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We establish local well-posedness of the Hall-magneto-hydrodynamics (Hall-MHD) system in the Sobolev
space (Hs(Rn))2 with s > n

2
, n ≥ 2. The previously known local well-posedness Sobolev space was

(Hs(Rn))2 with s > n
2
+ 1. Thus the result presented here is an improvement. Moreover, we show that

the solution of the Hall-MHD system in the space (Hs(Rn))2 with s > n
2

converges to a solution of the MHD
system when the Hall effect coefficient goes to zero.
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1 Introduction

Considered here is the incompressible Hall-magneto-hydrodynamics (Hall-MHD) system with fractional mag-
netic diffusion:

ut + u · ∇u− b · ∇b+∇p = ν∆u,

bt + u · ∇b− b · ∇u+ η∇× ((∇× b)× b) = −µ(−∆)αb,

∇ · u = 0,

(1)

with (x, t) ∈ Rn × [0,∞), n ≥ 2, and initial conditions

u(x, 0) = u0(x), b(x, 0) = b0(x), ∇ · u0 = ∇ · b0 = 0. (2)

In the system, u is the fluid velocity, scalar function p is the pressure and b is the magnetic field. The constants
ν, µ and η denote the kinematic viscosity, the reciprocal of the magnetic Reynolds number and the Hall effect
coefficient, respectively. We limit ourselves to the viscous resistive case, ν > 0, µ > 0, and α > 1

2 . The Hall
effect parameter η represents ion inertial length scale, see [12], at which ions decouple from electrons. It is natural
to say that η is bounded from above. The Hall nonlinearity∇× ((∇× b)× b) is the only difference between the
Hall-MHD and the usual MHD systems. For mathematical study of this model, we refer to [1, 3, 4, 5, 7, 8, 9, 10]
and reference therein.

The purpose of this paper is to find the largest possible Sobolev spaces where the Hall-MHD system is locally
well-posed. Previously, it was shown in [7] that system (1) with α = 1 is locally well-posed in

(
Hs(R3)

)2
with

s > 5
2 . Later, in the case of 1

2 < α < 1, local well-posedness was obtained in (Hs(Rn))
2 with s > n

2 + 1. We
aim to improve the aforementioned findings and establish the main result below.

Theorem 1.1 Let ν, µ > 0 and α > 1
2 . Assume (u0, b0) ∈ (Hs(Rn))

2 with s > 2 − 2α + n
2 and ∇ · u0 =

∇ · b0 = 0. There exists a time T = T (‖u0‖Hs , ‖b0‖Hs) > 0 and a unique solution (u, b) of (1) on [0, T ] such
that

(u, b) ∈ (C([0, T ];Hs(Rn)))
2
.
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2 M. Dai: Local well-posedness of Hall-MHD

Remark 1.2. Notice that s > 2 − 2α + n
2 = n

2 for α = 1; and 2 − 2α + n
2 <

n
2 + 1 for 1

2 < α < 1. Thus for
the Hall-MHD system (1) with α = 1, we obtain the local well-posedness in (Hs(Rn))

2 with s > n
2 , which is a

lager space than
(
H5/2(R3)

)2
for n = 3.

Remark 1.3. We shall also show that the solution obtained in Theorem 1.1 converges to a solution of the MHD
system when η → 0.

The techniques involved are based on the Littlewood-Paley decomposition theory and the frequency-localization
approach.

Notation. For the sake of brevity, we denote by: A . B an estimate of the form A ≤ CB with an absolute
constant C; A ∼ B an estimate of the form C1B ≤ A ≤ C2B with absolute constants C1, C2; ‖ · ‖p the norm of
space Lp; and (·, ·) the L2-inner product. The notations associated with Littlewood-Paley decomposition theory
and related concepts are introduced in Appendix.

2 A priori estimate

The core of the proof of local well-posedness is the a priori estimate satisfied by smooth solutions in Hs with
s > 2−2α+ n

2 , which is the content of this section. The local existence of smooth solutions will then follow from
certain traditional approximating and limiting process. The uniqueness and continuous dependance on initial data
can be also obtained through standard arguments. Thus, we only show the following statement.

