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Abstract

In this paper we present an efficient and accurate integral equation method to
compute the scattering resonances for a subwavelength metallic slit structure. A new
boundary integral equation is derived for the scattering problem, and the computation
of scattering resonances is reduced to solving the eigenvalues of the corresponding ho-
mogeneous formulation over the complex plane. The integral operators are evaluated
with high-order precisions by accurate calculations of the Green’s functions for the lay-
ered medium and accelerated computation of the slit Green’s function. The Newton’s
method is employed for solving the eigenvalues of the boundary integral formulation.
We propose an effective strategy for obtaining the initial guesses of scattering reso-
nances by introducing an approximate model for the scattering problem, for which
the leading orders of the resonances are derived by asymptotic analysis. Numerical
experiments are provided to demonstrate the accuracy, efficiency, and robustness of
the method.

Keywords: Integral equation, Helmholtz equation, scattering resonances, subwavelength
structure.

1 Introduction

Electromagnetic scattering by subwavelength metallic structures such as apertures and holes
has drawn increasing interest since the seminar paper by T. Ebbessen on the so-called ex-
traordinary optical transmission (EOT) and locally field enhancement (LFE) phenomena
[11]. The original EOT experiment has triggered tremendous development of subwavelength
metallic structures due to their important applications in biological and chemical sensing,
near-field spectroscopy, and design of novel optical devices [1, 9, 12, 30].
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part of the metal by Ωδ, which consists of two disjoint semi-infinite domains Ω−
δ and Ω+

δ .
Let ∂Ωδ be its boundary and ν be the unit outward normal pointing to the exterior domain.
We are interested the subwavelength structure where the slit aperture is narrow compared
to the thickness of the slab d and the wavelength of the incident field λ. Let us denote by
Ω1, Ω3 the semi-infinite domain above and below the slab respectively. Then the relative
permittivity ε on the x1x2 plane is given by

ε(x) =



















ε0 x ∈ Ω1 ∪ Ω3,

ε1 x ∈ Sδ,

εm x ∈ Ωδ,

where ε0, ε1, and εm denote the relative permittivity in the vacuum, in the narrow slit, and
in the metal respectively. For simplicity of exposition, we shall assume that ε0 = ε1 = 1.
However, the numerical approach presented in this paper can be easily modified for the case
when the slit is filled with some dielectric material such that ε1 6= 1 [9]. The permittivity of
the metal εm = ε′m + i ε′′m is a complex number with negative real part ε′m, and it holds that
|ε′m| � |ε′′m| [26].

We consider the scattering when a polarized time-harmonic electromagnetic wave im-
pinges upon the subwavelength structure. The transverse magnetic (TM) case is considered
here by assuming that the incident magnetic field H i = (0, 0, ui), where ui = eik(d1x1−d2(x2−d))

is a plane wave, k is the wavenumber and d = (d1,−d2) is the direction of incidence with
d2 > 0. The total field u after the scattering satisfies the following equations:



















∇ ·
(

1

ε(x)
∇u
)

+ k2u = 0 in R
2\∂Ωδ,

[u] = 0,

[

1

ε

∂u

∂ν

]

= 0 on ∂Ωδ,

(1.1)

where [·] denotes the jump of the quantity when the limit is taken along the positive and
negative unit normal direction ν respectively.

Remark By the scaling invariance of the scattering model, without loss of generality, we

shall assume the metal thickness d = 1 throughout the paper.

Due to the smallness of the slit apertures and the presence of the slit corners, the dis-
cretization methods based on finite element or finite difference are typically too expensive
when applied to solve for the resonances of the scattering problem (1.1). Furthermore,
when the infinite exterior domain is truncated into a finite one using an absorbing boundary
condition or perfectly matched layer (PML) technique, additional numerical errors will be
induced, especially from the reflections near the layer interfaces. Recently, efficient vertical
mode matching methods have been developed to compute the optical scattering by subwave-
length metallic structures [14, 21, 22]. However, they can not be directly applied to compute
the resonances, since the condition number for the discretized linear system is usually very
large. In this paper, we propose an efficient and accurate boundary integral-equation method

3



to compute the resonances of the scattering problem (1.1). The integral equation formula-
tion leads to an eigenvalue problem over the complex plane, which is solved by the Newton’s
method [24, 29]. The proposed numerical approach consists of two main ingredients:

(i) A new boundary integral formulation is derived, which only consists of Neumann data
along the slit boundary as unknowns. In addition, fast and high-order evaluations of
the integral operators are achieved via accurate calculation of the Green’s functions
for the layered medium over the tiny slit apertures and accelerated computation of the
Green’s function for the slit.

(ii) In order to compute the resonances by the Newton’s method in an efficient and robust
manner, an effective strategy for obtaining the initial guesses of the resonances is
developed. This is achieved by introducing an approximate model for the scattering
problem (1.1) and deriving the leading orders of the corresponding resonances.

The rest of the paper is organized as follows. We derive the boundary integral equation
in Section 2. Its efficient and accurate discretization is elaborated in Section 3. The strategy
for obtaining initial guesses of the resonances is presented Section 4, and we demonstrate the
performance of the computational approach through various numerical examples in Section 5.
Finally, we discuss briefly on the extension of the computational framework to the perfectly
conducting slit in Section 6.

2 Integral equation formulation

2.1 Green’s functions

Let G`(x, y) be the Green’s function for the layered medium such that

∆xG`(x, y) + k2ε(x)G`(x, y) = δ̃(x− y), x ∈
3
⋃

j=1

Ωj, y ∈ Ω`, (2.1)

[G`(x, y)] =

[

1

ε

∂G`(x, y)

∂x2

]

= 0 x2 = 0, x2 = 1.

Here δ̃ denotes the Dirac delta function. It can be shown that (see Appendix A)

G1(x, y) =































− i

4

(

H
(1)
0 (k|x− y|) + εm − 1

εm + 1
H

(1)
0 (k|x′ − y|)

)

+ g11(x, y), x ∈ Ω1,

− iεm
2(εm + 1)

H
(1)
0 (k|x− y|) + g12(x, y), x ∈ Ω2,

g13(x, y), x ∈ Ω3,

(2.2)
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and

G2(x, y) =















































− i

2(εm + 1)
H

(1)
0 (km|x− y|) + g21(x, y) x ∈ Ω1, x ∈ Ω1,

− i

4

(

H
(1)
0 (km|x− y|) + 1− εm

1 + εm
H

(1)
0 (km|x′ − y|) + 1− εm

1 + εm
H

(1)
0 (km|x′′ − y|)

)

+g22(x, y), x ∈ Ω2,

− i

2(εm + 1)
H

(1)
0 (km|x− y|) + g23(x, y), x ∈ Ω3,

(2.3)

where H
(1)
0 is the first kind Hankel function of order 0, x′ and x′′ are the reflection of x by

x2 = 1 and x2 = 0, respectively. That is, x′ = (x1, 2 − x2) and x
′′ = (x1,−x2). glj(x, y) are

continuously differentiable in R
2 and are defined via the Sommerfeld integrals as given in

(A.3) - (A.8). On the other hand, the symmetry of the problem geometry implies that

G3(x1, x2; y1, y2) = G1(x1, 1− x2; y1, 1− y2). (2.4)

Let Gs(x, y) be the Green’s function for the slit domain with the zero Neumann boundary
condition such that















∆Gs(x, y) + k2Gs(x, y) = δ(x− y), x, y ∈ Sδ.

∂Gs(x, y)

∂νx
= 0 on ∂Sδ.

Then Gs(x, y) adopts the following eigenfunction expansion:

Gs(x, y) =
∞
∑

n,p=0

cnpφnp(x)φnp(y), (2.5)

where cnp =
1

k2 − (nπ/δ)2 − (pπ)2
, φnp(x) =

√

anp
δ

cos
(nπx1

δ

)

cos(pπx2), and

anp =











1 n = p = 0,

2 n ≥ 1, p = 0 or, n = 0, p ≥ 1,

4 n ≥ 1, p ≥ 1.

2.2 Integral equation over the slit boundary

We denote by Γ1 and Γ2 denote the upper and lower slit aperture respectively, and Γ3 and
Γ4 the left and right slit wall respectively (cf. Figure 2). Let S̃ij be the single-layer operator
given by

S̃ij[ϕ](y) =

∫

Γj

Gs(x, y)ϕ(x) dsx y ∈ Γi, (2.6)
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where Gs(x, y) is the Green’s function for the slit geometry given in (2.5). Let the single-
and double-layer integral operators S`

ij and K
`
ij be given by

S`
ij[ϕ](y) =

∫

Γj

Φ`(x, y)ϕ(x) dsx y ∈ Γi, (2.7)

K`
ij[ϕ](y) = γj

∫

Γj

Θ`(x, y)ϕ(x) dsx y ∈ Γi. (2.8)

Here and in what follows, the constant γj is defined by

γj =











1 j = 1, 2,

1

εm
j = 3, 4.

We define the kernels Φ`(x, y) as the extension of the Green’s function G`(x, y) to the slit
boundary by letting

Φ`(x, y) =































lim
h1→0

x+h1ν∈Ω1∪Ω3

lim
h2→0

y+h2ν∈Ω`

G`(x+ h1ν, y + h2ν), x, y ∈ Γ1 ∪ Γ2, x 6= y,

lim
h→0

y+hν∈Ω`

G`(x, y + hν), x ∈ Γ3 ∪ Γ4, y ∈ Γ1 ∪ Γ2,

G`(x, y) x, y ∈ Γ3 ∪ Γ4, x 6= y.

The kernel Θ`(x, y) is defined in a similar manner and is given by

Θ`(x, y) =







































lim
h1→0

x+h1ν∈Ω1∪Ω3

lim
h2→0

y+h2ν∈Ω`

νx · ∇xG`(x+ h1ν, y + h2ν), x, y ∈ Γ1 ∪ Γ2, x 6= y,

lim
h→0

y+hν∈Ω`

∂G`(x, y + hν)

∂νx
, x ∈ Γ3 ∪ Γ4, y ∈ Γ1 ∪ Γ2,

∂G`(x, y)

∂νx
x, y ∈ Γ3 ∪ Γ4, x 6= y.

From the expressions of the Green’s function (2.2) and (2.4) and the interface conditions
along x2 = 0 and x2 = 1, the kernels Φ`(x, y) and Θ`(x, y) are well-defined for ` = 1, 2, 3.

