
KOLMOGOROV’S DISSIPATION NUMBER AND THE NUMBER

OF DEGREES OF FREEDOM FOR THE 3D NAVIER-STOKES

EQUATIONS

ALEXEY CHESKIDOV AND MIMI DAI

Abstract. Kolmogorov’s theory of turbulence predicts that only wavenum-
bers below some critical value, called Kolmogorov’s dissipation number, are

essential to describe the evolution of a three-dimensional fluid flow. A deter-

mining wavenumber, first introduced by Foias and Prodi for the 2D Navier-
Stokes equations, is a mathematical analog of Kolmogorov’s number. The

purpose of this paper is to prove the existence of a time-dependent deter-

mining wavenumber for the 3D Navier-Stokes equations whose time average
is bounded by Kolmogorov’s dissipation wavenumber for all solutions on the

global attractor whose intermittency is not extreme.
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1. Introduction

The Navier-Stokes equations (NSE) on a torus T3 are given by

(1.1)

{
ut + (u · ∇)u− ν∆u+∇p = f
∇ · u = 0,

where u is the velocity, p is the pressure, and f is the external force. We assume
that f has zero mean, and consider zero mean solutions. We also assume that
f ∈ H−1 or f is translationally bounded in L2

loc(R, H−1).
In this paper we investigate the number of degrees of freedom of a three-dimensional

fluid flow governed by (1.1). Kolmogorov’s theory of turbulence [26] predicts that
there is a wavenumber κd above which the viscous forces dominate. This suggests
that the frequencies above κd should not affect the dynamics and the number of
degrees of freedom is of order κ3d. A natural question is whether this can be justified
mathematically.

The notion of determining modes, which allows us to define the degrees of free-
dom mathematically, was introduced by Foias and Prodi in [17] where they showed
that high modes of a solution to the 2D NSE are controlled by low modes asymp-
totically as time goes to infinity. Then the number of these determining modes
was estimated by Foias, Manley, Temam, and Treve [16] and later improved by
Jones and Titi [24]. We refer the readers to [11, 12, 13, 14, 15, 18, 19, 20, 21] and
references therein for more background and related results.

A. Cheskidov was partially supported by the NSF Grant DMS–1517583 and M. Dai was par-
tially supported by the NSF Grant DMS–1815069.
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In this paper we are concerned with 3D flows governed by (1.1), for which the
existence of regular solutions is one of the Millennium open questions. Therefore, we
study weak solutions, whose existence was proved by Leray [27]. In [4], Cheskidov,
Dai, and Kavlie proved the existence of a determining wavenumber Λu(t), defined
for each individual trajectory u(t), whose average is uniformly bounded on the
global attractor. More precisely, it was shown that two solutions u(t) and v(t) on the
global attractor are identical, provided their projections below modes max{Λu, Λv}
coincide. This recovered the results by Constantin, Foias, Manley, and Temam [11]
in the case where ‖∇u(t)‖2L2 is uniformly bounded on the global attractor, which
is known for small forces. Moreover, when the force is large and the attractor is
not a fixed point, but rather a complicated object consisting of points on complete
bounded trajectories that may not be regular, the determining wavenumber Λu
from [4] still enjoys the following pointwise bound

(1.2) Λu(t) .
‖∇u(t)‖2L2

ν2
.

Note that this bound is optimal (from the physical point of view) in the case
of extreme intermittency, i.e., when there is only one eddy at each dyadic scale.
Indeed, taking into account intermittency, Kolmogorov’s dissipation wavenumber
reads

(1.3) κd :=
( ε
ν3

) 1
d+1

, where ε := λd0ν〈‖∇u‖2L2〉 =
λd0ν

T

∫ t+T

t

‖∇u‖2L2 dτ.

Combined with (1.2), this gives 〈Λu〉 . κd when d = 0. Here d ∈ [0, 3] is the
intermittency dimension that measures the average number of eddies at various
scales. Roughly speaking, the number of eddies at the lengthscale l is proportional
to l−d (see [10] for precise mathematical definitions of active volumes, eddies, and
and their relations to intermittency). In this paper we adopt an approach used
in [4, 7, 9] and define the itermittency dimension d through the average level of
saturation of Bernstein’s inequality (see Section 3 for the precise definition).

As experimental and numerical evidence suggests, turbulent flows do not deviate
much from Kolmogorov’s regime where d = 3, i.e., eddies occupy the whole region.
For instance, d ≈ 2.7 was observed in a direct numerical simulation performed
by Kaneda et al. [25] on the Earth Simulator. In [4] it was shown that one can
improve (1.2) for d > 0, but such an improvement was not enough to conclude that
the average determining wavenumber was bounded by κd. For instance, in the case
d = 3, the obtained bound was 〈Λu〉 . κ2+d , which suggested that the definition of
Λu was not optimal in the physically relevant regime. In this paper we complement
the result of [4] by focusing on the region d ∈ [δ, 3], δ > 0, and finding a different
determining wavenumber Λu that enjoys the optimal bound 〈Λu〉 . κd (modulo a
logarithmic correction in the case d = 3).

