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MAXIMUM LIKELIHOOD ESTIMATION IN GAUSSIAN MODELS
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Universitat Pompeu Fabra

We analyze the problem of maximum likelihood estimation for Gaussian
distributions that are multivariate totally positive of order two (MTP2). By ex-
ploiting connections to phylogenetics and single-linkage clustering, we give
a simple proof that the maximum likelihood estimator (MLE) for such dis-
tributions exists based on n ≥ 2 observations, irrespective of the underlying
dimension. Slawski and Hein [Linear Algebra Appl. 473 (2015) 145–179],
who first proved this result, also provided empirical evidence showing that
the MTP2 constraint serves as an implicit regularizer and leads to sparsity
in the estimated inverse covariance matrix, determining what we name the
ML graph. We show that we can find an upper bound for the ML graph by
adding edges corresponding to correlations in excess of those explained by
the maximum weight spanning forest of the correlation matrix. Moreover,
we provide globally convergent coordinate descent algorithms for calculating
the MLE under the MTP2 constraint which are structurally similar to itera-
tive proportional scaling. We conclude the paper with a discussion of signed
MTP2 distributions.

1. Introduction. Total positivity is a special form of positive dependence be-
tween random variables that became an important concept in modern statistics; see,
for example, [3, 8, 23]. This property (also called the MTP2 property) appeared in
the study of stochastic orderings, asymptotic statistics and in statistical physics
[15, 31]. Families of distributions with this property lead to many computational
advantages [2, 11, 33]. In a recent paper [13], the MTP2 property was studied in
the context of graphical models and conditional independence in general. It was
shown that MTP2 distributions have desirable Markov properties. Our paper can
be seen as a continuation of this work with a focus on Gaussian distributions.

A p-variate real-valued distribution with density f w.r.t. a product measure μ

is multivariate totally positive of order 2 (MTP2) if the density satisfies

f (x)f (y) ≤ f (x ∧ y)f (x ∨ y).
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A multivariate Gaussian distribution with mean μ and a positive definite co-
variance matrix � is MTP2 if and only if the concentration matrix K := �−1 is
a symmetric M-matrix, that is, Kij ≤ 0 for all i �= j or, equivalently, if all partial
correlations are nonnegative. Such distributions were considered by Bølviken [5]
and Karlin and Rinott [25]. Moreover, Gaussian graphical models, or Gaussian
Markov random fields, were studied in the context of totally positive distributions
in [29]. MTP2 Gaussian graphical models were shown to form a sub-class of non-
frustrated Gaussian graphical models, which themselves are a sub-class of walk-
summable Gaussian graphical models. Efficient structure estimation algorithms for
MTP2 Gaussian graphical models were given in [1] based on thresholding covari-
ances after conditioning on subsets of variables of limited size. Efficient learning
procedures based on convex optimization were suggested by Slawski and Hein [37]
and this paper is closely related to their approach; see also [4] and [12].

Throughout this paper, we assume that we are given n i.i.d. samples from
N (μ,�), where � is an unknown positive definite matrix of size p × p. With-
out loss of generality, we assume that μ = 0 and we focus on the estimation of �.
We denote the sample covariance matrix based on n samples by S. Then the log-
likelihood function is, up to additive and multiplicative constants, given by

(1) �(K;S) = log detK − tr(SK).

We denote the cone of real symmetric matrices of size p × p by S
p , its positive

definite elements by S
p
�0 and its positive semidefinite elements by S

p
�0. Note that

�(K;S) is a strictly concave function of K ∈ S
p
�0. Since M-matrices form a convex

subset of Sp
�0, the optimization problem for computing the maximum likelihood

estimator (MLE) for MTP2 Gaussian models is a convex optimization problem.
Slawski and Hein [37] showed that the MLE exists with probability one when
n ≥ 2; that is, the global maximum of this optimization problem is attained. This
yields a drastic reduction from n ≥ p without the MTP2 constraint. In addition,
they provided empirical evidence showing that the MTP2 constraint serves as an
implicit regularizer and leads to sparsity in the concentration matrix K .

In this paper, we analyze the sparsity pattern of the MLE K̂ under the MTP2
constraint. For a p × p matrix K , we let G(K) denote the undirected graph on p

nodes with an edge ij if and only if Kij �= 0. In Proposition 4.3 we obtain a simple
upper bound for the ML graph G(K̂) by adding edges to the smallest maximum
weight spanning forest (MWSF) corresponding to empirical correlations in excess
of those provided by the MWSF. We illustrate the issues in the following example.

EXAMPLE 1.1. We consider the carcass data that are discussed in [19] and
can be found in the R-library gRbase. This data set contains measurements of the
thickness of meat and fat layers at different locations on the back of a slaughter
pig together with the lean meat percentage on each of 344 carcasses. For our anal-
ysis, we ignore the lean meat percentage, since by definition, this variable should
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be negatively correlated with fat and positively correlated with meat so the joint
distribution is unlikely to be MTP2. The sample correlation matrix R for these data
is

R =

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1.00 0.04 0.84 0.08 0.82 −0.03 Fat11
0.04 1.00 0.04 0.87 0.13 0.86 Meat11
0.84 0.04 1.00 0.01 0.83 −0.03 Fat12
0.08 0.87 0.01 1.00 0.11 0.90 Meat12
0.82 0.13 0.83 0.11 1.00 0.02 Fat13

−0.03 0.86 −0.03 0.90 0.02 1.00 Meat13

and its inverse, scaled to have diagonal elements equal to one, K̃ , is

K̃ =

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1.00 0.16 −0.52 −0.31 −0.40 0.19 Fat11
0.16 1.00 −0.05 −0.42 −0.17 −0.37 Meat11

−0.52 −0.05 1.00 0.25 −0.45 −0.17 Fat12
−0.31 −0.42 0.25 1.00 −0.02 −0.61 Meat12
−0.40 −0.17 −0.45 −0.02 1.00 0.10 Fat13

0.19 −0.37 −0.17 −0.61 0.10 1.00 Meat13

Note that the off-diagonal entries of K̃ are the negative empirical partial cor-
relations. This sample distribution is not MTP2; the positive entries in K̃ are
highlighted in red. The MLE under MTP2 can be computed, for example, using
cvx [17] in matlab or using one of the simple coordinate descent algorithms
discussed in Section 2. In this particular example, the MLE can also be obtained
through the explicit formula (14) in Section 4. The MLE of the correlation matrix,
rounded to 2 decimals, is

R̂ =

Fat11 Meat11 Fat12 Meat12 Fat13 Meat13⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1.00 0.10 0.84 0.09 0.82 0.09 Fat11
0.10 1.00 0.11 0.87 0.13 0.86 Meat11
0.84 0.11 1.00 0.09 0.83 0.09 Fat12
0.09 0.87 0.09 1.00 0.11 0.90 Meat12
0.82 0.13 0.83 0.11 1.00 0.11 Fat13
0.09 0.86 0.09 0.90 0.11 1.00 Meat13

The entries of R̂ that changed compared to the sample correlation matrix R are
highlighted in blue.3 The sparsity pattern of K̂ = �̂−1 is captured by the ML graph
G(K̂) shown in Figure 1.

