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We establish local well-posedness of the Hall-magneto-hydrodynamics (Hall-MHD) system in the Sobolev
space (H*(R™))? with s > 5, n > 2. The previously known local well-posedness Sobolev space was
(H*(R™))? with 5 > 5 + 1. Thus the result presented here is an improvement. Moreover, we show that

the solution of the Hall-MHD system in the space (H*(R"))? with s > 5 converges to a solution of the MHD
system when the Hall effect coefficient goes to zero.
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1 Introduction

Considered here is the incompressible Hall-magneto-hydrodynamics (Hall-MHD) system with fractional mag-
netic diffusion:

u+u-Vu—>b-Vb+ Vp =vAu,
bi+u-Vb—b-Vu+nV x ((V xb) xb) =—u(—A)*, )
V-u=0,

with (z,t) € R™ x [0,00), n > 2, and initial conditions
u(z,0) = ugp(z), b(x,0) = by(x), V- uyg=V-by=0. 2)

In the system, u is the fluid velocity, scalar function p is the pressure and b is the magnetic field. The constants
v, i and 7 denote the kinematic viscosity, the reciprocal of the magnetic Reynolds number and the Hall effect
coefficient, respectively. We limit ourselves to the viscous resistive case, v > 0, 4 > 0, and o > % The Hall
effect parameter 7 represents ion inertial length scale, see [12], at which ions decouple from electrons. It is natural
to say that 7 is bounded from above. The Hall nonlinearity V x ((V x b) x b) is the only difference between the
Hall-MHD and the usual MHD systems. For mathematical study of this model, we refer to [1, 3,4, 5,7, 8, 9, 10]
and reference therein.

The purpose of this paper is to find the largest possible Sobolev spaces where the Hall-MHD system is locally
well-posed. Previously, it was shown in [7] that system (1) with o = 1 is locally well-posed in (H 5(R3))2 with
s > 2. Later, in the case of 1 < a < 1, local well-posedness was obtained in (H* (R™))* with s > 5+ 1. We
aim to improve the aforementioned findings and establish the main result below.

Theorem 1.1 Let v, pu > 0 and o > 5. Assume (ug,by) € (H*(R™))? with s > 2 — 2a + 5 and V - ug =
V - bo = 0. There exists a time T = T(||uo|| g+, [|bo|| =) > 0 and a unique solution (u,b) of (1) on [0, T] such
that
S n 2
(u,b) € (C([0, T]; H*(R™)))".

* e-mail: mdai@uic.edu,
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2 M. Dai: Local well-posedness of Hall-MHD

Remark 1.2. Notice thats > 2 —2a+ 5 = g fora = 1;and 2 — 2a + 5 < 3 +1for% < « < 1. Thus for
the Hall-MHD system (1) with a = 1, we obtain the local well-posedness in (H*(R™))* with s > 5, whichis a
lager space than ([°/2 (R3))2 forn = 3.

Remark 1.3. We shall also show that the solution obtained in Theorem 1.1 converges to a solution of the MHD
system when n — 0.

The techniques involved are based on the Littlewood-Paley decomposition theory and the frequency-localization
approach.

Notation. For the sake of brevity, we denote by: A < B an estimate of the form A < CB with an absolute
constant C'; A ~ B an estimate of the form C1 B < A < C,B with absolute constants C1, C; || - ||,, the norm of
space LP; and (-, -) the L2-inner product. The notations associated with Littlewood-Paley decomposition theory
and related concepts are introduced in Appendix.

2 A priori estimate

The core of the proof of local well-posedness is the a priori estimate satisfied by smooth solutions in H* with
s> 2—2a+ g, which is the content of this section. The local existence of smooth solutions will then follow from
certain traditional approximating and limiting process. The uniqueness and continuous dependance on initial data
can be also obtained through standard arguments. Thus, we only show the following statement.