We define the determining wavenumber in the following way:

Λu(t) := min{λq : (Lλp−q)
δ−1
2 λ−1q ‖up‖L∞ < c0ν, ∀p > q and λ−2q ‖∇u≤q‖L∞ < c0ν, q ∈ N},

where 0 < δ ≤ 3 is a fixed (small) parameter, and c0 is an adimensional constant

that depends only on δ. In fact, c0 → 0 as δ → 0. Here λq = 2q

L , L is the size of
the torus, u≤q =

∑q
p=−1 uq, and uq = ∆qu is the Littlewood-Paley projection of u

(see Section 2). Note that a convention min ∅ = ∞ is adopted in the definition of
Λu(t).
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Now we are ready to state our main result.

Theorem 1.1. Let u(t) and v(t) be complete (ancient) bounded in L2 Leray-Hopf
solutions (i.e., solutions on the global attractor or pullback attractor). Let Λ(t) :=
max{Λu(t), Λv(t)} and Q(t) be such that Λ(t) = λQ(t). If

(1.4) u(t)≤Q(t) = v(t)≤Q(t), ∀t < 0,

then
u(t) = v(t), ∀t ≤ 0.

The dissipation wavenumber Λu enjoys the following bound:

〈Λu〉 − λ0 ≤ Cδ,dκd ≤ Cδ,dκ0G
2
d+1

(
1

νTκ20
+ 1

) 1
d+1

,

for all complete bounded in L2 Leray-Hopf solutions with d ∈ [δ, 3). Here Cδ,d
is an adimensional constant that blows up when δ → 0 or d → 3. The bound
is also written in terms on the adimensional Grashof number defined as G :=
‖f‖H−1/(ν2κ

1/2
0 ) in the autonomous case (see (3.8) for the nonautonomous case).

In Kolmogorov’s regime where d = 3 we also obtain the optimal bound, but with
a logarithmic correction:〈

Λu − λ0
(log(Λu/λ0))

1
4

〉
≤ C̃δκd ≤ C̃δκ0G

1
2

(
1

νTκ20
+ 1

) 1
4

,

for all complete bounded in L2 Leray-Hopf solutions with d = 3. Here C̃δ is an
adimensional constant that depends only on the parameter δ in the definition of Λ.

Again, C̃δ →∞ as δ → 0.

2. Preliminaries

2.1. Notation. We denote by A . B an estimate of the form A ≤ CB with some
absolute constant C, by A ∼ B an estimate of the form C1B ≤ A ≤ C2B with
some absolute constants C1, C2, and by A .r B an estimate of the form A ≤ CrB
with some adimentional constant Cr that depends only on the parameter r. We
write ‖ · ‖p = ‖ · ‖Lp , and (·, ·) stands for the L2-inner product. We will also use 〈·〉
for time averages:

〈g〉(t) :=
1

T

∫ t+T

t

g(τ) dτ,

for some fixed T > 0.

2.2. Littlewood-Paley decomposition. The techniques presented in this paper
rely strongly on the Littlewood-Paley decomposition, which recall here briefly. For
a more detailed description on this theory we refer the readers to the books by
Bahouri, Chemin and Danchin [1] and Grafakos [23].

We denote λq = 2q

L for integers q. A nonnegative radial function χ ∈ C∞0 (R3) is
chosen such that

(2.5) χ(ξ) :=

{
1, for |ξ| ≤ 3

4

0, for |ξ| ≥ 1.

Let
ϕ(ξ) := χ(ξ/2)− χ(ξ)
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and

ϕq(ξ) :=

{
ϕ(2−qξ) for q ≥ 0,

χ(ξ) for q = −1,

so that the sequence of ϕq forms a dyadic partition of unity. Given a tempered dis-
tribution vector field u on T3 = [0, L]3 and q ≥ −1, an integer, the qth Littlewood-
Paley projection of u is given by

uq(x) := ∆qu(x) :=
∑
k∈Z3

û(k)φq(k)ei
2π
L k·x,

where û(k) is the kth Fourier coefficient of u. Note that u−1 = û(0). Then

u =
∞∑

q=−1
uq

in the distributional sense. We define the Hs-norm in the following way:

‖u‖Hs :=

( ∞∑
q=−1

λ2sq ‖uq‖22

)1/2

,

for each u ∈ Hs and s ∈ R. Note that ‖u‖H0 ∼ ‖u‖L2 . To simplify the notation,
we denote

u≤Q :=

Q∑
q=−1

uq, u(P,Q] :=

Q∑
q=P+1

uq, ũq := uq−1 + uq + uq+1.

2.3. Bernstein’s inequality and Bony’s paraproduct. Here we recall useful
properties for the dyadic blocks of the Littlewood-Paley decomposition. The first
one is the following inequality:

Lemma 2.1. (Bernstein’s inequality) Let n be the spacial dimension and r ≥ s ≥ 1.
Then for all tempered distributions u,

(2.6) ‖uq‖r . λ
n( 1
s−

1
r )

q ‖uq‖s.

Secondly, we will use the following version of Bony’s paraproduct formula:

∆q(u · ∇v) =
∑
|q−p|≤2

∆q(u≤p−2 · ∇vp) +
∑
|q−p|≤2

∆q(up · ∇v≤p−2)

+
∑
p≥q−2

∆q(ũp · ∇vp).

