINTVLAD further involves storage
allocation and reclamation overhead. Third, TAPENADE implements the base case reverse
mode of divide-and-conquer checkpointing using source-code transformation whereas
CHECKPOINTVLAD implements it with operator overloading. In particular, the dynamic
method for supporting nesting involves tag dispatch for every arithmetic operation.

We have exhibited a very aggressive compiler (STALINV) for vLAD that ameliorates some
of these issues. It unboxes double precision numbers and implements AD via source-code
transformation instead of operator overloading as is done by cHECKPOINTVLAD. This
allows it to have numerical performance rivaling FORTRAN. While it does not support
constant-time array access and update, methods that are well-known in the programming
languages community (e.g. monads and uniqueness types) can be used for that. But it
does not include support for divide-and-conquer checkpointing. However, there is no bar-
rier, in principle, to supporting divide-and-conquer checkpointing, of the sort described
above, in an aggressive optimizing compiler that implements AD via source-code trans-
formation. One would simply need to reformulate the source-code transformations that
implement AD, along with the aggressive compiler optimizations, in CPS instead of direct
style. Moreover, the techniques presented here could be integrated into other compilers for
other languages that generate target code in CPS by instrumenting the CPS conversion with
step counting, step limits, and limit-check interruptions.!! A driver can be wrapped around

such code to implement :9 . For example, existing compilers, like smL/NJ [4], for func-
tional languages like smL, already generate target code in CPS, so it seems feasible to adapt
their techniques to the purpose of AD with divide-and-conquer checkpointing. In fact, the
overhead of the requisite instrumentation for step counting, step limits, and limit-check
interruptions need not be onerous because the step counting, step limits, and limit-check
interruptions for basic blocks can be factored, and those for loops can be hoisted, much
as is done for the instrumentation needed to support storage allocation and garbage col-
lection in implementations like MLTON [27], for languages like smL, that achieve very low
overhead for automatic storage management.

7.2. Advantages of functional languages for interruption and resumption

Functional languages simplify interruption and resumption, allowing these to be much
more efficient. Two different capsules taken at two different execution points can share
common substructure, by way of pointers, without needing to copy that substructure.
Indeed, CPS in the cHECKPOINTVLAD implementation renders all program state, includ-
ing the stack and variables in the environment, as closures, possibly nested. Creating a
capsule simply involves saving a pointer to a closure. Resuming a capsule simply involves
invoking the saved closure, a simple function call that is passed the closure environment as
its argument. The garbage collector can traverse the pointer structure of the program state
to determine the lifetime of a capsule. The interruption and resumption framework need
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not do so itself. This simplicity and efficiency would be disrupted by structure mutation or
assignment.

7.3. Nesting of AD operators

It has been argued that the ability to nest AD operators is important in many practical
domains [2,3,7]. Supporting nested use of AD operators involves many subtle issues [19].
CHECKPOINTVLAD addresses these issues and fully supports nested use of AD operators.
One can write programs of the form

@ QxC Bf..)) e (24)

where each of & and $ can be any of 7, ?, and :9 . Le. one can apply AD to one function
that, in turn, applies AD to another function. This allows one not only to do forward-over-
reverse, reverse-over-forward, and reverse-over-reverse, it also allows one to do things like
divide-and-conquer-reverse-over-forward, reverse-over-divide-and-conquer-reverse, and
even divide-and-conquer-reverse-over-divide-and-conquer-reverse.

There is one catch however. When one applies an AD operator, that application is con-
sidered to be atomic by an application of a surrounding AD operator. This is evident by the

n+1 in (51, 5m, 6r), What this means is that if « in (24) were :9 , a split point for « could
not occur inside f. While this does not affect the correctness of the result, it could affect the
space and time complexity.

The reason for this is that while the semantics of the AD operators are functional, their

internal implementation involves mutation. In particular, to support nesting, 7 , (j, and :9
internally maintain and update an € tagas described in [19]. The € tag is incremented upon
entry to an AD operator and decremented upon exit from that invocation to keep track
of the nesting level. All computation within a level must be performed with the same €
tag. This requires that the entries to and exits from AD operator invocations obey last-

in-first-out sequencing. If o were ﬁ , and the computation of f were interrupted, then
situations could arise where the last-in-first-out sequencing of § was violated. Moreover,
since divide-and-conquer checkpointing executes different portions of the forward sweep
different numbers of times, the number of entries into a nested AD operator could exceed
the number of exits from that operator.

