
SC I ENCE ADVANCES | R E S EARCH ART I C L E
COMPUTER SC I ENCE
1School of Physics, Georgia Institute of Technology, Atlanta, GA, USA. 2School of
Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA.
*Corresponding author. Email: flavio.fenton@physics.gatech.edu

Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
Copyright © 2019

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

originalU.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).
D
ow

nlo
Real-time interactive simulations of large-scale systems
on personal computers and cell phones: Toward
patient-specific heart modeling and other applications
Abouzar Kaboudian1, Elizabeth M. Cherry2, Flavio H. Fenton1*

Cardiac dynamics modeling has been useful for studying and treating arrhythmias. However, it is a multi-
scale problem requiring the solution of billions of differential equations describing the complex
electrophysiology of interconnected cells. Therefore, large-scale cardiac modeling has been limited to
groups with access to supercomputers and clusters. Many areas of computational science face similar prob-
lems where computational costs are too high for personal computers so that supercomputers or clusters
currently are necessary. Here, we introduce a new approach that makes high-performance simulation of
cardiac dynamics and other large-scale systems like fluid flow and crystal growth accessible to virtually
anyone with a modest computer. For cardiac dynamics, this approach will allow not only scientists and
students but also physicians to use physiologically accurate modeling and simulation tools that are
interactive in real time, thereby making diagnostics, research, and education available to a broader audi-
ence and pushing the boundaries of cardiac science.
aded

 on July 19, 2019

http://advances.sciencem
ag.org/

 from

INTRODUCTION
Heart disease remains the leading cause of death worldwide (1), with
fatal cardiac disease often associated with spatiotemporal disorga-
nization of the normal electrical signal that drives the ventricles’ con-
traction (2–4). This disruption can require immediate intervention, as
with ventricular fibrillation (VF), or, as with atrial fibrillation (AF),
may last for years with impaired quality of life and increased risk for
other cardiac diseases like stroke. VF generally can be treated by ex-
pensive implantation of a cardioverter defibrillator in at-risk patients.
AF has no widely effective long-lasting treatment option; for example,
catheter ablation to interrupt repetitive abnormal electrical activity is
not effective for all patients and often requires follow-up treatments
(5). It may be possible to improve outcomes in both cases by designing
patient-specific prevention, control, or therapy. However, the advance-
ment and widespread adoption of these approaches requires new com-
putational tools that are fast, accessible, and easy to use.

Personalized treatment tools are likely to use individualized car-
diac anatomies populated with mathematical representations of car-
diac cells. Numerous mathematical cardiomyocyte models based on
ion channel currents have been developed (6); they have helped in
understanding arrhythmia mechanisms (7), designing methods for
control and defibrillation (8), and studying proarrhythmic and anti-
arrhythmic drug effects (9). Thus, numerical simulations of cardiac
dynamics are becoming increasingly important in addressing patient-
specific interventions (10) and evaluating drug effects (11). The U.S.
Food and Drug Administration (FDA) recently sponsored a new Car-
diac Safety Research Consortium initiative [Comprehensive In Vitro
Proarrhythmia Assay (CiPA)] (11, 12) that specifies the use of mathe-
matical cardiac models to aid proarrhythmic drug risk assessment. A
complicating factor is that mathematical models have become extreme-
ly complex, with some needing 50 to 100 complex differential equations
to account for all the processes of a cell (6), leading to two main prob-
lems. First, these models require substantial expertise to run even
without considering behavior that arises through intercellular cou-
pling, in 2D (two-dimensional) and 3D; only a handful of groups in
the world have the necessary coding expertise and access to super-
computers to run complex cell models in 2D and 3D. Second, under-
standing the roles of the many variables and parameters used in these
models, which is necessary to develop and validate personalizedmodels,
requires extensive and time-consuming parameter sensitivity studies
and uncertainty quantification analysis (13).

Although our main interest is in cardiac modeling, the high com-
putational cost of modern numerical simulations is not limited to
cardiac simulations. Various different fields such as fluid mechanics,
elastic solidmechanics, fluid-solid interaction problems, geophysical
modeling, and even astrophysical simulations impose huge compu-
tational demands that are currently addressed through utilization of
supercomputers.

To tackle these problems andmake progress in producing tools use-
ful for computer-aided therapy planning, large-scale parallelization is
necessary. The current hardware solution to significantly increase
computational bandwidth is to use graphics processing units (GPUs).
A typical central processing unit (CPU) can solve about 108 ordinary dif-
ferential equations (ODEs) per second, whereas a modern consumer-
level GPU through parallelization can solve 3 × 1010 to 4 × 1010 ODEs
per second. However, the development and maintenance of codes that
efficiently use GPU resources are currently challenging: Specialized
knowledge of GPU architecture is required for maximum benefit, and
coding specificationsmay change depending on the operating systemor
GPU device used.

To overcome many of these challenges, we have developed a fast
simple library using Web Graphics Library (WebGL 2.0), which is a
combination of a JavaScript Application Programming Interface and
GLSL (OpenGL Shading Language with a syntax similar to C-C++).
WebGL codes execute in parallel on the GPU and run interactively
through HTML-5 canvas element on any modern web browser. WebGL
2.0 and JavaScript are, by design, independent of the device and operating
system and do not require any plugins or toolkits. Therefore, recompila-
tion of software under WebGL and JavaScript is not needed, even when
switching operating systems or hardware. Instead, programs are broadly
1 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E
accessible and easy to maintain: They can be downloaded from a web-
site and run locally by simply clicking on their web link. Furthermore,
visualization and interactivity are directly included at run time.

Here, we propose a significant step toward achieving the ability of
personalized computing for the treatment of cardiac disease by (i) har-
nessing the power of GPUs for high-performance scientific computing
via WebGL and (ii) developing a fast specialized library (Abubu.js)
for efficient simulations of complex partial differential equations that
model complex cardiac cell models in tissue, including physiologi-
cally accurate simulations on ventricular and atrial structures. (iii)We
validate these tools with near–real-time simulations of models that
quantitatively reproduce experimental data. (iv) We further show
the versatility of the library andWebGL codes by applying it to other
computationally expensive problems that are not related to cardiac
dynamics such as crystal growth and fluid flow.
 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

MODELS
Modeling cardiac electrophysiology from single cells
to tissue
The electrical dynamics of cardiac cells is typically modeled by using
ODEs to describe the various ionic currents (6) that produce the cell
membrane’s change in voltage, called an action potential (AP), that
triggers the release of intracellular calcium, leading to the cell’s contrac-
tion. In tissue, the voltage is modeled by a nonlinear reaction-diffusion
equation (14) known as the cable equation

∂V
∂t

¼ ∇:ðD∇VÞ � SJ ion

where V is the transmembrane potential,D is the diffusion tensor that
contains the tissue’s structure and rotational anisotropy (2, 14), and
SJion indicates the sum over all ionic currents for the cell (6). This equa-
tion assumes that the extracellular tissue is grounded, an approximation
that holds for most studies of cardiac dynamics except for those that
require extracellular effects such as defibrillation studies; in these cases,
a bi- or tridomain model is required (8, 15).

Most models use a Hodgkin-Huxley approach to model ionic cur-
rents, where the current density followsOhm’s law but with the conduct-
ance a highly nonlinear function. The current through each ion channel
is determined, in part, by one or more gating variables of the form

dy
dt

¼ y∞ðVÞ � y
tyðVÞ

where y∞ is the voltage-dependent steady-state value of the gate y and ty
is the voltage-dependent (activation or inactivation) time constant of
the gate. Some ion channels open and close in response to other factors
as well, such as intracellular Ca2+ or extracellular K+ concentration. Some
models use a Markov chain approach to model some of the ion currents
by using discrete states representing various configurations of the channel
along with allowable transitions. Models also include pumps and
exchangers to model ion transport across the membrane by active pro-
cesses rather than simple diffusion and complex intracellular calcium
handling that accounts for calcium released from the sarcoplasmic re-
ticulum (SR), ion diffusion within the SR and cytoplasm, and reuptake
of calcium back into the SR.

The number of variables and ODEs required for a particular model
in a single cell depends on the number of detailed ionic currents, pumps,
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
exchangers, and ion concentrations used (6). In this work, we use some
of the most popular models, including a 4-variable minimal model
(MM) (16) and two human ventricular cell models, the 19-variable ten
Tusscher-Panfilov (TP) model (17) and the 41-variable O’Hara et al.
(OVVR)model (18), to illustrate how it is possible to simulate and interact
in real timewith complexmodels in 2D and 3D. Solving thesemodels in
real time in 2D tissues can require asmany as 10 to 100 billionODEs for
1 s of simulation; using a 3D heart structure can require solving 200
times more equations per second, which is several orders of magnitude
greater than the speeds possible for current CPU-based computers.

Modeling other fields: Fluid flow and crystal growth
The exorbitant computational costs for modeling physical systems are
not specific to the field of cardiac dynamics. For example, fluid flow
around or between obstacles is a common phenomenon in applications
that range from offshore oil and gas risers (19), wind turbines (20), air-
planes, civil structures, and cooling towers in thermal power plants (21)
to small-scale problems such as blood flow in vessels, flow in porous
media, andmanymore. In external flows, vortex shedding subjects struc-
tures to cyclic loading that, in turn, can lead to fatigue problems in
the structures. Fatigue reduces the life of structures significantly, leads to
structural failure, and can have significant financial burden and fatal
consequences with huge environmental impacts in some applications
such as offshore oil and gas. Hence, simulations at the design stage
can help facilitate suppression or minimization of such cyclic loading.
However, these simulations usually require massive computations due
to small length scales either in fluid flow or in the structures that de-
mand a high spatial resolution as well as stiff differential equations that
require small temporal resolutions and thus the use of supercomputers.

Hydrate and crystal formation and dissolution is another field that
has broad applications in geophysical studies and metallurgy with
uneven solidification of solids, among others. The phase-transition
phenomena that happen in the presence of fluid flow have extra layers
of complexity that also often require the use of supercomputers.