Let uref be the reference wave field when ui impinges on the slab structure without the
slit (δ = 0). Then it can be calculated that

uref (x) =



















ui(x) +Rei(ξx1+ρ0(ξ)(x2−1)) x ∈ Ω1

T1 e
i(ξx1+ρm(ξ)x2) + T2 e

i(ξx1−ρm(ξ)(x2−1)) x ∈ Ω2,

T3 e
i(ξx1−ρ0(ξ)x2) x ∈ Ω3,

(2.9)

where

ξ = kd1, ρ0(ξ) =
√

k2 − ξ2, ρm(ξ) =
√

k2εm − ξ2,

q(ξ) = (ρ0(ξ)εm − ρm(ξ))
2 ei2ρm − (ρ0(ξ)εm + ρm(ξ))

2 .
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By taking the limit of (2.16) with ` = 1 to the slit boundary Γ1 and using the jump condition
for the double layer potential, it is seen that for y ∈ Γ1,

εm
εm + 1

ϕ1+K
1
11[ϕ1]+K

1
12[ϕ2]+K

1
13[ϕ3]+K

1
14[ϕ4] = S1

11[ψ1]+S
1
12[ψ2]+S

1
13[ψ3]+S

1
14[ψ4]. (2.17)

Similarly, for y ∈ Γ2, it follows that

εm
εm + 1

ϕ2+K
3
21[ϕ1]+K

3
22[ϕ2]+K

3
23[ϕ3]+K

3
24[ϕ4] = S3

21[ψ2]+S
3
22[ψ2]+S

3
23[ψ3]+S

3
24[ψ4]. (2.18)

Taking the limit of (2.16) with ` = 2 to the slit boundary Γ3 and Γ4 respectively, we obtain
the following two integral equations

1

2εm
ϕ3 +K2

31[ϕ1] +K2
32[ϕ2] +K2

33[ϕ3] +K2
34[ϕ4] = S2

31[ψ3] + S2
32[ψ2] + S2

33[ψ3] + S2
34[ψ4],

(2.19)
1

2εm
ϕ4 +K2

41[ϕ1] +K2
42[ϕ2] +K2

43[ϕ3] +K2
44[ϕ4] = S2

41[ψ4] + S2
42[ψ2] + S2

43[ψ3] + S2
44[ψ4].

(2.20)

Define the multiplication operator

D =











εm
εm+1

I1 0 0 0

0 εm
εm+1

I2 0 0

0 0 1
2εm

I3 0

0 0 0 1
2εm

I4











,

where Ij : L
2(Γj) → L2(Γj) are identity operators. Let

K
e =











K1
11 K

1
12 K

1
13 K

1
14

K3
21 K

3
22 K

3
23 K

3
24

K2
31 K

2
32 K

2
33 K

2
34

K2
41 K

2
42 K

2
43 K

2
44











and S
e =











S1
11 S

1
12 S

1
13 S

1
14

S3
21 S

3
22 S

3
23 S

3
24

S2
31 S

2
32 S

2
33 S

2
34

S2
41 S

2
42 S

2
43 S

2
44











,

Then we can write the system of the integral equations (2.17)- (2.20) as the following concise
form

(D+K
e)[ϕ] = S

e[ψ], (2.21)

where the vector functions ϕ and ψ are Dirichlet and Neumann data on the slit boundary
defined in (2.15).

Inside the slit Sδ, using the Green’s function (2.5) with the zero Neumann boundary
condition, it follows that the total field u can be expressed as

u(y) =

∫

∂Sδ

Gs(x, y)
∂u(x)

∂ν
dsx for y ∈ Sδ.
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The continuity of the single layer potential yields

u(y) =
4
∑

j=1

∫

Γj

Gs(x, y)
∂u(x)

∂ν
dsx, y ∈ Γi, i = 1, 2, 3, 4. (2.22)

Using the relation u = us+uref , we express the above integral equation in the operator form
as

ϕ = −S
i[ψ] + f , (2.23)

where the operator

S
i =











S̃11 S̃12 S̃13 S̃14

S̃21 S̃22 S̃23 S̃24

S̃31 S̃32 S̃33 S̃34

S̃41 S̃42 S̃43 S̃44











and f = uref
∣

∣

∂Sδ
+ S

i
[

∂νu
ref
∣

∣

∂Sδ

]

.

By combining (2.21) and (2.23), one may eliminate ϕ and obtain the following integral
equation for the scattering problem (1.1):

(

S
(e)(k) + (D(k) +K

(e)(k)) S(i)(k)
)

ψ = (D(k) +K
(e)(k))f . (2.24)

Here we express explicitly the dependence of the operators on k. Once the Neumann data
ψ is computed, the Dirichlet data ϕ can be evaluated via the integral equation (2.23).

A scattering resonance of (1.1) is defined as a complex number k such that there exists
a nontrivial solution when the incident field is zero. This corresponds to the characteristic
values of the operator-valued function S

(e) + (D + K
(e)) S(i) with respect to the variable k.

Namely, we solve for k over the complex plane such that the homogeneous equation

(

S
(e)(k) + (D(k) +K

(e)(k)) S(i)(k)
)

ψ = 0 (2.25)

attains nontrivial solution.
To solve the above eigenvalue problem, we employ the Newton’s method as described in

[24, 29]. The method start from some initial guess for the eigenvalue and eigenvectors, and
update the solution iteratively. This requires the discretization of the corresponding integral
operators and an effective strategy for choosing initial-guess values, which are discussed in
Section 3 and 4 respectively.

3 Numerical computation of the integral operators

3.1 Numerical evaluation of the Green’s function for layered medium

The evaluation of the kernels Φ`(x, y) and Θ`(x, y), or equivalently G` and their derivatives,
involves the computation of functions glj(x, y), which are defined via the Sommerfeld integrals
(A.3) - (A.8). We adopt a contour integration approach together with the smooth-windowing
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technique as introduced in [27, 28]. An improved discretization strategy is proposed in what
follows by treating the slow-varying integral and the oscillatory integral separately. The
new strategy leads to a higher-order accuracy compared to the original version in [27, 28],
especially for tiny slit apertures with size δ. In addition, the presence of plasmonic resonance
poles induced by the metal involves new complexities which need to be addressed separately.

Im ξ

k

Re ξ

ξsp
ξ1

Im ξ

Re ξξ1k

ξsp

Im ξ

Re ξ

ξsp
k

Figure 3: ξsp for given complex-valued k.

For clarity we elaborate on the computation of g11(x, y), and the others are treated
similarly. To this end, one needs to compute the Sommerfeld integrals

Ī :=

∫ ∞

0

h(ξ) dξ =

∫ ∞

0

ρ0(ξ)εm + ρm(ξ)

ρ0(ξ) · (ρo(ξ) + ρm(ξ)) · q(ξ)
eiρ0(x2+y2−2) cos(ξ(x1 − y1)) dξ

and

Ĩ :=

∫ ∞

0

h̃(ξ) dξ =

∫ ∞

0

p(ξ)ei2ρm

ρ0(ξ) · q(ξ)
eiρ0(x2+y2−2) cos(ξ(x1 − y1)) dξ,

where

ρ0(ξ) =
√

k2 − ξ2, ρm(ξ) =
√

k2εm − ξ2,

p(ξ) = (εm + 1)
(

ρ0(ξ)
2ε2m − ρm(ξ)

2
)

− (εm − 1) (ρ0(ξ)εm − ρm(ξ))
2 ,

q(ξ) = (ρ0(ξ)εm − ρm(ξ))
2 ei2ρm − (ρ0(ξ)εm + ρm(ξ))

2 .

Here and henceforth, the function f(z) =
√
z is understood as an analytic function defined

in the domain C\{−it : t ≥ 0} by

z
1
2 = |z| 12 e 1

2
i arg z.
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Let us focus on the first integral. Note that ρo(ξ) + ρm(ξ) 6= 0 and the integrand attains
poles for ξ satisfying

ρ0(ξ) = 0 and q(ξ) = 0.

When k 6= 0, it is observed that ξ = ±k are branch points for ρ0(ξ) and removable singular-
ities for 1/ρ0(ξ). The branch point for ρm(ξ) is ξ = k

√
εm, which lies in the first quadrant

with large real part by noting that ε′m < 0 and |ε′m| � |ε′′m|. The roots of q(ξ) correspond to
surface plasmonic resonance frequencies of the metallic slab. More precisely, if one considers
the scattering problem (1.1) without the slit such that δ = 0 and no source is present, then
from (2.9) - (2.13), we see that non-trivial solutions exist when q(ξ) = 0. The roots, which
are called surface plasmonic resonance frequencies, lies in the vicinity of

ξsp = k
√

εm/(εm + 1).

They are essential singularities for 1/q(ξ). Note that ε′m < −1 and |ε′m| � |ε′′m|, hence it
holds that |ξsp| > |k|. The relative positions of k and ξsp are shown in Figure 3.

The whole integral Ī is decomposed into three parts as follows:

Ī = Ī1 + Ī2 + Ī3

=

∫ ξ1

0

h(ξ) dξ +

∫ ξ2

ξ1

h(ξ) dξ +

∫ ∞

ξ2

h(ξ) dξ.

In the above, the real positive number ξ1 is chosen to be larger than Re ξsp so that the
interval (0, ξ1) contains all possible poles of the integrand. We set

ξ2 = max {ξ1, 2π/|x1 − y1|}

such that the integrand for I2 is a slow varying function in the interval (ξ1, ξ2), and I3 is
an oscillatory integral. The computation of each part can be accomplished by the following
process.

For Ī1, two different approaches are applied for Imk ≥ 0 and Imk < 0 respectively.

(i) Imk ≥ 0: One chooses a simple curve C in the fourth quadrant that starts at the
origin and ends at ξ = ξ1 (see Figure 3). By the Cauchy integral theorem,

Ī1 =

∫

C

h(ξ) dξ =

∫ 1

−1

h(r(t)) dt,

where ξ = r(t) is the parameterization of the curve C. Due to the smoothness of
the integrand over the curve C, Ī1 can be computed with high-oder accuracy by the
Clenshaw-Curtis quadrature [8].

(i) Imk < 0: Due to the presence of the branch point ξ = k and the plasmonic reso-
nances poles near ξsp, one can not find a closed curve consisting of the interval (0, ξ1)
so that h(ξ) is analytic inside the curve. Instead, observing that h(ξ) is analytic on
the subinterval (0, Re k) and (Re k, ξ) respectively, I1 is computed directly by evalu-
ating the integral on each subinterval separately. However, when |Imk| is small, the
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integrand attains large values near the end point Re k. In order to achieve high-order
accuracy, graded meshes are employed to discretize the interval and the Fourier series
representation of h is used [10]. Such techniques is also used to discretize the integral
operators in Section 3.3.

The integrand for Ī2 is non-oscillatory on (ξ1, ξ2). Typically, |x1 − y1| is very small due
to the smallness of the slit aperture size δ, hence the interval size A = |ξ2 − ξ1| is large. By
a change of variable ξ = ξ1 + Aξ̄, it follows that

Ī2 = A

∫ 1

0

h(ξ1 + Aξ̄)dξ̄.

Note that h(ξ) decays as 1/|ξ|3 when |ξ| → ∞, which implies that the function value h(ξ1 +
Aξ̄) spans from order O(1) to O(|x1 − y1|3) in (0, 1). As such the derivate of h(ξ + Aξ̄) is
extremely large near the left end point, and the Clenshaw-Curtis quadrature will not yield
high-order accuracy for computing Ī2. Instead, graded meshes are used again to discretize
the interval and a Fourier series expansion of h is adopted.

Finally the evaluation of the oscillatory integral Ī3 is based on the smooth-windowing
technique using the partition of the unity [28]. For a given constant 0 < α < 1, we define a
smooth cut-off (window) function

ηB(ξ̄) =















1 |ξ̄| ≤ αB,

e
2e−1/z

z−1 , αB < |ξ̄| < B, z = |ξ̄|−αB
(1−α)B

0 |ξ̄| > B.