Theorem 2.1 Let (u0, b0) ∈ (Hs(Rn))2 with s > 2− 2α+ n
2 and (u, b) be a smooth solution of (1) starting

from the data (u0, b0). There exists a time T = T (‖u0‖Hs , ‖b0‖Hs) > 0, such that, for every t ∈ [0, T ] we have

‖u(t)‖2Hs + ‖b(t)‖2Hs ≤ C
(
‖u0‖2Hs + ‖b0‖2Hs

)
,

where the constant C depends on T , ν, µ, η, ‖u0‖Hs , and ‖b0‖Hs , and does not blow up as η → 0

Proof: The main argument of establishing the a priori estimate relies on identifying the Sobelev norm Ḣs by
the Besov norm Ḃs2,2, and then combining with the basic energy estimate in L2. In order to estimate the Besov
norm Ḃs2,2, we shall encounter several flux terms from the five nonlinear terms in the equations. The most difficult
term is the one from the Hall nonlinearity∇× ((∇× b)× b); thus the major effort will be put on estimating the
flux from the Hall term. Besides, to show how the cancellations are exploited and how the optimization is carried
out in the estimates of the rest nonlinear terms, we shall focus on the flux from (b · ∇)b and (u · ∇)b.

Multiplying the first equation of (1) by λ2sq ∆2
qu and the second one by λ2sq ∆2

qb, and taking summation for all
q ≥ −1 gives us

1

2

d

dt

∑
q≥−1

(
λ2sq ‖uq‖22 + λ2sq ‖bq‖22

)
≤− ν

∑
q≥−1

λ2s+2
q ‖uq‖22 − µ

∑
q≥−1

λ2s+2α
q ‖bq‖22 + I1 + I2 + I3 + I4 + ηI5,

(3)

with

I1 =−
∑
q≥−1

λ2sq

∫
R3

∆q(u · ∇u) · uq dx, I2 =
∑
q≥−1

λ2sq

∫
R3

∆q(b · ∇b) · uq dx,

I3 =−
∑
q≥−1

λ2sq

∫
R3

∆q(u · ∇b) · bq dx, I4 =
∑
q≥−1

λ2sq

∫
R3

∆q(b · ∇u) · bq dx,

I5 =
∑
q≥−1

λ2sq

∫
R3

∆q((∇× b)× b) · ∇ × bq dx.

As expected, the estimate of I1, I2, I3, and I4 are less challenging than that of I5. On the other hand, due to the
similarity of I1 and I3, I2 and I4, we shall only show the details of handling I3 and I2, not I1 and I4.
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We first decompose I3 by adapting Bony’s paraproduct (18)

I3 =−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(u≤p−2 · ∇bp) · bq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(up · ∇b≤p−2) · bq dx

−
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

∆q(up · ∇b̃p) · bq dx

=I31 + I32 + I33;

and then by commutator (19) to rewrite I31

I31 =−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

[∆q, u≤p−2 · ∇]bp · bq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

(u≤q−2 · ∇∆qbp) · bq dx

−
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

((u≤p−2 − u≤q−2) · ∇∆qbp) · bq dx

=I311 + I312 + I313.

Since
∑
|p−q|≤2 ∆qbp = bq and ∇ · u≤q−2 = 0, one can infer I312 = 0.

To estimate I311, we proceed with an optimization strategy. It follows from the commutator estimate in Lemma
4.2, Hölder’s inequality, and Bernstein’s inequality that

|I311| ≤
∑
q≥−1

∑
|p−q|≤2

λ2sq ‖∇u≤p−2‖∞‖bp‖2‖bq‖2

.
∑
q≥−1

λ2sq ‖bq‖22
∑
p≤q

λ
1+n

2
p ‖up‖2

.
∑
q≥−1

∑
p≤q

λδαp−qλ
1+n

2−δ−δα−s
p

(
λs+αq ‖bq‖2

)δ (
λsq‖bq‖2

)2−δ
·
(
λs+1
p ‖up‖2

)δ (
λsp‖up‖2

)1−δ
.
∑
q≥−1

∑
p≤q

λδαp−q
(
λs+αq ‖bq‖2

)δ (
λsq‖bq‖2

)2−δ (
λs+1
p ‖up‖2

)δ (
λsp‖up‖2

)1−δ
for some parameter 0 < δ < 1 satisfying

s ≥ 1 +
n

2
− δ − δα. (4)

We continue the estimate of I311 by using Young’s inequality with parameters satisfying

1

δ1
+

1

δ2
+

1

δ3
+

1

δ4
= δα, 0 < δ1, δ2, δ3, δ4 < 1

1

θ1
+

1

θ2
+

1

θ3
+

1

θ4
= 1, θ1 = θ3 =

2

δ
, 1 < θ2, θ4 <∞.