These problems can be solved, for example, by using a lattice
Boltzmann method (LBM), which can be easily parallelized (22).
While the LBM formulations can benefit significantly from parallel-
ization, they still require a parallel platform. Traditionally, super-
computers have been the platform of choice for the LBM methods.
In this work, we have also used our developed library Abubu.js to
implement the LBM formulations for the fluid flow problem and the
crystal growth problem in WebGL.
METHODS
Numerical methods
While there have been efforts for creating interactive simulations of car-
diac and excitable models, they have been mostly done for relatively
simpler models (23, 24), so traditionally, complex multidimensional
simulations of cardiac dynamics as well as other computationally costly
models have been carried out using large supercomputers, but these
resources are expensive to acquire and maintain and are difficult for
nonspecialists to use. GPUs, a recent alternative to CPU computing,
solve some of these problems by providing a low-cost alternative. GPUs
provide thousands of computational cores that can carry outmathemat-
ical operations in parallel. In this way, they provide high-performance
computing at the personal device level.

However, programming GPUs for optimal performance presents
new challenges by requiring specialized knowledge and techniques that
2 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

vary with different operating systems and GPU hardware, making de-
velopment and maintenance of codes difficult. Several languages ex-
ist to develop programs for GPUs (25) and several implementations,
particularly CUDA, have allowed accelerations of simulations in
tissue (26) and for several complex models (27); however, the codes
need to be compiled and optimized for particular architectures (they
are executable only on NVIDIA graphic cards). Here, we provide an
alternative through Abubu.js to simplify developing computation-
al codes that are cross-platform, do not require explicit compilation by
developers or users, and can be easily accessed and executed simply
by visiting a webpage. We further show examples that enable simula-
tions to run several orders of magnitude faster on personal computer
(PC) GPUs.

Developing WebGL computational codes using Abubu.js
WebGL 2.0 is a relatively low-level application program interface (API)
developed to display 2D and 3D graphics in a modern web browser.
Hence, using it to carry out numerical simulations can be quite daunt-
ing for programmers who might not be well versed in graphics card
programming. In this work, we have developed a library, Abubu.js,
that removes most of the complexities involved in dealing with the
graphical aspect of the programming and instead allows users to
focus on developing numerical programs that can easily run in a
modern web browser and harness the immense power of the GPU.
Furthermore, by default, simulation results can be directly plotted
on the screen, thereby directly integrating visualization and interac-
tion with the computation.

In this section, we briefly review the programming process for im-
plementing a model in WebGL using the Abubu.js library for an
example cardiac model. For this example, we have developed an MM
(consisting of three variables) to describe porcine cardiac electrophys-
iology (see the “Experimental methods” section). Therefore, the de-
scription below serves two purposes: to present the equations of a
new model for porcine ventricular cells and to show how to imple-
ment it in WebGL for simulations in 2D and 3D using our library.
The general idea behind Abubu.js is the use of rectangular
images, otherwise known as textures, as the primary data structure.
Each image naturally contains a grid of pixels, and each pixel contains
four color channel values, namely, red, green, blue, and alpha. In our
paradigm, by assigning a physical variable to each color channel, we
can treat each pixel of an image as a numerical grid point. While this
is not the first time to use images as data structures (28), our library fa-
cilitates the use of these data structures as input and output so that pro-
grammers who are not experts in the graphical pipeline design can easily
start implementing the numerical models with minimal effort. Further-
more, our library allows easy output to multiple textures to facilitate
programming models with tens of variables per point in space.

To further clarify this step, consider the following three-variable
MM of porcine ventricles, which follows a formulation similar to the
Hodgkin-Huxley model of a neural membrane potential (29)

∂u
∂t

¼ ∇:ðD∇uÞ � ðIfi þ Isi þ IsoÞ=Cm

where u is the normalized transmembrane potential;D is the diffusion
tensor describing tissue structure; Ifi, Isi, and Iso are the fast inward, slow
inward, and slow outward ionic currents that roughly equate to a total
sodium current, a total calcium current, and a total potassium current;
and Cm is the membrane capacitance. The currents are given by
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
Ifi ¼ � vpðu� 0:1Þð0:97� uÞ
0:175

Isi ¼ �w
f1:0� tanh½10:0ðu� 0:9Þ�g 1:0þ tanh½7:0ðu� 0:35Þf �g

62:0f1:0þ exp½4:5ðu� 0:9Þ�g

Iso ¼ uð1:0� pÞð1:0� vÞ
4:5

þ p
5:0þ15:0f1:0� tanh½50:0ðu� 0:85Þ�g

where v and w are sodium and calcium gating variables that are
governed by

dv
dt

¼ ð1:0� pÞð1:0� vÞ
40:0qþ ð1:0� qÞ2000:0�

pv
10:0

dw
dt

¼ ð1:0� pÞð1:0� w4Þ
305:0

� pw
320:0

p and q are thresholding variables used to define the step functions
in the model and are calculated by

p ¼ Hðu� 0:25Þ
q ¼ Hð0:0025� uÞ

Here, H is the Heaviside function defined to be 1 if its argument
is nonnegative and 0 otherwise. The procedure for parametrization
and validation of this model follows in the next sections.

2D Implementations using Abubu.js
Assuming a 512 × 512 2D numerical grid, we can use the following utility
function to define two textures/images for time-stepping the solution.

var fuvw = new Abubu.Float32Texture(512,512) ;
var suvw = new Abubu.Float32Texture(512,512) ;

Because the codes that use these textures as input and output are
massively parallel, to avoid certain sharedmemory parallelization prob-
lems such as competition for data,WebGLdoes not allow any texture to
be used as both the input and the output of a WebGL program at the
same time. Hence, in each particular time step, when fuvw is the input
texture, suvw is the output texture, and neither is both the input and the
output at the same time. However, it is possible to switch their roles in a
subsequent time step to facilitate time stepping.

At the heart of a numericalWebGL code are fragment shader codes.
Fragment shaders are the part of the graphical pipeline in charge of
coloring every pixel/fragment on the surface of a geometry. The pro-
grammer writes a single series of instructions for coloring all the pix-
els. The WebGL program launches this series of instructions in
parallel with all the available resources (computational cores in the
GPU) and colors batches of pixels at the same time, which results in a
massively parallel code. The details of launching and decomposing
the domain into batches are hidden from the programmer, which
significantly simplifies the parallel programming of the numerical
models. This philosophy is in line with that of the Single Program,
Multiple Data (SPMD) paradigm.

The shaders are programmed in GLSL, which is a C-like language
with some additional features and limitations compared to C, as the
codes are to run on the GPU. A quick reference for WebGL 2.0 and
the GLSL language has been released by the Khronos Group, which
can be found at the khronos.org website.
3 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

D
ow

nloaded from
We note that u, v, and w are the only state variables of this model.
Subsequently, we can start implementing the WebGL code for this
model by assigning the u, v, and w variables to the red, green, and blue
channels of the texturesfuvw andsuvw.Wewill use the forward Euler
time-stepping scheme for all the time derivatives in the model and a
second-order central difference scheme for the Laplacian operator in the
equation of the voltage. For simplicity, and without loss of generality,
wewill assume a uniform and isotropic diffusion tensorwherewe do not
consider fiber orientation for this example.

The corresponding GLSL fragment shader code for this model is
given below.

/*——

* precision of the floats and integers

*———————————————————————————————————————

*/
precision highp float;

precision highp int ;

/*——

* Interface variables

*———————————————————————————————————————

*/
in vec2 pixPos ; /* position of the pixel
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27

http://advances.scien

center on the the tex-

ture. The coordinates
are normalized and are
(0,0) for the bottom-
left corner and (1,1)
for the top-right
corner of the texture.
The coordinates are of
type vec2 and are in
(x,y) format. */
 cem

ag
uniform sampler2D inUvw ; /* input texture to the
.o
program */

rg/
uniform float ds_x, ds_y ; /* domain size in the x
on
and y directions */
 July 1
uniform float dt ; /* time-step (Delta t) */

uniform float diffCoef,C_m ; /* diffusion coefficient
9,
and cell capacitance */
 2019
/*——

* output textures of the shader

*———————————————————————————————————————

*/
layout (location = 0) out vec4 outUvw ;

/*==

* Main body of the shader

*==
*/

void main() {

vec2 cc = pixPos ;

vec2 size = vec2(textureSize(inUvw, 0)); /* reading
March 2019
size of the
texture */
float width = size.x ; /* width of the texture */

float height = size.y ; /* height of the texture */

float cddx = size.x/ds_x ; /* 1/delta_x */

float cddy = size.y/ds_y ; /* 1/delta_y */

cddx *= cddx ; /* 1/delta_xˆ2 */

cddy *= cddy ; /* 1/delta_yˆ2 */
/*——

* reading from textures

*———————————————————————————————————————

*/
vec4 C = texture(inUvw , pixPos) ;/* read color value
of pixel */
float u = C.r ; /* extract u from red

channel */
float v = C.g ; /* extract v from

green channel */
float w = C.b ; /* extract w from blue

channel */
/*——

* unit vectors

*———————————————————————————————————————

*/
vec2 ii = vec2(1.,0.)/vec2(width,height) ; /* x-dir unit
vector */
vec2 jj = vec2(0.,1.)/vec2(width,height) ; /* y-dir unit

vector */
/*——

* Calculating Laplacian of voltage

*———————————————————————————————————————

*/
/* du2dt is du/dt. We initialize it with the diffusion
term */
float du2dt =((texture(inUvw , cc+ii).r

- 2.*u

+ texture(inUvw , cc-ii).r)* cddx

+ (texture(inUvw , cc+jj).r

- 2.*u

+ texture(inUvw , cc-jj).r) * cddy)
*diffCoef ;

/*——

* Calculating derivatives of dv/dt and dw/dt

*———————————————————————————————————————

*/
float p = 0. ;

float q = 1. ;

if (u >= 0.25) p = 1.0 ;

if (u >= 0.0025) q = 0.0 ;

float dv2dt = (1.0-p)*(1.0-v)/
(40.0*q+(1.0-q)*2000.0)

-p*v/10.0 ;

float dw2dt = (1.0-p)*(1.0-w*w*w*w)/305.0

-p*w/320.0 ;