Theorem 2.1 Let (ug, by) € (H*(R™))? with s > 2 — 2cc + % and (u, b) be a smooth solution of (1) starting
Sfrom the data (ug, bo). There exists a time T = T (||ug||ms, ||bol|g=) > O, such that, for every t € [0,T] we have

lu(@) 17 + 16 7re < € (lluollFre + llbollZr) -

where the constant C depends on T, v, i, 0, ||uol| s, and ||bo|| i+, and does not blow up as n — 0

Proof: The main argument of establishing the a priori estimate relies on identifying the Sobelev norm H? by
the Besov norm BS’Q, and then combining with the basic energy estimate in L2. In order to estimate the Besov
norm B§ .2, we shall encounter several flux terms from the five nonlinear terms in the equations. The most difficult
term is the one from the Hall nonlinearity V x ((V x b) x b); thus the major effort will be put on estimating the
flux from the Hall term. Besides, to show how the cancellations are exploited and how the optimization is carried
out in the estimates of the rest nonlinear terms, we shall focus on the flux from (b- V)b and (u - V)b.

Multiplying the first equation of (1) by A?*A2u and the second one by A2*AZ2b, and taking summation for all
q > —1 gives us

1d

Sdt Z (>\35|\Uq||3+)\35||bq||3)
g>—1 3
<= v D0 AT gl = D0 NN+ I+ I+ I+ L+ s,
>-1 >-1

with

h=- Z /\?,s/RSAq(u-Vu)qux, I = Z Ais/]R3Aq(b~Vb)-uqu7

q>—1 q>—1

I = — Z /\33/]1{3 Ay (u-Vb) - b, dr, I, = Z Ags/RS Ay(b-Vu) - by dx,

q>—1 g>—1

Iy= Y A RsAq((be)xb)~bequ.

qg>—1

As expected, the estimate of Iy, I, I3, and I, are less challenging than that of I5. On the other hand, due to the
similarity of I and I3, I and I, we shall only show the details of handling /3 and I, not I; and 1.
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We first decompose I3 by adapting Bony’s paraproduct (18)

Iy = - Z Z )‘38 /]1%3 Aq(ucp—2 - Vby) - bgdx

q=—1|q—p|<2

N Z Z AL /]R3 Aq(up - Vbep-z) - by da

q=—1|q—p|<2

N Z Z Ais/w Ay (up - Vby) - by d

q>—1p>q—2
=131 + I32 + I33;

and then by commutator (19) to rewrite I3,

Ij=— > > /\35/ Ay, u<p o - Vb, - by da

3
q=—1|q—p|<L2 R

B Z Z )‘<215/ (u<q—2 - VAgbp) - by dz

q=—1|q—p|<2 R
- Z Z )‘<213/ ((ugp—2 — u<g—2) - VAgby) - by dx
g>—1lg-pl<z  '®
=I311 + I312 + I313.

Since Z\p—q|<2 Agby, = bgand V - u<4_o = 0, one can infer I35 = 0.

To estimate 1311, we proceed with an optimization strategy. It follows from the commutator estimate in Lemma
4.2, Holder’s inequality, and Bernstein’s inequality that

|1311|§Z Z )\35||Vu§p,2||oo||pr2||bq||2

q=—1|p—q|<2

, 1+2
<D0 ANal3 DN 2

q>—1 p<gq
5 1+2-5—0a— 5 2—6
SO0 DN (R bgl2)” (Ngllegle)
g>—1p<q

SO 1) (sl lla)

< ST SN (stlbgllz)” (g lbgllz) " (A g ll2)” (A llupll2) '

g>—1p<q

for some parameter 0 < § < 1 satisfying
n
321+§—5—6a. 4

We continue the estimate of I3;; by using Young’s inequality with parameters satisfying

11 1 1
—+—+4+ —+ —=0a, 0<01,02,03,04 <1
(51 52 53 (54 (5)
11 1 1 2
= =—, 1<6,04 <o0.
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4 M. Dai: Local well-posedness of Hall-MHD

It then follows that

o] <537 S TN 34 Cp D0 ST ARE (Nl l2) "

q=—1p<q ¢>—1p<q

v 636 640 (1-6)0

S S AN + o 3 SN (Nl )
q>—1p<q ¢>—1p<q

_16 Z )‘28+2a”b I3+ 16 Z /\28+2||U [
q>—1 q> 1
+Cop Y (slball)® " 1 Cu S (Aslluglla) ™

g=—1 q>—1

with various constants C,,, that depend on v, 1 and tend to infinity as v, — 0. We pause to analyze the
parameters. In view of (4) and (5), we obtain that

n 1 1 n
> - — —la > = —
= a+<92+94)( +a)_2 a+e 6)

provided 6> and 6, are large enough.
Other terms in I3 are simpler and can be estimated in an analogous way; thus the details are omitted. As a
conclusion, we have for s satisfying (6)