2.4. Weak solutions and energy inequality. A weak solution u(t) of (1.1) on
[0,∞) is an L2(T3) valued function in the class u ∈ C([0,∞);L2

w) ∩ L2
loc(0,∞;H1)

that satisfies (1.1) in the sense of distributions. A Leray-Hopf solution u(t) is a
weak solution satisfying the energy inequality

(2.7)
1

2
‖u(t)‖22 ≤

1

2
‖u(t0)‖22 − ν

∫ t

t0

‖∇u(τ)‖22 dτ +

∫ t

t0

(f, u) dτ,

for almost all t0 > 0 and all t > t0. A Leray solution u(t) is a Leray-Hopf solution
satisfying the above energy inequality for t0 = 0 and all t > t0. A complete Leray-
Hopf solution u(t) is an L2(T3) valued function on (−∞,∞), such that u(·−t)|[0,∞)

is a Leray-Hopf solution for all t ∈ R.
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3. Global attractor, pullback attractor, and Kolmogorov’s
wavenumber

In the case of a time-independent force f it can be shown that the energy in-
equality (2.7) implies the existence of an absorbing ball

B := {u ∈ L2(T3) : ‖u‖2 ≤ R}.

Here the radius R is such that

R > νκ
−1/2
0 G,

where κ0 = 2πλ0 = 2π/L and G is the adimensional Grashof number

G :=
‖f‖H−1

ν2κ
1/2
0

.

Note that the absorbing ball B is for all the Leray solutions, i.e., the ones that
satisfy the energy inequality starting from 0. More precisely, for any Leray solution
u(t) there exists t0, depending only on ‖u(0)‖2, such that

u(t) ∈ B ∀t > t0.

However, when we restrict the dynamics to the absorbing ball, we consider Leray-
Hopf solutions to define the evolutionary system and the global attractor. The
Leray-Hopf solutions are weak solutions satisfying the energy inequality starting
from almost all time (but not necessarily 0). Hence, a restriction of a Leray-Hopf
solution to a smaller time interval is also a Leray-Hopf solution. See [8] for a more
detailed discussion.

The existence of the weak global attractor A was proved in [18, 15]. It has the
following structure:

A = {u(0) : u(·) is a complete bounded Leray-Hopf solution to the NSE}.

The attractor A ⊂ B is the L2-weak omega limit of B, and it is the minimal
L2-weakly closed weakly attracting set (see [2, 6]).

In the case of a time-dependent force f = f(t), a relevant object describing the
long-time dynamics is a pullback attractor, whose existence was proved in [8]. In
the nonautonomous case, there exists an absorbing ball for all the Leray solutions,

whose radius R is such as R > νκ
−1/2
0 G, just as in the autonomous case, but the

Grashof number is

(3.8) G =
T

1
2κ

1
2
0 ‖f‖L2

b(T )

ν
3
2 (1− e−νκ2

0T )
1
2

.

Here it is assumed that f is translationally bounded in L2
loc(R, H−1) and

‖f‖2L2
b(T ) := sup

t∈R

1

T

∫ t+T

t

‖f(τ)‖2H−1 dτ.

The pullback attractor is defined as the minimal weakly closed weakly pullback
attracting set for all Leray-Hopf solutions in the absorbing ball. It is the weak
pullback omega limit of B, and it has the following structure (see [8]):

A(t) = {u(t) : u(·) is a complete bounded Leray-Hopf solution to the NSE}.
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Let u(t) be a complete bounded Leray-Hopf solution to the NSE. Then the energy
inequality (2.7) implies

0 ≤ ‖u(t+ T )‖22 ≤ lim sup
τ→t+

‖u(τ)‖22 − 2ν

∫ t+T

t

‖∇u(τ)‖22 dτ + 2

∫ t+T

t

(f, u) dτ

≤ ν2κ−10 G2 − ν
∫ t+T

t

‖∇u(τ)‖22 dτ +
1

ν

∫ t+T

t

‖f‖2H−1 dτ.

Therefore

〈‖∇u‖22〉 :=
1

T

∫ t+T

t

‖∇u(t)‖22 dt ≤
νG2

Tκ0
+ κ0ν

2G2.(3.9)

We can now connect this to Kolmogorov’s dissipation wavenumber defined as

(3.10) κd :=
( ε
ν3

) 1
d+1

, ε := νλd0〈‖∇u‖22〉,

where d is the intermittency dimension and ε is average energy dissipation rate per
unit active volume (i.e., the volume occupied by eddies). In order to define d, first
note that

(3.11) λ30λ
−1
q ‖uq‖22 ≤ λ−1q ‖uq‖2∞ ≤ CBλ

2
q‖uq‖22,

due to Bernstein’s inequality. Here CB is an absolute constant (which depends on
the choice of χ(ξ) in (2.5)). The intermittency dimension d is defined as

(3.12) d := sup

{
s ∈ R :

〈∑
q

λ−1+sq ‖uq‖2∞

〉
≤ C3−s

B λs0

〈∑
q

λ2q‖uq‖22

〉}
,

for u 6≡ 0, and d = 3 for u ≡ 0 on [t, t + T ]. Thanks to (3.11) and the fact that
〈
∑
q λ

2
q‖uq‖22〉 <∞ , we have d ∈ [0, 3] and〈∑

q

λ−1+dq ‖uq‖2∞

〉
= C3−d

B λd0

〈∑
q

λ2q‖uq‖22

〉
.