3We note that �̂45 > S45; the entries appear equal only because of the 2-digit rounding.
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FIG. 1. Undirected Gaussian graphical model for the carcass data obtained by estimating under
the MTP2 assumption. The thick red edges correspond to the MWSF of the correlation matrix.

Note that all edges corresponding to blue entries in R̂ are missing in this graph.
As we show in Proposition 2.2, this is a consequence of the KKT conditions. Con-
sider now the maximum weight spanning forest of the complete graph with weights
given by the entries of R. In this example, the spanning forest is a chain represented
by the thick red edges in Figure 1. By Corollary 4.7, these edges form a spanning
tree of the ML graph G(K̂).

Interestingly, applying various methods for model selection such as stepwise
AIC, BIC or graphical lasso all yield similar graphs, possibly indicating that the
MTP2 assumption is quite reasonable.

The remainder of this paper is organized as follows: In Section 2, we review the
duality theory that is known more generally for regular exponential families and
specialize it to MTP2 Gaussian distributions. This embeds the results by Slawski
and Hein [37] into the framework of exponential families and also leads to two
related coordinate descent algorithms for computing the MLE, one that acts on the
entries of K and one that acts on the entries of �. In Section 3, we show how the
problem of ML estimation for MTP2 Gaussian distributions is connected to single-
linkage clustering and ultrametrics as studied in phylogenetics. These observations
result in a simple proof of the existence of the MLE for n ≥ 2, a result that was
first proven in [37]. Our proof is by constructing a primal and dual feasible point
of the convex ML estimation problem for MTP2 Gaussian models. In Section 4,
we investigate the structure of the ML graph G(K̂) and give a simple upper bound
for it. Finally, in Section 5 we discuss how our results can be generalized to so-
called signed MTP2 Gaussian distributions, where the distribution is MTP2 up to
sign changes or, equivalently, |X| is MTP2. Such distributions were introduced by
Karlin and Rinott in [24]. We conclude the paper with a brief discussion of various
open problems.

2. Duality theory for ML estimation under MTP2. We start this section by
formally introducing absolutely continuous MTP2 distributions and then discuss
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the duality theory for Gaussian MTP2 distributions. Let V := {1,2, . . . , p} be a
finite set and let X = (Xi, i ∈ V ) be a random vector with density f w.r.t. Lebesgue
measure on the product space X = ∏

i∈V Xi , where Xi ⊆ R is the state space of
Xi . We define the coordinate-wise minimum and maximum as

x ∧ y = (
min(xv, yv), v ∈ V

)
, x ∨ y = (

max(xi, yi), i ∈ V
)
.

Then we say that X or the distribution of X is multivariate totally positive of order
two (MTP2) if its density function f on X satisfies

(2) f (x)f (y) ≤ f (x ∧ y)f (x ∨ y) for all x, y ∈ X .

In this paper, we concentrate on the Gaussian setting. It is easy to show that a
Gaussian distribution with mean μ and covariance matrix � is MTP2 if and only
if K = �−1 is a symmetric M-matrix, that is, K is positive definite and:

(i) Kii > 0 for all i ∈ V ,
(ii) Kij ≤ 0 for all i, j ∈ V with i �= j .

Properties of M-matrices were studied by Ostrowski [32] who chose the name to
honor H. Minkowski. The connection to multivariate Gaussian distributions was
established by Bølviken [5] and Karlin and Rinott [25].

We denote the set of all symmetric M-matrices of size p × p by Mp . Note that
Mp is a convex cone. In fact, it is obtained by intersecting the positive definite
cone S

p
�0 with all the coordinate half-spaces

Hp
ij = {

X ∈ S
p|Xij ≤ 0

}
with i �= j . For a convex cone C, we denote its closure by C. Then Mp is given by
S

p
�0

⋂
i<j H

p
ij and the ML estimation problem for Gaussian MTP2 models can be

formulated as the following optimization problem:

(3)
maximize

K
log det(K) − trace(KS)

subject to K ∈ Mp

This is a convex optimization problem, since the objective function is concave on
S

p
�0.

Next, we introduce a second convex cone N p that plays an important role for
ML estimation in Gaussian MTP2 models. To formally define this cone, we intro-
duce two partial orders on matrices. Let A,B be two p × p matrices. Then A ≥ B

means that Aij ≥ Bij for all (i, j) ∈ V × V , and A � B means that A − B ∈ S
p
�0.

Then the cone N p is defined as the negative closure of Sp
�0, that is,

N p = {
X ∈ S

p|∃Y ∈ S
p
�0 with X ≤ Y and diag(X) = diag(Y )

}
.

To simplify notation, we will suppress the dependence on p and write S, S�0, S�0,
M and N , when the dimension is clear. In the following result, we show that the
cones N and M are dual to each other.
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LEMMA 2.1. The closure of N is the dual to the cone of M-matrices M, that
is,

(4) N = {
S ∈ S|〈S,K〉 ≥ 0 for all K ∈ M

}
.

PROOF. We denote the dual of a convex cone C by C∨. Let C1, C2 be two
convex cones. Then it is an easy exercise to verify that

(5) (C1 ∩ C2)
∨ = C∨

1 + C∨
2 ;

here + denotes the Minkowski sum. Note that

S
∨�0 = S�0 and H∨

ij = Hij .

This completes the proof, since M = S�0
⋂

i<j Hij and (5) can be applied induc-
tively to any finite collection of convex cones. �

Using the cones M and N , we now determine conditions for existence of the
MLE in Gaussian MTP2 models and give a characterization of the MLE. We say
that the MLE does not exist if the likelihood does not attain the global maximum.