(5)

Copyright line will be provided by the publisher



4 M. Dai: Local well-posedness of Hall-MHD

It then follows that

|I311| ≤
µ

16

∑
q≥−1

∑
p≤q

λδ1θ1p−qλ
2s+2α
q ‖bq‖22 + Cν,µ

∑
q≥−1

∑
p≤q

λδ2θ2p−q
(
λsq‖bq‖2

)(2−δ)θ2
+

ν

16

∑
q≥−1

∑
p≤q

λδ3θ3p−qλ
2s+2
p ‖up‖22 + Cν,µ

∑
q≥−1

∑
p≤q

λδ4θ4p−q
(
λsq‖up‖2

)(1−δ)θ4
≤ µ

16

∑
q≥−1

λ2s+2α
q ‖bq‖22 +

ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22

+ Cν,µ
∑
q≥−1

(
λsq‖bq‖2

)(2−δ)θ2
+ Cν,µ

∑
q≥−1

(
λsq‖uq‖2

)(1−δ)θ4
,

with various constants Cν,µ that depend on ν, µ and tend to infinity as ν, µ → 0. We pause to analyze the
parameters. In view of (4) and (5), we obtain that

s ≥ n

2
− α+

(
1

θ2
+

1

θ4

)
(1 + α) ≥ n

2
− α+ ε (6)

provided θ2 and θ4 are large enough.
Other terms in I3 are simpler and can be estimated in an analogous way; thus the details are omitted. As a

conclusion, we have for s satisfying (6)

|I3| ≤
µ

8

∑
q≥−1

λ2s+2α
q ‖bq‖22 +

ν

8

∑
q≥−1

λ2s+2
q ‖uq‖22

+ Cν,µ

∑
q≥−1

λ2sq ‖bq‖22

γ1

+ Cν,µ

∑
q≥−1

λ2sq ‖uq‖22

γ2

,

(7)

with certain constants γ1, γ2 > 1.
Adapting the same decomposition strategy of using Bony’s paraproduct and commutator, we deconstruct I2

and I4 as follows

I2 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(b≤p−2 · ∇bp) · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(bp · ∇b≤p−2) · uq dx

+
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

∆q(bp · ∇b̃p) · uq dx

=I21 + I22 + I23,

with

I21 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

[∆q, b≤p−2 · ∇]bp · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

(b≤q−2 · ∇∆qbp) · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

((b≤p−2 − b≤q−2) · ∇∆qbp) · uq dx

=I211 + I212 + I213;

Copyright line will be provided by the publisher



mn header will be provided by the publisher 5

and

I4 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(b≤p−2 · ∇up) · bq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(bp · ∇u≤p−2) · bq dx

+
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

∆q(b̃p · ∇up) · bq dx

=I41 + I42 + I43,

with

I41 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

[∆q, b≤p−2 · ∇]up · bq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

(b≤q−2 · ∇∆qup) · bq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

((b≤p−2 − b≤q−2) · ∇∆qup) · bq dx

=I411 + I412 + I413.

We claim that I212 + I412 = 0. Indeed, we have

I212 + I412 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

(b≤q−2 · ∇∆qbp) · uq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

(b≤q−2 · ∇∆qup) · bq dx

=
∑
q≥−1

λ2sq

∫
R3

(b≤q−2 · ∇bq) · uq dx+
∑
q≥−1

λ2sq

∫
R3

(b≤q−2 · ∇uq) · bq dx

=0.

The fact
∑
|p−q|≤2 ∆qbp = bq and

∑
|p−q|≤2 ∆qup = uq justifies the second equality above.