(3.1)

We approximate the integral by multiplying the integrand with the window function:

Ī3 = ξ2

∫ ∞

0

h(ξ2(1 + ξ̄)) dξ̄ ≈ ξ2

∫ B

0

h(ξ2(1 + ξ̄)) · ηB(ξ̄) dξ̄.

The integrand is smooth and the Clenshaw-Curtis quadrature is applied.

n |Ī − Ī(1)| |Ī − Ī(2)|
20 3.43× 10−3 6.53× 10−2

40 1.39× 10−5 2.22× 10−2

80 3.72× 10−9 1.14× 10−3

Table 1: The accuracy of numerical integration obtained by treating the slow-varying integral
and the oscillatory integral separately, and by applying the Clenshaw-Curtis quadrature
directly on the whole integral. n denotes the number of grid points used for each subinterval.
The same number of grid points is used to compute Ī(2).

To demonstrate the accuracy of numerical integration, we consider the evaluation of
the integral with k = 0.5, |x1 − y1| = 0.02 and x2 = y2 = 1. The permittivity is set as
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εm = −10 + i. The real integral value Ī = −0.088734021404942 − 0.122293333722895i (up
to machine precision). To demonstrate the improved accuracy by treating the slow-varying
integral and the oscillatory integral separately, the second column of Table 3.1 shows the
accuracy of numerical integration by employing the quadrature rule described above, which
we denote as Ī(1). The third column shows the numerical value Ī(2) that is obtained by using
the same window function but by applying the Clenshaw-Curtis quadrature directly on the
whole integral.

3.2 Accelerated computation of the slit Green’s function

The slit Green’s function Gs(x, y) adopts the expansion (2.5). However, the expansion series

converges slowly with a rate of O
(

1
n2+p2

)

and one also needs to take double sum to evaluate.

The convergence rate is even slower when the target point y and the source point x are close.
To remedy this issue, we adopt the Kummer’s transformation technique to accelerate the
evaluation of the Green’s function [25]. The idea is to convert the slowly convergent series
into two series, where the slower series can be summed analytically and the faster series can
be computed accurately by taking the sum with only a smaller number of terms.

We express the slit Green’s function as

Gs(x, y) =
∞
∑

n=0

ωn gn(x2, y2) cos
(nπx1

δ

)

cos
(nπy1

δ

)

, (3.2)

where

ωn =

{

1 n = 0,

2/δ n ≥ 1,

and gn(x2, y2) is the one-dimensional Green’s function that solves

g′′n(x2, y2) + (k2 − (nπ/δ)2)gn(x2, y2) = δ̃(x2 − y2), g′n(0, y2) = g′n(1, y2) = 0.

By a direct calculation, it follows that

gn(x2, y2) = − i

2an
eian|x2−y2|− i

2an · bn
(

eian|x2+y2| + eian|2−x2−y2| + eian|2−x2+y2| + eian|2+x2−y2|
)

,

(3.3)
where

an =
√

k2 − (nπ/δ)2 and bn = 1− ei2an .

It is clear that for n� 1,

an =
inπ

δ

(

1− 1

2

(

kδ

nπ

)2

+O

(

kδ

nπ

)4
)

and bn = 1 +O
(

e−nπ/δ
)

. (3.4)

Lemma 3.1 Let φn(t) = − i
2an
eiant, then for n� 1,

φn(t) = φn,0(t) +O

(

δ

nπ

)3

for 0 < t ≤ 4, (3.5)
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where

φn,0(t) = − δ

2nπ
e−

nπ
δ
t. (3.6)

Proof. From the asymptotic expansion (3.4), we obtain

φn(t) = − δ

2nπ

(

1 +
1

2

(

kδ

nπ

)2

+O

(

kδ

nπ

)4
)

· e−nπ
δ
t ·
(

1 +
1

2

k2δ

nπ
t+O

(

δ

nπ

)3
)

= − δ

2nπ
e−

nπ
δ
t − 1

4

(

kδ

nπ

)2

te−
nπ
δ
t +O

(

δ

nπ

)3

.

Note that for fixed n > 1, te−
nπ
δ
t attains the maximum when t = δ

nπ
, hence the assertion

follows. �

We define the singular part of the Green’s function by letting

Gs
0(x, y) =

∞
∑

n=1

ωn [φn,0(|x2 − y2|) + φn,0(|x2 + y2|) + φn,0(|2− x2 − y2|)] cos
(nπx1

δ

)

cos
(nπy1

δ

)

,

(3.7)
where φn,0 is given by (3.6).

Lemma 3.2 Gs
0(x, y) can be expressed as

Gs
0(x, y) =

1

4π

6
∑

j=1

[ln (1− ezj) + ln (1− ez̄j)] , (3.8)

where

z1 = −π
δ
(|x2 − y2|+ i(x1 − y1)), z2 = −π

δ
(|x2 − y2|+ i(x1 + y1)),

z3 = −π
δ
(|x2 + y2|+ i(x1 − y1)), z4 = −π

δ
(|x2 + y2|+ i(x1 + y1)),

z5 = −π
δ
(|2− x2 − y2|+ i(x1 − y1)), z6 = −π

δ
(|2− x2 − y2|+ i(x1 + y1)),

In addition,

Gs(x, y)−Gs
0(x, y) = δ2 ·

∞
∑

n=0

ãn(x, y), (3.9)

where

sup
x,y

|ãn(x, y)| ∼ O

(

1

n3

)

for n� 1.

Remark To evaluate Gs(x, y), we decompose it as Gs
0(x, y) and Gs(x, y) − Gs

0(x, y). G
s
0 is

given explicitly in (3.8), and one only needs a small number of terms to evaluate Gs −Gs
0.
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Proof. By substituting (3.3) into the expansion (3.2), and using the asymptotic expansion
(3.5) with t = |x2 − y2|, |x2 + y2|, and |2− x2 − y2| respectively, we obtain

Gs(x, y)−Gs
0(x, y) =

∞
∑

n=0

ân(x, y),

where

ân(x, y) = δ ·O
(

δ

nπ

)3

− iωn

2an · bn
(

eian|2−x2+y2| + eian|2+x2−y2|
)

cos
(nπx1

δ

)

cos
(nπy1

δ

)

= δ2 ·O
(

1

n3

)

for n� 1.

Hence the assertion (3.9) holds. To show (3.8), by setting t = |x2 − y2| we see that

∞
∑

n=1

ωn φn,0(|x2 − y2|) cos
(nπx1

δ

)

cos
(nπy1

δ

)

= −
∞
∑

n=1

2

δ
· δ

2nπ
e−

nπ
δ
|x2−y2| · 1

4

(

e
inπ
δ

(x1−y1) + e−
inπ
δ

(x1−y1) + e
inπ
δ

(x1+y1) + e−
inπ
δ

(x1+y1)
)

= −
∞
∑

n=1

1

4nπ
(enz1 + enz̄1 + enz2 + enz̄2)

=
1

4π
[ln (1− ez1) + ln (1− ez̄1) + ln (1− ez2) + ln (1− ez̄2)] .

Similar calculations for t = |x2 + y2| and t = |2− x2 − y2| lead to the formula (3.8). �

3.3 Discretization of the integral operators

To discretize the single-layer operators S`
ij and S̃ij and the double-layer integral operators

K`
ij in (2.25), we parameterize the slit boundary so that x1 = δτ for τ ∈ (0, 1) over the slit

apertures Γ1 and Γ2, and x2 = τ for τ ∈ (0, 1) over the slit walls Γ3 and Γ4. We express
the integral operators S`

ij, S̃ij and K
`
ij in the following generic forms without distinguishing

their expressions on different segments of the slit boundary:

∫ 1

0

M`(τ, σ)ψ(τ) dτ, σ ∈ (0, 1), (3.10)

∫ 1

0

M̂(τ, σ)ψ(τ) dτ, σ ∈ (0, 1), (3.11)

∫ 1

0

N`(τ, σ)ϕ(τ) dτ σ ∈ (0, 1). (3.12)

In the above,M`(τ, σ), M̂(τ, σ) andN`(τ, σ) denote the kernels Φ`(x, y), G
s(x, y) and Θ`(x, y)

in the (τ, σ)-coordinate, respectively. ψ(τ) and ϕ(τ) denote the density functions with the
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parameterization. Recall that the Green’s function G`(x, y) are given by (2.2) and (2.3),
it is clear that if the source point x and the target point y lies in the same line segment,
M`(τ, σ) attains the logarithm singularity when τ = σ. From (3.8), the kernel M̂(τ, σ) also
attains the logarithm singularity when τ = σ. On the other hand, by noting the fact that
∂νxH

(1)
0 (k|x−y|) = 0 and ∂νxH

(1)
0 (km|x−y|) = 0 if the source point x and the target point y

lie in the same line segment, we deduce that the kernel N`(τ, σ) does not contain singularity
when τ = σ. In what follows, we discuss their numerical discretization in details.

3.3.1 Numerical evaluation of (3.10) and (3.11)

There exist two types of singularities for the integrand of (3.10) and (3.11). One arises
from the logarithm singularity of the kernel M`(τ, σ) and M̂(τ, σ) mentioned above, and
the other arises from the singularities of the density function ψ(τ) at the two endpoints of
the interval (0, 1). In fact, ψ(τ) ∈ H−1/2(0, 1) where H−1/2(0, 1) is the standard fractional
Sobolev space [2]. To evaluate the singular integrals accurately, we employ the Nystrom
scheme in combination with graded meshes techniques following the procedure described in
[10, 23]. In the following, for brevity we only describe the calculation of (3.10) and the
evaluation of (3.11) is similar.

y
(3) y

(4)

y
(1)

y
(2)

Γ2

Γ3 Γ4

Γ1

Figure 4: Graded mesh over the slit boundary.

For fixed target point y ∈ Γi, when the source
point x ∈ Γj with j = i, the kernel M`(τ, σ) can be
splitted into a singular part and a smooth part as
follows:

M`(τ, σ) =M`,1(τ, σ) ln

(

4 sin2

(

σ − τ

2

))

+M`,2(τ, σ),

where

M`,1(τ, σ) =
α`

4π
J0(kα̃`|σ−τ |), M`,2(τ, σ) =M`(τ, σ)−M`,1(τ, σ).

with

α` =







2εm
εm+1

, ` = 1, 3;

1, ` = 2.
and α̃` =







δ, ` = 1, 3;

1, ` = 2.

It is clear that both M`,1(τ, σ) and M`,2(τ, σ) are
smooth functions on (0, 1)× (0, 1).

The graded mesh is realized by introducing a
change of variable

τ = w(s) :=
v(s)r

v(s)r + v(2π − s)r
, 0 < s < 2π,

where r ≥ 2 and

v(s) =

(

1

r
− 1

2

)(

π − s

π

)3

+
1

r

s− π

π
+

1

2
.