PROPOSITION 2.2. Consider a Gaussian MTP2 model. Then the MLE �̂ (and
K̂) exists for a given sample covariance matrix S on V if and only if S ∈ N . It
is then equal to the unique element �̂ � 0 that satisfies the following system of
equations and inequalities: (

�̂−1)
ij ≤ 0 for all i �= j,(6)

�̂ii − Sii = 0 for all i ∈ V ,(7)

(�̂ij − Sij ) ≥ 0 for all i �= j,(8)

(�̂ij − Sij )
(
�̂−1)

ij = 0 for all i �= j .(9)

PROOF. It is straightforward to compute the dual optimization problem and
the KKT conditions. In particular, in [37] it was shown that the dual optimization
problem to (3) is given by

(10)

minimize
��0

− log det(�) − p

subject to �ii = Sii for all i ∈ V ,

�ij ≥ Sij for all i �= j .

Note that the identity matrix is a strictly feasible point for (3). Hence, the MLE
does not exist if and only if the likelihood is unbounded. Since by Slater’s con-
straint qualification strong duality holds for the optimization problems (3) and (10),
the MLE does not exist if and only if S /∈N . �

We note that the conditions in Proposition 2.2 were also derived in [37], save
for the explicit identification of the dual cone N .
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REMARK 2.3. Proposition 2.2 can easily be extended to provide properties for
the existence of the MLE and a characterization of the MLE for Gaussian graphical
models under MTP2. In this case, let G = (V ,E) be an undirected graph. Then the
primal problem has additional equality constraints, namely Kij = 0 for all ij /∈ E,
and hence the inequality constraints in the dual problem are restricted to the entries
in E, that is, �ij ≥ Sij for all ij ∈ E. Note that if the MLE of � based on S exists
in the Gaussian graphical model over G, it also exists in the Gaussian graphical
model over G under MTP2, since without the MTP2 constraint the MLE needs to
satisfy �̂ij = Sij for all ij ∈ E.

We define the maximum likelihood graph (ML graph) Ĝ to be the graph deter-
mined by K̂ , that is, Ĝ = G(K̂), where K̂ = �̂−1 is the MLE of K under MTP2.
We then have the following important corollary of Proposition 2.2.

COROLLARY 2.4. Consider the Gaussian graphical model determined by
Kij = 0 for ij /∈ E(Ĝ), where Ĝ is the ML graph under MTP2. Let �̄ be the
MLE of � under that Gaussian graphical model (without the MTP2 constraint).
Then �̂ = �̄.

PROOF. The MLE of � under the Gaussian graphical model with graph Ĝ is
the unique element �̄ � 0 satisfying the following system of equations:

�̄ii − Sii = 0 for all i ∈ V ,

�̄ij − Sij = 0 for all ij ∈ E(Ĝ),(
�̄−1)

ij = 0 for all ij /∈ E(Ĝ).

Proposition 2.2 says that also �̂ satisfies these equations, and hence we must have
�̄ = �̂. �

Note that this corollary highlights the role of the complementary slackness con-
dition (9) in inducing sparsity of the MTP2 solution.

We emphasize that the MLE under MTP2 is equivariant w.r.t. changes of scale
so that without loss of generality we can assume that the sample covariance is
normalized, that is, Sii = 1 or, equivalently, S = R, where R is the correlation
matrix. For certain of the subsequent developments, this represents a convenient
simplification.

LEMMA 2.5. Let S be the sample covariance matrix, R the corresponding
sample correlation matrix. Denote by �̂S and �̂R the MLE in Proposition 2.2
based on S and R, respectively. Then

�̂S
ij =

√
SiiSjj �̂

R
ij for all i, j ∈ V.
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Algorithm 1 Coordinate descent on K

Input: Sample covariance matrix S, and precision ε.
Output: MLE K̂ ∈M.

1. Let K0 := K1 := (diag(S))−1.
2. Cycle through entries u �= v and solve the following optimization problem:

maximize
K�0

log det(K) − trace(KS)

subject to Kuv ≤ 0,

Kij = K1
ij for all ij ∈ (V × V ) \ {uu, vv,uv},

and update K1 = K .
3. If ‖K0 − K1‖1 < ε, set K̂ = K1. Otherwise, set K0 = K1 and return to 2.

PROOF. Denote by D a diagonal matrix such that Dii = √
Sii and S = DRD.

The likelihood function based on S is

log detK − tr(SK) = log detK − tr(RDKD).

If K ′ = DKD, this can be rewritten as log detK ′ − tr(RK ′) − ∑
i logSii .

Therefore, if K̂R is the maximizer of log detK − tr(RK) under the MTP2

constraints, then D−1K̂RD−1 is also an M-matrix and the maximizer of
log detK − tr(SK). �

We end this section by providing simple coordinate descent algorithms for ML
estimation under MTP2. Although interior point methods run in polynomial time,
for very large Gaussian graphical models it is usually more practical to apply co-
ordinate descent algorithms. In Algorithms 1 and 2, we describe two methods for
computing the MLE that only use optimization problems of size 2 × 2 which have
a simple and explicit solution, and iteratively update the entries of K , respectively
of �. Algorithms 1 and 2 are inspired by the corresponding algorithms for Gaus-
sian graphical models; see, for example, [10, 39, 41]. Slawski and Hein [37] also
provide a coordinate descent algorithm for estimating covariance matrices under
MTP2. However, their method updates one column/row of � at a time.

We first analyze Algorithm 1. Let A = {u, v} and B = V \ A. Then note that
the objective function can be written in terms of the 2 × 2 Schur complement
K ′ = KAA − KABK−1

BBKBA, since up to an additive constant

log detK − trace(KS) = log detK ′ − trace
(
K ′SAA

)
.
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Algorithm 2 Coordinate descent on �

Input: Sample covariance matrix S � 0, and precision ε.
Output: MLE �̂ with �̂−1 ∈ M.

1. Let �0 := �1 := S

2. Cycle through entries u �= v and solve the following optimization problem:

maximize
��0

log det(�)

subject to �uv ≥ Suv,

�ij = �1
ij for all ij ∈ (V × V ) \ {uv}.

and update �1 = �.
3. If ‖�0 − �1‖1 < ε, set �̂ = �1. Otherwise, set �0 = �1 and return to 2.

Defining L := KABK−1
BBKBA, then the optimization problem in step (2) of Algo-

rithm 1 is equivalent to

maximize
K ′�0

log det
(
K ′) − trace

(
K ′SAA

)
subject to K ′

12 + L12 ≤ 0.