The rest terms in I2 + I4 are relatively simple. We only choose one representative term, I211, to carry out the
details of estimating. Applying Hölder’s inequality and Bernstein’s inequality leads to

|I211| ≤
∑
q≥−1

∑
|q−p|≤2

λ2sq ‖∇b≤p−2‖∞‖bp‖2‖uq‖2

.
∑
q≥−1

λ2sq ‖bq‖2‖uq‖2
∑
p≤q

λ
1+n

2
p ‖bp‖2

=
∑
q≥−1

∑
p≤q

λδ1α+δ2p−q λ
1+n

2−δ1α−δ3α−δ2−s
p

(
λs+αq ‖bq‖2

)δ1 (
λsq‖bq‖2

)1−δ1
·
(
λs+1
q ‖uq‖2

)δ2 (
λsq‖uq‖2

)1−δ2 (
λs+αp ‖bp‖2

)δ3 (
λsp‖bp‖2

)1−δ3
≤C

∑
q≥−1

∑
p≤q

λδ1α+δ2p−q
(
λs+αq ‖bq‖2

)δ1 (
λsq‖bq‖2

)1−δ1 · (λs+1
q ‖uq‖2

)δ2
(
λsq‖uq‖2

)1−δ2 (
λs+αp ‖bp‖2

)δ3 (
λsp‖bp‖2

)1−δ3
for parameters 0 < δ1, δ2, δ3 < 1, δ2 = (2− δ1 − δ2)α, and

s ≥ 1 +
n

2
− δ1α− δ3α− δ2. (8)

Copyright line will be provided by the publisher



6 M. Dai: Local well-posedness of Hall-MHD

Adapting Young’s inequality with parameters ζi, 1 ≤ i ≤ 6, such that

ζ1 + ζ2 + ζ3 + ζ4 + ζ5 + ζ6 = δ1α+ δ2, ζ1, ..., ζ6 > 0

1

θ1
+

1

θ2
+

1

θ3
+

1

θ4
+

1

θ5
+

1

θ6
= 1,

θ1 =
2

δ1
, θ3 =

2

δ2
, θ5 =

2

δ3
, 1 < θ2, θ4, θ6 <∞

(9)

we have

|I211| ≤
µ

8

∑
q≥−1

λ2s+2α
q ‖bq‖22 +

ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22 + Cν,µ

∑
q≥−1

(
λsq‖bq‖2

)(1−δ1)θ2
+ Cν,µ

∑
q≥−1

(
λsq‖bq‖2

)(1−δ3)θ6
+ Cν,µ

∑
q≥−1

(
λsq‖uq‖2

)(1−δ2)θ4
.

Again, the parameter constraints (8) and (9) imply that

s ≥1 +
n

2
− 2α+ (α− 1)δ2 + 2α

(
1

θ2
+

1

θ4
+

1

θ6

)
=1 +

n

2
− 2α+ (α− 1)δ2 + ε

for large enough θ2, θ4, and θ6. Notice that s ≥ n
2 −1 + ε for α = 1. In general for δ2 close enough to 1, we have

s ≥ n

2
− α+ ε. (10)

To conclude, we expect to have for s satisfying (10)

|I2| ≤
µ

8

∑
q≥−1

λ2s+2α
q ‖bq‖22 +

ν

16

∑
q≥−1

λ2s+2
q ‖uq‖22

+ Cν,µ

∑
q≥−1

λ2sq ‖bq‖22

γ1

+ Cν,µ

∑
q≥−1

λ2sq ‖uq‖22

γ2

,

(11)

for some constants γ1, γ2.
Now we are left to estimate I5. By Bony’s paraproduct and commutator (21), the routine decomposition

procedure yields

I5 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(b≤p−2 × (∇× bp)) · ∇ × bq dx

+
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(bp × (∇× b≤p−2)) · ∇ × bq dx