/*——

* Calculating currents

*———————————————————————————————————————

*/
float Ifi = -v*p*(u-0.1)*(0.97-u)/0.175 ;

float Iso = u*(1.0-p)*(1.0-v)/4.5

+ p/(5.0+15.0*(1.0-tanh(50.0*(u-0.85)))) ;

float Isi = -w*((1.0-tanh(10.0*(u-0.9)))/2.0)*

(1.0+tanh(7.*(u-0.35)))/

((2.0*15.5)*(1.0+exp((u-0.9)*4.5))) ;

if (u < 0.05) Isi = 0.0 ;

du2dt -= (Ifi+Iso+Isi)/C_m ; /* adding reaction terms
to du/dt */
4 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E
/*——

* The forward Euler time integration and updating variables

*———————————————————————————————————————

*/
C.r = u + du2dt*dt ; /* march u in red channel */

C.g = v + dv2dt*dt ; /* march v in green channel */

C.b = w + dw2dt*dt ; /* march w in blue channel */

/*——

* ouputting the shader

*———————————————————————————————————————

*/
outUvw = C ; /* set the output as the updated color */

return ;

}

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

Many lines of this code are self-explanatory, and comments have
been added throughout to further clarify the purpose of each in-
struction. The variable declarations in the interface section of this code
are the variables that arrive at the GPU, either from the CPU side or
from previous GPU calculations. The interface variables are differen-
tiated into three general categories: ins (also known as varyings), uni-
forms, and outs. Ins (varyings) are variables that can vary from pixel to
pixel and are to be calculated in a separate part of theWebGL program
called the vertex shader, which is mainly in charge of calculating the
position of points and pixels in the graphical pipeline. All our com-
putational codes use a generic vertex shader program, which can be
seen below.

precision highp float ; /* high precision for floats */

out vec2 pixPos ; /* position of the pixel center;

see the fragment shader for

more details. */

void main() {

pixPos = position.xy ; /* set the pixel position to the
position of the points. */

/* The following line calculates

the position of each pixel on the sreen. */

gl_Position=vec4(position.x*2.-1.,position.y*2.-1.,0.,1.0);

}

This code is identical in all our demonstrated cases and does not
require modification. Uniforms are variables that are uniformly defined
for all the pixels that are to be colored using the fragment shader. Outs
are variables that are the output of the fragment shader for the particular
pixel that is colored in the shader.

Because almost all the computation happens in the fragment shader,
we concentrate on the fragment shader code. Themost noteworthy var-
iable declarations in the fragment code are the following:

uniform sampler2D inUvw ;

and

layout (location = 0) out vec4 outUvw ;

where the former indicates a handle to the entire texture/image that
enters the shader and the latter is the color calculated for the frag-
ment/pixel through the shader. We should note that the input tex-
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
ture inUvw, which is of type sampler2D, is uniformly defined for
all pixels. This implies that each pixel will have access to the entire
texture/image for reading. However, each pixel writes its own value
into the output texture.

The shader source codes must be passed to Abubu.js as string
variables. Hence, the vertex and fragment shader source codes can be
stored as JavaScript string variables, or they can be saved into text files
separately and loaded at run time into JavaScript variables using an
asynchronous JavaScript file loader such as require.js. Assuming that
the source codes for the vertex and fragment shaders are already stored
in JavaScript variables compShader and vertShader, we can de-
fine a program that receives the input textures and writes the output tex-
tures as follows.

var comp1 = new Abubu.Solver({

vertexShader : vertShader,

fragmentShader : compShader,

uniforms : {

inUvw : { type : 't', value: fuvw } ,

ds_x : { type : 'f', value: 8 } ,

ds_y : { type : 'f', value: 8 } ,

dt : { type : 'f', value: 0.02 } ,

diffCoef : { type : 'f', value: 0.001 } ,

C_m : { type : 'f', value: 1.0 } ,

} ,

renderTargets: {

outUvw : { location : 0 , target : suvw } ,

}

}) ;

The above instruction automatically defines aWebGLprogramwith
the aforementioned source codes; automatically pairs the fuvw texture
with inUvw in the shader source code; and sends the necessary values
for the domain size, time-stepping information, etc., to the GPU. It also
pairs the output of the program source code outUvw with the texture
suvw. By using Abubu.js, this short snippet of code hides many de-
tails that otherwise would need to be implemented in a very peculiar
way through numerous lines of code due to the internal complexities
of the graphical pipeline. Whenever we are using one of the Abubu.js
calls or calls to variables that have been defined using Abubu.js, the
library hides various details of the WebGL setup and provides an ab-
stracted environment that can be easily understood and implemented
by a “novice” programmer. By calling the line

comp1.render() ;

the solution can be marched forward one time step in our JavaScript
code from fuvw into suvw. To create a full time-stepping loop and
to avoid swapping the textures without updating the solution once,
we define a second solver with the same source code as follows.

var comp2 = new Abubu.Solver({

vertexShader : vertShader,

fragmentShader : compShader,

uniforms : {

inUvw : { type : 't', value: suvw } ,

ds_x : { type : 'f', value: 8 } ,

ds_y : { type : 'f', value: 8 } ,

dt : { type : 'f', value: 0.02 } ,
5 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

diffCoef: { type : 'f', value: 0.001} ,

C_m : { type : 'f', value: 1.0 } ,

} ,

renderTargets: {

outUvw : { location : 0 , target : fuvw } ,

}

}) ;

The only difference between comp1 and comp2 is that the pairing
between input and output textures is swapped for comp2. This means
that rendering comp2 will result in marching the solution forward one
time step from suvw into fuvw. Rendering comp1 and comp2 se-
quentially will result in updating the solution from fuvw into itself over
two time steps without using the texture as both the input and the output
simultaneously in any single time step update.

Additionally, we have implemented a few visualization tools in
Abubu.js that can be easily incorporated in the code. Plot2D is
one such tool. For example, by using the following block of code,
we can set up a simple program to visualize the membrane potential
as the computation progresses.

var disp = new Abubu.Plot2D({

target : fuvw ,

channel : 'r',

colormap : 'jet',

canvas : document.getElementById('canvas_1') ,

minValue : 0 ,

maxValue : 1.0 ,

});

This code will create a colorplot of the red channel of the texture
fuvw each time we call disp.render(); in our JavaScript
code. The canvas element, which actually displays the colorplot here,
has the id='canvas_1' tag in the HTML code that is servicing the
JavaScripts. It will use the “jet” colormap for colormapping. The range
of values used for plotting will be between 0 and 1.

At this point, we can complete the time-marching and visualization
loop of the program, which can be implemented as the following
function.

var run = function(){

var frameRate = 2400 ; /* maximum number of time
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 2
steps solved per second
of wall-time, assuming
that the screen refresh
rate is 60 Hz. */
/* time-marching loop */

for(var i=0 ; i <frameRate/120 ; i++){

comp1.render() ;

comp2.render() ;

}

disp.render() ;

requestAnimationFrame(run) ;

}

By calling this function once, we will run the time-marching loop
20 times to update the solution for 40 time steps before we update the
display canvas that was set up earlier. When the drawing process on
the canvas is finished, we request another animation frame by recur-
sively calling the same function again, and the infinite loop continues.
7 March 2019
The for loop in the function is used to update the display less fre-
quently as most screens refresh at 60 Hz. Thus, if we were to update
the display every time step, the plotting part would become the
bottleneck of the program and we would be able to advance the so-
lution only 120 times per second of wall time (60Hz×2 timesteps/
disp.render() = 120 time steps per second). With this loop, we
can overcome this issue and advance the solution much faster, in this
case, 2400 time steps per second of wall time (60Hz×40 timesteps/
disp.render() = 2400 time steps per second). Depending on the
chosen frameRate that we choose and the graphics card that is
used, these solutions can become significantly faster. For example,
on a NVIDIA TITAN X (Pascal) graphics card, it is possible to run
up to 38,000 time steps per second of wall time for this model on
512512 grid. This means that the simulation in 2D runs faster than
real time; in particular, for a side-by-side view of an experiment of a
2D monolayer of porcine tissue (6 cm × 6 cm) and a simulation on
the model on a TITAN X of the same size, the simulation would be
at least three times faster.

Extension of WebGL computational codes to 3D settings
Asmentioned earlier, the primary data structure for numerical compu-
tations in the library is a rectangular grid/image. This type of data struc-
ture increases the efficiency of the WebGL programs through
simplifying the parallelization and workload balancing on the GPU. Al-
though the underlying data structures in the WebGL applications re-
main rectangular grids/images, the extension to 3D simulations is still
straightforward and can be achieved by considering the entire domain
to be a large image that is a grid of sub-images, where each sub-image
corresponds to a slice of the third dimension. Assuming that the data
are arranged in an mx by my grid, we can use the following function in
our fragment shaders to access the data structure.

// Accessing 3D coordinate (texCoord) of 'S' sampler

vec4 Texture3D(sampler2D S, vec3 texCoord)

{

vec4 vColor1, vColor2 ; /* colors on bottom and top

slices */
float x, y ; /* coordinate on the 2D

data structure */
float wd = mx*my - 1.0 ; /* max slice number in S */

float zSliceNo =

floor(texCoord.z*mx*my) ; /* bottom slice no */

x = texCoord.x / mx ;

y = texCoord.y / my ;

x += (mod(zSliceNo,mx)/mx) ;

y += floor((wd-zSliceNo)/ mx)/my ;

vColor1 = texture(S, vec2(x,y)) ; /* color on bottom
slice */

zSliceNo = ceil(texCoord.z*mx*my) ; /* top slice no */

x = texCoord.x / mx ;

y = texCoord.y / my ;

x += (mod(zSliceNo,mx)/mx) ;

y += floor((wd-zSliceNo)/ mx)/my ;

vColor2 = texture(S, vec2(x,y)) ; /* color on top slice */

// Interpolating between the top and bottom slice to

// get the color for the texCoord.z

return mix(
6 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

vColor2,

vColor1,

zSliceNo/(mx*my)-texCoord.z

) ;

}

Using such a data structure actually facilitates importing personal-
ized data. As needed, computerized tomography (CT) scan data for the
ventricular or atrial structures can be easily imported into the WebGL
programs as images because segmentations will come exactly in that
format and avoid the need of meshing or remeshing. Similarly, fiber
orientation data can be imported and used in the WebGL programs
in the same way from diffusion tensor MRI images, further increasing
the facility of the programs of the library. In this work, the irregular
boundaries from the 3D structures are handled by a well-established
phase-field method (30). However, it is possible to use the same image
data structures to store connectivity and coordinate information about
computational meshes to be used for methods such as finite volume or
finite elements.