The unconstrained optimum to this problem is given by K ′ = S−1
AA and is attained

if and only if (S−1
AA)12 + L12 ≤ 0, or equivalently, if and only if

L12 ≤ Suv

SuuSvv − S2
uv

.

Otherwise, the KKT conditions give that K ′
12 = −L12.

Maximizing over the remaining two entries of K ′ leads to a quadratic equation,
which has one feasible solution:

K ′
11 = 1 +

√
1 + 4SuuSvvL

2
12

2Suu

,

(11)

K ′
22 = 1 +

√
1 + 4SuuSvvL

2
12

2Svv

, K ′
12 = −L12.

Then the solution to the optimization problem in step (2) is given by KAA = K ′ +
L.

Dual to this algorithm, one can define an algorithm that iteratively updates the
off-diagonal entries of � by maximizing the log-likelihood in direction �uv and
keeping all other entries fixed. This procedure is shown in Algorithm 2. If p > n,
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S is not positive definite; in this case, we use as starting point the single linkage
matrix Z that is defined later in (13).

Similarly as for Algorithm 1, the solution to the optimization problem in
step (2) can be given in closed-form. Defining A = {u, v}, B = V \ A and
L = �AB�−1

BB�BA, then analogously as in the derivation above, one can show
that the solution to the optimization problem in step (2) of Algorithm 2 is given by

(12) �uv = max{Suv,L12}.
We end by proving that Algorithms 1 and 2 indeed converge to the MLE. We

here assume that n ≥ 2 to guarantee existence of the MLE. Note that the suggested
starting points for both algorithms can be modified.

PROPOSITION 2.6. Algorithms 1 and 2 converge to the MLE K̂ = �̂−1 ∈M.

PROOF. The convergence to the MLE is immediate for Algorithm 2 because it
is a coordinate descent method applied to a smooth and strictly concave function;
see, for example, [28]. For Algorithm 1, we use the fact that it is an example of
iterative partial maximization. To prove convergence to the MLE, we we will show
that the assumptions of Proposition A.3 in [26] hold. The log-likelihood function
that we are trying to maximize is strictly concave and so the maximum is unique.
Clearly, K is the maximum if and only if it is a fixed point of each update. It only
remains to show that updates depend continuously on the previous value. For a
given S, fix K and consider a sequence of points Kn converging to K . Denote
by K̃ and K̃n the corresponding one-step updates. We want to show that K̃n also
converges to K̃ . As above, let A = {u, v}, B = V \A, K ′ = KAA −KABK−1

BBKBA

and L = KABK−1
BBKBA. Outside of the block K̃AA, this convergence is trivial; so

we focus only on the three entries in K̃AA. The function L12 �→ (K ′
11,K

′
22,K

′
12)

is continuous if and only if each coordinate is. It is clear that these functions are
continuous if L12 �= Suv

SuuSvv−S2
uv

. It remains to show that if L12 = Suv

SuuSvv−S2
uv

the

update in (11) gives K ′ = S−1
AA, which can be easily checked. �

3. Ultrametric matrices and inverse M-matrices. In this section, we exploit
the link to ultrametrics in order to construct an explicit primal and dual feasible
point of the maximum likelihood estimation problem.

A nonnegative symmetric matrix U is said to be ultrametric if:

(i) Uii ≥ Uij for all i, j ∈ V ,
(ii) Uij ≥ min{Uik,Ujk} for all i, j, k ∈ V .

We say that a symmetric matrix is an inverse M-matrix if its inverse is an M-
matrix. The connection between ultrametrics and M-matrices is established by the
following result; see [9], Theorem 3.5.
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THEOREM 3.1. Let U be an ultrametric matrix with strictly positive entries
on the diagonal. Then U is nonsingular if and only if no two rows are equal.
Moreover, if U is nonsingular then U is an inverse M-matrix.

The main reason why ultrametric matrices are relevant here is the following
construction, which is similar to constructions used in in phylogenetics [34], Sec-
tion 7.2, and single linkage clustering [16].

Let R be a symmetric p × p positive semidefinite matrix such that Rii = 1 for
all i ∈ V . Consider the weighted graph G+ = G+(R) over V with an edge between
i and j whenever Rij is positive and assign to each edge the corresponding positive
weight Rij . Note that G+ in general does not have to be connected. Define a p ×p

matrix Z by setting Zii = 1 for all i ∈ V and

(13) Zij := max
P

min
uv∈P

Ruv,

for all i �= j , where the maximum is taken over all paths in G+ between i and j

and is set to zero if no such path exists. We call Z the single-linkage matrix based
on R.

EXAMPLE 3.2. Suppose that

R =

⎡
⎢⎢⎣

1 −0.5 0.5 0.6
−0.5 1 0.4 −0.1
0.5 0.4 1 0.2
0.6 −0.1 0.2 1

⎤
⎥⎥⎦

Then G+ and Z are given by

1

2

3

4

0.6

0.5

0.4 0.2

Z =

⎡
⎢⎢⎣

1 0.4 0.5 0.6
0.4 1 0.4 0.4
0.5 0.4 1 0.5
0.6 0.4 0.5 1

⎤
⎥⎥⎦ .

For example, to get Z12 we consider two paths 1 − 3 − 2 and 1 − 4 − 3 − 2. The
minimum of Ruv over the first path is 0.4 and over the second path 0.2. This gives
Z12 = 0.4.

Note that in the above example Z ≥ R, Z is invertible, and Z−1 is an M-matrix.
We now show that this is an example of a more general phenomenon.
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PROPOSITION 3.3. Let R be a symmetric p × p positive semidefinite matrix
satisfying Rii = 1 for all i ∈ V . Then the single-linkage matrix Z based on R is
an ultrametric matrix with Zij ≥ Rij for all i �= j . If, in addition, Rij < 1 for all
i �= j , then Z is nonsingular and, therefore, an inverse M-matrix.

PROOF. We first show that Z is an ultrametric matrix. Z is symmetric by def-
inition. Because R is positive semidefinite, Rij ≤ 1 for all i, j and from (13) it
immediately follows that Zij ≤ 1 and, therefore, Zii ≥ Zij for all i, j as needed.
Finally, to prove condition (ii) in the definition of ultrametric, let i, j, k ∈ V . Sup-
pose first that i, j, k lie in the same connected component of G+. Let P1, P2 be
the paths in G+ such that Zik = minuv∈P1 Ruv and Zjk = minuv∈P2 Ruv . Let P12
be the path between i and j obtained by concatenating P1 and P2. Then

Zij = max
P

min
uv∈P

Ruv ≥ min
uv∈P12

Ruv = min{Zik,Zjk}.