+
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

∆q(bp × (∇× b̃p)) · ∇ × bq dx

=I51 + I52 + I53;

with

I51 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

[∆q, b≤p−2 ×∇×]bp · ∇ × bq dx

+
∑
q≥−1

λ2sq

∫
R3

b≤q−2 × (∇× bq) · ∇ × bq dx

+
∑
q≥−1

∑
|p−q|≤2

λ2sq

∫
R3

(b≤p−2 − b≤q−2)× (∇× (bp)q) · ∇ × bq dx

=I511 + I512 + I513.
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The cross product property implies immediately that I512 = 0. We deduce from the commutator estimate in
Lemma 4.3 that

|I511| .
∑
q≥−1

∑
|p−q|≤2

λ2s+1
q ‖∇b≤p−2‖∞‖bp‖2‖bq‖2

.
∑
q≥−1

λ2s+1
q ‖bq‖22

∑
p≤q

λ
1+n

2
p ‖bp‖2

=
∑
q≥−1

∑
p≤q

λδ1α−1p−q λ
2+n

2−δ1α−δ2α−s
p

(
λs+αq ‖bq‖2

)δ1 (
λsq‖bq‖2

)2−δ1
·
(
λs+αp ‖bp‖2

)δ2 (
λsp‖bp‖2

)1−δ2
≤C

∑
q≥−1

∑
p≤q

λδ1α−1p−q
(
λs+αq ‖bq‖2

)δ1 (
λsq‖bq‖2

)2−δ1 (
λs+αp ‖bp‖2

)δ2 (
λsp‖bp‖2

)1−δ2

for parameters satisfying 1
α < δ1 < 2, 0 < δ2 < 1, and

s ≥ 2 +
n

2
− δ1α− δ2α. (12)

By Young’s inequality we have for the parameters

ζ1 + ζ2 + ζ3 + ζ4 = δ1α− 1, ζ1, ..., ζ4 > 0

1

θ1
+

1

θ2
+

1

θ3
+

1

θ4
= 1, θ1 =

2

δ1
, θ3 =

2

δ2
, 1 < θ2, θ4 <∞,

(13)

such that

|I511| ≤
µ

16η

∑
q≥−1

∑
p≤q

λζ1θ1p−qλ
2s+2α
q ‖bq‖22 + Cµη

∑
q≥−1

∑
p≤q

λζ2θ2p−q
(
λsq‖bq‖2

)(2−δ1)θ2
+

µ

16η

∑
q≥−1

∑
p≤q

λζ3θ3p−qλ
2s+2α
p ‖bp‖22 + Cµη

∑
q≥−1

∑
p≤q

λζ4θ4p−q
(
λsp‖bp‖2

)(1−δ2)θ4
≤ µ

8η

∑
q≥−1

λ2s+2α
q ‖bq‖22 + Cµη

∑
q≥−1

(
λsq‖bq‖2

)(2−δ1)θ2
+ Cµη

∑
q≥−1

(
λsp‖bp‖2

)(1−δ2)θ4
.

Regarding the parameters, (12) and (13) imply that

s ≥ n

2
+ 2− 2α+ 2α

(
1

θ2
+

1

θ4

)
≥ n

2
+ 2− 2α+ ε (14)

for large enough θ2 and θ4.
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8 M. Dai: Local well-posedness of Hall-MHD

By Hölder’s inequality,

|I513| ≤
∑
q≥−1

∑
|p−q|≤2

λ2sq

∫
R3

|(b≤p−2 − b≤q−2)× (∇× (bp)q) · ∇ × bq| dx

.
∑
q≥−1

∑
|p−q|≤2

λ2sq ‖∇bq‖∞‖b≤p−2 − b≤q−2‖2‖∇bp‖2

.
∑
q≥−1

λ
2s+2+n

2
q ‖bq‖32

=C
∑
q≥−1

λ
2+n

2−δα−s
q

(
λs+αq ‖bq‖2

)δ (
λsq‖bq‖2

)3−δ
≤C

∑
q≥−1

(
λs+αq ‖bq‖2

)δ (
λsq‖bq‖2

)3−δ
≤ µ

16η

∑
q≥−1

λ2s+2α
q ‖bq‖22 + Cµη

∑
q≥−1

(
λsq‖bq‖2

) 2(3−δ)
2−δ

for 0 < δ < 2 and s ≥ 2 + n
2 − δα > 2 + n

2 − 2α.
We continue to I52 and decompose it by adapting commutator (22),

I52 =
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

∆q(∇× b≤p−2 × bp) · ∇ × bq dx

=
∑
q≥−1

∑
|q−p|≤2

λ2sq

∫
R3

[∆q,∇× b≤p−2×]bp · ∇ × bq dx

+
∑
q≥−1

λ2sq

∫
R3

∇× b≤q−2 × bq · ∇ × bq dx

+
∑
q≥−1

∑
|p−q|≤2

λ2sq

∫
R3

∇× (b≤p−2 − b≤q−2)× (bp)q · ∇ × bq dx

=I521 + I522 + I523.