1) <& 2 D Abll3 + Z A g3

q> 1 42—1
Y1 Y2 (7)
+Cup [ D AZUblI3 |+ Co | D A Nugl3 ]

q>—1 g=>—1

with certain constants 1, v2 > 1.
Adapting the same decomposition strategy of using Bony’s paraproduct and commutator, we deconstruct I
and I, as follows

>y )\25/ Ay(b<p—o - Vby) - uyd

q>—1|q—p|<2

Y )\QS/ Ag(by - Vbep ) - g da

q>—1|q—p|<2

+ > ZAQQ a(bp - Vbp) - ug dv

q>—1p>q—2
=191 + Igo + a3,

with

In=Y Y )\23/ [Ag,b<p2 - Vby - ug da

q=—1|q—p|<2

+>> AzS/R (b<g—2 - VADy) - ug dz

q=—1|q—p|<2

+Y N )\28/ ((b<p—2 — beg—2) - VAGDy) - ugd

q=—1|q—p|<2
=Iz11 + I212 + I213;
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and
L=> > ar / o(b<p—2 - Vup) - by da
q=—1[q—p|<2
+ Yy )\25/ (by - Ve _2) - by d
q=—1]q—p|<2
+ Z Z )\25/ (b, - V) - by dz
q>—1p>q—2
=141 + Iyo + Iy3,
with

Iy = Z Z A2S/ Ay, b<p o - Vuy, - by dz

q>—1|q—p|<2

+>0N A2S/ (b<g—2 - VAgup) - by da

q=—1|q—p|<2

+ Z Z /\25/ (b<p-2 —b<g—2) - VAqup) - by d

q>—1|q—p|<2
=I411 + Ly12 + L413.

We claim that I515 + 1410 = 0. Indeed, we have

Io12 4 In2 = Z Z )\25/ (b<g—2 - VAD,) - ug da

q=—1|q—p|<2

+ > A%/ (b<q—2 - VAup) - by da

q=—1|q—p|<2

=Y A2S/ (b<q-2-Vby) - ugdz+ > A?f/g(bgququ)-qux
]R.

q>-1 q>-1
=0.

The fact } ), <o Agbp =bgand 35 o Aquy, = ug justifies the second equality above.
The rest terms in I + I are relatively simple. We only choose one representative term, 511, to carry out the
details of estimating. Applying Holder’s inequality and Bernstein’s inequality leads to

o] < ) D A2 Vb<palloollbpllallugll2

q>—1]qg—p|<L2

s 1+2
S A2 lbgllalluglla S A0 (1,112

g>—1 p<q
Z Z)\élozﬂh/\“'?_éla dsor=0y s ()\Z-i_oz||bq||2)61 ()‘Z||bq||2)1_61
q>—1p<q

S 52 s _52 S+« LE s —63
S Y lugll2) (A llugll2) % (Sl ll2) (Asllbpll)
a+d2 s+a 1 s —01 s d2
<O Y ST AR (o bgll2) " (A llbgll2) T (A g ll2)

q>—1p<gq
s 1-82 /\ sta 53 /v s 14
(Asllugll2) ™ (AT Nbpll2) ™ (Apllbpll2)™
for parameters 0 < d1, 02,93 < 1, 62 = (2 — §; — d2)cv, and

3214—%—6104—63@—62. ®)
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6 M. Dai: Local well-posedness of Hall-MHD

Adapting Young’s inequality with parameters (;, 1 < i < 6, such that
G+G+G+a+G+G=0aa+d, (,....¢6>0

—_ —_ P P . 7:1
0, "0 o T T ey ©)
9 2 2
_ “ _ = -1
01 5’ 03 5’ 05 5 < 03,04,06 < 00

we have
H s v s . (1-5,)6
(21| <3 PR +2@||bq||§+1—6 DA gl + Co D (Mgllbgll) "

g2—1 g2-1 g2—1
s (1-63)06 s (1-62)0
+ Cun Y (Nglball2)™ ™™ + Cue Y (Nllugll2) ™
q=>—1 g>-1
Again, the parameter constraints (8) and (9) imply that

n 1 1 1
>14+=-—-2 — 1) +2a| —+ —+ —

s_+2 a+ (a—1)d + a<92+94+96>

:1+g—2a+(a—1)52+6

for large enough 6, 0, and 6. Notice that s > 5 — 1+ ¢ for a = 1. In general for d2 close enough to 1, we have
s> g —a+te (10)