Now suppose that i, j, k are not in the same connected component of G+. In
that case, 0 ∈ {Zij ,Zik,Zjk}. Because zero is attained at least twice, again Zij ≥
min{Zik,Zjk}. Hence, Z is an ultrametric matrix. The fact that Zij ≥ Rij for all
i, j follows directly by noting that the edge ij forms a path between i and j .

Suppose now that Rij < 1 for all i �= j . In that case also, Zij < 1 for all i �= j .
From this, it immediately follows that no two rows of Z can be equal. Indeed, if the
ith row is equal to the j th row for some i �= j , then necessarily Zij = Zii = Zjj ,
a contradiction. From Theorem 3.1, it then follows that Z is an inverse M-matrix,
which completes the proof. �

As a direct consequence, we obtain the following result.

PROPOSITION 3.4. Let S be a symmetric positive semidefinite matrix with
strictly positive entries on the diagonal and such that Sij <

√
SiiSjj for all i �= j .

Then there exists an inverse M-matrix Z such that Z ≥ S and Zii = Sii for all
i ∈ V .

PROOF. Apply Proposition 3.3 to the normalized version R of S, with en-
tries Rij := Sij /

√
SiiSjj . Because Rij < 1 for all i �= j , the corresponding single-

linkage matrix Z′ is ultrametric with Z′ ≥ R and Z′ is an inverse M-matrix. Define
Z by Zij = √

SiiSjjZ
′. Then Z ≥ S and Zii = Sii for all i ∈ V . Moreover, Z is an

inverse M-matrix because Z′ is. �

Proposition 3.4 is very important for our considerations. A basic application is
an elegant alternative proof of the main result of [37], which says that the MLE
under MTP2 exists with probability one as long as n ≥ 2. This is in high contrast
with the existence of the MLE in Gaussian graphical models without additional
constraints; see [40].
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THEOREM 3.5 (Slawski and Hein [37]). Consider a Gaussian MTP2 model
and let S be the sample covariance matrix. If Sij <

√
SiiSjj for all i �= j , then the

MLE �̂ (and K̂) exists and it is unique. In particular, if the number n of observa-
tions satisfies n ≥ 2, then the MLE exists with probability 1.

PROOF. The sample covariance matrix is a positive semidefinite matrix with
strictly positive diagonal entries. We can apply Proposition 3.4 to obtain an inverse
M-matrix Z that satisfies Z ≥ S and Zii = Sii for all i. It follows that Z satisfies
primal feasibility (6) and dual feasibility (7) and (8). By Proposition 2.2, the MLE
exists and it is unique by convexity of the problem. �

REMARK 3.6. Combining this result with Corollary 2.4 we note that the
cliques of Ĝ can at most be of size n. In this way the sparsity of Ĝ automatically
adjusts to the sample size.

The matrix Z can be computed efficiently.4 To see that, note first that in Exam-
ple 3.2 we could first consider the chain T of the form 2 − 3 − 1 − 4, which is the
maximal weight spanning forest of G+ and then construct Z by

Zij = min
uv=ij

Ruv,

where ij denotes the unique path between i and j in T . For example, Z12 = 0.4,
which corresponds to the minimal weight on the path 2 − 3 − 1. This is a general
phenomenon.

Suppose again that R is a symmetric p ×p positive semidefinite matrix satisfy-
ing Rii = 1 for all i ∈ V . Let MWSF(R) be the set of all minimal maximum weight
spanning forests of R. Note that all edge weights of any such forest F ∈ MWSF(R)

must be positive; hence we must have F ⊆ G+. Also, if R is an empirical correla-
tion matrix, then MWSF(R) will be a singleton with probability one and in such
cases we shall mostly speak of the MWSF.

PROPOSITION 3.7. The single-linkage matrix Z as defined in (13) is block
diagonal with blocks corresponding to the connected components of any F ∈
MWSF(R). Within each block, all elements are strictly positive and given by

Zij = min
uv∈ij

Ruv,

where ij is the unique path between i and j in a maximal weight spanning tree of
R. In particular, Zij = Rij for all edges of MWSF(R).

4In our computations, we used the single-linkage clustering method in R.
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PROOF. First suppose that i, j ∈ V lie in two different components of F ∈
MWSF(R). This means that there is no path between i and j in G+ and so, by
definition, Zij = 0. Because Zij > 0 if i, j lie in the same component of F , Z is
block diagonal with blocks corresponding to connected components of MWSF(R).

The rest of the proof is an adaptation of a proof of a related result [34], Propo-
sition 7.2.10. Suppose that i, j ∈ V lie in the same connected component of F

and denote the tree in F corresponding to this component by T . By definition,
Zij ≥ minuv∈ij Ruv . Suppose that Zij > minuv∈ij Ruv . We obtain the contradic-
tion by showing that under this assumption T cannot be a maximum weight span-
ning tree of the corresponding connected component of G+. Let kl be a minimum
weight edge in the unique path between i and j in T . Since Zij > Rkl , there exists
a path P in G+ between i and j such that Ruv > Rkl for every uv in P . Now
deleting kl from T partitions the corresponding connected component of G+ into
two sets with i being in one and j being in the other block. Since P connects i and
j in G+, there must be an edge k′l′ (distinct from kl) in P whose end vertices lie
in different blocks of this partition. Let T ′ be the spanning tree obtained from T

by deleting kl and adding k′l′. Since Rk′l′ > Rkl , the total weight of T ′ is greater
than T , which is a contradiction. We conclude that Zij = minuv∈ij Ruv for all i, j

in the same connected component of G+. �

To conclude this section, we note that the starting point �0 of Algorithm 2
is arbitrary as long as �0 � 0 and �0 ≥ S. The single-linkage matrix constitutes
another generic choice when S = R is used as input. This is a particularly desirable
starting point, since it can also be used when p > n, in which case R /∈ S�0 and
hence not feasible.

