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Abstract: Dark matter direct detection experiments have poor sensitivity to a galactic

population of dark matter with mass below the GeV scale. However, such dark matter can

be produced copiously in supernovae. Since this thermally-produced population is much

hotter than the galactic dark matter, it can be observed with direct detection experiments.

In this paper, we focus on a dark sector with fermion dark matter and a heavy dark

photon as a specific example. We first extend existing supernova cooling constraints on

this model to the regime of strong coupling where the dark matter becomes diffusively

trapped in the supernova. Then, using the fact that even outside these cooling constraints

the diffuse galactic flux of these dark sector particles can still be large, we show that

this flux is detectable in direct detection experiments such as current and next-generation

liquid xenon detectors. As a result, due to supernova production, light dark matter has

the potential to be discovered over many orders of magnitude of mass and coupling.
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1 Introduction

The particle nature of dark matter (DM) remains one of the largest outstanding puzzles

in physics. Despite the overwhelming evidence for the existence of dark matter from its

gravitational imprints on cosmological and astrophysical scales, there have as of yet been

no observations of any non-gravitational interactions [1]. The fact that our current mea-

surements leave an enormous range of possibilities for its mass and interactions with the

Standard Model has motivated a very rich experimental program exploring a wide range

of dark matter models.

A large ongoing experimental effort is searching for dark matter candidates with masses

in the GeV−TeV range, largely motivated by the WIMP miracle (see e.g. [2]). These ex-

periments have achieved incredible sensitivity to dark matter by searching for very small

energy depositions from dark matter scattering with nuclei in extremely clean environ-

ments. Despite their great progress, such experiments quickly lose sensitivity to lighter

dark matter candidates because the kinetic energy of such candidates is too small to lead

to observable signatures in the detectors. This is true under the assumption that we can

only detect dark matter particles which are gravitationally bound to our galaxy, which

implies a maximum velocity for the dark matter flux.

The existence of astrophysical sources where dark matter could be produced with larger

velocities and at a non-negligible flux allows one to significantly extend the reach of these

experiments to models of sub-GeV dark matter.1 Core-collapse supernovae (SN) can reach

core temperatures in excess of 30 MeV for O(10) seconds, allowing them to produce vast

thermal fluxes of particles with masses . O(100) MeV at relativistic speeds. This makes

them an ideal astrophysical source for sub-GeV dark matter. Supernovae have already been

used extensively to constrain a plethora of models of new physics. In almost all cases, the

criterion applied in order to place a bound is the so-called cooling criterion, which states

that if any new particle were able to transport energy out of the protoneutron star formed

by the SN more quickly than the neutrinos, the cooling timescale of the core would be less

than the ten-second timescale observed in SN1987a. This is equivalent to the statement

that any new particle that transports greater than 3 × 1052 erg/s through the radius at

which the neutrinos are no longer diffusively trapped is incompatible with observations [7].

There are two distinct regimes relevant for these cooling bounds. At lower couplings

one considers bulk emission from the entire protoneutron star volume, which results in

a lower bound on the couplings below which the luminosity is less than 3 × 1052 erg/s

due to insufficient production of the new particles. There is a separate regime at large

couplings, in which the coupling is large enough that the new particles are diffusively

trapped inside the core and the emission effectively occurs from a radius at which the

densities and temperatures are low enough to allow the new particles to escape freely. This

is the regime in which the upper bound on the couplings constrained by cooling can be

derived. The trapped regime is reasonably well-understood analytically for particles that

are singly emitted or absorbed (e.g., axions and dark photons). However, for particles that

1Another recent idea has been to use stars and cosmic-rays to accelerate a fraction of the galactic DM

to higher energies, also enhancing the sensitivity to some models of dark matter [3–6].
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can only be pair-produced, a detailed understanding of different processes (e.g. production

versus scattering) is required, making analytic estimates more challenging. For examples

of existing cooling constraints on pair-produced particles, see e.g. Refs. [8–16].

2 Summary

In this paper, we move beyond these cooling arguments by considering the direct detection

of a hot population of supernova-produced dark matter. Even in parameter space outside

the cooling bound, a supernova can still produce a vast flux of light dark matter particles.

This flux is also hot (semirelativistic), which allows for the possibility of its detection in

current and next generation WIMP experiments. Using a Monte Carlo Boltzmann particle

transport simulation, we are able to compute the DM flux in the trapped regime, which

allows us to estimate the reach of direct detection experiments that were originally expected

to only have sensitivity to dark matter with masses above ∼ GeV. Furthermore, our results

improve upon and extend previous cooling constraints in the trapped regime which relied

on a number of approximations in order to produce an analytic estimate of the flux.

For concreteness we focus on a simple model of dark matter, in which it is a Dirac

fermion which interacts with the SM via the four-fermion operator

eεgd
Λ2

χ̄γµχJ
µ
em (2.1)

where χ is the DM field and Jµem is the electromagnetic current of the SM. Such an in-

teraction can be generated if, for example, DM is charged under a dark gauge boson with

mass mA′ = Λ and DM-DM coupling gd that kinetically mixes with the SM with mixing

parameter ε.2 While this model is a good first test case, it should be noted that the main

point of this paper (that SN can produce a flux of light dark matter that is observable in

direct detection experiments) also applies to a much wider variety of models. We leave

those for future work.

The high temperatures reached in core-collapse SN allow them to produce large abun-

dances of the sub-GeV dark sector fermions considered in this paper. In the regions of

parameter space we are interested in, these fermions have a sufficiently strong coupling

to the Standard Model that they become diffusively trapped near the protoneutron star

that forms from the SN core. The diffusive trapping is primarily due to scatterings off of

the free protons generated by the dissociation of nuclei in the SN shock. These scattering

interactions are inefficient at changing the dark fermion’s energy because of the large mass

ratio between the DM and the nuclei. The dark fermions also scatter off of electrons and

positrons, allowing thermal exchange with the SM bath. At a certain radius (which we call

the electron sphere or energy sphere) the density of electrons and positrons drops to the

2 If the new particle accounts for all of dark matter, there are stringent CMB bounds from DM late

annihilation that place strong constraints on this model [17]. Those can be evaded by considering either

asymmetric DM or by introducing a small mass splitting, making it a pseudo-Dirac fermion (see e.g.

[18, 19]). Both of those scenarios would not affect any of our conclusions (as long as the mass splitting is

small compared to the temperature of the SN) and so for simplicity, we choose to focus on the simple Dirac

fermion model in this paper.
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point where a dark fermion no longer remains in thermal contact with the SM, see Figure 1.

Additionally, there is a streaming sphere at which the density of protons drops low enough

that dark fermions are no longer diffusively trapped and begin to free-stream out of the

star. Any given dark fermion produced in the SN will therefore diffuse through a proton-

rich overburden until it either reaches the streaming sphere and escapes or encounters an

antiparticle and annihilates.

The dark fermions that do eventually escape are produced with a distribution of semi-

relativistic velocities. This results in a time-spreading effect during their propagation to

Earth. The difference in arrival time of the high-momentum and low-momentum ends of

the spectrum is of order the dark fermion travel time between Earth and the SN, hence the

dark fermions produced by a single SN arrive on Earth over a timescale of 105 years for

an average galactic SN. This is in direct contrast to the neutrinos, which are all produced

highly relativistically and therefore arrive as a single pulse over a timescale of ten seconds.

Given the typical rates and distances of galactic supernovae, in addition to the inherent

signal spread, the dark fermion fluxes from various SN should overlap in time, producing a

diffuse galactic SN flux of dark fermions. This signal is reminiscent of the diffuse flux of SN

neutrinos, with the distinction that diffuse neutrinos would arise from the sum of a much

greater number of extragalactic sources each of short duration, since the time between

galactic SN is much larger than the duration of the neutrino flux.

If a diffuse dark matter SN flux is continuously passing through Earth, we must con-

sider ways to detect it with Earth-based experiments. We find that the diffuse flux of DM

is detectable in existing and next-generation liquid xenon (LXe) WIMP detectors. Inter-

estingly, though the idea is similar to the direct detection of the diffuse SN neutrino flux,

it is not the large neutrino detectors which are best to search for this flux but rather the

WIMP detectors due to their low energy thresholds. Though the WIMP detectors were

designed to hunt for dark matter on the GeV scale, we show that they are sensitive to

recoils by sub-GeV dark sector fermions over a wide range of masses and couplings above

even the newly-computed trapped regime cooling bound. As this idea probes extremely

weak couplings, it is complementary to most of the experimental proposals searching for

sub-GeV dark matter through direct detection or in accelerators (see [20, 21] and references

therein for details of some of the other proposals for detecting sub-GeV DM).