To conclude, we expect to have for s satisfying (10)

/’L S (0% v S
Tl B ST Ry B L N a3

q>—1 q>—1
T V2 (11)

+Cop | D ATl |+ Co | D0 ATl ]

qg>—1 g>—1

for some constants 1, yo.
Now we are left to estimate [5. By Bony’s paraproduct and commutator (21), the routine decomposition
procedure yields

=Y % Ags/ Ag(beps x (V x by)) - V x by dz
R3

q=—1|g—p|<L2

+> > AﬁS/RSAq(bpx(vagp_z)).vaqd:c

q=—1|g—p|<L2

+>> AiS/RSAq(bpx(VXEP)).bequ

q>—1p>q—2
=151 + Is2 + I53;

with

In=)Y_ > Ar /RS[Aq,bgp_g x Vx|by, -V x by dx

q=—1|g—p|<2

+ 3 Ags/RabSq_gx(vqu).vaqu

q>—1

+ Z Z )‘?18 /R3 (b<p—2 —b<g—2) X (V x (bp)q) - V X bg du

q=—1|p—q|<2
=I511 + Is12 + I513.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 7

The cross product property implies immediately that /5,9 = 0. We deduce from the commutator estimate in
Lemma 4.3 that

LulS Y Y A IVhzp—zlicolbpll2llbgllz

q=—1|p—q|<2

1+2
5 Z >\§S+1”bq‘|§z/\p 2pr||2

q>-1 p<q
242 -61a—6 g 2-46
= 2 NIRRT O g ll2) ™ (Ailall2)
g=—1p=<q

st+a d2 S —02
ST NBl12) " (s lBpll2) "
<O N SN (sl ll2) ™ (A llbgll2)* " (A by ll2) ™ (Agllbpl2)

g=—1p<gq

for parameters satisfying i <61 <2,0< 02 <1,and
n
522—1—5—5104—52& (12)

By Young’s inequality we have for the parameters

G+e+G+G=0ha—-1, (,...,(4>0

1 1 1 1 2 2 (13)
= —, O3=—, 1<06,,0
o o, + 0 0, 3, 3 5 < b2,04 < 00,

such that

um——zzﬁwwwmwmzzw%wwW&Q

q> 1p<q q>—1p<q
Z Z)\Cs@a)\%—manb ||2 +C,u77 Z Z)\C494 )\5 ‘b || )(1—52)94
q> 1p<q q>—1p<q
s (2—61)6
<3 Z N3 bgll3 + Cum D (Ngllbgll2) ™"
nq> 1 q>—1
s (1-62)0
+Cun Y (A l1bpll2) '
g>—1

Regarding the parameters, (12) and (13) imply that

1 1
s>—+2 20+ 2 >—+2 20+ € (14)
2 92 94

for large enough 65 and 6.
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8 M. Dai: Local well-posedness of Hall-MHD

By Holder’s inequality,

Lisl<Y )\25/ (beps — beg2) X (V % (by)g) - V X by| dz

q>—1|p—q|<2

S D APIVhllecllbep- = beg-all2Vbyl2

q=—1|p—q|<L2

254242
SRR A

g>—1
=C Z )\24-%—6&—8 ()\Z-i-aHquz)(S (A;Hqu2)3_6
q=-1
s+ 0 s 3—6
<C 3 (g lbgllz)” (Ngllball)
q>—1
jﬁZVM%mwmzxmn
q>—1 q>—1

for0<d<2ands>2+§ —da>2+ 5 — 2.
We continue to I52 and decompose it by adapting commutator (22),

15222 Z >\2S/ Ay(V x bepg xby) -V x by dx

4>—1|q—p|<2

=y > /\23/ Ay, V X by ox]by - V X by d:

g9>—1|g—p|<2

+ YA vagq_gqu.vaqdaz
q>—1

YN )\2S/V>< (b<p—2 — beg 2) X (bp)g - V X by dz

q=—1|p—q|<2
=I591 + Is22 + I503.