The function w(s) is smooth and increasing in (0, 2π), and it holds that w(i)(0) = w(i)(2π) = 0
for i = 0, · · · , r− 1. If the grid points {sj}2nj=0 are equally distributed on the interval [0, 2π],
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then {w(sj)}2nj=1 yields a graded mesh where one half of the grid points is equally distributed
over the whole interval (0, 1), and the other half is accumulated towards the end points τ = 0
and τ = 1 (see Figure 4).

With the change of variable, the integral

∫ 1

0

M`(τ, σ)ψ(τ)dτ =

∫ 2π

0

M`(w(s), w(t))ψ(τ(s))w
′(s) ds.

Correspondingly, we split the kernel M` as

M`(w(s), w(t)) = M̃`,1(s, t) ln

(

4 sin2

(

t− s

2

))

+ M̃`,2(s, t),

where

M̃`,1(s, t) =M`,1(w(s), w(t)) and M̃`,2(s, t) =M`(w(s), w(t))−M`,1(w(s), w(t)).

We choose an equidistant set of grid points sj = jπ/n for j = 0, 1, · · · , 2n − 1. Using the
quadrature rules (cf. [10, 23])

∫ 2π

0

ln

(

4 sin2

(

t− s

2

))

f(s) ds ≈
2n−1
∑

j=0

Rj(t)f(sj), (3.13)

where the quadrature weight

Rj(t) = −2π

n

n−1
∑

m=1

1

m
cos(m(t− tj))−

π

n
cos(n(t− tj)),

and
∫ 2π

0

f(s) ds ≈ π

n

2n−1
∑

j=0

f(sj), (3.14)

it follows that
∫ 2π

0

M`(w(s), w(t))ψ(τ(s))w
′(s) ds

≈
2n−1
∑

j=1

Rj(t) M̃`,1(sj, t)ψ(τ(sj))w
′(sj) +

π

n

2n−1
∑

j=1

M̃`,2(sj, t)ψ(τ(sj))w
′(sj). (3.15)

When the source point x ∈ Γj with j 6= i, for sufficiently large p, the integrand
M`(w(s), w(t))ϕ(τ(s))w

′(s) vanishes at the end points. Hence a direct application of the
quadrature rule (3.14) yields

∫ 1

0

M`(τ, σ)ψ(τ) dτ ≈ π

n

2n−1
∑

j=1

M`(w(sj), w(t))ϕ(τ(sj))w
′(sj). (3.16)
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3.3.2 Numerical evaluation of (3.12)

From previous discussions, the kernel N` is not singular when y is away from the slit cor-
ners. However, for y near the slit corners, N` becomes singular. More precisiely, in the
xy-coordinate, the singular behavior of the kernel is given by Θ(x, y) ∼ O(1/|x−y|). Hence,
a direct application of the trapezoidal rule (3.14) would not lead to a high-oder accuracy for
those target points. A modified version of the integral formulation is introduced to remedy
the issue. To this end, we introduce the integral operator

K
0[ϕ](y) =

4
∑

j=1

∫

Γj

1

2π

∂ ln |x− y|
∂νx

ϕj(x) dsx y ∈ Γi.

Let 1 be the constant function of 1 along the slit boundary, then

K
0[1](y) =

1

2
. (3.17)

Let us discuss the evaluation of Ke[ϕ] for y ∈ Γ1. The treatment for y belonging to other
boundaries is the same.

Using the relation (3.17), it follows that

K
eϕ(y) =

1

εm + 1

(

ϕ(1) · η(1)(y) + ϕ(2) · η(2)(y)
)

·
(

1− 2K0[1]
)

+K
eϕ(y), y ∈ Γ, (3.18)

where ϕ(1) and ϕ(2) denotes the value of the density function at the corners y(1) and y(2)

as shown in Figure 4. η(1) is a smooth cut-off function that attains 1 near the corner y(1)

and vanishes toward the other corner y(2). Similarly, the cut-off function η(2) is 1 near the
corner y(2) and 0 near the corner y(1). We compute K

eϕ(y) via the equivalent formulation
(3.18). When the target point y is near the corner y(1) such that η(1) = 1 and η(2) = 0, the
formulation (3.18) reduces to

1

εm + 1
ϕ(1) ·

(

1− 2K0[1]
)

+K
eϕ(y),

or more precisely,

1

εm + 1
ϕ(1) +

4
∑

j=1

∫

Γj

Θ`(x, y)ϕj(x) dsx − ϕ(1) · 1

π(εm + 1)

∫

Γj

∂ ln |x− y|
∂νx

dsx.

In the above integral, the portion that contains a singular kernel is

1

π(εm + 1)

∫

Γ3

∂ ln |x− y|
∂νx

(ϕ(x)− ϕ(1)) dsx, (3.19)

and the remaining parts are smooth. However, the whole integrand for (3.19) is not singular,
by observing that the smoothness of the function ϕ(x)− ϕ(1) cancels the singularity arising

from the kernel ∂ ln |x−y|
∂νx

as x gets closer to the corner y(1). Therefore, we can still apply
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of εm, we neglect the metal loss in the approximate model by setting the metal permittivity
as ε′m. As such, the total field ũ after the scattering satisfies



































∇ ·
(

1

ε̃(x)
∇ũ
)

+ k2u = 0 in R
2\∂Ωδ,

[ũ] = 0,

[

1

ε̃

∂ũ

∂ν

]

= 0 on Γ3 ∪ Γ4,

∂ũ

∂ν
= 0 on ∂Ωδ\(Γ3 ∪ Γ4),

(4.1)

where

ε̃(x) =







ε0 x ∈ R
2\Ω̄δ,

ε′m x ∈ Ωδ.

The rationale for proposing the approximate model is as follows. For a given permittivity εm,
light can penetrate into the metal with a skin depth δm. Let us denote the penetration area
in the metal by Sδm , then the slit Sδ together with the penetration area Sδm serve as a whole
resonator, which attains a countable sequence of resonant frequencies. This resonator couples
with the exterior medium through the slit aperture and the metal-vacuum interfaces, which
would lead to shifts of resonant frequencies. In the case when Re εm � −1, one may expect
that the coupling through the metal-vacuum interfaces is weak and hence the corresponding
induced resonance shift is small. A detailed rigorous analysis will be presented in [20]. In the
above approximate model, we neglect such coupling and it is expected that corresponding
resonances will not be far from the resonances of the original system (1.1). In the rest
of this section, we derive the leading-order terms of the resonances for the system (4.1).
The argument shares some similarity with the asymptotic analysis of the resonances for a
perfectly conducting slit [17]. Thus we skip some technical details but highlight the major
differences when the metal is not a perfect conductor anymore.

4.2 Green’s functions and boundary integral formulation

4.2.1 Green’s functions

Let ge(x, y) be the exterior Green’s function for the PEC slab that satisfies














∆ge(x, y) + k2ge(x, y) = δ̃(x− y) x, y ∈ Ω`, ` = 1, 2

∂ge(x, y)

∂νx
= 0 on ∂Ω`.

Then

ge(x, y) = − i

4

(

H
(1)
0 (k|x− y|) +H

(1)
0 (k|x− y′|)

)

,

where H
(1)
0 is the first kind Hankel function of order 0, and

y′ =

{

(y1, 2− y2) if x, y ∈ Ω1,

(y1,−y2) if x, y ∈ Ω2.
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We also introduce the interior Green’s functions gi(x, y) for the metal-vacuum-metal waveg-
uide that satisfies



















∇ ·
(

1

ε̃(x)
∇gi(x, y)

)

+ k2gi(x, y) = 0 = δ̃(x− y) x ∈ Ω2, y ∈ Sδ,

∂gi(x, y)

∂νx
= 0 on {x2 = 1} ∪ {x2 = 0}.

Using eigenfunctions along the x2 direction, gi(x, y) can be expressed as

gi(x, y) =
∞
∑

n=0

ω̃n gn(x1, y1) cos(nπx2) cos(nπy2), (4.2)

where the coefficients

ω̃n =

{

1 n = 0,

2 n ≥ 1,

and the 1D Green’s function gn(x1, y1) solves

Lngn(x1, y1) :=

(

1

ε̃(x1)
g′n(x1, y1)

)′

+

(

k2 − (nπ)2

ε̃(x1)

)

gn(x1, y1) = δ̃(x1 − y1),

−∞ < x1 <∞, 0 < y1 < δ.

It is known that the delta function adopts the following eigenfunction expansion (cf.
[17]):

δ̃(x1 − y1) =
1

δ
+

∞
∑

m=1

2

δ
cos
(mπx1

δ

)

cos
(mπy1

δ

)

for x1, y1 ∈ (0, δ).

Let χ(0,δ)(x1) be the characteristic function on (0, δ), then we can split gn(x1, y1) as

gn(x1, y1) = g(0)n (x1) + g(1)n (x1, y1). (4.3)

where

Lng
(0)
n (x1, y1) =

1

δ
· χ(0,δ)(x1), (4.4)

Lng
(1)
n (x1, y1) =

2

δ
·

∞
∑

m=1

cos
(mπx1

δ

)

cos
(mπy1

δ

)

· χ(0,δ)(x1). (4.5)

It follows by a direct calculation that

g(0)n (x1) =



































1

δ
· cn1eγnx1 , −∞ < x1 < 0,

1

δ
· cn1eγn(x1−δ), x1 > δ,

1

δ
·
[

cn2
(

eiαnx1 + eiαn(δ−x1)
)

+
1

k2 − (nπ)2

]

, 0 < x1 < δ,
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where γn =
√

(nπ)2 − k2ε′m, αn =
√

k2 − (nπ)2, and the coefficients

cn2 =
γn
α2
n

· 1

iαnε′m(1− eiαnδ)− γn(1 + eiαnδ)
, cn1 = (1 + eiαnδ)cn2 +

1

k2 − (nπ)2
.

Lemma 4.1 If δ � 1 and |ε′m| ∼ O(1/δ), then the following holds for x1 ∈ (0, δ):

∞
∑

n=0

ω̃n g
(0)
n (x1) = βi,1 +O(1),

∞
∑

n=0

(−1)nω̃n g
(0)
n (x1) = βi,2 +O(1).

Here βi,1 and βi,2 are constants given by

βi,1(k) =
1

δ
·

∞
∑

n=1

ω̃n

(

(

1 + eiαnδ
)

cn,2 +
1

k2 − (nπ)2

)

, (4.6)

βi,2(k) =
1

δ
·

∞
∑

n=1

(−1)nω̃n

(

(

1 + eiαnδ
)

cn,2 +
1

k2 − (nπ)2

)

. (4.7)

Proof We split the sum
∞
∑

n=0

ω̃n g
(0)
n (x1) as

∞
∑

n=0

ω̃n g
(0)
n (x1) =

N0
∑

n=0

ω̃n g
(0)
n (x1) +

∞
∑

n=N0

ω̃n g
(0)
n (x1),

where N0 = O(δ−1/2). If n ∼ O(δ−µn) and 0 ≤ µn ≤ 1/2, the Taylor expansion gives

eiαnx1 + eiαn(δ−x1) = 1 + eiαnδ +O(δ1−µn) for x1 ∈ (0, δ).

On the other hand, it is clear that

cn,2 ∼ O(1/α2
n) ∼ O(δ2µn) for 0 ≤ n ≤ N0.