Existing LXe experiments such as Xenon 1T [22] are already sensitive to the diffuse

galactic SN flux of dark sector fermions, and future experiments such as Xenon nT [23],

PandaX-4T [24], LUX-Zeplin [25] and, on a longer time scale, DARWIN [26] will cover an

even larger region of parameter space.

In Sections 3 and 4, we describe an analytic treatment of the required computation

and explain the details of the Monte Carlo Boltzmann transport simulation. We discuss

our computation of new cooling bounds in Sec. 5 and direct detection by LXe detectors in

Sec. 6. Our results are presented in Section 7.
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3 Analytic approximation

While the final results used in this paper were computed using a numerical Monte Carlo

simulation of particle transport within the supernova and cooling protoneutron star, we

first provide a simple physical picture of the expected behavior of the DM flux in the

diffusive regime. We then apply the intuitive description to demonstrate how to make

rough analytical estimates of the spectrum of the SN-produced dark fermion flux.

Our basic premise is to generalize the idea of a “neutrino sphere” to the case of dark

fermions. The term “neutrino sphere” is typically used to describe the radius at which the

density of nucleons has dropped such that the neutrinos are no longer diffusively trapped.

It is common to approximate the SN neutrino flux as simply the emission of a blackbody

sphere with radius and temperature given at the neutrino sphere.

While neutrino decoupling is often assumed to occur at a single radius, this is not

a very good approximation for what happens inside a supernovae, specially for 2nd and

3rd generation neutrinos. The number-changing interactions for those neutrinos will freeze

out at a different radius than do their scattering interactions with nucleons. Because

neutrino interaction cross-sections have a sharp energy dependence, it turns out that the

number-changing and energy-changing neutrino interactions freeze out at roughly the same

radius [27], but significantly earlier than when they can start free-streaming. This allows

their flux to be estimated with reasonable accuracy with a simple combination of a black-

body approximation plus a transmission calculation as described in Ref. [27].

In the case of the dark fermions, the interactions that set the overall number density,

the energy spectrum, and the free-streaming radius are all different, so the single sphere

approximation is not valid. Instead, we can break the protoneutron star into three radii

we have termed characteristic spheres at which different interactions freeze out and cease

to affect the dark fermion flux. They are as follows:

1. Annihilation sphere (rN): This is the radius at which χχ̄ → e+e− freezes out,

or, in other words, the DM density has dropped sufficiently that the dark fermions

are no longer annihilating with their antiparticles. There are effectively no number-

changing reactions outside this sphere, hence it is this radius that sets the number

flux of escaping DM.

2. Electron sphere/energy sphere (rE): This is the radius at which χe → χe

freezes out. Beyond this radius, scattering events of dark fermions with electrons and

positrons are no longer sufficient to keep the DM in thermal contact with the SM

bath. When rE > rN , this sets the temperature of the escaping DM flux.

3. Streaming sphere (rS): This is the radius at which χp→ χp freezes out. The pro-

ton density drops to a point that the DM is no longer diffusively trapped and the DM

free-streams out of the star. Note that because the protons are significantly heavier

than the DM, they cannot efficiently transfer energy to the DM, hence scattering

interactions with protons do not change the energy of the DM appreciably.
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Figure 1. The characteristic spheres of the protoneutron star. Outside the annihilation sphere,

number-changing processes for the DM (pair production and bremsstrahlung) freeze out, setting

the number flux. Outside the energy sphere, the DM thermally decouples and its spectrum is set.

Outside the streaming sphere, the DM is no longer diffusively trapped by proton scattering and

free-streams out of the star.

In the parameter space of interest, the streaming sphere always lies well outside of the

annihilation and electron spheres, hence the number flux and energy distribution are set

while the DM is still diffusing. We also find that the electron sphere is always outside of the

number sphere (rN < rE). As we have already discussed, even though the DM continues

to scatter off of protons once outside of the electron sphere, the large discrepancy in mass

between protons and the dark fermions means that the energy of the dark fermions is not

largely affected during these scatterings. As a result, the energy spectrum of the DM flux

is set by the temperature at rE . Due to this, we will use the terms electron sphere and

energy sphere interchangeably. The characteristic spheres are depicted in Fig. 1.

We can analytically compute these characteristic spheres by finding the radius at which

the optical depth associated with a particular interaction becomes O(1) [27]. The opti-

cal depth for a given process at some radius r0 is given by
∫∞
r0
λ−1(r) dr with λ(r) the

interaction length of the process as a function of radius. The interaction lengths for χχ̄

annihilation, χe± scattering, and χp scattering are as follows:

λχχ(r) = (nχσχχ→ee)
−1 (3.1)

λχe±(r) = 〈vχ〉(ne±σχp→χpv)−1 (3.2)

λχp(r) = (npσχp→χp)
−1 (3.3)

with nX the number density for a species X, σY the cross-section for a process Y , and T

the temperature of the SN at the given radius. The explicit forms of the cross-sections are
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provided in Appendix B. Note that there is an additional factor of the averaged velocity

〈vχ〉 in the mean free path for interactions with electrons. This comes from the fact that

the velocity factor in the cross-section definition is dominated by the relativistic electrons

for this reaction, but the mean free path of the DM particle depends only on its own

velocity. For the other reactions the velocity factors cancel out since the velocity term in

the cross-section is dominated by the DM velocity.3

Because the mean free-path for scattering with protons is much shorter than that of

the other interactions, there will be many scatterings with protons in between scatterings

with electrons or annihilations. This must be taken into account by using an effective

optical depth for the scattering with electrons and annihilations as discussed in Ref. [27].

The characteristic radii rN , rE , and rS are computed using the following criteria:∫ ∞
rN

√
λ−1
χχ(r)[λ−1

χp (r) + λ−1
χχ(r)] dr = 2

3 (3.4)∫ ∞
rE

√
(λ−1
χe−(r) + λ−1

χe+
(r))[λ−1

χp (r) + λ−1
χe−(r) + λ−1

χe+
(r)] dr = 2

3 (3.5)∫ ∞
rS

λ−1
χp (r) dr = 2

3 (3.6)

Having computed these radii, one can use a similar argument to that of the neutrino

sphere to make a simple estimate of the outgoing DM spectrum. The logic behind the

following methodology is simply that, by definition, rN sets the total number of dark

fermions that are produced (since number-changing reactions are insignificant beyond it)

and rE sets the energy spectrum (since the DM is thermally decoupled beyond it). Under

the assumption that the dark matter flux has reached a temporary steady-state so the DM

density profile is not changing in time, the flux that escapes at infinity will be set solely

by the total number flux produced and the temperature at the energy sphere.

The analytic estimate proceeds as follows:

1. Treat the protoneutron star as a blackbody of radius rN with a diffusive envelope.

The number flux at the blackbody surface is given by

ΦrN = gχ

∫
d3k

(2π)2

1

eEk/T + 1

k cos θ

Ek
Θ(cos θ) =

1

2π2

∫
dE

E2 −m2
χ

eE/T + 1
, (3.7)

where gχ = 4 is the number of degrees of freedom in DM. To obtain an energy flux

one can just multiply the integrand by the DM energy.

2. Multiply this total flux by a normalized Fermi-Dirac distribution fFD(TrE ) for the

temperature at the energy sphere:

∂ΦrE

∂E
= ΦrN fFD(TrE ). (3.8)

3 There should also be a factor to account for the inefficiency in the energy transfer between the light

electrons and the much heavier dark matter. However there is no closed form for this factor in the mildly

relativistic regime in which we are interested, and not including this factor makes the decoupling happen

at larger radii (smaller temperature) which means that not including this factor results in a conservative

estimate for the detection sensitivity.
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3. Even though the number changing reactions are frozen out at r > rN , some particles

emitted from that radius can bounce back and return to the region r < rN as they

are trying to diffuse out of the streaming sphere. Therefore one must include a

transmission factor to account for the losses due to this effect (see Ref. [27] for

details):

∂Φχ

∂E
=
∂ΦrE

∂E

(
1 +

3

4
τrN

)−1

, (3.9)

where τrN is given by

τrN =

∫ ∞
rN

dr
(rN
r

)2
np(r)

∫
d cos θ(1− cos θ)

dσχp
d cos θ

(3.10)

This approach involves a number of simplifying approximations, such as the notion of

a sharp radial freeze-out for different processes, but despite its limitations it provides a

simple physical picture of how the various interactions affect the DM flux. Furthermore,

it serves as a cross check on the results of the full Monte Carlo simulation. We used it

as such and found that the analytic estimates agreed with simulation results to within an

order of magnitude. To provide a point of comparison, we include at the end of Sec. 4.3

a comparison of the DM profile generated by our analytic estimate to the output of the

Monte Carlo transport simulation.