Experimental methods
To develop some of themodels used for this study as well as to compare
and quantify the results obtained from these models when simulated in
full 3D anatomically accurate ventricular structures to experiments in
similar conditions, we have performedmicroelectrode and opticalmap-
ping experiments in rabbit and porcine hearts.

All animal experiments were approved by the Animal Care Com-
mittee of Georgia Tech, Atlanta, and were carried out in accord-
ance with the Guide for the Care and Use of Laboratory Animals,
published by the U.S. Public Health Service. Methods for obtain-
ing the preparations are as follows. After anesthesia with Fatal-Plus
(pentobarbital sodium, 390 mg ml−1; Vortech Pharmaceuticals Ltd.;
86 mg kg−1, intravenously), hearts were excised rapidly via a left
thoracotomy and placed in cold, aerated (95% O2–5% CO2) Tyrode
solution containing 124 mM NaCl, 4.0 mM KCl, 24 mM NaHCO3,
0.9 mM NaH2PO4, 2.0 mM CaCl2, 0.7 mM MgCl2, and 5.5 mM
glucose, adjusted to pH 7.4 with NaOH. For small hearts, the heart
was cannulated from the aorta, and for larger hearts, the right and left
coronary arteries were cannulated individually and the heart was per-
fused with Tyrode solution.

Microelectrode recordings
To fit the AP shape to the MM, microelectrodes were used on the sur-
face of the heart. The preparations were stimulated using rectangular
pulses of 2-ms duration and two to three times the diastolic threshold
current (0.1 to 0.3 mA) delivered through Teflon-coated bipolar silver
electrodes. Transmembrane APs at different pacing cycle lengths were
recorded at 1 kHzusing standardmicroelectrodes filledwith 3mMKCl.
Examples of APs recorded at steady state in a variety of tissue prep-
arations are shown in figs. S2 and S5. Such APs exhibit much less
noise and a more pronounced upstroke than those obtained using
optical mapping.

Optical mapping for voltage propagation in whole hearts
Electrical activity was assessed by voltage optical mapping using flu-
orescent imaging to map activation waves on the epicardial surfaces.
Blebbistatin (10 mM) was added to the perfusate to prevent motion
artifacts. Perfusion pressure was 50 to 80 mmHg, flow rate was 25ml
min−1, and physiological temperature was maintained at 37.0° to
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
38.0°C. After equilibration, the preparation was stained with di-4-
ANEPPS (10 mM), a voltage-sensitive dye.

For optical mapping, excitation light was produced by 18 high-
performance light-emitting diodes (Luxeon III Star, LXHL-FM3C;
wavelength, 530 ± 20 nm), 9 for the top view and 9 for the bottom
view, driven by a low-noise constant current source. The illumina-
tion efficiency was enhanced significantly by collimator lenses (Luxeon,
LXHL-NX05). The fluorescence emission light was collected by a
Navitar lens (DO-2595; focal length, 25 mm; F/no., 0.95), passed
through a long-pass filter (<610 nm), and imaged by 128128 back-
illuminated electron-multiplied charge-coupled device array (Photo-
metrics Cascade 128+), a camera providing high quantum efficiency
(QE) (peak QE > 90%). The signal was digitized with a 16-bit A/D
converter at a frame rate of 511 Hz (full frame, 128128 pixels). The
peripheral component interconnect (PCI) interface provided high-
bandwidth uninterrupted data transfer. An acquisition toolbox using
C and Java was developed and used for experimental control, display,
and data analysis, together with custom-made drivers for camera con-
trol and readout developed usingC andOpenGL. Further description of
protocols for measuring AP duration and conduction velocity restitu-
tion curves aswell as for initiation and termination of fibrillation and for
data analysis can be found in the Supplementary Materials.
RESULTS
Here, we show for the first time the feasibility of performing fast
interactive simulations of large problems such as heart arrhythmias,
which traditionally require supercomputers (31), locally on a PC. We
illustrate some of the new possibilities that these fast simulations can
provide along with direct quantification of 3D simulations with optical
mapping experiments in full hearts. We also show the versatility of our
approach using the new library by illustrating applications to other
fields such as turbulent fluid flow and crystal growth.

Modeling 2D heart tissue
Many of the most dangerous and deadliest electrical arrhythmias such
as tachycardia and fibrillation originate via reentrant waves (spiral
waves) of electrical activity. Spiral waves can exhibit a large range of be-
havior from pinned spirals, attached to anatomical heterogeneities, to
functional spirals whose dynamics is given by the electrophysiological
conditions of the tissue. Spiral waves can thus be stable with a variety of
tip trajectories (32) or can be unstable via many mechanisms (33). In
Fig. 1 (A and B), we show two types of spiral wave reentry obtained
experimentally from optical mapping: one in the high-excitable regime
following a linear core trajectory and one in the lower excitable limit
following a circular core. Below are voltage snapshots from corre-
sponding simulations using the OVVR human cell model simulated
in space with excitability parameters modified to reproduce the wave-
length, period, and tip trajectory. Corresponding movies can be found
in the Supplementary Materials. Other types of tip trajectories such as
cycloidal, epicycloidal, hypocycloidal, and complex meandering along
with different breakup mechanisms are shown in fig. S6 with links to
interactive WebGL codes in Supplementary Programs.

It is important for patient-specific applications that models have
correct behavior, and because tissue behavior is not always well pre-
dicted from cells alone (14, 34), there is a need to perform parameter
studies to validate models and their emergent tissue-level behavior. For
example, there is no theory to predict, given a model in a single cell,
whether spiral waves will follow linear or circular cores (Fig. 1, A and B)
7 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E
or any transitional behavior in between (see the Supplementary
Materials for details and supplementary WebGL applications for
links to models).

Whilemuch effort has beenmade to account for the effects ofmodel
parameter values (13) and electrophysiological variability in cardiac
cell models (35, 36), no similar efforts exist to investigate the same
phenomena in spatially extended systems, where the dynamics can
be very different. Using a WebGL program, it is possible to quickly
generate a study in space (2D and 3D) of wave stability and behavior
as a function of keymodel parameters. For example, Fig. 1C shows for
the first time a parameter space study for a complex cell model per-
formed in tissue using the dynamics of the OVVR model in 2D as a
function of the L-type calcium versus sodium channel conductances.
The model, which consists of 41 differential equations per cell, was
simulated for 10 s (to reach steady state) in an 8 cm × 8 cm domain
(512 × 512 elements) for each of 36 different parameter combinations
(27 shown in the figure); it took less than an hour to run all the
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
parameter space simulations. A similar parameter space study for
gto, the fast transient outward potassium current conductance, versus
a calcium activation time constant can be found in fig. S7. These two
quick studies alone revealed a new type of dynamics not observed pre-
viously in cardiac models. The OVVR model has the potential for
inducing early afterdepolarizations (EADs) from high-curvature re-
gions that can destabilize spiral waves and lead to spiral wave breakup
and chaos (fig. S7). EADs are irregular activations in voltage that can
reactivate cardiac tissue and are thus considered proarrhythmic (37).

EAD behavior has been studied primarily in single cells, and
much debate exists on the requirements needed for activations to
overcome the small source-to-sink ratio for propagation (38).
However, here for the OVVR model, several combinations of mod-
ifications of the sodium, calcium, and potassium current parameter
values result in propagating EADs, most notable from highly con-
cave regions of the wave back (Fig. 1C and fig. S7). Recently Kang et al.
(39) studied the development of EADs using the OVVR model when
 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

Fig. 1. Spiral waves of electrical activity in heart tissue. As indicated by the color bar, blue is tissue that is polarized at −80 mV and red is excited tissue that is
depolarized at +20 mV. (A and B) Examples of spiral wave dynamics in two regimes. Experimental optical mapping (top) and numerical using the OVVR model (bottom)
showing three snapshots from a rotating spiral waves that follows a linear core trajectory (left) and circular core trajectory (right) traced in black. (C) Example of
parameter sweep using the OVVR model in 2D. A transition from linear to circular with some complex EAD formation in between is shown. (D) Effect of blocking
the potassium IKr current and development of EADs that lead to fibrillation only in 2D. See the Supplementary Materials for examples of other tip trajectories, another
parameter space study, and animations from the experimental data, and Supplementary Programs to run the WebGL codes.
8 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://advances.sciencem
D

ow
nloaded from

blocking the rapid delayed rectifier potassium current (IKr), but only
in an isolated cell due to the complexity of this model. Here, we extend
their analysis from an isolated cell to 1D cables and to 2D tissues (Fig.
1D). Noteworthy finds are that when IKr is blocked by 78% and a
single depolarizing stimulus is applied, no arrhythmic behavior ap-
pears in an isolated cell or in 1D, whereas in 2D tissue, sustained fi-
brillation results (see Fig. 1D, as well as movies in the Supplementary
Materials and WebGL code in Supplementary Programs). This exam-
ple of a single activation leading to chaotic behavior in 2D has not
been shown before in any cardiac model. The short IKr blockage
studies summarized in Fig. 1D took less than 7 min on an NVIDIA
1080Ti GPU to perform using WebGL for the epi, endo, and M cell
versions of the OVVRmodel. It is also important to mention that only
the M cell version of the model gave EADs; the epi and endo versions
were not able to induce EADs in an isolated cell or in tissue.