Therefore,

N0
∑

n=0

ω̃n g
(0)
n (x1) =

1

δ
·

N0
∑

n=0

ω̃n

(

(

1 + eiαnδ
)

cn,2 +
1

k2 − (nπ)2
+O(δ1+µn)

)

. (4.8)

For n > N0, in light of |ε′m| ∼ O(1/δ), it follows that

cn,2 ∼ O
(

1/(α2
n|ε′m|)

)

∼ O
(

1/(n2δ)
)

.

We obtain

∞
∑

n=N0

ω̃n g
(0)
n (x1) =

1

δ
·

∞
∑

n=N0

ω̃n

(

(

1 + eiαnδ
)

cn,2 +
1

k2 − (nπ)2

)

+O(1). (4.9)

The assertion holds by combining (4.8) and (4.9). �
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We expand g
(1)
n (x1, y1) as the sum of eigenfunctions {vnp}∞p=1 for the operator Ln (see

Appendix C). For a given small δ, let us assume that |ε′m| ∼ O(1/δ). Then it follows from
Lemma C.1 that

vnp(x1) =

√

2

δ

(

cos

(

(p+ 1)πx1
δ

)

+O(δs)

)

for x1 ∈ (0, δ),

where s ≥ 1/2. On the other hand, from Lemma C.1, each eigenfunction vnp(x1) decays with

a rate of O
(

e−
√

|ε′m|/δ
)

outside the interval (0, δ). Therefore, recall that g
(1)
n (x1, y1) satisfies

(4.5), we may approximate g
(1)
n (x1, y1) by g̃

(1)
n (x1, y1), where g̃

(1)
n (x1, y1) satisfies

Lng̃
(1)
n (x1, y1) =

∞
∑

p=0

vnp(x1)vnp(y1).

Using the fact that Lnvnp = (k2−λnp)vnp, where λnp is the eigenvalue for Ln, it follows that

g̃(1)n (y1, y1) =
∞
∑

p=0

1

k2 − λnp
vnp(x1)vnp(y1), x1, y1 ∈ (0, δ). (4.10)

We skip the very technical proof and summarize the above formal analysis in the following
lemma.

Lemma 4.2 If δ � 1 and |ε′m| ∼ O(1/δ), then for each n, it holds that

g(1)n (y1, y1) = g̃(1)n (y1, y1) +O(δς) for x1, y1 ∈ (0, δ),

where ς ≥ 1 and g̃
(1)
n is defined in (4.10).

4.2.2 Boundary integral formulation

Let ũr be the reflected field by the perfectly conducting slab in the absence of slit, and
ũs := ũ − ui − ũr be the scattered field induced by opening the slit. From the Green’s
identity, one obtains an integral equation for ũs:

ũs(y) =

∫

Γ1

ge(x, y)
∂ũs(x)

∂ν
dsx, y ∈ Ω1.

Using the fact that
∂ui

∂ν
+
∂ur

∂ν
= 0 on {x2 = 1} and the continuity of the single layer

potential, it follows that the total field satisfies

ũ(y) =

∫

Γ1

ge(x, y)
∂ũ(x)

∂ν
dsx + ui(y) + ũr(y), y ∈ Γ1.

Similarly,

ũ(y) =

∫

Γ2

ge(x, y)
∂ũ(x)

∂ν
dsx, y ∈ Γ2.
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Applying the Green’s identity in the slab domain Ω2 and using the boundary conditions, the
solution inside the slit can be expressed as

ũ(y) = −
∫

Γ1∪Γ2

gi(x, y)
∂ũ(x)

∂ν
dsx for y ∈ Sδ.

This leads to the equation

ũ(y) = −
∫

Γ1∪Γ2

gi(x, y)
∂ũ(x)

∂ν
dsx for x ∈ Γ1 ∪ Γ2.

Imposing the continuity of the solution along the slit apertures leads to the following
system of integral equations:























∫

Γ1

ge(x, y)
∂ũ

∂ν
dsx +

∫

Γ1∪Γ2

gi(x, y)
∂ũ

∂ν
dsx + ui + ũr = 0 on Γ1,

∫

Γ2

ge(x, y)
∂ũ

∂ν
dsx +

∫

Γ1∪Γ2

gi(x, y)
∂ũ

∂ν
dsx = 0 on Γ2.

(4.11)

To study the resonances of the scattering problem, it is more convenient to rescale the
formulation by introducing the variables X = x1/δ and Y = y1/δ. We also define the
following quantities:

ϕ̃1(X) := − ∂ũ

∂x2
(δX, 1); ϕ̃2(Y ) :=

∂ũ

∂x2
(δX, 0);

f̃(X) := (ui + ur)(δX, 1) = 2eikd1δX ;

Ge(X, Y ) := ge(δX, 1; δY, 1) = ge(δX, 0; δY, 0);

Gi(X, Y ) := gi(δX, 1; δY, 1) = gi(δX, 0; δY, 0)

G̃i(X, Y ) := gi(δX, 1; δY, 0) = gi(δX, 0; δY, 1).

Then the boundary integral equations (4.11) can be written as the following in the scaled
coordinates.

[

T e + T i T̃ i

T̃ i T e + T i

][

ϕ̃1

ϕ̃2

]

=

[

f̃/δ

0

]

, (4.12)

where

(T eϕ)(Y ) =

∫ 1

0

Ge
δ(X, Y )ϕ(X)dX Y ∈ (0, 1); (4.13)

(T iϕ)(Y ) =

∫ 1

0

Gi
δ(X, Y )ϕ(X)dX Y ∈ (0, 1); (4.14)

(T̃ iϕ)(Y ) =

∫ 1

0

G̃i
δ(X, Y )ϕ(X)dY Y ∈ (0, 1). (4.15)
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4.3 Asymptotic expansions of the boundary integral operators

We have the following asymptotic expansions for the kernels Gi, Ge and G̃i.

Lemma 4.3 If kδ � 1, then for X, Y ∈ (0, 1),

Ge(X, Y ) +Gi(X, Y ) = β(k) + κ(X, Y ) + k∞(X, Y ), (4.16)

G̃i(X, Y ) = β̃(k) + k̃∞(X, Y ). (4.17)

In the above,

β(k) =

(

1

π
(ln k + γ̃0) +

1

π
ln δ

)

+ βi,1(k), β̃ = βi,2(k), (4.18)

where βi,1 and βi,2 are defined in (4.6) and (4.7), γ̃0 = c0 − ln 2− iπ/2, and c0 is the Euler

constant. The kernel |κ(X, Y )| ∼ O(1), |k∞(X, Y )| ∼ O(δς) and |k̃∞(X, Y )| ∼ O(δς) where
ς ≥ 1.

Proof First, the asymptotic expansion of H
(1)
0 (cf. [10]) leads to

Ge(X, Y ) =

(

− i

2

)

H
(1)
0 (δk|X − Y |)

=
1

π

[

ln δ + ln k + γ̃0 + ln |X − Y |+O
(

δ2 ln δ
)]

. (4.19)

From the expansion (4.2) and the decomposition (4.3), we have

Gi(X, Y ) =
∞
∑

n=0

ω̃n gn(δX, δY ) =
∞
∑

n=0

ω̃n g
(0)
n (δX) +

∞
∑

n=0

ω̃n g
(1)
n (δX, δY ).

An application of Lemma 4.1 and 4.2 yields

Gi(X, Y ) = βi,1(k) +O(1) +
∞
∑

n=0

ω̃n g̃
(1)
n (δX, δY ) +O(δς) (4.20)

for ς ≥ 1. By the definition (4.10), it follows that

∞
∑

n=0

ω̃n g̃
(1)
n (δX, δY ) =

∞
∑

n=0

∞
∑

p=0

ω̃n

k2 − λnp
vnp(δX)vnp(δY )

=
∞
∑

p=1

∞
∑

n=0

2ω̃n

(k2 − λnp) · δ
(

cos(pπX) cos(pπY ) +O(δς)
)

, (4.21)

where we have used the following fact in the second equality

vnp(δX) =

√

2

δ
(cos ((p+ 1)πX) +O(δs)) for s ≥ 1/2.
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For each p, from the asymptotic expansion of the λnp (C.2) and the representation of ele-
mentary functions by series (cf. [13]), the constant

∞
∑

n=0

2ω̃n

(k2 − λnp) · δ
≈ − 2

δ ·
√

((pπ + θ0)/δ)2 − k2
coth

(

√

((pπ + θ0)/δ)2 − k2
)

≈ − 1

pπ
− k2δ2

p3π3
+O

(

δ4

p5

)

.

By substituting into (4.21), we see that

∞
∑

n=0

ω̃n g̃
(1)
n (δX, δY ) =

∞
∑

p=1

2

pπ
cos(pπX) cos(pπY ) +O(δς). (4.22)

A combination of (4.19), (4.20), (4.22) leads to the expansion for Ge(X, Y ) +Gi(X, Y ).
For G̃i(X, Y ), from Lemma 4.1 and 4.2, we see that

G̃i(X, Y ) = βi,2(k) +O(1) +
∞
∑

n=0

(−1)nω̃n g̃
(1)
n (δX, δY ) +O(δς). (4.23)

A similar calculation as above gives the desired expansion, and we omit here for conciseness.
�

Based on the above decomposition of the Green’s functions, we have the decomposition
of the following integral operators:

Lemma 4.4 Let K, K∞, K̃∞ be the integral operators corresponding to the Schwarz kernels

κ(X, Y ), κ∞(X, Y ) and κ̃∞(X, Y ), and P be projection operator defined by Pϕ(X) = (ϕ, 1)1,
then the operator T e + T i and T̃ i admit the following decomposition:

T e + T i = βP +K +K∞, T̃ i = β̃P + K̃∞.

4.4 Scattering resonances of the approximate model and the strat-

egy for initial guess

To obtain the resonances of the approximate model (4.1), we solve for the homogeneous
problem when f̃ = 0 in (4.12). By virtue of Lemma 4.4, the integral operators adopts the
following expansion:

[

T e + T i T̃ i

T̃ i T e + T i

]

=

[

βP β̃P

β̃P βP

]

+KI+

[

K∞ K̃∞

K̃∞ K∞

]

=: P+ L,

where

P =

[

βP β̃P

β̃P βP

]

, K∞ =

[

K∞ K̃∞

K̃∞ K∞

]

and L = KI+K∞.
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The homogeneous problem (P+ L)ϕ = 0 can be rewritten as

L
−1

P ϕ̃+ ϕ̃ = 0. (4.24)

Let e1 = [1, 0]T and e2 = [0, 1]T . By expressing P ϕ̃ explicitly and taking the inner product
of (4.24) with e1 and e2 respectively, the homogeneous problem reduces to (cf. [17])

(M+ I)

[

〈ϕ, e1〉
〈ϕ, e2〉

]

= 0,

where

M = β

[

〈L−1e1, e1〉 〈L−1e1, e2〉
〈L−1e1, e2〉 〈L−1e1, e1〉

]

+ β̃

[

0 1

1 0

][

〈L−1e1, e1〉 〈L−1e1, e2〉
〈L−1e1, e2〉 〈L−1e1, e1〉

]

The eigenvalues for M+ I are

λ1(k) = 1 + (β(k) + β̃(k))
(

〈L−1e1, e1〉+ 〈L−1e1, e2〉
)

, (4.25)

λ2(k) = 1 + (β(k)− β̃(k))
(

〈L−1e1, e1〉 − 〈L−1e1, e2〉
)

. (4.26)

The associated eigenvectors are

[1 1]T and [1 − 1]T . (4.27)

Therefore, the scattering resonances of the problem (4.1), or equivalently, the characteristic
values of the operator-valued function P + L, are the roots of the two analytic functions
λ1(k) and λ2(k). The leading order of the resonances are stated in the following theorem.