4 Flux computations from simulation

While the methodology outlined in the previous section provides a convenient way to

understand the physics of the trapped regime, it becomes less accurate as the region over

which the decoupling of a certain process occurs becomes larger (i.e. the decoupling radii

become smeared into decoupling regions). To produce more robust estimates of the DM

flux, one must perform a full Boltzmann particle transport simulation. To calculate the

transport of dark fermions we use a Monte Carlo (MC) method that can be broken into

four main steps:

1. Initial Conditions: To describe the underlying matter distribution of a proto-

neutron star we refer to detailed multi-physics dynamical simulations of core-collapse

supernovae. From these we define fiducial analytic profiles that capture the temper-

ature, density, and electron fraction structure of the cooling protoneutron star.

2. MC flux computation: An iterative MC simulation is used to determine the steady-

state DM distribution within the star. The resulting DM profile is used to determine

the outgoing number flux of dark fermions.

3. Energy spectrum: The energy distribution is set in the same manner as the analytic

treatment described in the previous section. The energy sphere is computed and used

to set a temperature for the outgoing flux.

4. Gravitational redshift: This energy spectrum is subsequently adjusted to take into

account the effects of gravitational redshift on the escaping DM.

In the following subsections, we will address each of these steps in turn.
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4.1 Initial Conditions

The collapse of a massive star in a core-collapse supernova leads to the compression of the

inner iron core into a dense proto-neutron star (PNS) with a mass M ≈ 1.4 M� and a

total thermal energy (derived from the gravitational collapse) of order E ≈ 1053 erg. At

its formation, the PNS has a radius of several tens of kilometers, although over a timescale

of tens of seconds it will cool and and condense into a cool neutron star of radius ∼ 14 km.

The mechanisms of core-collapse SNe and PNS formation are complex multi-physics

phenomena that involve a dense matter equation of state and multi-dimensional effects such

as turbulence and convection. While constructing high-fidelity simulations of these events

remains a work in progress, the essential structure of the remnant PNS can be specified at

a level appropriate for making the DM flux estimates of this paper.

The gray lines in Figure 2 show an example PNS structure about 1 second after bounce.

In the bulk interior of the PNS, the energy density is dominated by baryons, leading to

temperatures of order T ≈ 30 MeV. Deleptonization via weak interaction results in a low

electron fraction Ye ≈ 0.1. The very central core (r . 5 km) of the PNS typically has a

slightly higher Ye ≈ 0.2 and is factor of ∼ 2 colder, as this region is adiabatically compressed

in the collapse without experiencing strong heating from shocks.

Above the PNS is a steep, hydrostatic atmosphere where the density falls off exponen-

tially with a scale height . 1 km. The temperature structure in the atmosphere is roughly

set by neutrino diffusion, which implies a scaling T (r) ∝ ρ(r)1/4. The neutrino sphere

generally sits somewhere within this steep PNS atmosphere. The electron fraction rises,

approaching symmetry (Ye ≈ 0.5) outside the PNS.

Finally, above the PNS atmosphere the densities drop such that radiation pressure

dominates and the profile changes. The layers above the PNS are initially convective and

hence nearly isentropic, which results in the density and pressure having approximately

power-law profiles (ρ(r) ∝ r−3, T (r) ∝ r−1). Matter driven by neutrino winds from the

PNS surface may also influence the structure above the atmosphere, but this still results

in a similar power-law profile.

To capture these essential features of PNS structure without restricting ourselves to

any specific core collapse simulation, we constructed an analytic profile that resembles the

results of full simulations. Details of the analytic mapping are given in Appendix A and a

comparison of simulation data to the chosen fiducial profile is shown in Figure 2.

We estimated the profile dependence of our results by varying the parameters of our

analytic profile. The resulting flux is most sensitive to the overall scale of the temperature

since the production terms depend strongly on temperature (see Appendix B.5). Rescaling

the profile such that the peak temperature changes from ∼ 30 MeV to ∼ 50 MeV results

in an increase in the flux by a small O(1) factor for masses below ∼ 40 MeV and an

order of magnitude for large masses. This is unsurprising given that the larger masses are

already being produced on a Boltzmann tail, so the production is exponentially-sensitive to

the temperature. However, even order-of-magnitude changes in flux make no appreciable

change to the sensitivity bounds displayed in this paper due to the fact that the flux changes

very rapidly with y. It is true that with a higher temperature, the bounds may extend out

– 9 –



20 40 60 80 100
radius (km)

1000

104
105
106
107
108
109

ρ (MeV4)

20 40 60 80 100
radius (km)

5

10

50

T (MeV)

20 40 60 80 100
radius (km)

0.1

0.2

0.3

0.4

0.5

Ye

Figure 2. The analytic profile used in this analysis (colored) is displayed alongside the results of

one run of the supernova core-collapse simulation (dashed). Note the strong agreement between the

analytic profiles and the simulation results. The temperature in the analytic profile is uniformly

lower than simulation because it has been adjusted such that it reaches a maximum temperature of

30 MeV, which is a conservative and theoretically-motivated peak core temperature (see discussion

in text).

to slightly larger masses, but we have selected the coolest physically-motivated profile and

therefore treat our bounds as conservative.

Using our analytic profiles for temperature, density, and electron fraction, it is straight-

forward to compute the resulting abundances of all SM particle species. To compute the

proton number density, we assume that the electron and proton fractions are comparable

in the protoneutron star (i.e. Y (r) ∼ Yp(r)) and that the protons are the dominant con-

tribution to the total mass density. These assumptions immediately yield np(r) = Y (r)ρ(r)
mp

as the proton number density.

To compute the thermal densities of the electrons and positrons, we make the assump-
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tion of thermal equilibrium and use the associated thermal abundances (see [28]).

ne±(r) =
2

2π2

∫ ∞
me

1

exp(E±µeT ) + 1
E
√
E2 −m2

e dE (4.1)

The chemical potential µe can be determined by enforcing charge neutrality, which requires

the number density of electrons be equal to the sum of the proton and positron number

densities. This yields the following the condition:

2

2π2

∫ ∞
me

(
− 1

exp(E+µe
T ) + 1

+
1

exp(E−µeT ) + 1

)
E
√
E2 −m2

e dE = np(r) (4.2)

Critically, these profiles are assumed to be unchanged on the timescale of emission

(∼ 10 seconds), hence they are maintained as a fixed background in the following step of

the analysis: the MC simulation of the dark fermions.

4.2 MC flux computation

Having now found the radial profiles of the SM species, we must determine the DM profile.

This necessitates the use of a Monte Carlo simulation of dark fermion diffusion within the

protoneutron star.

We begin by computing source and annihilation terms to be used as inputs to the

simulation that dictate the DM emissivity and annihilation length, the details of which

appear in Appendix B. The two primary interactions that source dark fermions are electron-

positron annihilation to DM (e+e− ↔ χ̄χ) and proton-neutron bremsstrahlung (np ↔
npχ̄χ). We include both contributions, but we find that for all DM masses considered, the

production from electron-positron annihilation dominates over bremsstrahlung except in

the innermost region of the core (r . 5 km), which coincides with the rise in temperature

in the profile we considered.

Within the protoneutron star we represent the dark matter fermion field by a set of

N discrete tracer “packets,” each of which represents a number of fermions. The initial

location and energy of these DM packets is sampled randomly so as to match the total

thermal DM emissivity at each location in the protoneutron star. The DM packet are

propagated a distance d before experiencing a matter interaction event, where d is deter-

mined in standard MC fashion by d = −λ ln(z) where λ is the total mean-free path and

z is a uniform random number between (0, 1]. If the interaction event is a scattering, the

direction of the DM packet is resampled from an isotropic distribution. If the interaction

event is an annihilation, the DM packet is removed from the calculation. DM particles

that leave the edge of the domain are tallied as escaped.

The inclusion of self-annihilation induces a non-linearity in the transport problem due

to the fact that the DM annihilation depends on the background density field of other

DM particles. We address this with an iterative approach. Initially, the DM density

in each zone is assumed to be thermal at the local temperature. We then run the MC

transport procedure and construct an improved DM density profile by counting the DM

packets passing through each zone. The entire transport step is repeated using the newly
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Figure 3. Simulation results for the DM density profile for y = 10−17 and mχ = 13 MeV are

shown in green, with y the dimensionless DM-SM coupling defined in Eq. 6.3. For comparison,

we also display a purely thermal profile in red. Our analytic estimate of the profile is fixed to be

thermal up to some decoupling radius, at which point, it free-streams with r−2. This free-streaming

is shown as a blue line. There is an O(1) discrepancy between this analytic decoupled profile and

the simulation results due to the fact that the analytic profile assumes instantaneous decoupling,

but the scaling behavior at large radii of the two profiles is the same.

constructed DM density profile, and this process is iterated until the density structure

and emergent DM flux converges. Typically we find that ≈ 20 iterations is sufficient

to converge to a self-consistent DM distribution. For simplicity, the annihilation cross-

sections are assumed to be angle- and energy-independent, although such effects would be

straightforward to include.