Reverse mode involves a further kind of mutation. The forward sweep creates a tape
represented as a directed acyclic graph. The nodes in this tape contain slots for the cotan-
gent values associated with the corresponding primal values. The reverse sweep operates
by traversing this graph to accumulate the cotangents in these slots. Such accumulation is
done by mutation.

The above issues arise because of mutation in the implementation of AD operators. Con-
ceivably, these could be addressed using methods that are well-known in the programming
languages community for supporting mutation in functional languages (e.g. monads and

. . . v v
uniqueness types). Issues arise beyond this, however. If both « and B were 7, and J was
not atomic, situations could arise where f could interrupt for « instead of B. Currently,
interruption is indicated by returning instead of calling a continuation. If f were to return



1328 . J. M. SISKIND AND B. A. PEARLMUTTER

instead of calling a continuation, there is no way to indicate that that interruption was due
to « instead of B. It is unclear whether this issue could be resolved.

8. Conclusion

Reverse-mode AD with divide-and-conquer checkpointing is an enabling technology,
allowing gradients to be efficiently calculated even where classical reverse mode imposes
an impractical storage overhead. We have shown that it is possible to provide an operator
that implements reverse-mode AD with divide-and-conquer checkpointing, implemented
as an interpreter, a hybrid compiler/interpreter, and a compiler, which

has an identical API to the classical reverse-mode AD operator,

requires no user annotation,

takes the entire derivative calculation as the root execution interval, not just the exe-
cution intervals corresponding to the invocations of particular constructs such as DO
loops,

e takes arbitrary execution points as candidate split points, not just the execution points
corresponding to the program points at the boundaries of particular constructs like the
iteration boundaries of DO loops,

e supports both an algorithm that constructs binary checkpoint trees and the treeverse
algorithm that constructs n-ary checkpoint trees,

e supports selection of actual split points from candidate split points using both a
bisection and a binomial criterion, and

e supports any of the termination criteria of fixed space overhead, fixed time overhead, or
logarithmic space and time overhead,

yet still provides the favourable storage requirements of reverse mode with divide-and-
conquer checkpointing, guaranteeing sublinear space and time overhead.

Notes

1. The distinction between gold and pink lines, the meaning of brown lines, and the meaning of
the black tick marks on the left of the gold and pink lines will be explained in Section 3.10.

2. The correspondence between capsules and snapshots will be discussed in Section 3.10.

3. The surface syntax employed differs slightly from SCHEME in ways that are irrelevant to the issue
at hand. N -

4. In the implementation, J and J are named j % and x J, respectively.

5. https://github.com/qobi/R6RS-AD and https://engineering.purdue.edu/ ~ qobi/stalingrad-
examples2009/

6. http://diffsharp.github.io/DiffSharp/

7. In the implementation, ﬁ is named checkpoint-=x7j.

8. In Section 5 and Figures 26 and 27 we use notation similar to that in [9] to facilitate understand-
ing. Thus n and t here means something different then elsewhere in this paper.

9. The space complexity of TAPENADE with divide-and-conquer checkpointing would be O(n) if
the inner DO loop would have a constant number of iterations. The fact that it has average
case O(1) iterations but O(I) worst case, foils checkpointing and causes the space complexity to
increase.


https://github.com/qobi/R6RS-AD
https://engineering.purdue.edu/{{\mathsurround =\opskip $\sim $}}qobi/stalingrad-examples2009/
https://engineering.purdue.edu/{{\mathsurround =\opskip $\sim $}}qobi/stalingrad-examples2009/
http://diffsharp.github.io/DiffSharp/

10.

11.
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Technically, the space and time usage overhead of the CHECKPOINTVLAD variant of this example
with divide-and-conquer checkpointing should be logarithmic. It is difficult to see that precise
overhead in the plots. Linear regression does indeed fit logarithmic growth to the time usage
better than linear growth. But the observed space usage appears to be grow in steps. This is likely
due to the coarse granularity of the measurement techniques that are based on kernel memory
page allocation and thus fail to measure the actual live fraction of the heap data managed by the
garbage collector.

We note that many optimizing compilers, for example GCC, use an intermediate program
representation called Single Static Assignment, or SSA, which is formally equivalent to CPS [16].
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