Theorem 4.5 If δ � 1, there exist two sets of resonances, {k`,1}∞`=1 and {k`,2}∞`=1, for the

scattering problem (4.1), and the following asymptotic expansions hold:

k`,1 = k
(0)
`,1 − 1

πq′1

(

k
(0)
`,1

) · δ ln δ +O(δς), k`,2 = k
(0)
`,2 +

1

πq′2

(

k
(0)
`,2

) · δ ln δ +O(δς), ς ≥ 1

for `δ � 1. The leading-oder terms k
(0)
`,1 and k

(0)
`,2 are the roots of real-valued functions q1(k)

and q2(k) respectively, where

q1(k) = δ (βi,1(k) + βi,2(k)), q2(k) = δ (βi,1(k)− βi,2(k)).

Proof. From the expression of the eigenvalue in (4.25), and the definition of β(k) and β̃(k)
in (4.18), the roots of λ1(k) satisfy

1 +

[

q1(k)

δ
+

1

π
ln δ +

1

π
(ln k + γ̃0)

]

(

〈L−1e1, e1〉+ 〈L−1e1, e2〉
)

= 0.

We investigate the roots for the leading order terms of λ1(k), which is given by
q1(k)

δ
+
1

π
ln δ.

This leads to solving the following equation:

q1(k) +
1

π
δ ln δ = 0,
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and its roots are given by

k̂`,1 = k
(0)
`,1 − 1

πq′1

(

k
(0)
`,1

) · δ ln δ +O(δ2 ln2 δ).

An application of Rouche’s theorem gives the desired expansion for λ1(k) = 0. The roots of
λ2(k) can be obtained by a parallel argument. �

Denote the initial guesses for computing the resonances of (2.25) as

k̃` = k̃′` + i k̃′′` , ` = 1, 2, 3, · · · , L.

When k
(0)
`,j δ < 1, we use the first two terms in the above expansions, k

(0)
`,j − 1

πq′j

(

k
(0)
`,j

) · δ ln δ
(j = 1, 2), as the real parts of the initial guesses. Otherwise, the real parts of the initial

guesses are set as the leading-order values k
(0)
`,j (j = 1, 2). Let the real parts, {k̃`}L`=1, be

those values ordered increasingly. Although explicit asymptotic expansion for the imaginary
part of resonances are not derived explicitly in Lemma 4.5, it is known that true resonances
are located in the fourth quadrant of the complex plane. Using the fact the resonances
for the PEC slit has an oder of O(δ) if δ � 1 (cf. (6.1)), it is expected that similar
asymptotic expansions will hold for real metals. Hence we choose the imaginary part of the
first initial guess as k̃′′1 = −δ. For ` ≥ 1, by observing that the field enhancement is weaker as
the frequency becomes higher, we set k̃′′`+1 = −max1≤p≤` |k̃′′p |. For the eigenmode (resonant
modes) ψ in (2.25), note that the eigenvectors forM+I are given by (4.27). Correspondingly,
we choose the initial guesses for the resonant modes ψ̃`,j are set as [1, 1, 0, 0] and [1,−1, 0, 0]
for j = 1, 2, respectively.

5 Numerical examples

In this section, we present various numerical examples to demonstrate the accuracy and
effectiveness of the computational approach. We first validate the accuracy of the integral
equation method by comparing the computational results with the ones obtained via the
vertical mode matching scheme [14, 21, 22]. The integral equation approach with the initial
guess strategy is then applied to solve for the resonances of the scattering problem with
various slit sizes and permittivity values. In the rest of this section, n1 and n2 denotes the
number of grid points used to discretize the single and double layer integrals (3.15), (3.16),
(3.20) and (3.21) over the horizontal and vertical slit boundaries, respectively.

Example 1 We validate the accuracy of the integral equation method in this example. Let
the permittivity for the metal be εm = −100+ 10i, and consider the metallic structure with
the slit size δ = 0.1 and δ = 0.05, respectively. We solve the scattering problem with an nor-
mal incident plane wave ui. To this end, the single and double layer integrals (3.10) - (3.12)
are computed by the quadrature rules (3.15) (3.16), (3.20), and (3.21), using n1 = 20 and
n2 = 120 for the horizontal and vertical slit boundaries, respectively. Figures 6 and 7 (left)
show the trasmittance T over the frequency band {k | k ∈ [1, 10]} for the slit size δ = 0.1
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and δ = 0.05, which are obtained by solving the integral equation (2.24). The tranmsittance
is defined as T = P/Pinc, where P is the total power over the bottom gap aperture Γ2 and
Pinc is the incident power over the aperture Γ2. For comparison we apply the vertical mode
matching scheme [14, 21, 22] to the solve the scattering problem (1.1) with sufficient number
of modes. Figures 6 and 7 (right) plot the difference between the transmittances obtained
by two numerical approaches, where the quantity eT is defined by eT = |T − Tvm|/|Tvm| and
Tvm is the transmittance computed from the vertical mode matching method. It observed
that three digits of accuracy is achieved by the integral equation method with the specified
grid points.
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Figure 6: The transmittance T over the frequency band {k | k ∈ [1, 10]} computed via the integral equation approach (left) and
the difference between the transmittance T obtained by two methods (right). δ = 0.1.
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Figure 7: The transmittance T over the frequency band {k | k ∈ [1, 10]} computed via the integral equation approach (left) and
the difference between the transmittance T obtained by two methods (right). δ = 0.05.

Example 2 The permittivity for the metal is set as εm = −100 + 10i. We compute
the resonances for the slit size δ = 0.02, 0.05, 0.1, and 0.2, respectively. To discretize the
integrals (3.10) and (3.12), n1 = 20 and n2 = 80 are used for the horizontal and vertical slit
boundaries respectively. The tolerance is set as 10−4 for the Newton solver of the eigenvalue
problem (2.25).

The first column of Tables 2 - 5 are the initial-guess values {k̃`}L`=1 obtained from the
strategy discussed in Section 4 for given δ values. The second and the third column of
Tables 2 - 5 show the computed resonances {k`}L`=1 and the corresponding iteration numbers
needed to achieve the desired tolerance. In the tables, the resonances are ordered with
increasing real part. We see that the initial guesses indeed provide good approximations
of true resonances, especially for lower frequencies and smaller slit sizes where the leading
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orders of the asymptotic expansions in Theorem 4.5 are more accurate. In addition, from
the provided initial-guess values, the Newton solver converges with the given tolerance in
only a few iterations (mostly less than 10 iterations). Hence the proposed computational
approach is very efficient for obtaining the resonances of the scattering problem.

In order to demonstrate the accuracy of the computed resonances, in Figure 8 we plot the
trasmittance T over the frequency band {k | k ∈ [0.5, 15]} when a normal incident plane wave
ui impinges on the metallic structure with various slit sizes. When the incident frequency is
close to the real part of certain scattering resonance k` such that the corresponding resonant
mode is excited, it is expected that the transmission peaks will occur as long as the magnitude
for the imaginary part of k` is sufficiently small. It is seen from Table 2 - 5 that the real
parts of resonances correctly reflect the peaks of transmssions in Figure 8, which validates
the accuracy of computed resonances. On the other hand, the smaller the magnitude for the
imaginary part of resonances, the higher the transimttance peaks are. This is also consistent
with the resonant scattering mechanism.

We would also like to remark on the robustness of the numerical approach by the ob-
servation that (i) the iterative eigen-solver indeed converges with the obtained initial-guess
values; (ii) for each δ, all resonances in the above frequency band that lie in the vicinity of
the real axis have been successfully solved, since each peak in Figure 8 corresponds to one
resonance in Table 2 - 5.

Finally, we study the convergence behavior of the numerical method with increasing
grid points over the slit boundary. To this end, let us set δ = 0.02 and 0.1 respectively.
Table 6 and 7 give the computed resonances with various n1 and n2 values. We observe the
convergence of the computed values when the mesh is refined. Furthermore, two digits of
accuracy is obtained when n1 = 20 and n2 = 80, and three digits of accuracy is obtained
when n1 = 40 and n2 = 160.

Table 2: Initial guesses and the computed resonances for δ = 0.02.

k̃` k` iteration numbers

0.7875− 0.02i 0.7832− 0.0479i 7

2.7481− 0.0479i 2.7513− 0.1642i 8

5.2174− 0.1642i 5.2983− 0.1847i 7

7.9051− 0.1847i 8.0485− 0.3196i 8

10.6994− 0.3196i 10.8462− 0.3399i 8

13.5527− 0.3399i 13.8351− 0.4129i 8
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Table 3: Initial guesses and the computed resonances for δ = 0.05.

k̃` k` iteration numbers

1.4590− 0.05i 1.4524− 0.0765i 5

4.0096− 0.0765i 4.0653− 0.2548i 5

6.7421− 0.2548i 6.9522− 0.3069i 6

9.5288− 0.3069i 9.9177− 0.4572i 8

12.3391− 0.4572i 12.8852− 0.5190i 9

Table 4: Initial guesses and the computed resonances for δ = 0.1.

k̃` k` iteration numbers

1.8528− 0.1i 1.8501− 0.1311i 5

4.4502− 0.1311i 4.585− 0.3882i 5

7.1092− 0.3882i 7.5187− 0.5136i 6

11.6860− 0.5136i 10.4920− 0.7154i 7

14.7178− 0.7154i 13.5147− 0.8486i 7

Table 5: Initial guesses and the computed resonances for δ = 0.2.

k̃` k` iteration numbers

2.0462− 0.2i 2.0139− 0.2372i 4

4.5367− 0.2372i 4.7283− 0.6256i 5

8.9326− 0.6256i 7.6572− 0.9200i 8

12.0765− 0.9200i 10.5837− 1.3232i 10

15.2274− 1.3232i 13.522− 1.5703i 10

Table 6: Computed resonances with refined meshes. δ = 0.02.

n1 = 10 n2 = 40 n1 = 20 n2 = 80 n1 = 40 n2 = 160 n1 = 60 n2 = 200

0.7656− 0.0499i 0.7832− 0.0479i 0.7691− 0.0440i 0.7696− 0.0436i

2.7379− 0.1755i 2.7513− 0.1642i 2.7390− 0.1648i 2.7404− 0.1638i

5.2698− 0.1966i 5.2983− 0.1847i 5.2933− 0.1966i 5.2932− 0.1958i

7.9744− 0.3229i 8.0485− 0.3196i 8.0414− 0.3371i 8.0422− 0.3337i

10.6749− 0.2643i 10.8462− 0.3399i 10.9015− 0.3215i 10.9017− 0.3234i

13.3940− 0.3369i 13.8351− 0.4129i 13.9003− 0.4664i 13.8975− 0.4619i
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Table 7: Computed resonances with refined meshes. δ = 0.1.

n1 = 10 n2 = 40 n1 = 20 n2 = 80 n1 = 40 n2 = 160 n1 = 60 n2 = 200

1.8473− 0.1246i 1.8501− 0.1311i 1.8513− 0.1318i 1.8513− 0.1317i

4.6374− 0.3645i 4.5851− 0.3882i 4.5846− 0.4188i 4.5856− 0.4166i

7.5726− 0.6238i 7.5187− 0.5136i 7.5114− 0.4881i 7.5106− 0.4896i

10.5410− 0.6004i 10.4920− 0.7154i 10.5743− 0.7727i 10.5698− 0.7681i

13.5452− 0.8596i 13.5147− 0.8486i 13.4566− 0.8557i 13.4609− 0.8603i
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Figure 8: The transmittance T over the frequency band [0.5, 15] for various slit sizes.
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Example 3 We set the permittivity for the metal as εm = −20+2i in the example. Again,
n1 = 20 and n2 = 80 are used for discretizing the integrals over the horizontal and vertical
slit boundaries respectively, and the tolerance for the Newton solver is 10−4.