The intermittency dimension d, defined in terms of a level of saturation of Bern-
sten’s inequality (see [9, 10] for similar definitions), measures the number of eddies
at various scales. The case d = 3 corresponds to Kolmogorov’s regime where at each
scale the eddies occupy the whole region. Note that d = d(u, t) and κd = κd(u, t),
defined for each individual trajectory, are functions of time. We can also define
their global analogs as

D := inf
u∈E,t∈R

d(u, t), Kd := sup
u∈E,t∈R

κd(u, t).

Here E is a family of all complete bounded Leray-Hopf solution to the NSE.
Finally, thanks to the bound (3.9),

κd =

〈
λd0
ν2
‖∇u‖22

〉 1
d+1

≤ (2π)−
d
d+1κ0G

2
d+1

(
1

νTκ20
+ 1

) 1
d+1

.

Also, taking the supremum over all u ∈ E and t ∈ R, we obtain

Kd ≤ κ0G
2

D+1

(
1

νTκ20
+ 1

) 1
D+1

,

provided G ≥ 1.
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4. Proof of the main result

Let u(t) and v(t) be complete bounded in L2 Leray-Hopf solutions. Denote
w := u− v, which satisfies the equation

(4.13) wt + u · ∇w + w · ∇v = −∇p′ + ν∆w

in the sense of distributions. Here p′ stands for the difference of the pressures.
Recall the definition of the determining wavenumber:

Λu(t) = min{λq : (Lλp−q)
σλ−1q ‖up‖L∞ < c0ν, ∀p > q and λ−2q ‖∇u≤q‖L∞ < c0ν, q ∈ N},

where σ = (δ − 1)/2. Let Λ(t) := max{Λu(t), Λv(t)} and Q(t) be such that Λ(t) =
λQ(t). By our assumption, w≤Q(t)(t) ≡ 0. Recall that 0 < δ ≤ 3, i.e., −1/2 < σ ≤ 1.
Let

s = min
{
− 1

2 + δ
4 , 0
}
.

Then straightforward computations give −1− σ < s < σ ≤ 1.
Multiplying (4.13) by λ2sq ∆2

qw, integrating (i.e., using λ2sq ∆2
qw as a test function

in the weak formulation), and adding up for all q ≥ −1 yields

1

2
‖w(t)‖2Hs −

1

2
‖w(t0)‖2Hs + ν

∫ t

t0

‖w‖2H1+s dτ

≤
∫ t

t0

∑
q≥−1

λ2sq

∣∣∣∣∫
T3

∆q(w · ∇v)wq dx

∣∣∣∣ dτ
+

∫ t

t0

∑
q≥−1

λ2sq

∣∣∣∣∫
T3

∆q(u · ∇w)wq dx

∣∣∣∣ dτ,
=:

∫ t

t0

I dτ +

∫ t

t0

J dτ.

(4.14)

We first decompose I using Bony’s paraproduct as mentioned in Subsection 2.3,

I ≤
∑
q≥−1

λ2sq
∑
|q−p|≤2

∣∣∣∣∫
T3

∆q(w≤p−2 · ∇vp)wq dx
∣∣∣∣

+
∑
q≥−1

λ2sq
∑
|q−p|≤2

∣∣∣∣∫
T3

∆q(wp · ∇v≤p−2)wq dx

∣∣∣∣
+
∑
q≥−1

λ2sq
∑
p≥q−2

∣∣∣∣∫
T3

∆q(w̃p · ∇vp)wq dx
∣∣∣∣

=:I1 + I2 + I3.

It follows from Hölder’s inequality that

I1 ≤
∑
q>Q

∑
|q−p|≤2
p>Q+2

λ2sq

∫
T3

|∆q(w≤p−2 · ∇vp)wq| dx

.
∑
q>Q

∑
|q−p|≤2
p>Q+2

λ2sq ‖w(Q,p−2]‖2λp‖vp‖∞‖wq‖2.
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Using the definition of Λ, Young’s inequality and Jensen’s inequality, we obtain

I1 . c0ν
∑
q>Q

∑
|q−p|≤2
p>Q+2

λ2sq Λ
1+σλ1−σp ‖wq‖2

∑
Q<p′≤p−2

‖wp′‖2

. c0ν
∑
q>Q

λ1+sq ‖wq‖2

 ∑
Q<p′≤q

λ1+sp′ ‖wp′‖2λ
−1−s
p′ λs−σq λ1+σQ


. c0ν

∑
q>Q

λ1+sq ‖wq‖2

 ∑
Q<p′≤q

λ1+sp′ ‖wp′‖2(Lλq−p′)
s−σ

 ,

where we used σ ≥ −1 and s < σ. Now using Young’s inequality and Jensen’s
inequality, we conclude

I1 . c0ν
∑
q>Q

λ2+2s
q ‖wq‖22 + c0ν

∑
q>Q

 ∑
Q<p′≤q

λ1+sp′ ‖wp′‖2(Lλq−p′)
s−σ

2

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22 + c0ν

∑
q>Q

∑
Q<p′≤q

λ2+2s
p′ ‖wp′‖22(Lλq−p′)

s−σ

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22 + c0ν

∑
p′>Q

λ2+2s
p′ ‖wp′‖22

∑
q≥p′

(Lλq−p′)
s−σ

. c0ν‖∇1+sw‖22,

where we needed s < σ. Note that we omit adimensional constants that depend on
δ throughout this proof. The precise bound on I1 is

I1 . c0ν‖∇1+sw‖22
(
1 + (1− 2s−σ)−1

)
.