We will only show the estimate of I522, since I521 enjoys the same estimate as I511 due to the commutator
estimate in Lemma 4.4 and I523 can be estimated as I513. Integration by parts, identity (20) along with the fact
that∇ · bq = 0 infers

I522 =
∑
q≥−1

λ2sq

∫
R3

∇× (∇× b≤q−2 × bq) · bq dx

=
∑
q≥−1

λ2sq

∫
R3

[(bq · ∇)∇× b≤q−2 − (∇ · ∇ × b≤q−2)bq] · bq dx

−
∑
q≥−1

λ2sq

∫
R3

(∇× b≤q−2 · ∇)bq · bq dx.

Since∇ · (∇× b≤q−2) = 0, it is obvious the last integral vanishes. Thus we have

|I522| ≤
∑
q≥−1

λ2sq

∫
R3

|[(bq · ∇)∇× b≤q−2 − (∇ · ∇ × b≤q−2)bq] · bq| dx

.
∑
q≥−1

λ2sq ‖∇2b≤q−2‖∞‖bq‖22

.
∑
q≥−1

λ2sq ‖bq‖22
∑
p≤q

λ
2+n

2
p ‖bp‖2
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which share the same estimate of I511.
The last term I53 is treated as

|I53| ≤
∑
q≥−1

∑
p≥q−2

λ2sq

∫
R3

|∆q(bp ×∇× b̃p) · ∇ × bq| dx

.
∑
q≥−1

λ2sq ‖∇bq‖∞
∑
p≥q−3

‖bp‖2‖∇b̃p‖2

.
∑
q≥−1

λ
2s+1+n

2
q ‖bq‖2

∑
p≥q−3

λp‖bp‖22

.
∑
p≥−1

λp‖bp‖22
∑
q≤p+3

λ
2s+1+n

2
q ‖bq‖2

which turns out to be similar as I511 again. Summarizing the analysis above, we obtain

|I5| ≤
µ

4η

∑
q≥−1

λ2s+2α
q ‖bq‖22 + Cµη

∑
q≥−1

λ2sq ‖bq‖22

γ1

+ Cµη

∑
q≥−1

λ2sq ‖bq‖22

γ2

(15)

for some γ1, γ2 > 1. Putting together of (3), (7), (11), and (15), there exist constants Cν , Cµ, and Cν,µ such that

d

dt

(
‖u‖2

Ḣs
+ ‖b‖2

Ḣs

)
+ ν

∑
q≥−1

λ2s+2
q ‖uq‖22 + µ

∑
q≥−1

λ2s+2α
q ‖bq‖22

≤Cν

∑
q≥−1

λ2sq ‖uq‖22

γ1

+ Cν

∑
q≥−1

λ2sq ‖uq‖22

γ2

+ Cµη
2

∑
q≥−1

λ2sq ‖bq‖22

γ1

+ Cµη
2

∑
q≥−1

λ2sq ‖bq‖22

γ2

≤Cν,µ(1 + η2)
(
‖u‖2

Ḣs
+ ‖b‖2

Ḣs

)γ1
+ Cν,µ(1 + η2)

(
‖u‖2

Ḣs
+ ‖b‖2

Ḣs

)γ2

(16)

Notice that γ1, γ2 > 1 and hence the energy inequality (16) is in the type of Riccati. It follows that, there exists
a time T > 0 which depends on ν, µ, η and ‖u0‖Hs , ‖b0‖Hs such that

‖u(t)‖2Hs + ‖b(t)‖2Hs ≤ C(ν, µ, η, T, ‖u0‖Hs , ‖b0‖Hs)
(
‖u0‖2Hs + ‖b0‖2Hs

)
for 0 ≤ t < T , and a constant C depending on ν, µ, η, T and ‖u0‖Hs , ‖b0‖Hs . We note that the constant C does
not blow up as η → 0.