We will only show the estimate of 592, since 521 enjoys the same estimate as I51; due to the commutator
estimate in Lemma 4.4 and I523 can be estimated as I5;3. Integration by parts, identity (20) along with the fact
that V - by, = 0 infers

I522*Z)\2S/ V x (V X bega X by) - by dx

g>—1
- Z )‘38/ [(bg - V)V X bcg2 = (V- V X bg2)bg] - by dz
>—1 R3
-y A25/ (V X begog - V)b, - by da.
g>—1

Since V - (V x b<g_2) = 0, it is obvious the last integral vanishes. Thus we have

|I522|< )\QQ/ | b V)VXb<q 2—(V VXb<q 2) ] b‘d.’lﬁ
q>—1

<3 AV oo lby13

g=>—1
5 242
ST AEb3Y A bl
q=-1 p<q
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which share the same estimate of I517.
The last term 53 is treated as

IESYDY A38/3 1A, (by X V x by) - V x by| da
R

q>—1p>q—2
ISl [\ [N S T Y
g>—1 p=q—3
254142
< Z )\qé *[[ogl2 Z )‘p”bpng
g>—1 p=q—3
2s+1+%
S 2 Mllbplls 30 AT bz
p>—1 q<p+3

which turns out to be similar as /517 again. Summarizing the analysis above, we obtain

71 72

M S « S S
15| < ™ Do AT+ Cun | D ATIbNZ |+ Cun | D AT b3 (15)

g>—1 q>—1 q>—1

for some 71,72 > 1. Putting together of (3), (7), (11), and (15), there exist constants C,,, Cy,, and C,, ,, such that

d S S (e}
- UlullG 1005 ) 4w D2 AT 2llugld + 4 Y AT g3

q>—1 g>—1
Y1 V2
<Cu | D0 AZIugll3 | +Co | D A2 g3
g>—1 q>—1 (16)
Y1 Y2
F O | Y AT Ibl3 |+ Cun® | D A2 b3
g=>—1 qg=>—1

<Cuu(L+0%) (Il + 1015.)™ + Couu(L+0?) (lullFy. + l10]1%.)™

Notice that 71,72 > 1 and hence the energy inequality (16) is in the type of Riccati. It follows that, there exists
atime T > 0 which depends on v, u, ) and ||uo|| g, ||bo|| = such that

lu(®) Il + 161 Zre < Cv, o, T lluollzze, [1bollz2+) (luoliFre + [lboll7-)

for 0 < ¢ < T, and a constant C depending on v, y,n, T and ||uo|| g,
not blow up as n — 0.

|bo|| 7+ We note that the constant C' does

O

3 Convergence of the Hall-MHD to the MHD system

In this section, we show that solutions (u", b”, p") of (1) with o = 1in H> converges to a solution (u, b, p) of
the MHD system, as 7 — 0. Namely, we prove

Theorem 3.1 Let (u",b",p") be a solution to (1) with « = 1 obtained in Theorem 1.1 associated with initial
data (ug, bo). Let (u,b, p) be a solution to (1) with ) = 0 and oo = 1 under the same initial data. Then we have

lim ([lu” —ufj2 + [[b” = bl|2) = 0.
n—0

Proof: Take the difference U = v — u, B = b7 — b and m = p" — p, which satisfy the equations:
Us+u-VU -b-VB+U-VuT—B-Vb + Vi =vAU,
Bi+u-VB—-b-VU+U-VV — B -VuT—nV x ((V xb") xb") = uAB, (17)
V.-U=0, V-B=0.
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10 M. Dai: Local well-posedness of Hall-MHD

Multiplying the first equation by U and the second by B, we obtain (formally)

1d
S W01 + VU

:/ boVB~Ud:c7/ U~Vu7"de+/ B-Vb"-Udzx,
R3 R3 R3
1d 9 9
S IBIB + IV BI3

:/ boVU~de7/ U-Vb”'de+/ B-Vu'"- Bdx
R3 R3 R3

+n | Vx((Vxb)xb) - Bdz.
R3

Adding the two yields, provided that (u", b, p") and (u, b, p) are regular enough,

| =

(U135 +1B13) + vIVUI5 + 1V B3

N |
U

t

:_/ U-Vu"-Udz + B-Vb"~Udac—/ U-Vb'- Bdz
R3

R3 R3

+/3B-Vu"-de+n 3V>< ((Vxb") xb") - Bdx
=0 -I-sz + I3 + Iy +nls. )
It is straight forward to notice that
L4+ I+ 15 + L] < C (|90 |oo + [957]10) (1013 + 1BI3) :
and also
L+ I+ I3 + L) <C™" + 17" (Ju"loo + 107]ls0) (1U115 + [1B]13)
+ 1AIVUI3 + 3V BIE