Note that (1− 2s−σ)−1 →∞ as δ → 0+ by definitions of σ and s. Because of this
we will have c0 → 0 as δ → 0+ once we choose c0 at the end of the proof. This
explains why we have to avoid the case of extreme intermittency, which is covered
in the companion paper [4].

Following a similar strategy, we have

I2 ≤
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq

∫
T3

|∆q(wp · ∇v≤p−2)wq| dx

≤
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq ‖wp‖2‖∇v(Q,p−2]‖∞‖wq‖2

+
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq ‖wp‖2‖∇v≤Q‖∞‖wq‖2

≡ I21 + I22,
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where we adopt the convention that (Q, p − 2] is empty if p − 2 ≤ Q. Thus, the
first part of the definition of Λ implies

I21 .
∑
p>Q

∑
|q−p|≤2

λ2sq ‖wp‖2‖wq‖2
∑

Q<p′≤p−2

‖∇vp′‖∞

.
∑
q>Q

λ2sq ‖wq‖22
∑

Q<p′≤q+2

λp′‖vp′‖∞

. c0ν
∑
q>Q

λ2sq ‖wq‖22
∑

Q<p′≤q+2

λ1−σp′ Λ1+σ

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22

∑
Q<p′≤q+2

λ1−σp′ Λ1+σλ−2q

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22

where we need σ ≥ −1. While the second part of the definition of Λ gives

I22 .
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq ‖wp‖2‖wq‖2‖∇v≤Q‖∞

. c0ν
∑
q>Q

Λ2
vλ

2s
q ‖wq‖22

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22.

We will now estimate I3. It follows from integration by parts that

I3 =
∑
q≥−1

λ2sq
∑
|q−p|≤2

∣∣∣∣∫
T3

∆q(wp · ∇v≤p−2)wq dx

∣∣∣∣
≤
∑
q>Q

∑
p≥q−2

λ2sq

∫
T3

|∆q(w̃p ⊗ vp)∇wq| dx

≤
∑
p>Q

∑
Q<q≤p+2

λ1+2s
q ‖w̃p‖2‖wq‖2‖vp‖∞.

By Hölder’s inequality and definition of Λ we have

I3 .
∑
p>Q

‖w̃p‖2‖vp‖∞
∑

Q<q≤p+2

λ1+2s
q ‖wq‖2

. c0ν
∑
p>Q

Λ1+σλ−σp ‖w̃p‖2
∑

Q<q≤p+2

λ1+2s
q ‖wq‖2

. c0ν
∑
p>Q

λ1+sp ‖w̃p‖2
∑

Q<q≤p+2

λ1+sq ‖wq‖2λ1+σQ λ−1−s−σp λsq
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Now we use Young’s and Jensen’s inequalities to infer

I3 . c0ν
∑
p>Q

λ1+sp ‖w̃p‖2
∑

Q<q≤p+2

λ1+sq ‖wq‖2(Lλq−p)
1+s+σ

. c0ν
∑
p>Q

λ2+2s
p ‖wp‖22 + c0ν

∑
p>Q

 ∑
Q<q≤p+2

λ1+sq ‖wq‖2(Lλq−p)
1+s+σ

2

. c0ν
∑
p>Q

λ2+2s
p ‖wp‖22,

where we used σ ≥ −1 and s > −1− σ.
Therefore, we have for σ ≥ −1 and −1− σ < s < σ,

(4.15) I . c0ν‖∇1+sw‖22.

Now applying Bony’s paraproduct formula to J yields

J =

∫ t

t0

∑
q≥−1

λ2sq

∣∣∣∣∫
T3

∆q(w · ∇v)wq dx

∣∣∣∣ dτ
≤
∑
q≥−1

∑
|q−p|≤2

λ2sq

∣∣∣∣∫
T3

∆q(u≤p−2 · ∇wp)wq dx
∣∣∣∣

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∣∣∣∣∫
T3

∆q(up · ∇w≤p−2)wq dx

∣∣∣∣
+
∑
q≥−1

∑
p≥q−2

∑
|p−p′|≤1

λ2sq

∣∣∣∣∫
T3

∆q(up · ∇wp′)wq dx
∣∣∣∣

=:J1 + J2 + J3.