4. The maximum likelihood graph. Fitting a Gaussian model with MTP2
constraints tends to induce sparsity in the maximum likelihood estimate K̂ . In
this section, we analyze the sparsity pattern that arises in this way. We assume
again without loss of generality that S = R is a sample correlation matrix so that
Rii = 1 for all i and Rij < 1 for all i �= j . Consider again the weighted graph
G+ = G+(R). We begin this section with a basic lemma that reduces our analysis
to the case where the graph G+ is connected.

LEMMA 4.1. The MLE �̂ under MTP2 is a block diagonal matrix with
strictly positive entries in each block. The blocks correspond precisely to trees
in MWSF(R).

PROOF. First, since �̂ is an inverse M-matrix, it is block diagonal with strictly
positive entries in each block; see, for example, Theorem 4.8 in [22]. We will show
that each block of �̂ corresponds precisely to a tree in MWSF(R).

Denote the vertex sets for a forest F ∈ MWSF(R) as T1, . . . , Tk and the blocks
of �̂ as B1, . . . ,Bl . First, for any Ti there must be a j so that Ti ⊆ Bj ; this is true
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since all entries in R along the edges of Ti are positive, and thus �̂ ≥ R > 0. Thus
the block partitioning corresponding to the trees is necessarily finer than that of �̂.

On the other hand, suppose that two different trees Ti and Tj in F are in the
same block of �̂ so that �̂uv > 0 for all u ∈ Ti and v ∈ Tj . Then, as we must
have Ruv ≤ 0, also necessarily �̂uv − Ruv > 0. Complementary slackness (9) now
implies that K̂uv = 0 for all u ∈ Ti and v ∈ Tj , and hence K̂ is block-diagonal
with blocks corresponding to the trees in F . Since �̂ = K̂−1, we also get �̂uv = 0
which contradicts that u and v are in the same block of �̂. �

This result shows that, without loss of generality, we can always assume that
G+ is connected and then MWSF(R) = MWST(R) consists of trees only. If there
are more than one connected component, we simply compute the MLE for each
component separately and combine them together in block diagonal form. Hence,
from now on we always assume that all forests in MWSF(R) are just trees.

4.1. An upper bound on the ML graph. In the following, we provide a simple
procedure for identifying an upper bound for Ĝ. This procedure relies on the es-
timation of the standard Gaussian graphical model over the tree MWSF(R). The
MLE under this assumption, denoted by �̃, can be computed efficiently and it
satisfies

�̃ij = ∏
uv∈ij

Ruv,

where ij denotes the unique path between i and j in MWSF(R); see, for example,
[42], Section 8.2. To provide an upper bound on Ĝ, we will make use of a connec-
tion to so-called path product matrices: A nonnegative matrix R is a path product
matrix if for any i, j ∈ V , k ∈ N, and 1 ≤ i1, . . . , ik ≤ p,

Rij ≥ Rii1Ri1i2 · · ·Rikj .

If in addition the inequality is strict for i = j , we say that R is a strict path product
matrix. We note the following.

THEOREM 4.2 (Theorem 3.1, [21]). Every inverse M-matrix is a strict path
product matrix.

We are now able to provide an upper bound for the ML graph Ĝ.

PROPOSITION 4.3. The pair ij forms an edge in the ML graph only if

Rij ≥ ∏
uv∈P

Ruv

for any path P in G+ between i and j . In particular, Rij ≤ 0 implies that ij is not
an edge of the ML graph.
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PROOF. Because �̂ is an inverse M-matrix it is necessarily a path product
matrix by Theorem 4.2. In particular, for all i, j and any path P between them,

�̂ij ≥ ∏
uv∈P

�̂uv.

By Proposition 2.2, we also have �̂uv ≥ Ruv . Thus, if ij ∈ Ĝ and P is a path in
G+ we have

Rij = �̂ij ≥ ∏
uv∈P

�̂uv ≥ ∏
uv∈P

Ruv

as desired. �

Motivated by this result, we define the excess correlation graph (EC graph)
EC(R) of R by the condition

i ∼ j ⇐⇒ Rij ≥ �̃ij = ∏
uv∈ij

Ruv.

Thus the EC graph has edges ij whenever the observed correlation between i and j

is in excess of or equal to what is explained by the spanning forest; by construction,

G(K̂) ⊆ EC(R).

The inclusion is typically strict. For example, if R is an inverse M-matrix,
then EC(R) is the complete graph, whereas G(K̂) can be arbitrary; this follows
from [13], Proposition 6.3.

4.2. Some exact results on the ML graph. Next, we analyze generalization
of trees known as block graphs, where edges are replaced by cliques, and give a
condition under which the maximum likelihood estimator admits a simple closed-
form solution. More formally, G is a block graph if it is a chordal graph with only
singleton separators. It is natural to study block graphs, since viewing the MLE
�̂ as a completion of S, block graphs play the same role for inverse M-matrices
as chordal graphs play for Gaussian graphical models; see, for example, [20] and
Corollary 7.3 of [13].

We first define a matrix W = W(R) by

(14) Wij := max
P

∏
uv∈P

Ruv,

where, like in (13), the maximum is taken over all paths in G+ between i and j and
is set to zero if no such path exists. Transforming Dij = − logRij gives a distance
based interpretation, in which Wij is related to the shortest distance between i

and j in G+ with edge lengths given by Duv . We also have the following simple
lemma.



MAXIMUM LIKELIHOOD IN TOTALLY POSITIVE GAUSSIAN MODELS 1851

LEMMA 4.4. The matrix W is a path product matrix. Further, R is a path
product matrix if and only if W(R) = R.

PROOF. This is immediate from the definition of W . �

It is easy to show that Z ≥ W ≥ R and that W is always equal to the MLE �̂ in
the case when p ≤ 3. For general p we do not know conditions on R that assure
that W is an inverse M-matrix, or the MLE. Indeed, Example 3.4 in [21] gives a
strict path product correlation matrix R, and thus W = R, which is not an inverse
M-matrix, and thus W �= �̂. We note that W = �̂ for the carcass data discussed
in Example 1.1 and, as we shall see in the following, it reflects that in this example,
the ML graph is a block graph.

Let GR(W) be the graph having edges ij exactly when Rij = Wij and no edges
otherwise. We then obtain the following result.

PROPOSITION 4.5. If GR(W) is a block graph and blocks of W correspond-
ing to cliques are inverse M-matrices, then �̂ = W and Ĝ ⊆ GR(W).