We compute the resonances for the slit size δ = 0.02, 0.05, 0.1, and 0.2, respectively. The
initial guesses for the resonances are shown in the first column of Tables 8 - 11 for various
slit sizes. It is seen that they also provide good approximations of true resonances. Starting
from these initial-guess values, the Newton method converges and the computed resonances
are shown in the second column of Tables 8 - 11. The corresponding iteration numbers
are given in the third columns, which demonstrate the robustness and the efficiency of the
proposed computational approach.

For a given δ, it is observed from Figure 9 that the peaks for trasmittance T are consistent
with the locations of the computed resonances, which confirms the accuracy of the integral
equation method. Finally, for each δ, by noting that each peak in Figure 9 corresponds to
one resonance in Table 8 - 11, we see that all resonances in the above frequency band that
lie in the vicinity of the real axis are successfully solved. This again reflects the robustness
of the proposed numerical method.

Table 8: Initial guesses and the computed resonances for δ = 0.02.

k̃` k` iteration numbers

1.0514− 0.02i 0.9064− 0.3279i 6

2.701− 0.3279i 2.6780− 0.1963i 6

4.7417− 0.3279i 4.8147− 0.4001i 7

7.0393− 0.4001i 7.1860− 0.2835i 6

9.5072− 0.4001i 9.8259− 0.4966i 9

12.0915− 0.4966i 12.3633− 0.3438i 9

Table 9: Initial guesses and the computed resonances for δ = 0.05.

k̃` k` iteration numbers

0.7125− 0.05i 0.5880− 0.06154i 8

2.6093− 0.0616i 2.6430− 0.3223i 12

5.0005− 0.3222i 5.1897− 0.1900i 7

7.5861− 0.3222i 8.0308− 0.4645i 14

10.2648− 0.4645i 10.7828− 0.2818i 14

12.9943− 0.4645i 13.9094− 0.5254i 20
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Table 10: Initial guesses and the computed resonances for δ = 0.1.

k̃` k` iteration numbers

1.1923− 0.1i 1.1517− 0.0627i 6

3.504− 0.0626i 3.7293− 0.4508i 11

6.0496− 0.4508i 6.4636− 0.2497i 7

10.383− 0.4508i 9.5812− 0.6125i 11

13.4649− 0.6125i 12.2692− 0.4306i 17

Table 11: Initial guesses and the computed resonances for δ = 0.2.

k̃` k` iteration numbers

1.5878− 0.2i 1.5658− 0.1011i 8

3.9938− 0.1012i 4.4712− 0.6928i 9

8.2869− 0.6928i 7.119− 0.4686i 7

11.4062− 0.6928i 10.4770− 1.0821i 11

14.5419− 1.0821i 13.343− 2.0182i 11
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Figure 9: The transmittance T over the frequency band [0.5, 15] for various slit sizes.
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6 Computation of resonances for the PEC slit

In this section, we discuss briefly the computational framework when the permittivity |εm| →
∞ such that the metallic slab becomes a perfect conductor. This yields zero Neumann bound-
ary condition along horizontal and vertical the metal-vacuum interfaces. In particular, the
system of integral equations (2.25) is reduced to the ones formulated over the slit apertures
Γ1 and Γ2 only, by observing that the contribution from the slit walls Γ3 and Γ4 vanishes as
|εm| → ∞. Alternatively, the perfect conductor model can be viewed as the limiting case
for the approximate scattering model (4.1) such that ∂ν ũ = 0 on Γ3 and Γ4. This also leads
to the system of integral equations (4.11) defined on the slit apertures, where the interior
Green’s function gi(x, y) is now given by the Green’s function Gs(x, y) for the slit geometry
defined in (2.5). The scattering resonances are computed by solving the homogeneous prob-
lem corresponding to (4.11) and with gi(x, y) = Gs(x, y). We apply the Newton’s method
to solve the eigenvalue problem, where the asymptotic expansions of the resonances for the
case of δ � 1 are used as initial guesses. Such asymptotic expansions have been derived in
[17]. We state the result in the following and refer to Theorem 4.4 in [17] for details.

Theorem 6.1 If δ � 1, the resonances of the scattering problem (1.1) when |εm| = ∞ are

given by

k` = `π + 2` · δ ln δ + C` · δ +O(δ2 ln2 δ)

for `δ � 1, where C` is a complex constant independent of δ and attains negative imaginary

part.

We apply the integral equation method to compute the resonances when the slit size
δ = 0.02, 0.05, 0.1, and 0.2, respectively. To discretize the single-layer integral operators in
(4.11), we set the number of grid points as n1 = 40, and the tolerance for the Newton solver
as 10−4.

The strategy for choosing initial guesses {k̃`}L`=1 is similar to that of the real metal case in
Section 4, except that the complex-valued O(δ)-term is now given explicitly for the PEC slit.
As such we use the first three terms in the asymptotic expansion for the initial guess k̃1. The
obtained initial-guess values {k̃`}L`=1, which are good approximations of true resonances, are
shown in the first column of Tables 12 - 15 for various slit sizes. The second column of Tables
12 - 15 are the computed resonances {k`}L`=1 obtained by solving the homogeneous equations
(4.11) and starting from the initial-guess values. The corresponding iteration numbers are
given in the third columns, which demonstrate the efficiency of the integral equation method.
For fixed δ, each peak of the trasmittance T in Figure 10 corresponds to one resonance in
Table 12 - 15, and the frequencies of the peaks are consistent with the locations of the
computed resonances. Therefore, we see that all resonances in the above frequency band
that lie in the vicinity of the real axis are solved accurately.

35



Table 12: Initial guesses and the computed resonances for δ = 0.02.

k̃` k` iteration numbers

2.9682− 0.0628i 2.9745− 0.0567i 2

5.9702− 0.0567i 6.000− 0.1139i 3

8.9553− 0.1139i 9.0463− 0.1700i 3

11.9404− 0.1670i 12.1052− 0.2246i 4

Table 13: Initial guesses and the computed resonances for δ = 0.05.

k̃` k` iteration numbers

2.7998− 0.1571i 2.8203− 0.1275i 3

5.6840− 0.1275i 5.7599− 0.2558i 4

8.5261− 0.2558i 8.7460− 0.3769i 4

11.3681− 0.3769i 11.7601− 0.4902i 5

14.2101− 0.4902i 14.7934− 0.5964i 5

Table 14: Initial guesses and the computed resonances for δ = 0.1.

k̃` k` iteration numbers

2.5965− 0.3142i 2.6378− 0.2227i 4

5.3622− 0.2227i 5.4910− 0.4451i 4

8.0432− 0.4451i 8.4239− 0.6463i 5

10.7243− 0.6463i 11.4005− 0.8291i 6

13.4054− 0.8291i 14.4046− 0.9982i 7

Table 15: Initial guesses and the computed resonances for δ = 0.2.

k̃` k` iteration numbers

2.3286− 0.6283i 2.3838− 0.3635i 5

4.9956− 0.3635i 5.1314− 0.7273i 5

7.4935− 0.7273i 8.0008− 1.0477i 6

9.9913− 1.0477i 10.9308− 1.3435i 7

12.4891− 1.3435i 13.9010− 1.6311i 9
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Figure 10: The transmittance T over the frequency band [0.5, 15] for various slit sizes.

Acknowledgements

We would like to thank Professor Y-Y. Lu of City University of Hong Kong and Z. Hu
of Hoai University in China for providing part of the code to implement the vertical mode
matching method. JL is partially supported by the NSF grant DMS-1719851. HZ is partially
supported by Hong Kong RGC grant ECS 26301016 and GRF 16306318. JL also gratefully
acknowledges the support and hospitality provided by Hong Kong University of Science of
Technology during his visit and when part of this project is performed.

Appendix A Green’s functions in the layered medium

We derive explicitly the Green’s function when y ∈ Ω1. Taking the Fourier transform of (2.1)
with respect to the variable x1 − y1, the Green’s function in the Fourier domain satisfies

Ĝ′′
1(ξ; x2, y2) + (k2ε(x2)− ξ2)Ĝ1(ξ; x2, y2) = δ̃(x2 − y2), −∞ < x2 <∞,

[Ĝ1(ξ; x2, y2)] =

[

1

ε
Ĝ′

1(ξ; x2, y2)

]

= 0 x2 = 0, x2 = 1.

Let

ρ0(ξ) =
√

k2 − ξ2, ρm(ξ) =
√

k2εm − ξ2,

p(ξ) = (εm + 1)
(

ρ20(ξ)ε
2
m − ρ2m(ξ)

)

− (εm − 1) (ρ0(ξ)εm − ρm(ξ))
2 ,

q(ξ) = (ρ0(ξ)εm − ρm(ξ))
2 ei2ρm − (ρ0(ξ)εm + ρm(ξ))

2 .
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Then the solution

Ĝ1(ξ; x2, y2) =



















1

2iρ0
eiρ0|x2−y2| +Reiρ0(x2+y2−2) x2 > 1,

T1 e
iρ0(y2−1)eiρm(1+x2) + T2 e

iρ0(y2−1)eiρm(1−x2) 0 < x2 < 1,

T3 e
iρ0(y2−x2−1) x2 < 0,

where the coefficients

R =
1

2iρ0q
·
(

ρ20ε
2
m − ρ2m

) (

ei2ρm − 1
)

, T1 =
i

q
· εm(ρm − ρ0εm)

T2 =
i

q
· εm(ρm + ρ0εm), T3 =

2i

q
· εmρmeiρm .