�

3 Convergence of the Hall-MHD to the MHD system

In this section, we show that solutions (uη, bη, pη) of (1) with α = 1 in H
n
2 converges to a solution (u, b, p) of

the MHD system, as η → 0. Namely, we prove
Theorem 3.1 Let (uη, bη, pη) be a solution to (1) with α = 1 obtained in Theorem 1.1 associated with initial

data (u0, b0). Let (u, b, p) be a solution to (1) with η = 0 and α = 1 under the same initial data. Then we have

lim
η→0

(‖uη − u‖2 + ‖bη − b‖2) = 0.

Proof: Take the difference U = uη − u, B = bη − b and π = pη − p, which satisfy the equations:

Ut + u · ∇U − b · ∇B + U · ∇uη −B · ∇bη +∇π = ν∆U,

Bt + u · ∇B − b · ∇U + U · ∇bη −B · ∇uη − η∇× ((∇× bη)× bη) = µ∆B,

∇ · U = 0, ∇ ·B = 0.

(17)
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Multiplying the first equation by U and the second by B, we obtain (formally)

1

2

d

dt
‖U‖22 + ν‖∇U‖22

=

∫
R3

b · ∇B · U dx−
∫
R3

U · ∇uη · U dx+

∫
R3

B · ∇bη · U dx,

1

2

d

dt
‖B‖22 + µ‖∇B‖22

=

∫
R3

b · ∇U ·B dx−
∫
R3

U · ∇bη ·B dx+

∫
R3

B · ∇uη ·B dx

+ η

∫
R3

∇× ((∇× bη)× bη) ·B dx.

Adding the two yields, provided that (uη, bη, pη) and (u, b, p) are regular enough,

1

2

d

dt

(
‖U‖22 + ‖B‖22

)
+ ν‖∇U‖22 + µ‖∇B‖22

=−
∫
R3

U · ∇uη · U dx+

∫
R3

B · ∇bη · U dx−
∫
R3

U · ∇bη ·B dx

+

∫
R3

B · ∇uη ·B dx+ η

∫
R3

∇× ((∇× bη)× bη) ·B dx

≡I1 + I2 + I3 + I4 + ηI5.

It is straight forward to notice that

|I1 + I2 + I3 + I4| ≤ C (‖∇uη‖∞ + ‖∇bη‖∞)
(
‖U‖22 + ‖B‖22

)
;

and also

|I1 + I2 + I3 + I4| ≤C(ν−1 + µ−1) (‖uη‖∞ + ‖bη‖∞)
(
‖U‖22 + ‖B‖22

)
+

1

4
ν‖∇U‖22 +

1

4
µ‖∇B‖22.

We estimate I5 as

η|I5| =
∣∣∣∣η ∫

R3

((∇× bη)× bη) · ∇ ×B dx
∣∣∣∣

≤Cη‖∇bη‖∞‖bη‖2‖∇B‖2

≤Cη2µ−1‖∇bη‖2∞‖bη‖22 +
1

4
µ‖∇B‖22

or as

η|I5| =
∣∣∣∣η ∫

R3

((∇× bη)× bη) · ∇ ×B dx
∣∣∣∣

≤Cη‖bη‖∞‖∇bη‖2‖∇B‖2

≤Cη2µ−1‖bη‖2∞‖∇bη‖22 +
1

4
µ‖∇B‖22

Combining the above estimates leads to, for s > n
2

d

dt

(
‖U‖22 + ‖B‖22

)
≤ C

(
‖U‖22 + ‖B‖22

)
+ Cη2µ−1‖∇bη‖22,

from which Grönwall’s inequality implies that

‖U(t)‖22 + ‖B(t)‖22 ≤ Cη2µ−1‖∇bη‖22 + (‖U(0)‖22 + ‖B(0)‖22 + Cη2µ−1‖∇bη‖22)eCt.
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Following estimates in Section 2, one can see that ‖∇bη‖2 has an upper bound as η → 0. We also note that
U(0) = B(0) = 0. Thus

lim
η→0

(‖U(t)‖22 + ‖B(t)‖22) = 0,

and the convergence rate is O(η2).
�

4 Appendix

4.1 Littlewood-Paley decomposition

Our analysis is built on the Littlewood-Paley decomposition theory.Basic languages and concepts are introduced
briefly below.