PROOF. Note first that if �̂ = W , the KKT conditions (9) imply that Ĝ ⊆
GR(W). Let �̃ denote the maximum likelihood estimate of � under the Gaussian
graphical model with graph GR(W). Then, since GR(W) is a block graph, it fol-
lows from [26], equation (5.46) on page 145, that �̃ is an inverse M-matrix which
coincides with W and R on all edges of GR(W). Thus, �̃ = �̂ and to show that
�̂ = W we just need to argue that �̃ = W .

We proceed by induction on the number m = |C| of cliques of GR(W). If there
is only one clique in GR(W), we have �̃ = R and R is an inverse M-matrix, and
hence �̂ = R = W . Assume now that the statement holds for |C| ≤ m and assume
GR(W) has m+1 cliques. Since GR(W) is a block graph, there is a decomposition
(A,B,S) of GR(W) into block graphs with at most m cliques and with the sepa-
rator S = {s} being a singleton. But for a decomposition of GR(W) as above we
have from [26], equation (5.31) in Proposition 5.6, and the inductive assumption
that

�̃A∪S = �̂A∪S = W(RA∪S), �̃B∪S = �̂B∪S = W(RB∪S).

Now let P ∗ be the path in G+ such that Wij = ∏
uv∈P ∗ Ruv for any two vertices

i, j . We claim that all edges in P ∗ must be edges of GR(W). Otherwise, suppose
P ∗ contains an edge uv which is not an edge in GR(W); then Wuv > Ruv and
so if we replace the edge uv with the path realizing Wuv the product would be
strictly increased, which contradicts the optimality of P ∗. Since S is a singleton
separator, this also implies that P ∗ passes through S whenever it involves vertices
from both A and B . Suppose that i, j ∈ A ∪ S. Then optimality of P ∗ implies
that P ∗ is contained in A ∪ S and so �̃A∪S = W(RA∪S) = WA∪S and by the same
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argument �̃B∪S = WB∪S . Moreover, if i ∈ A and j ∈ B then Wij = WisWsj . Now
the inductive assumption in combination with the expression [26], p. 140, yields
that

�̃ij = �̃is�̃sj = WisWsj = Wij for i ∈ A,j ∈ B,

and thus �̃ = �̂ = W as required. �

REMARK 4.6. We note that with probability one, the slackness constraints in
(9) are not simultaneously active, and hence in Proposition 4.5 we have almost
sure equality between GR(W) and Ĝ. Thus we can identify Ĝ without first calcu-
lating K̂ .

We further have the following corollary.

COROLLARY 4.7. Under the same conditions as in Proposition 4.5 we have
MWSF(R) ⊆ Ĝ ⊆ GR(W).

PROOF. Consider an edge ij between vertices in different cliques of GR(W)

and assume S1 = {s1} and S2 = {s2} are (i, j)-separators with i ∼ s1 and j ∼ s2.
Then, since Ĝ ⊆ GR(W) we have i ⊥⊥ j | s1 and i ⊥⊥ j | s2 according to �̂ and
therefore

Rij ≤ �̂ij = �̂is1�̂js1 = �̂is2�̂js2

= Ris1�̂js1 = �̂is2Rjs2 < min{Ris1,Rjs2},
so the edge ij can never be part of a MWSF because removing the edge ij would
render either s1 disconnected from i or s2 disconnected from j and then the weight
of the MWSF would increase when replacing ij with is1 or js2, respectively. This
completes the proof. �

It is not correct in general that MWSF(R) ⊆ Ĝ as demonstrated in the following
example; although this has been the case in all nonconstructed examples we have
considered including the relatively large Example 5.8 below.

EXAMPLE 4.8. The following M-matrix

K =

⎛
⎜⎜⎜⎜⎜⎝

1 −0.116 0 0 −0.433
−0.116 1 −0.097 −0.034 0

0 −0.097 1 −0.149 −0.413
0 −0.034 −0.149 1 −0.604

−0.433 0 −0.413 −0.604 1

⎞
⎟⎟⎟⎟⎟⎠
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is the inverse of the following correlation matrix

R =

⎛
⎜⎜⎜⎜⎜⎝

1 0.2861 0.5745 0.6242 0.7299
0.2861 1 0.2864 0.2696 0.2872
0.5745 0.2864 1 0.7149 0.7800
0.6242 0.2696 0.7149 1 0.8523
0.7299 0.2872 0.7800 0.8523 1

⎞
⎟⎟⎟⎟⎟⎠ .

Here, MWSF(R) is the star graph with 5 as its center, but the edge 2 ∼ 5 is not in
G(K). Note that all edges in G+ adjacent to 2 have almost the same weight. We
have calculated K−1 using rational arithmetic to ensure the phenomenon cannot
be explained by rounding error.

5. Gaussian signed MTP2 distributions. In this section, we discuss how our
results can be generalized to so-called signed MTP2 Gaussian distributions, where
the distribution is MTP2 up to sign swapping. Such distributions were discussed
by Karlin and Rinott [24]. More precisely, a random variable X has a signed MTP2
distribution if there exists a diagonal matrix D with Dii = ±1 (called sign matrix)
such that DX is MTP2. The following characterization of signed MTP2 Gaussian
distributions is a direct consequence of [24], Theorem 3.1 and Remark 1.3.

PROPOSITION 5.1. A Gaussian random variable X has a signed MTP2 dis-
tribution if and only if |X| is MTP2.

Gaussian graphical models with signed MTP2 distributions are called nonfrus-
trated in the machine learning community. The following result is implicitly stated
in [29].

THEOREM 5.2. A Gaussian random variable X with concentration matrix K

has a signed MTP2 distribution if and only if it holds for every cycle (i1, . . . , ik, i1)

in the graph G(K) that

(15) (−1)kKi1i2Ki2i3 · · ·Kiki1 > 0.

PROOF. The “only if” direction is easy to check. Note that (15) can be
rephrased by saying that each cycle in the graph with edge weights given by the
off-diagonal entries of −K has an even number of negative edges. The “if” direc-
tion can now be recovered from the proof of [29], Corollary 3. �

Signed MTP2 distributions are relevant, for example, because of their appear-
ance when studying tree models.

PROPOSITION 5.3. Every Gaussian graphical model over a tree consists of
signed MTP2 distributions. The MTP2 distributions among those are precisely
those without negative entries in the covariance matrix �.