We include in Figure 3 a comparison between the analytic estimate of the DM profile

described in the previous section and the results of the simulation. The simulation results

are displayed in green, a purely thermal DM profile is shown in red, and a blue line shows

the free-streaming behavior of our analytic profile beyond rS . The profile described in the

previous section is fixed to be thermal up until rS and then falls with r−2 beyond it. It

is clear that while there is an O(1) difference between this analytic estimate of decoupling

and the simulation mainly due to the treatment of the decoupling as occurring at a single

radius instead of over an entire region, the general features and scaling behavior at large

radii are the same. Part of the discrepancy between the analytical estimate and the Monte

Carlo result can be associated with the transmission factor in Eq. 3.10, which was not

taken into account in the figure since it only applies to the asymptotic flux.

4.3 Energy spectrum

With the number flux computed from the MC simulation, we must set the energy spec-

trum for the escaping DM. While it would in principle be possible to extract a complete

spectrum from the MC simulation itself, we find that only the dark fermions living in the

high-momentum tail of the spectrum will be observable in liquid xenon detectors. Comput-
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ing this tail with any precision is computationally prohibitive in that it would require the

simulation to track a vast number of dark fermions such that the tail would not be dom-

inated by statistical noise. Therefore, we instead choose to employ the analytic method

detailed here to compute the spectrum because it allows for a robust prediction of the

quantity of the escaping flux living in the high-momentum tail of the spectrum.

We compute the spectrum in the same manner as in the analytic methodology out-

lined in the previous section. Namely, we compute rN and rE using Eqs. 3.4 - 3.6, with

number densities for protons, electrons, and positrons set by the abundances computed

in Section 4.1. Note that the cross-sections that appear in the interaction lengths are

momentum-dependent. For these computations, the momentum is taken to be the average

center-of-mass momentum at a given radius. This is simply pCM = 3T (r) for DM scattering

off of electrons/positrons and pCM =
√

6mχT (r) for DM scattering off of protons.

As before, we take the temperature at thermal decoupling to be T (rE). We then enforce

that the DM energy spectrum take the form of a Fermi-Dirac distribution at this temper-

ature, but with normalization set by the number flux determined via the MC simulation.

Hence, we have the following differential flux:

∂Φχ

∂E
= ΦMC

χ

(
E2 −m2

exp(E/T ) + 1

)(∫ ∞
mχ

E2 −m2

exp(E/T ) + 1
dE

)−1

(4.3)

where Φχ denotes the total DM flux in number per second and ΦMC
χ denotes the number

flux computed with the simulation.

4.4 Gravitational redshift

Finally, we must take into account the effect of gravitational redshift on the spectrum

computed in the previous step. The redshifted momentum of a DM particle emitted with

p0 at rE is given by

p∞ = p0

√
1− 2∆Φ

(
E0

p0

)2

(4.4)

with ∆Φ the change in potential between rE and r =∞, defined as

∆Φ = G

∫ ∞
rE

menc(r)

r2
dr (4.5)

where menc(r) is the mass enclosed within r.

In the region of parameter space we are interested in, this effect does not decrease

the momenta of escaping dark fermions by more than an O(1) factor. However, the effect

does introduce a sharp cutoff in the spectrum corresponding to where the DM no longer

has sufficient initial momentum to escape the gravitational well. This cutoff momentum is

given by

pmin =

√
2∆Φ

1− 2∆Φ
m2
χ. (4.6)

We find that including these effects decreases the DM flux above detector threshold by

∼ 30− 40%.
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5 Cooling

As mentioned in the Introduction, supernovae have been used for decades to constrain

models of new physics by way of a cooling argument. Our observations of the neutrino

emission from SN1987a suggest a cooling timescale for the protoneutron star of ∼ 10

seconds. For new degrees of freedom to be compatible with this cooling timescale, they

must transport energy out of the star at a rate less than the neutrinos. This simply means

that new degrees of freedom must transport energy out of the neutrino sphere at a rate

less than 3× 1052 erg/s [7].

The cooling bound is usually computed more carefully in the free-streaming regime,

where analytic computations can produce robust estimates of the escaping flux. However for

the trapped regime it usually relies on many approximations and many important aspects

have not been taken into account in previous analysis. In this paper, we both extend this

bound to the trapped regime using the results of our MC simulation and recompute the

bound in the free-streaming regime with gravitational redshift folded in, an effect that was

not included by previous papers. The upper bound and lower bound are placed in two

different manners due to the fact that the upper bound (stronger couplings to the SM) will

be in the trapped regime, while the lower bound (weaker couplings to the SM) will be in

the free-streaming regime.

The upper bound is computed straightforwardly using the results of the simulation.

The DM profiles produced by the simulation are taken to be steady-state solutions, hence

the total flux going through any given radius must be constant throughout the profile.

Though the cooling constraint refers to energy transport through the neutrino sphere (∼ 20

km), the flux of dark fermions through this radius will be equal to the flux at infinity. In

all regions of parameter space that can be constrained by cooling, the energy sphere for

the DM lies well within the neutrino sphere (rE < rν), hence we can compute the energy

transfer simply by computing the fraction of the non-redshifted spectrum above pmin and

multiplying by the flux at infinity. The cooling constraint can therefore be expressed as∫ ∞
pmin

∂Φχ

∂E

∣∣∣∣
E=
√
p2+m2

χ

p dp < 3× 1052 erg/s (5.1)

with
∂Φχ
∂E defined by Eq. 4.3 and pmin defined by Eq. 4.6.

For the lower bound we can assume that all DM particles produced in the core will

free-stream and if their velocity is above the escape velocity, they will carry energy out of

the neutrino sphere. The luminosity can be calculated by the volume integral

Lχ =

∫ rν

0
dr 4πr2

(
dLbrem

dV
+
dLe+e−

dV

)
, (5.2)

where dLbrem/dV and dLe+e−/dV are respectively the local luminosities due to np→ npχ̄χ

and e+e− → χ̄χ in an infinitesimal volume dV around a point ~r, and Rν is the radius of the

neutrino sphere. This functions are described in Appendix D, and only include particles

produced with velocities above the escape velocity at a point ~r.
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6 Detection

As described in the Summary, liquid xenon (LXe) WIMP detectors are well-suited to

observing the high-energy dark fermion flux emitted by supernovae. It may seem at first

surprising that a detector designed to detect weak-scale WIMPs would be sensitive to

MeV-scale particles. Recall, however, that LXe detectors hunt for WIMPs as a constituent

of the ambient galactic dark matter density. As such, the WIMPs are generally fairly

cold, traveling with the galactic virial velocity of 10−3. In contrast, the dark fermions

produced by SN are boosted to semi-relativistic velocities, hence have v ∼ 1. The maximum

recoil energy that an impinging DM particle with momentum p could possibly deliver to a

xenon nucleus is given by ∼ 2p2

mXe
. With a WIMP of O(10) GeV (approximately the lower

design limit for most LXe experiments) and v = 10−3, this is a recoil energy of O(1) keV.

Similarly, with a dark fermion of mass O(10) MeV and v ∼ 1, we find a maximum recoil

energy of O(1) keV. Unsurprisingly, given the values we chose, LXe detectors typically have

thresholds on this order [22]. Since LXe detectors are already searching for WIMPs at the

zero-background limit, they make for ideal targets for hunting for sub-GeV DM produced

in SN.

6.1 Diffuse galactic flux

It is an interesting physical consequence of the semi-relativistic velocities with which the

dark fermions are emitted that they will form a diffuse galactic flux of energetic DM. This

flux is similar to the diffuse supernova neutrino background (DSNB) (see, e.g., [29] for a

review), but with the significant difference that it is due to the overlapping emissions of

galactic supernovae, while the DSNB is due to extragalactic supernovae. The reason for

this is that, in contrast to the neutrinos, the dark fermions are emitted traveling with an

O(1) spread in velocity. This distribution of velocities at emission means that the DM

arrives at Earth over a long period of time (comparable to the light travel time to the SN).

For galactic SN, this timescale is of order 105 years. With an estimated galactic SN rate of

roughly 1 per century [30], we see immediately that the dark fermion emissions from up to

104 galactic SN can overlap simultaneously at Earth, resulting in a diffuse galactic flux of

SN-produced dark fermions.4 (Note that since SN neutrinos are produced at c, they arrive

in a ten-second window. It is clear that the galactic SN rate is insufficient for neutrino

emissions from different SN to ever overlap, however the extragalactic rate is suitably large

enough for overlap, leading to the existence of the DSNB.)