We estimate I as

nlls| = ‘n/ (V x b") x b") -V x Bdx
R3
<Ol Vo[l 16|21V Bl

B 1
<O p IV 07 + Sl VB

or as

n|Is| = ‘77/ ((V x b") x b") -V x Bdx
R3

<Ol [V |2[[V B2
_ 1
<O MBI VO3 + S #IV B
Combining the above estimates leads to, for s > 5
d -
7 (T3 +1BIIZ) < C (U115 + I1BIIZ) + Cn*u~ V13,
from which Gronwall’s inequality implies that

T3 + 1B@IE < O HIV[I3 + ([U O3 + 1 BO)IE + Cn* ™| V7][3)e .
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Following estimates in Section 2, one can see that ||V"||2 has an upper bound as 7 — 0. We also note that
U(0) = B(0) = 0. Thus

lim (U @12+ 1B()]I2) = 0.

and the convergence rate is O(n?).

4 Appendix

4.1 Littlewood-Paley decomposition

Our analysis is built on the Littlewood-Paley decomposition theory.Basic languages and concepts are introduced
briefly below.
We choose a nonnegative radial function y € C§°(R™) satisfying

3
1, for[¢| <3

x(8) = {0, for [¢] > 1.

Denote A\, = 27 for integers g. A sequence of cut-off functions are defined,

p(A; 1) forg >0,
x(§) forg= -1

For a tempered distribution vector field u we define the Littlewood-Paley projection

(&) = x(2) = x(8), (&) = {

h:f71¢7 B:‘Fil)(v

g = Aqu = FHp(A; &) Fu) = /\Z/h(/\qy)u(x —y)dy, forg > 0,

u_y = F A (x(€) Fu) = / h(y)ulz - y)dy,

where F and F~! denote the Fourier transform and inverse Fourier transform, respectively. Due to the Littlewood-
Paley theory, the identity

oo
u = g Ug
qg=—1

holds in the sense of distribution, which is the fundamental idea of shell decomposition. We also denote the
various summation terms simply by

Q N
U< = Z Uq, UQ,N] = Z Up, g = Z Up.
g=-1 p=Q+1 [p—q|<1
We can adapt the norm of Sobolev space H* as
oo 1/2
el . ~ (Z A?ﬁluqH%) L seR
g=-—1

Bernstein’s inequality satisfied by the dyadic blocks u, is introduced below.

Lemma 4.1 Let n be the space dimension and r > s > 1. Then for all tempered distributions u, we have

(:-%)
Huqu < )‘Z T HuqHs-
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12 M. Dai: Local well-posedness of Hall-MHD

4.2 Bony’s paraproduct and commutators

We adapt the following version of Bony’s paraproduct

Ag(u- Vo) = Z Ag(ucp—2 - Vup) + Z Aq(up - Vogp—2)

lg—p|<2 lg—p|<2 (18)
+ Y Ag(iy, - Vo),
pP2q—2
which is used through the paper to decompose the nonlinear terms. We introduce a commutator as
[Ag,u<p_2 - Vv, = Ay(u<p—2 - Vp) — u<p_a - VALU,. (19)
Lemma 4.2 The following estimate holds, for any 1 < r < oo
118g, uspm2 - Vivple S [Vugp—alloo vyl
To treat the Hall term, we recall a fundamental identity for vector valued functions F' and G,
Vx(FxG) =[(G-V)F—-(V-F)G]-[(F-V)G—(V-G)F]. (20)
In addition, two more commutators are defined
[Ap, F X VX|G=A,(F x(VXxQ)—Fx(VxGy), (21)
[Ag, (VX F)x]G =A¢((V X F) xG) — (V x F) x Gy. (22)

They satisfy the estimates below.
Lemma 4.3 Assume V - F' = 0 and F, G vanish at large |z| € R3. For any 1 < r < oo, we have

I[Ag, B x VX]Gllr S IVFlloo |Gl

IAg, (V x F)X|Gllr S IVl |Gl

Lemma 4.4 Assume the vector valued functions F, G and H vanish at large |x| € R3. For anyl <ry,re <
00 with % + % =1, we have

/ [Ag, (V x F)X|G -V x Hdz| S |[V2Flloo|Gllr, [ H I,
R3
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