Modeling 3D heart tissue
In 3D cardiac tissue,more newbehavior emerges. For example, as spiral
waves become scroll waves in 3Ddriven by vortex filaments, topological
effects are now possible. As shown in Fig. 2, instabilities in the filament
(33) can elongate, curve, and twist it enough to create new filaments by
folding and by collisions with boundaries due to a negative tension in-
stability (33), rendering the system chaotic in 3D while its 2D counter-
part is completely stable. The complex intramural dynamics of 3D
vortices during tachycardia and fibrillation then become very important
when considering anatomically accurate heart structures (40).

Before patient-specific modeling can be achieved, quantitative vali-
dations of modeling in 3D with experiments are needed. Figure 3 (A
and B) presents results from amodel validation example using the por-
cine ventricles. The parameters of the MM were fitted to experimental
data collected by pacing porcine ventricles at different rates to obtain
characteristic curves that describe the adaptation of the tissue to pacing
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
period. These curves in physiology are known as AP restitution curves
and conduction velocity restitution curves (see the Supplementary
Materials). Once the AP shape and adaptation curves (figs. S2 and
S3) were fitted following standard methods (41), simulations were per-
formed in WebGL in a 3D accurate porcine ventricular structure; links
to the code are in Supplementary Programs. Depending on initial
conditions and stimulation locations, we could obtain sustained ventric-
ular tachycardia (VT) with a single spiral wave or VF with multiple
waves. Figure 3A shows two snapshots during the rotation of a spiral
wave from a simulation and from awhole-heart opticalmapping exper-
iment. Figure 3B shows one snapshot during fibrillation for the sim-
ulation and experiment.

The 3D simulations (Fig. 3, C and D) agree quantitatively with
experimental data (42, 43), including our own (see the Supplemen-
tary Materials for details), thereby validating the individualized
model. Overall, the model is able to reproduce several key properties
from experiments, not only the AP shape (fig. S2) but also values for
APDmax = 255 ± 40 ms and dv/dtmax = 130 ± 10 V/s in experiments
versus 264 ms and 130 V/s, respectively, in the model. The minimal
diastolic interval (DI) and AP duration (APD) obtained from steady-
state restitution curves in the experiments were 45 ± 5ms and 95 ± 5ms
in our experiments [57 ± 6 ms and 107 ± 6 ms in Banville et al. (42)
versus 50 and 100 ms in the model]. We observed restitution curve
slope > 1 for DI < 90ms in our experiments andmodel, similar to the
85 ± 5 ms observed by Banville et al. (42); although there is a region
with slope greater than 1, the model is not able to produce alternans
in tissue, matching our experiments and those of Banville et al. (42).
For the simulations in 3D ventricles, we found that a single spiral
wave has a period of 176 ms versus 184 ± 15 ms in the experiments,
and a restitution curve obtained using all the points in the tissue cluster
close to the steady-state APD restitution curve in a way similar to our
experiments and to those of Lee et al. (43), as shown in fig. S4. For the
 on July 19, 2019
ag.org/
Fig. 2. Progression of an almost straight 3D scroll wave into complex turbulence in a box of 256 × 256 × 256 elements. Four snapshots of the evolution of a 3D
scroll wave denoted by a voltage surface plot (top) and its vortex filament (bottom). A negative tension instability elongates the vortex filament that separates into
new filaments as it touches the edges of the tissue. See Supplementary Programs to run the WebGL code.
9 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

http://advances.s
D

ow
nloaded from

case of sustained VF, the simulation shows a wider spread of the
APD versus DI plot, as shown in fig. S4, indicating a lower domi-
nant period as in our experiments and those of Banville et al. (42)
and Lee et al. (43).

Another expected application of 3D heart modeling is testing the
effectiveness of new pharmacological therapies for heart diseases
along with verifying that other drugs are safe for the heart, as re-
quired by the FDA. Here, we present an example to simulate the
effects of two drugs on rabbit ventricles. TheMMwas fitted to repro-
duce the effects of two drugs, diacetyl monoxime (DAM) and cyto-
chalasin D (CytoD), after which validation was performed within 3D
rabbit ventricles similarly to the porcine case already described. As
shown in fig. S5, theMMwas fitted to reproduce the rabbit AP shape
and upstroke frommicroelectrode data for both DAMand CytoD, as
well as their AP duration and conduction velocity restitution curves
from optical mapping data. Simulations of these two drugs in 3D
rabbit ventricles agreed with previous experiments (44) as well as
our own experiments using optical mapping of stable tachycardia
under DAMand fibrillation under CytoDwith quantitativelymatching
dominant frequencies.

Figure 3 (C and D) shows the simulation and experimental (optical
mapping) results for rabbit ventricles with DAM and CytoD. DAM de-
creases the APD and the ventricles can only sustain a single spiral wave,
whereas for CytoD, the APD is longer and there is more interaction
between the wave front and back when a spiral is initiated. This inter-
action can produce conduction block, leading to spiral wave breakup
and fibrillation that turns out to be transient, as themultiple spiralwaves
are not able to fit in the tissue size. We found the spiral wave dominant
period to be 134 ms in the 3D simulations versus 130 ± 10 ms in the
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
experiments for DAM and a broader range of periods for CytoD with a
peak centered at a higher period of 147 ms versus 150 ± 15 ms in the
experiments. Similar behavior has been observed previously by Banville
and Gray (44).

Personalized therapies will require running physiological models in
human anatomies. We show an example of this by simulating arrhyth-
mic conditions in a human atrial structure with the MM fitted to elec-
trophysiological clinical data obtained from five different patients (45).
The model was fitted to reproduce the APs obtained from a catheter at
various frequencies of stimulation. Figure 3 (E and F) illustrates mod-
eling results obtained using the models for the two different patients,
showing one with a single stable spiral wave (flutter) and another with
multiple waves (AF), as observed in the corresponding clinical cases.
These simulations of theMMcan be performed currently on a comput-
er (withNVIDIATitan-VGPU) at a speed that is 1/3 real time—that is,
1 s of arrhythmia in the patient is simulated in just 3 s. See Supplemen-
tary Programs for links to the WebGL models.

High-performance computing on cell phones
Because WebGL programs, by design, are independent of device and
operating system, they can be executed on any relatively modern device
with a GPU, from PCs to tablets and up to cell phones, with the main
restriction simply the available memory. Some high-end phones have
enough memory and powerful GPUs to run even 3D heart simulations
interactively and, in some cases, faster than older PCs. Figure 4 shows
examples of simulations of the complex TP and OVVR models on a
Galaxy S8 cell phone in 2D sheets and in 3D ventricles; the latter in-
volves solving up to 1.7 billionODEsper second (see the Supplementary
Materials for movies) on the cell phone’s GPU.
 on July 19, 2019
ciencem

ag.org/
Fig. 3. Single and multiple spiral wave activity on realistic 3D heart geometries. (A to D) Comparing experimental data with the interactive simulations. (A) Single
spiral wave (VT) and (B) fibrillation in porcine ventricles. (C) VT in rabbit with drug DAM. (D) Fibrillation in rabbit with drug CytoD. (E and F) Simulations of AF from
models fitted to patient data. See the Supplementary Materials for animations and details and Supplementary Programs to run the WebGL codes.
10 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

Applications to other fields
To present the capability of our library to implement large-scale non-
cardiac problems inWebGL, we have chosen to showcase two addition-
al systems. First, we considered a fluid flow problem in the presence of
obstacles implemented in WebGL using the Abubu.js library with a
LBM (46). ThisWebGL application demonstrates how a series of quick
simulations can help to predict fluid flow around obstacles at the design
stage. Slip boundary conditions are applied at the top and bottom of the
domain (47) for these simulations. A uniform velocity is applied at the
inlet on the left side of the domain, and a stress-free boundary condition
is applied at the right boundary of the domain. No-slip boundary
conditions are used at the surface of the cylinder and any obstacle that
is further added interactively at run time with the mouse. The domain
size is 1200 × 300 lattice points. A classic D2Q9 lattice is used for the
simulations, which implies that nine density equations need to be
calculated at each time step for every lattice point. Using an NVIDIA
Titan-V graphics card, wewere able to solve 4500 time steps per second
of wall time. The results are shown in Fig. 5, which shows the vorticity
field. The obstacles, whose locations are fixed, are visualized in white.
Figure 5A shows that the presence of a cylindrical object creates a clear
Von-Karman vortex street for Re = 54. Figure 5B illustrates how it is
possible to use these fast simulations to investigate how to suppress
the vortex shedding by interactively adding obstacles in the downstream
region of the cylinder. In Fig. 5C, we increased the Reynolds number to
Re = 64. Trailing vortices began to form downstream from the cylinder;
however, the disturbances were not strong enough to be felt at the cyl-
inder location. Figure 5D shows that when the Reynolds number is
increased to Re = 80, the disturbances in the flow become so pro-
nounced that they can be felt even at the cylinder location. At this
Reynolds number, the added downstream obstacles fail not only to
suppress vortex shedding but also to shield the cylinder from the dis-
turbances in the flow.
Fig. 4. High-performance simulations on a cell phone (Galaxy S8). (A and B) 2D spiral wave and (C and D) 3D reentry in rabbit ventricles with TP and OVVR models.
Up to 1.7 billion ODEs can be solved per second using this phone. See the Supplementary Materials for details and animations and Supplementary Programs to run the
WebGL codes.
Fig. 5. High-performance simulations of fluid flow past a stationary cylin-
der in WebGL. (A) Vortex shedding from the stationary cylinder at Re = 54.
(B) Vortex shedding is suppressed at Re = 54 by adding stationary obstacles
downstream of the cylinder. (C) The Reynolds number is increased to Re = 64;
we can see clear vortex shedding from the added obstacles, but the effects on
the upstream cylinder are minimal. (D) Upon further increase of the Reynolds
number to 80, the downstream vortex shedding becomes more pronounced,
the flow around the upstream cylinder becomes unstable, and the oscillatory
force is restored.
11 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