We decompose the coefficient R as R := R0 +R1, where

R0 =
εm − 1

εm + 1
· 1

2iρ0
and R1 =

k2εm(εm − 1)

i(εm + 1)
· ρ0εm + ρm
ρ0 (ρo + ρm) q

+
1

2i(εm + 1)
· pe

i2ρm

ρ0q
. (A.1)

For 0 < x2 < 1, we split Ĝ1(ξ; x2, y2) as

εm
εm + 1

· 1

iρ0
eiρ0(y2−x2)+

[

T1 e
iρ0(y2−1)eiρm(1+x2) + T2 e

iρ0(y2−1)eiρm(1−x2) − εm
εm + 1

· 1

iρ0
eiρ0(y2−x2)

]

.

(A.2)
Apply the inverse Fourier transform for Ĝ1(ξ; x2, y2) by using the decomposition (A.1),

(A.2) and the identity

1

2π

∫ ∞

−∞

1

2iρ0(ξ)
eiρ0(ξ)(x2−y2)eiξ(x1−y1)dξ = − i

4
H

(1)
0 (k|x− y|),

we obtain

G1(x, y) =































− i

4

(

H
(1)
0 (k|x− y|) + εm − 1

εm + 1
H

(1)
0 (k|x′ − y|)

)

+ g11(x, y), x ∈ Ω1,

− iεm
2(εm + 1)

H
(1)
0 (k|x− y|) + g12(x, y)), x ∈ Ω2,

g13(x, y), x ∈ Ω3,

where x′ is the reflection of x by x2 = 1. The functions g1j (j = 1, 2, 3) are the Sommerfeld
integrals given by

g11(x, y) =
1

2π

∫ ∞

−∞

R1(ξ)e
iρ0(x2+y2−2)eiξ(x1−y1) dξ

=
k2εm(εm − 1)

iπ(εm + 1)

∫ ∞

0

ρ0(ξ)εm + ρm(ξ)

ρ0(ξ) (ρ0(ξ) + ρm(ξ)) q(ξ)
eiρ0(ξ)(x2+y2−2) cos(ξ(x1 − y1)) dξ

+
1

2πi(εm + 1)

∫ ∞

0

p(ξ)ei2ρm(ξ)

ρ0(ξ)q(ξ)
eiρ0(ξ)(x2+y2−2) cos(ξ(x1 − y1)) dξ; (A.3)
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g12(x, y) =
1

2π

∫ ∞

−∞

[

T1 e
iρ0(y2−1)eiρm(1+x2) + T2 e

iρ0(y2−1)eiρm(1−x2) − εm
εm + 1

· 1

iρ0
eiρ0(y2−x2)

]

eiξ(x1−y1) dξ

=
iεm
π

∫ ∞

0

ρm(ξ)− ρ0(ξ)εm
q(ξ)

eiρ0(ξ)(y2−1)eiρm(ξ)(1+x2) cos(ξ(x1 − y1)) dξ

+
iεm
π

∫ ∞

0

[

ρm(ξ) + ρ0(ξ)εm
q(ξ)

eiρ0(ξ)(y2−1)eiρm(ξ)(1−x2)

+
1

εm + 1
· 1

ρ0(ξ)
eiρ0(ξ)(y2−x2)

]

cos(ξ(x1 − y1)) dξ (A.4)

g13(x, y) =
1

2π

∫ ∞

−∞

T3 e
iρ0(y2−x2−1)eiξ(x1−y1) dξ

=
2iεm
π

∫ ∞

0

ρm(ξ)

q(ξ)
eiρm(ξ)eiρ0(ξ)(y2−x2−1) cos(ξ(x1 − y1)) dξ. (A.5)

For y ∈ Ω2, by analogous derivations, it can be shown that

G2(x, y) =















































− i

2

1

εm + 1
H

(1)
0 (km|x− y|) + g21(x, y), x ∈ Ω1,

− i

4

(

H
(1)
0 (km|x− y|) + 1− εm

1 + εm
H

(1)
0 (km|x′ − y|) + 1− εm

1 + εm
H

(1)
0 (km|x′′ − y|)

)

+g22(x, y), x ∈ Ω2,

− i

2

1

εm + 1
H

(1)
0 (km|x− y|) + g23(x, y), x ∈ Ω3,

where x′ and x′′ are the reflection of x by x2 = 1 and x2 = 0, respectively. The functions g2j
(j = 1, 2, 3) are the Sommerfeld integrals given by

g21(x, y) =
i

π

∫ ∞

0

ρm(ξ)− ρ0(ξ)εm
q(ξ)

eiρ0(ξ)(x2−1)eiρm(ξ)(1+y2) cos(ξ(x1 − y1)) dξ

+
i

π

∫ ∞

0

[

ρm(ξ) + ρ0(ξ)εm
q(ξ)

eiρ0(ξ)(x2−1)eiρm(ξ)(1−y2)

+
1

εm + 1
· 1

ρm(ξ)
eiρm(ξ)(x2−y2)

]

cos(ξ(x1 − y1)) dξ; (A.6)

g22(x, y) =
ik2εm(εm − 1)

π(εm + 1)

∫ ∞

0

ρ0(ξ)εm + ρm(ξ)

ρm(ξ) (ρ0(ξ) + ρm(ξ)) q(ξ)

(

eiρ0(ξ)(x2+y2) + eiρ0(ξ)(2−x2−y2)
)

cos(ξ(x1 − y1)) dξ

+
i

2π

∫ ∞

0

(ρ0(ξ)εm − ρm(ξ))
2ei2ρm

ρm(ξ)q(ξ)

(

eiρm(ξ)(x2−y2) + eiρm(ξ)(y2−x2)
)

cos(ξ(x1 − y1)) dξ (A.7)

− i(εm − 1)

2π(εm + 1)

∫ ∞

0

(ρ0(ξ)εm − ρm(ξ))
2ei2ρm

ρm(ξ)q(ξ)

(

eiρm(ξ)(x2+y2) + eiρm(ξ)(2−x2−y2)
)

cos(ξ(x1 − y1)) dξ;

39



g23(x, y) =
i

π

∫ ∞

0

ρm(ξ)− ρ0(ξ)εm
q(ξ)

e−iρ0(ξ)x2eiρm(ξ)(2−y2) cos(ξ(x1 − y1)) dξ

+
i

π

∫ ∞

0

[

ρm(ξ) + ρ0(ξ)εm
q(ξ)

e−iρ0(ξ)x2eiρm(ξ)y2

+
1

εm + 1
· 1

ρm(ξ)
eρm(ξ)(x2−y2)

]

cos(ξ(x1 − y1)) dξ. (A.8)

Appendix B Derivations of (2.16)

Let Γt := {x2 = 1} and Γb := {x2 = 0} be the top and bottom of the metallic slab
respectively. For y ∈ Ω1, we apply the Green’s second identity in the domain Ω1 and Ω3 to
obtain

us(y) =

∫

Γt

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x) dsx. (B.1)

0 =

∫

Γb

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x) dsx, (B.2)

where ν is the unit normal pointing to the domains Ω1 and Ω2. Applying the Green’s second
identity in the domain Ω−

δ and Ω+
δ respectively, we have

0 =

∫

Γ−

t ∪Γ−

b

∂G1(x, y)

∂νx
us(x)−G1(x, y)

∂us(x)

∂νx
dsx +

∫

Γ3

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x) dsx,

(B.3)

0 =

∫

Γ+
t ∪Γ+

b

∂G1(x, y)

∂νx
us(x)−G1(x, y)

∂us(x)

∂νx
dsx +

∫

Γ4

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x) dsx.

(B.4)

In the above, the line segments

Γ−
t := {x ∈ Γt | x1 < 0}, Γ+

t := {x ∈ Γt | x1 > δ},
Γ−
b := {x ∈ Γb | x1 < 0}, Γ+

b := {x ∈ Γb | x1 > δ}.

Taking the sum (B.1) + (B.2) +
1

εm
×
(

(B.3) + (B.4)
)

and using the continuity conditions

for us and G1 along the metal-vacuum interfaces, it follows that

us(y) =
4
∑

j=1

∫

Γj

G1(x, y)

(

γj
∂us(x)

∂νx

)

−
(

γj
∂G1(x, y)

∂νx

)

us(x) dsx.

The formula can be obtained similarly for y ∈ Ω2, Ω
−
δ and Ω+

δ respectively.
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Appendix C Eigenvalues and eigenmodes for the op-

erator Ln

The operator Ln is defined as

Lnv :=

(

1

ε̃(x1)
v′(x1)

)′

+

(

k2 − (nπ)2

ε̃(x1)

)

v(x1), −∞ < x1 <∞,

where the permittivity ε̃(x1) = 1 for x1 ∈ (0, δ) and ε̃(x1) = ε′m for x1 6= [0, δ]. We solve the
eigenvalue problem Lnv = −λv. To this end, we express the solution as

v(x1) =















c1e
ζnx1 x1 < 0,

c3e
iαnx1 + c4e

−iαnx1 0 < x1 < δ,

c2e
ζn(δ−x1) x1 > δ,

where ζn(λ) =
√

(nπ)2 − ε′mλ, αn(λ) =
√

λ− (nπ)2. Imposing the continuity conditions
leads to a linear system for the coefficients c1, c2, c3 and c4, and the condition for the
existence of non-trivial solution v is given by

eiαn(λ)δ = ±ζn(λ)− iαn(λ)ε
′
m

ζn(λ) + iαn(λ)ε′m
.

We restrict the discussion for λ ∈ ((nπ)2,+∞). Then the above nonlinear equation leads
to

αnδ − pπ = arg
ζn − iαnε

′
m

ζn + iαnε′m
, p = 0, 1, 2, 3, · · ·

If |ε′m| � 1, then the coefficient αn is given by

αnpδ ≈ pπ + θ0 ≈ (p+ 1)π, where θ0 = 2arctan
√

|ε′m| ≈ π. (C.1)

Correspondingly, the eigenvalues

λ = λnp ≈ (nπ)2 +

(

pπ + θ0
δ

)2

and ζnp =
√

(nπ)2 − ε′mλnp, p = 0, 1, 2, 3, · · · . (C.2)

The eigenmodes are

vnp(x) =



















cnp(1 + eiαnpδ)eζnpx1 , x1 < 0,

cnp(e
iαnpx1 + e−iαnp(δ−x1)), 0 < x1 < δ,

cnp(1 + eiαnpδ)eζnp(δ−x1), x1 > δ,

and

vnp(x) =



















cnp(1− eiαnpδ)eζnpx1 , x1 < 0,

cnp(e
iαnpx1 − e−iαnp(δ−x1)), 0 < x1 < δ,

−cnp(1− eiαnpδ)eζnp(δ−x1), x1 > δ,
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for odd and even p respectively, where the constants cnp are normalization constants such
that ||vnp||L2(−∞,∞) = 1. Recall that αnp and ζnp are given by (C.1) and (C.2). By carrying
out standard asymptotic analysis, we have the following lemma:

Lemma C.1 Let δ � 1 and |ε′m| ∼ O(1/δ), then the following holds:

vnp(x1) =

√

2

δ

(

cos

(

(p+ 1)πx1
δ

)

+O(δs)

)

, s ≥ 1/2, for x1 ∈ (0, δ),

vnp(x1) ∼ O
(

e−r
√

|ε′m|/δ
)

for x1 6= [0, δ],

where r is the distance of x1 from the interval (0, δ).
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