We further decompose J1 by using a commutator form

J1 ≤
∑
q≥−1

∑
|q−p|≤2

λ2sq

∣∣∣∣∫
R3

[∆q, u≤p−2 · ∇]wpwq dx

∣∣∣∣
+
∑
q≥−1

λ2sq

∣∣∣∣∫
R3

u≤q−2 · ∇wqwq dx
∣∣∣∣

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∣∣∣∣∫
R3

(u≤p−2 − u≤q−2) · ∇∆qwpwq dx

∣∣∣∣
=J11 + J12 + J13.

To obtain the second term we used
∑
|p−q|≤2 ∆qwp = wq. In fact, we have J12 = 0

since div u≤q−2 = 0. In the first term, the commutator is defined as

[∆q, u≤p−2 · ∇]wp := ∆q(u≤p−2 · ∇wp)− u≤p−2 · ∇∆qwp.

It is easy to see (see [5] for more details) that for any 1 ≤ r ≤ ∞,

‖[∆q, u≤p−2 · ∇]wp‖r . ‖∇u≤p−2‖∞‖wp‖r.
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Then J11 is estimated as

J11 ≤
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq

∫
T3

|[∆q, u≤p−2 · ∇]wpwq| dx

≤
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq ‖∇u(Q,p−2]‖∞‖wp‖2‖wq‖2

+
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq ‖∇u≤Q‖∞‖wp‖2‖wq‖2

≡ J111 + J112.

Here

J111 .
∑
q>Q

λ2sq ‖wq‖22
∑

Q<p′≤q

λp′‖up′‖∞

. c0ν
∑
q>Q

λ2sq ‖wq‖22
∑

Q<p′≤q

Λ1+σλ1−σp′

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22

∑
Q<p′≤q

Λ1+σλ1−σp′ λ−2q

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22,

where we used σ ≥ −1. As for the second term, using the fact that ‖∇u≤q‖∞ ≤
c0νΛ

2 for q ≤ Q, we obtain

J112 . c0νΛ
2
∑
q>Q

λ2sq ‖wq‖22 . c0ν
∑
q>Q

λ2+2s
q ‖wq‖22.

The term J13 is estimated as

J13 ≤
∑
q>Q

∑
|q−p|≤2
p>Q

λ2sq

∫
R3

|(u≤p−2 − u≤q−2) · ∇∆qwpwq| dx

.
∑
q>Q

λ1+2s
q ‖u(q−4,q]‖∞‖wq‖22

.
∑
q>Q

λ1+2s
q ‖u(q−4,Q]‖∞‖wq‖22 +

∑
q>Q

∑
q−4<p′≤q
p′>Q

λ1+2s
q ‖up′‖∞‖wq‖22

≡ J131 + J132.

As before, we adopt the convention that (q − 4, Q] is empty if q − 4 ≥ Q. We have

J131 . c0νΛ
∑
q>Q

λ1+2s
q ‖wq‖22 . c0ν

∑
q>Q

λ2+2s
q ‖wq‖22,
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and

J132 =
∑
q>Q

∑
q−4≤p′≤q
p′>Q

λ1+2s
q ‖up′‖∞‖wq‖22

. c0ν
∑
q>Q

∑
q−4≤p′≤q
p′>Q

λ1+2s
q Λ1+σλ−σp′ ‖wq‖

2
2

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22(LλQ−q)

1+σ

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22,

where we used σ ≥ −1.
Now we continue with J2:

J2 =
∑
q>Q

∑
|q−p|≤2
p>Q+2

λ2sq

∣∣∣∣∫
T3

∆q(up · ∇w≤p−2)wq dx

∣∣∣∣
≤
∑
q>Q

∑
|q−p|≤2
p>Q+2

λ2sq ‖up‖∞‖∇w(Q,p−2]‖2‖wq‖2.

Using definition of Λ, Young’s, and Jensen’s inequalities we obtain

J2 . c0ν
∑
q>Q

∑
|q−p|≤2
p>Q+2

λ2sq Λ
1+σλ−σp ‖wq‖2‖∇w(Q,p−2]‖2

. c0ν
∑
q>Q

Λ1+σλ2s−σq ‖wq‖2‖∇w(Q,q]‖2

. c0ν
∑
q>Q

Λ1+σλ2s−σq ‖wq‖2
∑

Q<p′≤q

λp′‖wp′‖2

. c0ν
∑
q>Q

λ1+sq ‖wq‖2
∑

Q<p′≤q

λ1+sp′ ‖wp′‖2λ
s−σ−1
q λ−sp′ Λ

1+σ

. c0ν
∑
q>Q

λ1+sq ‖wq‖2

 ∑
Q<p′≤q

λ1+sp′ ‖wp′‖2(Lλq−p′)
s−σ−1


. c0ν

∑
q>Q

λ2+2s
q ‖wq‖22 + c0ν

∑
q>Q

 ∑
Q<p′≤q

λ1+sp′ ‖wp′‖2(Lλq−p′)
s−σ−1

2

. c0ν
∑
q>Q

λ2+2s
q ‖wq‖22,

where we used s < σ + 1 and σ ≥ −1.
Notice that the last term J3 can be estimated in the same way as I3. Therefore

we have for σ ≥ −1 and −1− σ < s < 1 + σ,

(4.16) J . c0ν‖∇1+sw‖22.
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Combining (4.15) and (4.16), we conclude that for any δ > 0, there exists an
adimensional constant C > 0 (that depends only on δ) such that

I + J ≤ Cc0ν‖∇1+sw‖22,
where s = min

{
− 1

2 + δ
4 , 0
}
≤ 0. Choosing c0 := 1/(2C) we infer from (4.14) that

for all t0 ≤ t,

‖w(t)‖2Hs ≤‖w(t0)‖2Hs − ν
∫ t

t0

‖∇1+sw‖22 dτ

≤‖w(t0)‖2Hs − νκ2+2s
0

∫ t

t0

‖w‖22 dτ,

with κ0 = 2π
L . Thus

‖w(t)‖2Hs ≤ ‖w(t0)‖2Hse−νκ
2+2s
0 (t−t0), t0 ≤ t.