D
ow

nloaded
As a second example, we further implemented a crystallizationprob-
lem in a supersaturated solution (48) inWebGL usingAbubu.js. The
WebGL implementation enabled us to perform some studies in a matter
of seconds that usually would take much longer. Figure 6 shows the
results of simulations in a grid size of 400 × 400 under different crys-
tallization conditions. The lattice spacing, time step, saturation con-
centration, and viscosity of the fluid are all set to 1. The initial solute
concentration is assumed to be 1.2 in all cases. In the top row of the
figure, the Damkohler number is equal to 2, which indicates that the
diffusion of the solute is the dominant process. In the bottom row,
the Damkohler number is set to 160, which indicates a large rate of re-
action (crystallization compared to diffusion). When diffusion is domi-
nant, the crystal has a compact structure, as opposed to the casewhen the
reaction is dominant and the crystal forms a branched structure. When
there is no external fluid flow and a single nucleus is introduced at the
center of the domain (Fig. 6, A and B), the crystals have a symmetrical
structure. However, when fluid flow is introduced (here with a velocity
of ux= 0.15) while keeping the initial condition to a single nucleus at the
center of the domain, the symmetry of the crystal is broken, as shown in
Fig. 6 (C andD), and the crystal grows upstreamwhere the higher con-
centrations of solute can replenish the crystallized solute. Figure 6C
shows that with strong diffusion downstream of the flow, the solute
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
cannot replenish as quickly as in the upstream section, and thick
branches start to form downstream. Figure 6 (E and F) shows the effect
of initial conditions withmultiple nuclei when there is no external flow.
In this scenario, when the diffusion is dominant (Fig. 6E), multiple
nuclei can initiate crystallization, and the crystals can grow, merge,
and form a large structure. However, when the reaction is the dominant
process, multiple nuclei will initiate individual crystals that can grow,
but the branches of crystals will not merge as crystallization depletes
the solute and the solute cannot replenish fast enough.
DISCUSSION
Modeling can help in investigating the dynamics and effects of drugs in
cardiac tissue (9, 11, 12). Here, we propose a significant step toward
meeting the computational requirements for personalized computing-
assisted treatment of cardiac electrophysiological diseases. We have de-
veloped a fast library (Abubu.js; see Supplementary Programs) that
allows the solution of large, complex biophysical and physical systems
interactively in near real time that until now could be solved only with
supercomputers. We have shown an application of the library to cardiac
dynamics along with other examples of complex systems such as fluid
flow and crystal growth.
 on July 19, 2019
http://advances.sciencem

ag.org/
from

Fig. 6. High performance simulations of crystal growth under different Damkohler numbers, fluid flow conditions and number of nucleation cites using WebGL.
Damkohler numbers are Da = 2 in (A), (C), and (E) and Da = 160 in (B), (D) and (F). Fluid flow conditions are ux = 0 in (A), (B), (E) and (F) and ux = 0.15 in (C) and (D). (A) to (D) have a
single nucleation cite at the center of the domain, while (E) and (F) have five distinct nucleation sites. The crystals are colored on the basis of their crystallization time.
12 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

In the cardiac case, we show that it is possible to perform model
studies as they are currently done in single cells (11–13), but now in space
and in large tissue sizes, interactively, in near real time andby anyonewho
has a device with a medium- to high-end GPU currently in the range of
U.S. $500 to 1000. This is the first time that complex cardiac models can
be run easily and quickly on a PC or even a cell phone, allowing access to
anyone interested in understanding how waves propagate in cardiac
tissue in normal and arrhythmic cases. Therefore, nownot only research-
ers but also doctors, patients, and the general public can actually use sim-
ulations to better explain and understand how different arrhythmias
occur andhow they could be treated and terminated, each group focusing
on a different level of complexity as discussed in the next section.

For all of the 2D and 3Dmodels presented here, the library simplifies
interaction with the codes through the graphical user interface so that,
for example, the tissue can be stimulated at any time using themouse to
produce activations that interact with existingwaves and potentially can
initiate or terminate an arrhythmia. Stimulation can also be induced
and controlled in any part of the tissue by defining a period and stim-
ulation size in the menu options to emulate pacing from an electrode.
Users can investigate parameter effects dynamically and model, for ex-
ample, how the enhancement or block of currents (as affected by a sim-
ulated drug) can actually change the dynamics of the waves in space in
such a way as to increase or decrease arrhythmia incidence. Various
menus of the programs allow not onlymodification ofmodel parameter
values interactively in real time but also visualization and plotting of
different variables and currents; saving movies and data; and varying
tissue sizes, resolution, and speed of simulations. The models used for
all examples presented here and the libraryAbubu.js are freely avail-
able (in Supplementary Programs); users can modify them and add new
physical, biological, or chemical models to investigate processes of in-
terest interactively and in near real time.

Applications and limitations
Themethodology and codes presented here allow fast interactive simu-
lations of complex electrophysiological heart dynamics that until now
were typically studied using parallel supercomputers and thus were
restricted to only a handful of research groups around the world. By
using the Abubu.js library, several of the complexities of writing
GPU programs can be bypassed in favor of focusing just on implement-
ing the models and numerical solution methods, thereby allowing more
people to code and study cardiac arrhythmias aswell as other large-scale
systems like those we have shown here. Furthermore, several of the
codes already developed and presented here have many options for
changing model parameters and interactive options so that they can
be of use in the study of arrhythmias by expert researchers and clinicians
who are not expert programmers. Graduate, undergraduate, and even
high school students can also use these programs to learn about the dy-
namics of complex systems, including pattern formation and chaos in
biological, chemical, and physical systems. For example, we have suc-
cessfully used some of these programs at national and international
workshops including the 2017 and 2018 Undergraduate Workshop on
Dynamics of Excitable Systems at Rochester Institute of Technology;
the 2018 Hands-On Research in Complex Systems School at the Inter-
national Center for Theoretical Physics in Trieste, Italy; a short course at
the Federal University of Juiz de Fora, Brazil; and the 2018ChaosHigh-
School SummerCampatGeorgia Tech. In some cases, students not only
have used the available codes to study complex dynamics but also have
programmed models for Turing patterns consisting of two to six partial
differential equations.
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
Wehave described a number of advantages of usingWebGL and the
Abubu.js library, which facilitate programming codes that run on a
wider range of hardware. Although WebGL codes are by nature inde-
pendent of operating system, some limitations still exist, often as a result
of older hardware. For example, memory limitations on some devices
may restrict the domain sizes that can be solved, thereby rendering some
simulations impossible to run on that device. Also, older hardware,
drivers, and operating systems may not support certain operations or
certain types of data structures, so in some cases some of the codes that
run well on some machines may have problems on others that have
slightly older GPUs. However, we believe that support for different
operations and data structures across different hardware and operating
systems will continue to converge. For example, smart phones re-
leased more than two years ago do not support float textures and thus
can only run WebGL codes that do not use these textures. However,
most smart phones now support float textures and can even run simu-
lations in 3D not possible a few years ago. Over time, we expect to see
more powerful and affordable GPUs with better and homogeneous
support on different devices. We have tested that all our programs
presented here run on desktops under Windows and Linux with GPUs
(from NVIDIA GTX-970 and up), a 2017 MacBook Pro (with Intel
Iris Plus 460 GPU), a 2015 MacBook Pro (with AMD Radeon R9
M370X GPU), and Galaxy phones from S7 to S9.

Because the codes are running in the browser, some operating
systemsmay use certain key combinations for shortcuts and define keys
that exist only on a given system (e.g., Alt on PCs and option and com-
mand on Macs) or have touch pad control versus a mouse. While we
have tried to make the programs run consistently across all platforms,
there is still a possibility that the graphical interface, for example, may
have small differences when using different systems and browsers, with
Chrome and Firefox being the most homogeneous ones. Safari and
Edge do not support WebGL 2.0 yet. Therefore, for applications that
are to be deployed to end users, the general guidelines for code checking
and compatibility must be followed by the developers who use the
library. Instead of assuming the philosophy of “write once and run
everywhere,” we suggest following the general guideline of “write once,
test everywhere, and then run everywhere.” Finally, while the methods
provided here can be used for any problem that can benefit from par-
allelism, problems that require very large memory, such as atmospheric
simulations, cannot be tackled using our methods yet.
CONCLUSION
In thiswork,we present amethodology alongwith a library for accelerated
interactive simulationsof large-scale complex systems,which typically need
high-performance supercomputer clusters, to speeds at or near real timeon
a commonPCandevenoncell phones.We showdirect applicationsof this
methodology to the simulation of large-scale cardiac modeling and de-
scribe several new contributions to cardiac dynamics while validating
and quantifying these simulations. (i) We present an MM for porcine
ventricular APs based on experimental data; to date, no mathematical
model has been developed for porcine ventricular cells, so this repre-
sents the first model for porcine cardiac electrophysiology. We also
present an MM for rabbit ventricular cells under the effects of two dif-
ferent drugs. The model parameters of these models were fitted to re-
produce single-cell dynamics such as AP shape, threshold for excitation,
rate of rise, and APD andCV restitution curves. (ii) These newmodels are
simulated in space using our library and validated using experimental
data not used in their development. The 3D simulations in ventricular
13 of 15

http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

structures of porcine and rabbit ventricles quantitatively match the
dynamics measured using optical mapping experiments performed in
our laboratory and by other groups (42–44). In particular, we repro-
duced the experimentally observed spiral-wave dynamics (wavelength
and frequencies) of tachycardia and fibrillation in the porcine ventri-
cles as well as the stability of reentrant waves in rabbit hearts under
DAM, leading to stable spiral waves, and under CytoD, leading to tran-
sient fibrillation with comparable frequencies. The simulations on the
rabbit and porcine heart structures run at or near real time, so soon it
will be possible to perform studies of closed-loop real-time feedback
control between simulations and experiments. (iii) We demonstrate
for the first time the feasibility of performing parameter sensitivity
studies of a complexmodel (here theOVVR) in tissuewithout the need
for supercomputers and in a matter of minutes. This is of particular
importance as the Cardiac Safety Research Consortium (sponsored by
the FDA) proposed a new CiPA in which drug assessment can include
testing using numerical modeling. Furthermore, the OVVR model
became the recommended ventricular myocyte model to be used as a
test bed; however, only single-cell numerical experiments are required
under this initiative because of the model’s complexity. Many studies
indicate that the dynamics of a single cell can be very different from
the dynamics of tissue (14, 34). Now, it is possible to use numerical
experiments to study the effects of drugs on the dynamics of both single
cells and tissue in a matter of minutes. We present here as an example
an extension of a recent study of the effect of blocking the rapid delayed
rectifier potassium current in single cells (39) to tissue and for all three
types of ventricular cells (epi, endo, and mid myocardium). (iv) These
simulations showed that only the mid-myocardium version of the
OVVR model leads to EADs, which in 2D can actually initiate fibrilla-
tion from a single stimulus. This shows a newmechanism of single-site
activation, leading to sustained arrhythmic behavior in space, which has
not been observed or simulated before in other cardiac cell models.