To compute this diffuse DM flux from galactic SN, we take the double-exponential

profile of Adams et al. [30] for the core-collapse SN density rate in our galaxy:

dnSN
dt

= Ae−r/Rde−|z|/H (6.1)

with R the galactocentric radius and z the height above the galactic mid-plane. For Type

II SN, we use the parameter values Adams et al. provide: Rd = 2.9 kpc, H = 95 pc. Taking

4The SN-produced dark fermions will also produce a diffuse extragalactic flux but in the following

analysis, we conservatively ignore extragalactic contributions as they are subdominant to the galactic flux.
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the galactic supernova rate to be 1 SN per 50 years, we compute A = 0.00208 kpc−3 yr−1.

Earth sits at RE = 8.7 kpc and zE = 24 pc.

Since the flux from a given SN falls off with 1/r2 with r the distance from the SN, we

can integrate over this distribution, weighting by the 1/(~r − ~RE)2. The integral therefore

takes the form

total flux = Nχ

∫ zmax

0

∫ 2π

0

∫ Rmax

0

dnSN
dt

1

(~r − ~RE)2
dr dθ dz (6.2)

where Nχ denotes the total number of DM particles produced in a single SN. Computing

this at the Earth’s location in the galaxy gives a flux on Earth of Φdiffuse = (2.69 ×
10−54 cm−2 s−1)Nχ.

In Fig. 4, we use the Nχ produced by our MC simulation to display the magnitude of

this diffuse galactic flux on Earth as a function of y, a convenient variable that encapsulates

the strength of the DM-SM coupling. It is defined as

y = ε2αD

(
mχ

mA′

)4

(6.3)

with ε the small parameter controlling the kinetic mixing of the SM photon with the dark

photon, αD the fine-structure constant of the dark U(1) sector, and mA′ the mass of the

dark photon [19]. The free-streaming and trapped regimes are both apparent in the figure.

At low couplings, the DM free-streams from the PNS and the production scales linearly

with y, hence the flux on Earth scales linearly with y as well. For larger couplings, we

enter the trapped regime, where the DM is emitted from some approximately blackbody

surface. As the coupling increases, this surface moves out to larger radii where the PNS is

cooler, hence the DM flux decreases.

This diffuse source can be compared to the flux from a hypothetical nearby point

source. We find that in order for a single SN to produce a comparable flux of DM on

Earth, it would have to sit within roughly 1 parsec of Earth and would have had to have

occurred recently enough that the DM flux would still be passing through us. There are

no observed SN that unambiguously satisfy these criteria, hence our sensitivity limits are

placed using exclusively the galactic diffuse flux. However, if future observations detect such

a SN, this would potentially enhance experimental sensitivity to DM flux from supernovae.

Point sources and their associated recoil spectra are further discussed in Appendix C.

6.2 Count rates in liquid xenon detector

The final necessary piece of this analysis is to determine the detection rate of the diffuse

flux in liquid xenon detectors. This is given by the following expression:

event rate = Ntargets

∫ √
1
2
mXeEmax√

1
2
mXeEthresh

∫ 2p2∞/mXe

Ethresh

dσ

dErec

∣∣∣∣
p=p∞

dΦdiffuse

dp0

∣∣∣∣
p=p0

dErec dp∞ (6.4)

with dσ
dErec

the differential DM-Xe cross-section defined in Appendix B.7, Erec the recoil

energy of the xenon nucleus, [Ethresh, Emax] the recoil energies measured by the detector,
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Figure 4. We display the diffuse galactic flux of dark sector fermions on Earth as a function of y,

the coupling to the SM, for a variety of masses. The linear portion at low couplings corresponds

to the free-streaming regime, in which production scales linearly with y and there is bulk volume

emission of DM. At higher couplings, the PNS behaves like a blackbody and emits DM from a

surface. In this trapped regime, as the coupling increases, the surface moves outwards into cooler

regions and the DM flux drops accordingly.

and

dΦdiffuse

dp0
= Φdiffuse

 p2
0

exp(

√
p20+m2

χ

T ) + 1

 p0√
p2

0 +m2
χ

(∫ ∞
mχ

E2 −m2

exp(E/T ) + 1
dE

)−1

(6.5)

the differential diffuse galactic flux of dark fermions. Note that the outer integral is taken

over p∞, the dark fermion momentum at infinity (given by Eq. 4.4), since the scattering is

occurring on Earth, however the factors corresponding to the energy spectrum of the DM

are in terms of p0, the momentum at production, since the distribution is defined at TrE .

It is trivial to find p0 by inverting Eq. 4.4. The limits of integration derive from requiring

that the recoil energy be above threshold and less than the maximum recoil energy probed

by the detector. Note that since the DM is usually very near the lower threshold for energy

deposition and typical values of Emax are usually several tens of keV [22], Emax plays little

role in determining the event rate.

In Figure 5, we show three recoil spectra for a liquid xenon detector. We have set

log y = −15.3 and plot a variety of masses. All of these points lie within the interesting

region of parameter space for direct detection. It is clear from the figure that lower masses

result in lower average recoil energies while the tail of recoil energies can be fairly large for

heavier DM owing to its larger kinetic energy. Integrating these distributions allows us to
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Figure 5. Recoil spectra in a liquid xenon detector for the parameters log y = −15.3 and mχ of 6,

26, and 132 MeV. The 2.5 keV energy threshold used in many current LXe detectors is shown for

reference as a dashed gray line. For fixed y, increasing mχ results in lower flux, hence lower overall

scaling, but a longer tail due to the larger kinetic energy of the incident DM.

compute the number of events expected in a variety of existing and next-generation LXe

detectors.

7 Results

Our results are summarized in Figures 6 and 7. We have chosen to display the sensitivity

limits of the following detectors:

1. Xenon1T: Xenon1T has already completed a one ton-year exposure with no obser-

vation of a signal above background [22]. As such, we choose to display the sensitivity

region for this exposure. The Xenon1T sensitivity region is shown in red.

2. LUX-Zeplin: LUX-Zeplin is a LXe WIMP experiment currently under construction.

When completed, it is projected to be the most sensitive LXe detector to date. It

is expected to run for a total integrated exposure of 15 ton-years [25], which is the

value we have used in computing our limits. Its reach is shown in yellow.

3. DARWIN: DARWIN is a future LXe experiment designed to be the ultimate LXe

WIMP detector, with sensitivity down to the neutrino floor [26]. If constructed, it

will have an integrated exposure of 200 ton-years. Its reach is shown in red.

Existing LXe detectors generally have nuclear recoil thresholds of 5 keV [22] but future

improvements aim to lower this to 2.5 keV, where solar neutrinos begin to become a large
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Figure 6. The sensitivity regions for Xenon1T (red), LUX-Zeplin (yellow), and DARWIN (green).

The detector threshold has been taken to be 2.5 keV and the emission timescale from the SN to

be log 10 seconds. We compute these curves using the diffuse galactic flux. The region bounded by

our cooling bound is overlaid in blue.
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Figure 7. Same as Fig. 6 but with detector threshold set to 5 keV. Note that this does not affect

the cooling bound.
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background [26]. As a result, we have chosen to display the sensitivity limits for both

values. Our emission timescale has been chosen conservatively to be log(10) seconds as we

do not have a precise notion of the time dependence of the profile at the radii of interest

and thus assumed that the χ luminosity will decrease approximately as 1/t in the first 10

seconds, in analogy with the neutrino case.

The vertical axis is defined in terms of the convenient variable y, which is an oft-used

variable in discussions of these models that serves as a measure of the coupling of the DM to

the SM. Recall that y is defined as y = ε2αD

(
mχ
mA′

)4
with ε the small parameter controlling

the kinetic mixing of the SM photon with the dark photon, αD the fine-structure constant

of the dark U(1) sector, and mA′ the mass of the dark photon [19]. There is clearly a

degeneracy between the parameters of the dark sector for a given value of y. It should be

noted that all of the detection curves presented here are sensitivity regions, not exclusion

limits. In other words, at any given point within the reach, the detector is sensitive to

some choice of parameters that yields a given y, but is not necessarily sensitive to all

choices of parameters. This is an important distinction given that for certain values of

αD, the scattering of the dark fermions within the protoneutron star will be dominated by

self-scattering, rather than scattering off of protons, an effect neglected in this analysis.

We will treat these self-interactions in upcoming work, as well as considering models with

extra structure, including a lighter dark photon and cannibalistic interactions [31, 32].