We choose a nonnegative radial function χ ∈ C∞0 (Rn) satisfying

χ(ξ) =

{
1, for |ξ| ≤ 3

4

0, for |ξ| ≥ 1.

Denote λq = 2q for integers q. A sequence of cut-off functions are defined,

ϕ(ξ) = χ(
ξ

2
)− χ(ξ), ϕq(ξ) =

{
ϕ(λ−1q ξ) for q ≥ 0,

χ(ξ) for q = −1.

For a tempered distribution vector field u we define the Littlewood-Paley projection

h = F−1ϕ, h̃ = F−1χ,

uq := ∆qu = F−1(ϕ(λ−1q ξ)Fu) = λnq

∫
h(λqy)u(x− y)dy, for q ≥ 0,

u−1 = F−1(χ(ξ)Fu) =

∫
h̃(y)u(x− y)dy,

whereF andF−1 denote the Fourier transform and inverse Fourier transform, respectively. Due to the Littlewood-
Paley theory, the identity

u =
∞∑

q=−1
uq

holds in the sense of distribution, which is the fundamental idea of shell decomposition. We also denote the
various summation terms simply by

u≤Q =

Q∑
q=−1

uq, u(Q,N ] =
N∑

p=Q+1

up, ũq =
∑
|p−q|≤1

up.

We can adapt the norm of Sobolev space Ḣs as

‖u‖Ḣs ∼

( ∞∑
q=−1

λ2sq ‖uq‖22

)1/2

, s ∈ R.

Bernstein’s inequality satisfied by the dyadic blocks uq is introduced below.
Lemma 4.1 Let n be the space dimension and r ≥ s ≥ 1. Then for all tempered distributions u, we have

‖uq‖r . λ
n( 1
s−

1
r )

q ‖uq‖s.
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4.2 Bony’s paraproduct and commutators

We adapt the following version of Bony’s paraproduct

∆q(u · ∇v) =
∑
|q−p|≤2

∆q(u≤p−2 · ∇vp) +
∑
|q−p|≤2

∆q(up · ∇v≤p−2)

+
∑
p≥q−2

∆q(ũp · ∇vp),
(18)

which is used through the paper to decompose the nonlinear terms. We introduce a commutator as

[∆q, u≤p−2 · ∇]vp = ∆q(u≤p−2 · ∇vp)− u≤p−2 · ∇∆qvp. (19)

Lemma 4.2 The following estimate holds, for any 1 < r <∞

‖[∆q, u≤p−2 · ∇]vp‖r . ‖∇u≤p−2‖∞‖vp‖r.

To treat the Hall term, we recall a fundamental identity for vector valued functions F and G,

∇× (F ×G) = [(G · ∇)F − (∇ · F )G]− [(F · ∇)G− (∇ ·G)F ]. (20)

In addition, two more commutators are defined

[∆q, F ×∇×]G = ∆q(F × (∇×G))− F × (∇×Gq), (21)

[∆q, (∇× F )×]G = ∆q((∇× F )×G)− (∇× F )×Gq. (22)

They satisfy the estimates below.
Lemma 4.3 Assume∇ · F = 0 and F , G vanish at large |x| ∈ R3. For any 1 ≤ r ≤ ∞, we have

‖[∆q, F ×∇×]G‖r . ‖∇F‖∞‖G‖r;

‖[∆q, (∇× F )×]G‖r . ‖∇F‖∞‖G‖r.

Lemma 4.4 Assume the vector valued functions F , G and H vanish at large |x| ∈ R3. For any 1 ≤ r1, r2 ≤
∞ with 1

r1
+ 1

r2
= 1, we have∣∣∣∣∫

R3

[∆q, (∇× F )×]G · ∇ ×H dx

∣∣∣∣ . ‖∇2F‖∞‖G‖r1‖H‖r2 .
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