Overall, we show that, using the proposed methodology, local desk-
tops are able to solve up to 40 billion differential equations per second
(wall time). These times currently translate to solving what the FDA
considers to be the most up-to-date cardiac cell model at speeds that
are only from 3 to 10 times slower than real time in 2D and 3D, respec-
tively, with some simpler models actually running several times faster
than real time. While detailed studies and applications to the clinic typ-
ically would be run on high-end desktops, we have shown that even cell
phone GPUs are powerful enough to simulate billions of differential
equations per second and to run simulations of these models in 2D
and even 3D anatomies. Thus, our approach offers for the first time di-
rect simple access to studies of complex physiological models in 2D and
3D anatomically accurate structures.

Furthermore, this methodology can be also used to accelerate simu-
lations of similar spatially extended reaction-diffusion systems such as
neuronal and brain dynamics, cancer and tumor growth, and the spread
of infectious diseases. Finally, we have shown the versatility of our
library in the aid of solving other types of large-scale complex problems
that are not necessarily reaction diffusion systemswith examples of fluid
flow with obstacles and crystal growth at different dendrite regimes.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/3/eaav6019/DC1
Fig. S1. This colormap is used in all subsequent animations, unless a colormap is explicitly
displayed in the animation.
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
Fig. S2. Parametrized MM of porcine ventricular cells (red) based on experimental
microelectrode data (black).
Fig. S3. APD and CV restitution curves obtained from optical mapping in a Langendorff-
perfused porcine heart (circles) and the fit by the MM (red line).
Fig. S4. APD restitution data obtained in the simulation from steady-state pacing shown in red
and scatter plot of APD versus DI obtained from the whole tissue in the presence of a
single spiral wave (VT, left) and during sustained fibrillation (VF, right).
Fig. S5. MM for rabbit with CytoD and DAM.
Fig. S6. Each panel shows a different scenario that was successfully modeled using WebGL.
Fig. S7. Parameter sweep using the OVVR model in conjunction with TP-INa current kinetics.
Movie S1. Linear spiral wave core trajectories seen in Fig. 1A obtained experimentally in canine
right ventricle from optical mapping (top) and numerically reproduced by the OVVR model
calculated using WebGL 2.0 (bottom) with m-cells and 90% of L-type calcium blockage.
Movie S2. Circular spiral wave core trajectory seen in Fig. 1B obtained experimentally in canine
atria from optical mapping (top) and numerically reproduced by the OVVR model calculated
using WebGL 2.0 (bottom) with m-cells.
Movie S3. EADs that are generated in a 2D slab of tissue seen in Fig. 1D from a single stimulus
in the bottom left corner of the domain.
Movie S4. Evolution and breakup of a single scroll wave and its corresponding filament in
a 3D slab.
Movie S5. Reproducing a single spiral wave in a porcine ventricular structure numerically
(left) versus the optical mapping data obtained experimentally on a Langendorff-perfused
porcine heart (right) seen in Fig. 3A.
Movie S6. Reproducing a single spiral wave on a rabbit ventricular structure numerically
(left) versus the optical mapping data obtained experimentally on a Langendorff-perfused
rabbit heart (right) seen in Fig. 3C.
Movie S7. Solving approximately 350 time steps of the Beeler-Reuter model (49) on a
512 × 512 grid.
Movie S8. Solving approximately 300 time steps of the TP 19-variable model on a
512 × 512 grid.
Movie S9. Solving approximately 300 time steps of the OVVR 35-variable model on a
256 × 256 grid.
Movie S10. Solving approximately 350 time steps of the Beeler-Reuter eight-variable model
(49) on a 64 × 64 × 64 grid.
Movie S11. Solving approximately 70 time steps of the Beeler-Reuter eight-variable model (49)
on a 128 × 128 × 128 grid.
Movie S12. Solving approximately 340 time steps of the TP 19-variable model on a
64 × 64 × 64 grid.
Movie S13. Solving approximately 170 time steps of the OVVR 35-variable model on a
64 × 64 × 64 grid.
Experimental measurements and fitting MMs to experimental data
Simulations of spiral waves with different trajectories
Further example of parameter space study using the OVVR model in 2D
Supplementary Programs. All the WebGL programs that were used in this article, as well as the
copy of Abubu.js library, are included here.
REFERENCES AND NOTES
1. E. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, S. D. de Ferranti,

J. Floyd, M. Fornage, C. Gillespie, C. R. Isasi, M. C. Jiménez, L. C. Jordan, S. E. Judd,
D. Lackland, J. H. Lichtman, L. Lisabeth, S. Liu, C. T. Longenecker, R. H. Mackey,
K. Matsushita, D. Mozaffarian, M. E. Mussolino, K. Nasir, R. W. Neumar, L. Palaniappan,
D. K. Pandey, R. R. Thiagarajan, M. J. Reeves, M. Ritchey, C. J. Rodriguez, G. A. Roth,
W. D. Rosamond, C. Sasson, A. Towfighi, C. W. Tsao, M. B. Turner, S. S. Virani, J. H. Voeks,
J. Z. Willey, J. T. Wilkins, J. H. Wu, H. M. Alger, S. S. Wong, P. Muntner; American Heart
Association Statistics Committee and Stroke Statistic Subcommittee, Heart Disease and
Stroke Statistics—2017 Update: A report from the American Heart Association. Circulation
135, e146–e603 (2017).

2. A. T. Winfree, Electrical turbulence in three-dimensional heart muscle. Science 266,
1003–1006 (1994).

3. R. A. Gray, J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo, J. M. Davidenko, A. M. Pertsov,
Mechanisms of cardiac fibrillation. Science 270, 1222–1223 (1995).

4. R. A. Gray, A. M. Pertsov, J. Jalife, Spatial and temporal organization during cardiac
fibrillation. Nature 392, 75–78 (1998).

5. D. Scherr, P. Khairy, S. Miyazaki, V. Aurillac-Lavignolle, P. Pascale, S. B. Wilton, K. Ramoul,
Y. Komatsu, L. Roten, A. Jadidi, N. Linton, M. Pedersen, M. Daly, M. O’Neill, S. Knecht,
R. Weerasooriya, T. Rostock, M. Manninger, H. Cochet, A. J. Shah, S. Yeim, A. Denis,
N. Derval, M. Hocini, F. Sacher, M. Haissaguerre, P. Jais, Five-year outcome of catheter
ablation of persistent atrial fibrillation using termination of atrial fibrillation as a
procedural endpoint. Circulation 8, 18–24 (2015).

6. F. H. Fenton, E. M. Cherry, Models of cardiac cell. Scholarpedia 3, 1868 (2008).
14 of 15

http://advances.sciencemag.org/cgi/content/full/5/3/eaav6019/DC1
http://advances.sciencemag.org/cgi/content/full/5/3/eaav6019/DC1
http://advances.sciencemag.org/

SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

7. M. Fink, S. A. Niederer, E. M. Cherry, F. H. Fenton, J. T. Koivumäki, G. Seemann, R. Thul,
H. Zhang, F. B. Sachse, D. Beard, E. J. Crampin, N. P. Smith, Cardiac cell modelling:
Observations from the heart of the cardiac physiome project. Prog. Biophys. Mol. Biol.
104, 2–21 (2011).

8. N. Trayanova, Defibrillation of the heart: Insights into mechanisms from modelling
studies. Exp. Physiol. 91, 323–337 (2006).

9. J. D. Moreno, Z. I. Zhu, P. C. Yang, J. R. Bankston, M. T. Jeng, C. Kang, L. Wang, J. D. Bayer,
D. J. Christini, N. A. Trayanova, C. M. Ripplinger, R. S. Kass, C. E. Clancy, A computational
model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms.
Sci. Transl. Med. 3, 98ra83 (2011).

10. S. Zahid, K. N. Whyte, E. L. Schwarz, R. C. Blake III, P. M. Boyle, J. Chrispin, A. Prakosa,
E. G. Ipek, F. Pashakhanloo, H. R. Halperin, H. Calkins, R. D. Berger, S. Nazarian,
N. A. Trayanova, Feasibility of using patient-specific models and the "minimum cut"
algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm 13,
1687–1698 (2016).

11. S. Dutta, K. C. Chang, K. A. Beattie, J. Sheng, P. N. Tran, W. W. Wu, M. Wu, D. G. Strauss,
T. Colatsky, Z. Li, Optimization of an in silico cardiac cell model for proarrhythmia risk
assessment. Front. Physiol. 8, 616 (2017).

12. I. Cavero, H. Holzgrefe, CiPA: Ongoing testing, future qualification procedures, and
pending issues. J. Pharmacol. Toxicol. Methods 76, 27–37 (2015).

13. E. A. Sobie, Parameter sensitivity analysis in electrophysiological models using
multivariable regression. Biophys. J. 96, 1264–1274 (2009).

14. R. Clayton, O. Bernus, E. M. Cherry, H. Dierckx, F. H. Fenton, L. Mirabella, A. V. Panfilov,
F. B. Sachse, G. Seemann, H. Zhang, Models of cardiac tissue electrophysiology: Progress,
challenges and open questions. Prog. Biophys. Mol. Biol. 104, 22–48 (2011).

15. J. Bragard, A. Simic, J. Elorza, R. O. Grigoriev, E. M. Cherry, R. F. Gilmour, N. F. Otani,
F. H. Fenton, Shock-induced termination of reentrant cardiac arrhythmias: Comparing
monophasic and biphasic shock protocols. Chaos 23, 043119 (2013).