The cooling region is shown in blue. The upper region is calculated in the trapped

regime, and is valid under our assumption that the self-interactions can be neglected. The

bottom of the exclusion region is obtained from the free streaming regime and should be

valid even when considering large self-interactions. Our bounds are stronger than those

obtained in Ref. [15] for two main reasons: (1) their analysis only included production

through nucleon-nucleon bremsstrahlung, which is subdominant in all of the parameter

space we considered to the production from e+e− and (2) their treatment of the trapped

regime is more conservative in that they only consider the equivalent of the free-streaming

sphere and approximate the dark matter flux as a black-body at that radius.5

The relic density line is reproduced from Ref. [19] and corresponds to where the relic

abundance of dark fermions produced by freeze-out matches the observed dark matter

density. It is included for reference. The parameter space constrained by our analysis

lies beneath this, meaning that for a standard cosmological history, the dark fermions

would not have sufficient cross-section to be depleted down to the measured dark matter

density and thus would be overabundant. However these constraints can be avoided by

considering non-standard cosmologies with e.g. late entropy injections or by including

extra interactions in the dark sector.

5 Note that one cannot directly compare the limits displayed in their paper to those displayed here

since in their analysis they specialized to the case where mχ = mA/3 and included the production of dark

photons, which leads to substantial changes compared to our analysis whenever mA . 200 MeV.
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8 Conclusion

The extreme temperatures and densities that are reached during supernovae would create

vast abundances of any sub-GeV degrees of freedom in a dark sector. In regions of pa-

rameter space where the coupling of the dark sector to the Standard Model is too large to

allow the produced dark matter to free-stream out of the cooling protoneutron star, the

DM becomes diffusively trapped. In this paper, we focus on a model of an additional U(1)

dark sector populated by O(1 − 100) MeV fermions and a heavy dark photon that mixes

kinetically with the Standard Model photon. As the dark fermions diffuse out of the star,

the flux and spectrum are set by the freeze-out of various interactions. Here, we have used

this to calculate the DM flux by employing a dedicated Monte Carlo simulation of particle

transport within the protoneutron star. The results allow us to extend the well-known

cooling bound into the diffusive regime.

In addition, the fluxes can also be sufficiently large to be detectable in existing liquid

xenon WIMP detectors. Due the semirelativistic velocities with which the fermions escape

from the star, the arrival time on Earth of the flux from a single SN overlaps with & 104

other SN, leading to a diffuse galactic flux of dark fermions permeating the Earth. We

show that existing and proposed liquid xenon detectors are sensitive to this flux over a

large region of parameter space. Future LXe experiments may provide the first direct

detection of dark matter at the MeV-scale.

Although we have focused on a particular model of such light dark matter, the same

idea applies broadly to many models of DM with mass below ∼ GeV. Existing direct

detection results along with SN cooling in the trapped regime may already set important

limits on these other models. Perhaps most excitingly, future direct detection experiments

could very well discover a wide variety of light dark matter through supernova production.

Acknowledgements

We thank Nikita Blinov, Philip Schuster, Natalia Toro, Alex Friedland, Rouven Essig,

and Sam McDermott for useful discussions. W.D., G.M.T., and P.W.G. are supported by

DOE Grant DE-SC0012012. W.D. and P.W.G are further supported by NSF Grant PHY-

1720397, the Heising-Simons Foundation Grants 2015-037 and 2018-0765, DOE HEP Quan-

tISED award #100495, and the Gordon and Betty Moore Foundation Grant GBMF7946.

The work of G.M.T. was also supported by the NSF Grant PHY-1620074 and by the

Maryland Center for Fundamental Physics. S.R. is supported in part by the NSF under

grants PHY-1638509 and PHY-1507160, the Simons Foundation Award 378243, and the

Heising-Simons Foundation Grant 2015-038. D.K. is supported in part by the U.S. De-

partment of Energy, Office of Science, Office of Nuclear Physics, under contract number

DE-AC02-05CH11231 and DE-SC0017616, by a SciDAC award DE-SC0018297, by the Na-

tional Science Foundation Grant PHY-1630782, and by the Heising-Simons Foundation

Grant 2017-228.

– 21 –



A Analytic profile of SN

To provide an analytic fit to the results of the full multi-physics supernova simulation

described in Section 4.1, we defined a fiducial profile in the following way:

ρ(r) = ρ0 ×


e−2(r−R0)/R0 r < R0

e(R0−r)/h R0 ≤ r < Rt

e(R0−Rt)/h(r/Rt)
−3 r ≥ Rt

(A.1)

T (r) =


Tin + (T0

R0
Rin
− Tin) exp

[
−16 (r−Rin)2

R2
in

]
r < Rin

T0

(
R0
r

)
Rin ≤ r < R0

T0e
(R0−r)/4h R0 ≤ r < Rν

T0e
(R0−r)/4h(Rν/r) r ≥ Rν

(A.2)

Y (r) =



Yin + (Y0 − Yin) exp
[
−16 (r−Rin)2

R2
in

]
r < Rin

Y0 + (Yt − Y0) exp
[
−100 (r−Rin)2

R2
in

]
Rin ≤ r < Rt

Yt + (Yout − Yt) r−Rt
Rout−Rt Rt ≤ r < Rout

Yout r ≥ Rout

(A.3)

with the following fiducial parameters:

Rin = 8 km

Tin = 15 MeV

Yin = 0.25

R0 = 15 km

ρ0 = 1014 g cm−3

T0 = 20 MeV

Y0 = 0.1

Rν = 21 km

Rt = 25 km

h = 1 km

Yt = 0.4

Rout = 30 km

Yout = 0.5

See Figure 3 for a comparison of this profile to the output of the simulation.

B Cross-sections

In this Appendix we list the cross-sections and rates relevant for the DM dynamics in the

supernova.
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B.1 χe→ χe

This cross-section is relevant for the energy decoupling of dark matter. Since for the cases

of interest this is dominated at radii & 15 km, we ignore the effect of Pauli-blocking (which

would decrease the cross-section and thus lead to a colder spectrum, which is conservative

for our estimates). With this approximation the cross-section in the center of momentum

(COM) frame is given by

σχe =
8πyα

m2
χ

p2

m2
χ

1 +
4

3

p2

(p+
√
p2 +m2

χ)2

 , (B.1)

where p is the COM momentum and we neglected the electron mass.

B.2 χp→ χp

The cross-section in the COM frame is given by

σχp =
8πyα

m2
χ

(
2 +

p2

m2
χ

)
, (B.2)

where we neglected terms that were suppressed by the proton mass.

B.3 χ̄χ→ e+e−

For the DM annihilation into electron-positron pairs we take Fermi blocking of the electrons

into account since this is a large effect in the the core, where the electron chemical potential

is large. Because the cross-section now depends on the electron distribution function we

work in the frame of the proton-neutron star and the cross-section will be in terms of the

two incoming dark matter momenta ~p and ~k.

First let us define the following auxiliary functions which appear frequently in the
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cross-section due to the Pauli-blocking term

B0(E,Q, T, µ) =

∫ (E+Q)/2

(E−Q)/2
dq

(
1− 1

1 + e(q−µ)/T

)
=
Q

2
+ T log

[
cosh

(
E +Q− 2µ

4T

)]
− T log

[
cosh

(
E −Q− 2µ

4T

)]
,

B1(E,Q, T, µ) =

∫ (E+Q)/2

(E−Q)/2
dq q

(
1− 1

1 + e(q−µ)/T

)
=
T (E +Q)

2
log
[
1 + e

−2µ+E+Q
2T

]
− T (E −Q)

2
log
[
1 + e

−2µ+E−Q
2T

]
+

T 2
[
Li2

(
−e

−2µ+E+Q
2T

)
− Li2

(
−e

−2µ+E−Q
2T

)]
,

B2(E,Q, T, µ) =

∫ (E+Q)/2

(E−Q)/2
dq q2

(
1− 1

1 + e(q−µ)/T

)
=
T

4
(E +Q)2 log

(
1 + e

E+Q−2µ
4T

)
− T

4
(E −Q)2 log

(
1 + e

E−Q−2µ
4T

)
+ T 2(E +Q)Li2

(
−e

−2µ+E+Q
2T

)
− T 2(E −Q)Li2

(
−e

−2µ+E−Q
2T

)
− 2T 3 Li3

(
−e

−2µ+E+Q
2T

)
+ 2T 3 Li3

(
−e

−2µ+E−Q
2T

)
,

(B.3)

where Lin(z) is the Polylog of order n.

In order to simplify the expression we will also use the following definitions

Ep =
√
p2 +m2

χ ,

Ek =
√
k2 +m2

χ ,

E = Ep + Ek ,

~Q = ~p+ ~k,

Q =
√
p2 + k2 + 2pk cos θ ,

(B.4)

where cos θ is the cosine of the angle between ~p and ~k.