Recall that s ≤ 0 and hence ‖w(t)‖Hs . λs0‖w(t)‖2, which is bounded on R as
w(t) is the difference of two complete bounded trajectories. Taking the limit as
t0 → −∞ completes the proof.

�

5. Average determining wavenumber and Kolmogorov’s dissipation
wavenumber

The goal of this section is to derive a uniform upper bound on the average
determining wavenumber in the absorbing ball. First, recall that Λu(t) is defined
as

Λu(t) := min{λq : (Lλp−q)
σλ−1q ‖up‖∞ < c0ν, ∀p > q and λ−2q ‖∇u≤q‖∞ < c0ν, q ∈ N},

where σ = (δ − 1)/2 and c0 is an adimensional constant that depends only on δ.
Recall that σ ∈ (−1/2, 1]. We will drop the subscript u in Λu and define Q so that
λQ = Λ.

Lemma 5.1. If λ0 ≤ Λ <∞, then

(5.17) (c0ν)2Λ4 . ‖∇u≤Q−1‖2∞ + sup
p≥Q

(Lλp−Q)2σΛ2‖up‖2∞.

If Λ =∞, then
sup
q
λσq ‖uq‖∞ =∞.

Proof. First, consider the case Λ =∞. Then for every q ∈ N either

(5.18) sup
p>q

(Lλp−q)
σλ−1q ‖up‖∞ ≥ c0ν,

or

(5.19) λ−2q ‖∇u≤q‖∞ ≥ c0ν.
If (5.18) is satisfied for infinitely many q ∈ N, then

lim sup
q→∞

sup
p>q

λ−σ−1q (Lλp)
σ‖up‖∞ ≥ c0ν.

Since σ > −1, this immediately implies that supq λ
σ
q ‖uq‖∞ =∞.

If (5.19) is satisfied for infinitely many q ∈ N, then

lim sup
q→∞

λ−2q ‖∇u≤q‖∞ ≥ c0ν.
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On the other hand, since σ ≤ 1,

λ−2q ‖∇u≤q‖∞ . λ−2q
∑
p≤q

λp‖up‖∞

= λ−σ−1q

∑
p≤q

(Lλq−p)
σ−1λσp‖up‖∞

≤ λ−σ−1q sup
p≤q

λσp‖up‖∞.

Hence, since −σ − 1 < 0, supq λ
σ
q ‖uq‖∞ =∞.

Now if λ0 < Λ(t) < ∞, then both conditions in the definition of Λ are satisfied
for q = Q, but one of the conditions is not satisfied for q = Q− 1, i.e.,

(5.20) 2(p−Q+1)σλ−1Q−1‖up‖∞ ≥ c0ν, for some p ≥ Q,

or

(5.21) ‖∇u≤Q−1‖∞ ≥ c0νλ2Q−1 = 1
4c0νΛ

2.

Thus we have

(c0ν)2Λ4 ≤ 16(λp−QL)2σΛ2‖up‖2∞, for some p ≥ Q,

or

(c0ν)2Λ4 ≤ 16‖∇u≤Q−1‖2∞.

Hence, adding the right hand sides, we obtain (5.17). �

We will now consider the average determining wavenumber

〈Λ〉 :=
1

T

∫ t+T

t

Λ(τ) dτ,

and compare it to Kolmogorov’s dissipation wavenumber defined as

(5.22) κd :=
( ε
ν3

) 1
d+1

, ε := νλd0〈‖∇u‖22〉 =
νλd0
T

∫ t+T

t

‖∇u(τ)‖22 dτ,

where d ∈ [0, 3] is the intermittency dimension and ε is average energy dissipation
rate per unit active volume (i.e., the volume occupied by eddies). Recall from the
definition of intermittency (5.23) that

(5.23) 〈
∑
q≤Q

λ−1+dq ‖uq‖2∞〉 . λd0〈
∑
q≤Q

λ2q‖uq‖22〉.