16. A. Bueno-Orovio, E. M. Cherry, F. H. Fenton, Minimal model for human ventricular action
potentials in tissue. J. Theor. Biol. 253, 544–560 (2008).

17. K. H. ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular
tissue model. Am. J. Physiol. Heart Circ. Physiol. 291, H1088–H1100 (2006).

18. T. O’Hara, L. Virág, A. Varró, Y. Rudy, Simulation of the undiseased human cardiac
ventricular action potential: Model formulation and experimental validation.
PLOS Comput. Biol. 7, e1002061 (2011).

19. R. C. Mysa, A. Kaboudian, R. K. Jaiman, On the origin of wake-induced vibration in two
tandem circular cylinders at low Reynolds number. J. Fluids Struct. 61, 76–98 (2016).

20. Y. Ohya, T. Karasudani, A shrouded wind turbine generating high output power with
wind-lens technology. Energies 3, 634–649 (2010).

21. M. M. Zdravkovich, Flow Around Circular Cylinders, Volume 2: Applications (Oxford Univ.
Press, 2003).

22. A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications
with Computer Codes (Springer Science & Business Media, 2011).

23. F. H. Fenton, E. M. Cherry, H. M. Hastings, S. J. Evans, Real-time computer simulations of
excitable media: JAVA as a scientific language and as a wrapper for C and FORTRAN
programs. Biosystems 64, 73–96 (2002).

24. D. Barkley (2002); https://homepages.warwick.ac.uk/~masax/.
25. W. Wang, L. Xu, J. Cavazos, H. H. Huang, M. Kay, Fast acceleration of 2D wave propagation

simulations using modern computational accelerators. PLOS ONE 9, e86484 (2014).
26. B. Gouvêa de Barros, R. Sachetto Oliveira, W. Meira Jr., M. Lobosco, R. Weber dos Santos,

Simulations of complex and microscopic models of cardiac electrophysiology powered
by multi-GPU platforms. Comput. Math. Methods Med. 2012, 824569 (2012).

27. E. Bartocci, E. M. Cherry, J. Glimm, R. Grosu, S. A. Smolka, F. H. Fenton, Toward real-time
simulation of cardiac dynamics, in Proceedings of the 9th International Conference on
Computational Methods in Systems Biology (ACM, 2011), pp. 103–112.

28. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, T. J. Purcell,
A survey of general-purpose computation on graphics hardware, in Computer Graphics
Forum (Wiley Online Library, 2007), vol. 26, pp. 80–113.

29. A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

30. F. H. Fenton, E. M. Cherry, A. Karma, W.-J. Rappel, Modeling wave propagation in realistic
heart geometries using the phase-field method. Chaos 15, 013502 (2005).

31. D. F. Richards, J. N. Glosli, E. W. Draeger, A. A. Mirin, B. Chan, J. L. Fattebert, W. D. Krauss,
T. Oppelstrup, C. J. Butler, J. A. Gunnels, V. Gurev, C. Kim, J. Magerlein, M. Reumann,
H. F. Wen, J. J. Rice, Towards real-time simulation of cardiac electrophysiology in a human
heart at high resolution. Comput. Methods Biomech. Biomed. Engin. 16, 802–805 (2013).

32. A. T. Winfree, Varieties of spiral wave behavior: An experimentalist’s approach to the
theory of excitable media. Chaos 1, 303 (1991).
Kaboudian et al., Sci. Adv. 2019;5 : eaav6019 27 March 2019
33. F. H. Fenton, E. M. Cherry, H. M. Hastings, S. J. Evans, Multiple mechanisms of spiral wave
breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002).

34. E. M. Cherry, F. H. Fenton, A tale of two dogs: Analyzing two models of canine ventricular
electrophysiology. Am. J. Physiol. Heart Circ. Physiol. 292, H43–H55 (2007).

35. A. X. Sarkar, D. J. Christini, E. A. Sobie, Exploiting mathematical models to illuminate
electrophysiological variability between individuals. J. Physiol. 590, 2555–2567 (2012).

36. O. J. Britton, A. Bueno-Orovio, K. Van Ammel, H. R. Lu, R. Towart, D. J. Gallacher,
B. Rodriguez, Experimentally calibrated population of models predicts and explains
intersubject variability in cardiac cellular electrophysiology. Proc. Natl. Acad. Sci. U.S.A.
110, E2098–E2105 (2013).

37. J. N. Weiss, A. Garfinkel, H. S. Karagueuzian, P.-S. Chen, Z. Qu, Early afterdepolarizations
and cardiac arrhythmias. Heart Rhythm 7, 1891–1899 (2010).

38. Y. Xie, D. Sato, A. Garfinkel, Z. Qu, J. N. Weiss, So little source, so much sink: Requirements
for afterdepolarizations to propagate in tissue. Biophys. J. 99, 1408–1415 (2010).

39. C. Kang, A. Badiceanu, J. A. Brennan, C. Gloschat, Y. Qiao, N. A. Trayanova, I. R. Efimov,
b-adrenergic stimulation augments transmural dispersion of repolarization via
modulation of delayed rectifier currents IKs and IKr in the human ventricle. Sci. Rep. 7,
15922 (2017).

40. F. Fenton, A. Karma, Fiber-rotation-induced vortex turbulence in thick myocardium.
Phys. Rev. Lett. 81, 481 (1998).

41. D. I. Cairns, F. H. Fenton, E. Cherry, Efficient parameterization of cardiac action potential
models using a genetic algorithm. Chaos 27, 093922 (2017).

42. I. Banville, N. Chattipakorn, R. A. Gray, Restitution dynamics during pacing and
arrhythmias in isolated pig hearts. J. Cardiovasc. Electrophysiol. 15, 455–463 (2004).

43. M.-H. Lee, Z. Qu, G. A. Fishbein, S. T. Lamp, E. H. Chang, T. Ohara, O. Voroshilovsky, J. R. Kil,
A. R. Hamzei, N. C. Wang, S. F. Lin, J. N. Weiss, A. Garfinkel, H. S. Karagueuzian, P. S. Chen,
Patterns of wave break during ventricular fibrillation in isolated swine right ventricle.
Am. J. Physiol. Heart Circ. Physiol. 281, H253–H265 (2001).

44. I. Banville, R. A. Gray, Effect of action potential duration and conduction velocity
restitution and their spatial dispersion on alternans and the stability of arrhythmias.
J. Cardiovasc. Electrophysiol. 13, 1141–1149 (2002).

45. D. M. Lombardo, F. H. Fenton, S. M. Narayan, W.-J. Rappel, Comparison of detailed and
simplified models of human atrial myocytes to recapitulate patient specific properties.
PLOS Comput. Biol. 12, e1005060 (2016).

46. Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice
Boltzmann method. Phys. Rev. E 65, 046308 (2002).

47. K. Wang, Z. Chai, G. Hou, W. Chen, S. Xu, Slip boundary condition for lattice Boltzmann
modeling of liquid flows. Comput. Fluids 161, 60–73 (2018).

48. Q. Kang, D. Zhang, P. C. Lichtner, I. N. Tsimpanogiannis, Lattice Boltzmann model for
crystal growth from supersaturated solution. Geophys. Res. Lett. 31, L21604 (2004).

49. G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial
fibres. J. Physiol. 268, 177–210 (1977).

Acknowledgments: We would like to thank School of Physics at Georgia Institute of
Technology and School of Mathematical Sciences at Rochester Institute of Technology for
providing a healthy environment for research and collaboration. We would like to further
extend our gratitude to E. E. Konjkav for tireless and inspiring moral support from the
conception to the finalization of this work. Funding: This work was supported, in part, by the
NSF (grants CNS-1446312 to E.M.C. and CNS-1446675 to F.H.F. and A.K.) and by the NIH (grant
1R01HL143450-01 to F.H.F., E.M.C., and A.K.). F.H.F., E.M.C., and A.K. also collaborated while
at Kavli Institute for Theoretical Physics (KITP), and thus, research was also supported, in part,
by NSF grant PHY-1748958, NIH grant R25GM067110, and Gordon and Betty Moore
Foundation grant 2919.01. Author contributions: A.K., E.M.C., and F.H.F. contributed to the
design of the study, the software and model development, and the writing of the manuscript.
A.K. contributed to the design and implementation of Abubu.js library. A.K. and F.H.F.
performed the experiments. A.K., F.H.F., and E.M.C. analyzed data. Competing interests: The
authors declare that they have no competing interests. Data and materials availability:
All programs are made available in the Supplementary Materials, and experimental data are
available by request to the corresponding authors.

Submitted 2 October 2018
Accepted 14 December 2018
Published 27 March 2019
10.1126/sciadv.aav6019

Citation: A. Kaboudian, E. M. Cherry, F. H. Fenton, Real-time interactive simulations of large-
scale systems on personal computers and cell phones: Toward patient-specific heart modeling
and other applications. Sci. Adv. 5, eaav6019 (2019).
15 of 15

https://homepages.warwick.ac.uk/~masax/
http://advances.sciencemag.org/

phones: Toward patient-specific heart modeling and other applications
Real-time interactive simulations of large-scale systems on personal computers and cell

Abouzar Kaboudian, Elizabeth M. Cherry and Flavio H. Fenton

DOI: 10.1126/sciadv.aav6019
 (3), eaav6019.5Sci Adv

ARTICLE TOOLS http://advances.sciencemag.org/content/5/3/eaav6019

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2019/03/25/5.3.eaav6019.DC1

REFERENCES

http://advances.sciencemag.org/content/5/3/eaav6019#BIBL
This article cites 44 articles, 5 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

registered trademark of AAAS.
is aScience Advances Association for the Advancement of Science. No claim to original U.S. Government Works. The title

York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances

 on July 19, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

http://advances.sciencemag.org/content/5/3/eaav6019
http://advances.sciencemag.org/content/suppl/2019/03/25/5.3.eaav6019.DC1
http://advances.sciencemag.org/content/5/3/eaav6019#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