With those definitions, the cross-section is

σχ̄χ(~p,~k) =
4παy

m4
χ

√
(EpEk − pk cos θ)2 −m4

χ

{
2

[
E2
pB2

Q
− Ep(~p · ~Q)

Q3

[
2EB2 − (E2 −Q2)B1

]
+

(~p · ~Q)2

2Q5

[
3

4
(E2 −Q2)2B0 − 3(E2 −Q2)EB1 + (3E2 −Q2)B2

]
+

p2

2Q3

[
−(E2 −Q2)2

4
B0 + (E2 −Q2)EB1 − (E2 −Q2)B2

]]
+

(EpEk − ~p · ~k)

Q

[
(EpEk − ~p · ~k) +m2

χ

]
B0 − 2

(EpEk − ~p · ~k)Ep
Q

B1

+
2(EpEk − ~p · ~k)(~p · ~Q)

2Q3

[
2EB1 − (E2 −Q2)B0

]
.

(B.5)
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Where E and ~Q where defined in Eq. B.4, and all Bi are to be interpreted as Bi(E,Q, T, µ)

as defined in Eq. B.3.

B.4 Inverse bremsstrahlung annihilation term

Here we compute the DM absorption rate through inverse bremsstrahlung: χ̄χnp → np.

We will use the Soft Radiation Approximation (SRA), which is also used in the neutrino

production (and absorption) through (inverse) bremsstrahlung [33] and also for computing

dark photon production in the proto-neutron star [34]. This approximation allows one to

factorize the nucleon-nucleon interaction from the emission process, and the latter can be

directly measured by experiment. This approximation is well-justified when the energy of

the emitted dark matter pair is much smaller than the COM kinetic energy of the nucleons,∑
ωχ � ECM . For us, this is not satisfied for most of the DM masses, and we are usually

in a regime where
∑
ωχ ∼ ECM . In Ref. [34] it was argued that even in such regime

the SRA approximation only resulted in a factor of 2 error in the case of dark photon

production. We expect that this approximation leads to an O(1) error in the rate, but as

we will find, this rate is subdominant to the annihilation to e+e− almost everywhere in the

proton-neutron star by a significant margin.

The absorption rate for DM via inverse bremsstrahlung is given by

Γχ =
1

nχ

∫
d3k1d

3k2

(2π)64ω1ω2
g(k1)g(k2)

∫
d3p1 . . . d

3p4

(2π)122E1 . . . 2E4
(2π)4δ4(k1 + k2 + p1 + p2 − p3 − p4)

× fp(p1)fn(p2) ¯|M|2χ̄χnp,
(B.6)

where g(k) is the distribution function for DM (including the number of spin dof), nχ is the

number density of DM, fp/n is the distribution function for protons/neutrons and ¯|M|2χ̄χnp
is the averaged matrix element squared for the χ̄χpn → pn process. Now, using SRA, we

can rewrite this as

Γχ =
1

nχ

∫
d3k1d

3k2

(2π)64ω1ω2
g(k1)g(k2)

∫
d3p1 . . . d

3p4

(2π)122E1 . . . 2E4
(2π)4δ4(p1 + p2 − p3 − p4)

× fp(p1)fn(p2) ¯|M|2np
∑
spins

1

4

(
egdε

m2
A′

)2

|Jµūk1γµvk2 |2 ,
(B.7)

where

Jµ =
pµ1
p1 · k

− pµ3
p3 · k

, kµ = kµ1 + kµ2 , (B.8)

with p1(3) the momentum of the incoming (outgoing) proton and the sum over spin in the

previous equation being over the DM spin.

Note that in this approximation we drop the momentum of DM in the energy momen-

tum conservation delta function, since in the SRA these are soft compared to the nucleon

energy and momentum. Because of this, we can first perform the d3ki integrals. For this

is it useful to first compute

R1 =

∫
dΩk1dΩk2

(4π)2
JµJνtr [(/k1 −mχ)γµ(/k2 +mχ)γν ] . (B.9)
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We can make use of the SRA and also of the NR nature of the nuclei to expand Jµ as a

series in the nuclei velocity to lowest order. With this we find

R1 =
4∆~p2

M2ω4

[
−2

3
(ω2

1k
2
2 + ω2

2k
2
1)− (ω1ω2 +m2

χ)

(
k2

1 + k2
2

3
− ω2

)
+

2k2
1k

2
2

9

]
, (B.10)

where ω = ω1 + ω2 and mp is the mass of the nuclei.

We can now rewrite eq. B.7 as

Γχ =
1

nχ

16π2αy

m4
χ

RpnRχ

Rχ =

∫
d3k1d

3k2

(2π)64ω1ω2
g(ω1)g(ω2)

1

m2
pω

4

[
(ω1ω2 +m2

χ)

(
ω2 − k2

1 + k2
2

3

)
+

2k2
1k

2
2

9
− 2

3
(ω2

1k
2
2 + ω2

2k
2
1)

]
Rpn =

∫
d3p1 . . . d

3p4

(2π)122E1 . . . 2E4
(2π)4δ4 (p1 + p2 − p3 − p4) fp(p1)fn(p2) ¯|M|2np(~p1 − ~p3)2 .

(B.11)

As a first step to compute Rpn we first compute

Πpn =

∫
d3p3d

3p4

(2π)62E32E4
(2π)4δ4(p1 + p2 − p3 − p4)(p2

1 + p2
3 − 2p1p3 cos θ)64π2E2

cm

dσnp
dΩCM

Πpn =16p3
CMmp

∫
dΩCM (1− cos θCM )

dσnp
dΩ

∣∣
CM
≡ 16p3

CMmp〈σ(2)
np 〉 .

(B.12)

The integral in the above expression has been obtained from the measured phase shifts in

[34] and is denoted by 〈σ(2)
np 〉. Note that this is a function only of the CM momentum.

Using the NR approximation for the nuclei we can write Rpn as

Rpn =
npnχ

(2πmpT )3

∫
d3p1d

3p2

4m2
p

exp

(
−p2

1 − p2
2

2mpT

)
16mp

(
|~p1 − p2|

2

)3

〈σ(2)
np 〉

~q =
~p1 − ~p2

2
, ~P = ~p1 + ~p3 ,

Rpn =
npnn

(2πmpT )3

4

mp

∫
d3P exp

(
−P 2/4mpT

) ∫
d3qq3〈σ(2)

np 〉 exp(−q2/mpT )

=
npnn

(πmpT )3/2
8πm2

p

∫
dKK2〈σ(2)

np 〉 exp(−K/T ) .

(B.13)

Combining these results we find:

Γχ =
64αy

9π

npnn
nχ

1

(πmpT )3/2

∫ ∞
1

dx1

∫ ∞
1

dx2

√
(x2

1 − 1)(x2
2 − 1)

(emx1/T + 1)(emx2/T + 1)(x1 + x2)4

×
[
4 + x1x2(3x2

1 + 4x1x2 + 3x2
2) + (5x2

1 + 12x1x2 + 5x2
2)
] ∫ ∞

0
dKK2〈σ(2)

np 〉e−K/T

(B.14)
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B.5 Source term: e+e− channel

The source term can be directly calculated from the annihilation term by using detailed

balance:

Se+e− =

∫
d3qd3q′

(2π)62Eq2Eq′

4

(e(Eq−µe)/T + 1)(e(Eq′+µe)/T + 1)

×
∫

d3kd3k′

(2π)62ωk2ωk′
(2π)4δ4(k + k′ − q − q′)|M|2(1− g(k))(1− g(k′))

=

∫
d3kd3k′

(2π)62ωk2ωk′

4
√

(ωkωk′ − kk′ cos θ)2 −m4
χ

(eωk/T + 1)(eωk′/T + 1)
σχ̄χ(~k,~k′) ,

(B.15)

where µe is the electron chemical potential, k (k’) is the χ (χ̄) momentum, g(k) is the

thermal DM distribution function (per degree of freedom) and σχ̄χ is the DM annihilation

cross-section to e+e−, including Fermi blocking, as defined in Eq. B.5.

B.6 Source term: bremsstrahlung channel

We can also compute this term by enforcing detailed balance, and recycle the result from

Eq. B.14: 6

Sbrem =

∫
d3p1 . . . d

3p4

(2π)122E1 . . . 2E4

∫
d3k1d

3k2

(2π)62ω12ω2
(2π)4δ4(p1 + p2 − p3 − p4 − k1 − k2)

× fp(p1)fn(p2)|M̄|2prod

=

∫
d3p1 . . . d

3p4

(2π)122E1 . . . 2E4

∫
d3k1d

3k2

(2π)62ω12ω2
(2π)4δ(4)(p1 + p2 + k1 + k2 − p3 − p4)

× |M̄abs|2fp(p1)fn(p2)g(k1)g(k2)

=nχΓχ ,

(B.16)

where Mprod and Mabs are the production and absorption matrix elements and g(ki) are

the thermal distribution functions for DM.