The case d = 3 corresponds to Kolmogorov’s regime where at each scale the eddies
occupy the whole region, and d = 0 is the case of extreme intermittency.
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Consider now a solution u for which d ≥ δ, i.e., d ≥ 2σ + 1. Then whenever
Λu(t) is finite, we can use (5.17) in Lemma 5.1 and Jensen’s inequality to get

(Λ− λ0)d+1 .
Λd−3

(c0ν)2

(
‖∇u≤Q−1‖2∞ + sup

q≥Q
(Lλq−Q)2σΛ2‖uq‖2∞

)

.
1

ν2

 ∑
q≤Q−1

λ(d−1)/2q ‖uq‖∞(LλQ−q)
(d−3)/2

2

+
Λd−1

ν2
sup
q≥Q

(Lλq−Q)2σ‖uq‖2∞

.d
1

ν2

∑
q≤Q−1

λd−1q ‖uq‖2∞ +
1

ν2
sup
q≥Q

(Lλq−Q)2σ−d+1λd−1q ‖uq‖2∞

.d
1

ν2

∑
q

λd−1q ‖uq‖2∞.

If Λ =∞, this inequality is also true. Indeed, in this case Lemma 5.1 implies

∑
q

λd−1q ‖uq‖2∞ ≥
∑
q

λ2σq ‖uq‖2∞ =∞.

Then thanks to Jensen’s inequality,

〈Λ〉 − λ0 . 〈(Λ− λ0)d+1〉
1
d+1

.d

〈
1

ν2

∑
q

λd−1q ‖uq‖2∞

〉 1
d+1

.

Now using (5.23) we conclude that

〈Λ〉 − λ0 .d

〈
1

ν2

∑
q≤Q

λd−1q ‖uq‖2∞

〉 1
d+1

.

〈
λd0
ν2

∑
q≤Q

λ2q‖uq‖22

〉 1
d+1

.

〈
νλd0
ν3
‖∇u‖22

〉 1
d+1

= κd
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Consider now Kolmogorov’s regime where d = 3. Then a similar computation
yields〈

Λ− λ0
(log(Λ/λ0))

1
4

〉
.

〈
(Λ− λ0)4

Q

〉 1
4

.

〈
Q

 1

c0νQ

∑
q≤Q

‖∇uq‖∞

2

+ sup
p≥Q

(Lλp−Q)2σΛ2‖up‖2∞

〉 1
4

.

〈
1

ν2

∑
q≤Q

λ2q‖uq‖2∞ +
1

ν2
sup
q≥Q

(Lλq−Q)2σ−2λ2q‖uq‖2∞

〉 1
4

.

〈
λ30
ν2

∑
q

λ2q‖uq‖22

〉 1
4

. κd.

Acknowledgments

The authors thank the anonymous referee for careful reading the manuscript and
constructive comments.

References

[1] H. Bahouri, J. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differen-
tial equations. Grundlehrender Mathematischen Wissenschaften, 343. Springer, Heidelberg,

2011.

[2] A. Cheskidov. Global attractors of evolutionary systems. Journal of Dynamics and Differen-
tial Equations, 21: 249–268, 2009.

[3] A. Cheskidov, P. Constantin, S. Friedlander and R. Shvydkoy. Energy conservation and

Onsager’s conjecture for the Euler equations. Nonlinearity, 21: 1233–1252, 2008.
[4] A. Cheskidov, M. Dai, and L. Kavlie. Determining modes for the 3D Navier-Stokes equa-

tions. arXiv:1507.05908, 2015.

[5] A. Cheskidov and M. Dai. Determining modes for the surface Quasi-Geostrophic equation.
arXiv:1507.01075, 2015.

[6] A. Cheskidov and C. Foias. On global attractors of the 3D Navier-Stokes equations. J.

Differential Equations, Vol. 231, (2): 714–754, 2006.
[7] Al. Cheskidov and S. Friedlander. The vanishing viscosity limit for a dyadic model. Phys.

D, 238(8):783–787, 2009.
[8] A. Cheskidov and L. Kavlie. Pullback attractors for generalized evolutionary systems. Dis-

crete & Continuous Dynamical Systems - B, Vol. 20: 749–779, 2015.

[9] A. Cheskidov and R. Shvydkoy. A unified approach to regularity problems for the 3D Navier-
Stokes and Euler equations: the use of Kolmogorov’s dissipation range. J. Math. Fluid

Mech., 16:263–273, 2014.
[10] A. Cheskidov and R. Shvydkoy. Euler Equations and Turbulence: Analytical Approach to

Intermittency. SIAM J. Math. Anal., 46(1), 353–374, 2014.
[11] P. Constantin, C. Foias, O. P. Manley, and R. Temam. Determining modes and fractal

dimension of turbulent flows. J. Fluid Mech., 150:427–440, 1985.
[12] P. Constantin, C. Foias, and R. Temam. On the dimension of the attractors in two-

dimensional turbulence. Physica D, 30, 284–296, 1988.
[13] C. Foias, M. Jolly, R. Kravchenko and E. Titi. A determining form for the 2D Navier-Stokes

equations – the Fourier modes case. J. Math. Phys., 53(11), 115623, 30 pp, 2012.
[14] C. Foias, M. Jolly, R. Kravchenko and E. Titi. A unified approach to determining forms for

the 2D Navier-Stokes equations – the general interpolants case. Russ. Math. Surv. 69, 359,
2014.



DETERMINING WAVENUMBER FOR 3D NSE 17

[15] C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes equations and turbulence.

Vol. 83 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,

Cambridge, 2001.
[16] C. Foias, O. P. Manley, R Temam, and Y. M. Tréve. Asymptotic analysis of the Navier-
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