B.7 DM-xenon recoil

Here we compute the differential cross-section for DM colliding with a xenon nucleus. Since

mXe � mχ, we make the approximation that the center-of-mass frame and rest frame for

the nucleus are roughly the same. Then, we can compute the scattering cross-section and

make the requisite substitutions in order to solve for it in terms of the incoming momentum

6 We have also independently computed the source term by directly using the SRA for production. We

have found that both answers disagree by more than an order of magnitude for most of the masses of

interest, with the direct production rate always being larger than what was obtained by enforcing detailed

balance. This effects is related to the failure of the SRA in the regime of interest, and we chose to enforce

detailed balance in order to ensure that in the large coupling regime the distribution of DM would approach

a thermal distribution.
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of the DM particle. This gives the expression

dσ

dErec
= 4παyZ2

(
mXe −

m2
XeErec

p2

) 1

m4
χ

(√
m2

Xe + p2 +
√
m2
χ + p2

)2


[
2
√
m2

Xe + p2
√
m2
χ + p2 +m2

Xe +m2
χ

+p2

(
2
√
m2

Xe + p2
√
m2
χ + p2 +m2

χ + 3p2) +m2
Xe(2m

2
χ + p2) + p4(1− mXeErec

p2
)2

)]
(B.17)

where p is the momentum of the incoming DM particle and Erec is the recoil energy of the

xenon nucleus. The nuclear charge is Z = 54 for xenon.

C Recoil spectra from nearby SN

Though there are no observed supernovae that would produce a singular flux in excess of

the diffuse SN background of dark fermions discussed in the body of this paper, it is still

interesting to consider the recoil spectrum from a single point source. Since the fermions

are produced with an O(1) spread in velocities, the arrival time varies between different

parts of the spectrum. Dark fermions living on the high-energy (high-velocity) end of the

spectrum will arrive far sooner than those on the low-energy (hence low-velocity) end. The

majority of the flux will arrive with a delay behind the neutrinos of order the light-travel

time to the SN.

As a result of this, the recoil spectrum of xenon in a liquid xenon detector on Earth

changes over time. Shortly after the arrival of light from the SN, we expect to see a

recoil spectrum that extends to high recoil energies (due to the highly-boosted fermions)

but with low event rates (due to the fact that the high-velocity fermions live on a tail

of the spectrum). As time passes, event rates will increase but the average recoil energy

will decrease as the more abundant, less energetic part of the dark fermion distribution

begins to arrive on Earth. This evolution is displayed in Figure 8. For the purposes

of computation, we have focused on the case of a 30 MeV dark fermion with log y =

−16.3 and an SN occurring 30 kpc from Earth (the distance to the galactic center). The

recoil spectra are plotted for three different time delays: 103, 104, and 105 years after the

arrival of the neutrinos on Earth. As expected, the shortest time delay corresponds to

the highest energies of dark fermions, hence we have a relatively low yield, but energetic

recoil spectrum. As we move towards longer delays, the average recoil energy decreases,

but the event rate increases. At 105 years (the light-travel time for 30 kpc), we reach the

maximal event rate since this corresponds to the arrival of the peak of the dark fermion

spectrum. By 106 years (not shown), the dark fermion flux is once again very low since it

corresponds to the arrival of the low-energy tail. The average recoil energy is well below

detector threshold.

– 28 –



mass = 30 MeV

log(y) = -16.3

d = 30 kpc

105 years

104 years

103 years

0.001 0.005 0.010 0.050 0.100 0.500 1

10-17

10-15

10-13

10-11

Recoil Energy (MeV)

E
ve
nt
ra
te

(h
its
M
eV

-
1
se
c-
1
to
n-
1
)

Figure 8. The recoil spectra of xenon nuclei in a liquid xenon detector plotted for different time

delays from a nearby SN. The curves shown here are for a 30 MeV dark fermion with log y = −16.3

and Earth-SN distance of 30 kpc. Note the evolution of the spectrum with time, changing from an

energetic spectrum with low event rate during the arrival of the high-momentum end of the DM

spectrum to a less-energetic spectrum with higher yields as the bulk of the DM spectrum arrives

on Earth. The gray line indicates the 2.5 keV threshold of future LXe experiments.

We find this change in recoil spectrum a noteworthy feature of the SN flux as it could

provide a discriminatory tool for detecting a DM flux from a future nearby SN and have

included it for completeness.

D Cooling in the free streaming regime

The lower limits of the cooling bound in Figs. 6 and 7 are obtained by considering the free

streaming regime of DM produced in the SN. In this case all DM produced in the core can

free stream out of the SN as long as it has enough kinetic energy to escape the gravitational

attraction due to the proto-neutron star.

In order to compute the minimum escape energy from a region of radius r we need to

compute the metric inside the proto-neutron star. Following Ref. [35], the metric can be

written as

ds2 = B(r)dt2 −A(r)dr2 − r2dΩ2 . (D.1)

The two functions A and B are given by

A(r) =

[
1− 2GM(r)

r

]−1

, (D.2)
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where

M(r) =

∫ r

0
dr′4πr′ 2ρ(r′) (D.3)

and

B(r) = exp

[
−
∫ ∞
r

dr′
2G

r′ 2
(
M(r′) + 4πr′ 3p(r′)

)(
1− 2GM(r′)

r′

)−1
]
, (D.4)

with p the pressure in the star. Given that the pressure term is subdominant, we can

approximate the pressure by treating the protons and neutrons as a gas of degenerate

fermions to the level of precision we are interested in. The minimum energy required for

DM to escape from a radius r is given by

Eesc =
mχ√
B(r)

(D.5)

As discussed in previous sections there are two important production channels which

contribute to the DM production: electron-positron annihilation to DM and DM bremsstrahlung

from proton-neutron scattering. For the profile used in our work we found that the latter

yields a larger production for all masses of interest, but we include both contributions for

completeness.

For the bremsstrahlung case, we use a similar calculation to what was done in Sec. B.4.

However, because we are now interested in the energy flux and not the number flux, and

because we must impose a minimum energy due to gravitational trapping, we cannot utilize

that result which was obtained via detailed balance. The steps to compute the production

cross-section are almost identical, except that one must impose a maximum energy cutoff for

the DM produced by hand, since due to the SRA the energy of the DM no longer appears in

the energy conserving delta function. For that purpose we include an exponential regulator

exp[−(ω1 + ω2)/T ], where ωi is the DM energy and T the temperature.7 Using this, the

local DM luminosity from this channel is given by

dLbrem

dV
=

64αy

9π

npnn

(πmpT )3/2

∫ ∞
0

K2〈σ(2)
np 〉e−K/Tmχ

[∫ ∞
1/
√
B
dx1

∫ ∞
1/
√
B
dx2(x1 + x2)

+2

∫ ∞
1/
√
B
dx1

∫ 1/
√
B

1
dx2 x1

](√
(x2

1 − 1)(x2
2 − 1)

(x1 + x2)4

)[
4 + x1x2(3x2

1 + 4x1x2 + 3x2
2)

+(5x2
1 + 12x1x2 + 5x2

2)
]
,

(D.6)

where the first integral over dxi correspond when both pair-produced DM have energy

above the escape energy mχ/
√
B and the second one when only one of them does.

For the electron-positron annihilation term the full form of the production above a

certain energy threshold is very complicated due to the average over the initial electron

7 Another option is to introduce a hard cutoff on the DM energy such that ω1 + ω2 ≤ |~p1 − ~p2|2/(4mp),

where ~p1(2) are the nuclei initial momentum. This guarantees that the produced energy is smaller than

the COM kinetic energy of the nuclei. We found that the exponential regulator gives a smaller (and thus

more conservative) rate, and also that it gives an answer that is closer to satisfying detailed balance when

compared to the absorption rate.
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and positron momentum. In order to simplify our treatment we compute the luminosity

such that half the COM energy
√
s/2 is above mχ/

√
B and consider that

√
s/2 of energy

is carried away (i.e. we only consider the energy carried by the particle which gains energy

from the boost from the COM frame to the star frame). Since we do not include the

enhancement of the energy due to the boost, and only consider one of the produced DM

particles for the luminosity, this leads to a conservative estimate. Using this the luminosity

from electron positron annihilation is given by

dLe+e−

dV
=

4αy

3π3m4
χ

∫
dω1dω2 ω

2
1ω

2
2(

e(ω1+µ)/T + 1
) (
e(ω1−µ)/T + 1

)Θ(ω1ω2 −m2
χ/B)

×
∫ 1−

2m2
χ

ω1ω2B

−1
d cos θ

√
ω1ω2(1− cos θ)

2
−m2

χ

[
2ω1ω2(1− cos θ) + 2m2

χ

]
,

(D.7)

where the Θ ensures that the COM energy is above the escape energy.
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