1854 S. LAURITZEN, C. UHLER AND P. ZWIERNIK

PROOF. Let T be a tree and K = �−1 be a concentration matrix in the Gaus-
sian graphical model over T . Then G(K) is a subgraph of T and in particular it
has no cycles. Hence by Theorem 5.2 it is signed MTP2. The second part of the
statement follows from [13], Corollary 7.3. �

Because signed MTP2 distributions are closed under taking margins, Proposi-
tion 5.3 can be further generalized. The following theorem covers, in particular,
Examples 4.1–4.5 in [24].

THEOREM 5.4. Every distribution on a Gaussian tree model with hidden vari-
ables is signed MTP2.

Gaussian tree models with hidden variables have many applications, in partic-
ular related to modeling evolutionary processes; see, for example, [7, 36]. As an
important submodel they contain the Brownian motion tree model [14]. Another
example of a Gaussian tree model is the factor analysis model with a single factor;
it corresponds to a Gaussian model on a star tree, whose inner node is hidden. The
MTP2 distributions in this model correspond to the distributions in a Spearman
model [27, 38], where the hidden factor is interpreted as intelligence.

Let R be a sample correlation matrix. Maximizing the likelihood over all signed
MTP2 Gaussian distributions requires determining the sign matrix D, with Dii =
±1, that maximizes the likelihood for all 2p possible matrices DRD. A natural
heuristic is to choose D∗ such that D∗

iiD
∗
jjRij ≥ 0 for all edges ij of MWSF(|R|),

where |R| denotes the matrix whose entries are the absolute values of the entries
of R. We provide conditions under which this procedure indeed leads to the MLE
under signed MTP2, and we also provide examples showing that this is not true in
general. Quite interestingly, balanced graphs again play an important role in this
part of the theory.

First, we describe how to obtain a sign swapping matrix D∗ such that
D∗

iiD
∗
jjRij ≥ 0 for all edges ij of MWSF(|R|). Root MWSF(|R|) at node 1, that

is, regard MWSF(|R|) as a directed tree with all edges directed away from 1. Set
D∗

11 = 1. Then proceed recursively. For any edge i → j , suppose that D∗
ii is known

and set D∗
jj := sgn(D∗

iiRij ). Note that by construction

(16) D∗
ii := sgn(R1i1Ri1i2 · · ·Riki),

where 1 → i1 → i2 → ·· · → ik → i is the unique path from 1 to i in MWSF(|R|).
We set D∗

ii = 0 if no such path exists. It is easy to check that the resulting D∗
satisfies D∗

iiD
∗
jjRij ≥ 0 for all edges ij of MWSF(|R|).

PROPOSITION 5.5. Suppose that R is a sample correlation matrix whose
graph is balanced, that is, such that for every cycle (i1, i2, . . . , ik, i1) in the graph
G(R):

(17) Ri1i2Ri2i3 · · ·Riki1 > 0.
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Then the MLE based on R over signed MTP2 Gaussian distributions is equal to the
MLE based on the sample correlation matrix D∗RD∗ over MTP2 distributions.

PROOF. We first show that D∗RD∗ has only positive entries. Let i, j be any
two nodes and let 1 → i1 → ·· · → ik → i and 1 → j1 → ·· · → jl → j be the
paths in MWSF(|R|) from 1 to i and j , respectively. By (16), we obtain

sgn
(
D∗

iiD
∗
jjRij

) = sgn(R1i1 · · ·RikiRijRjjl
· · ·Rj11),

which is positive by (17). This shows that without loss of generality we can assume
that all entries of R are nonnegative, and hence that D∗ is the identity matrix Ip .
We now show that the likelihood over MTP2 distributions given the sample corre-
lation matrix DRD is maximized by D = Ip . This is because (DiiDjj − 1) ≤ 0
and RijKij ≤ 0, and hence

�(K;R) − �(K;DRD) = tr(DRDK) − tr(RK) = ∑
i,j

(DiiDjj − 1)RijKij ≥ 0,

which completes the proof. �

Note that any spanning tree T of G+(|R|) would suffice to identify the sign
switches as above.

Proposition 5.5 provides a sufficient condition for D∗ to be the optimal sign-
switching matrix; that is, it provides a sufficient condition such that for every K ∈
S�0 and every sign matrix D it holds that

�
(
K;D∗RD∗) ≥ �(K;DRD).

As a consequence of Proposition 5.5 we obtain the following result for the case
when the sample size is 2.

COROLLARY 5.6. If the sample correlation matrix R is based on n = 2 ob-
servations, then the MLE over signed MTP2 Gaussian distributions given R is
equal to the MLE over MTP2 Gaussian distributions given the modified sample
correlation matrix D∗RD∗.

Note that the case n = 2 is special and Proposition 5.5 does not extend to arbi-
trary sample correlation matrices. In the following, we give a simple counterexam-
ple.

EXAMPLE 5.7. Suppose that the sample correlation matrix is

R =

⎡
⎢⎢⎣

1 0.3 0.11 0.3
0.3 1 −0.1 −0.1

0.11 −0.1 1 −0.1
0.3 −0.1 −0.1 1

⎤
⎥⎥⎦ .
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Then MWSF(|R|) is given by the star graph with edges 1 − 2, 1 − 3, 1 − 4. Since
R is positive on these entries, D∗ = Ip . But one can check that the corresponding
MLE has a lower likelihood than the MLE after changing the sign of the third
variable.

The intuition is the following. The log-likelihood based on R is up to an additive
constant given by

minimize
�

− log det(�)

subject to �11 = �22 = �33 = �44 = 1,

�12 ≥ R12, �13 ≥ R13, �14 ≥ R14,

�23 ≥ 0, �24 ≥ 0, �34 ≥ 0,

� � 0.

By changing the sign of the third variable, we replace the constraint 1 − 3 by two
constraints 2 − 3 and 3 − 4. The resulting optimization problem is

minimize
�

− log det(�)

subject to �11 = �22 = �33 = �44 = 1,

�12 ≥ R12, �14 ≥ R14, �23 ≥ −R23, �34 ≥ −R34,

�13 ≥ 0, �24 ≥ 0,

� � 0.

Note that R13 is only slightly larger than −R23 and −R24. Hence, in essence we
are increasing the number of constraints by one, which explains the decrease of
the log-likelihood value.

We conclude this paper by illustrating how our results can be applied to factor
analysis in psychometrics.

EXAMPLE 5.8. Single factor models are routinely used to study the personali-
ties in psychometrics. Consider the following example from [30]:5 240 individuals
were asked to rate themselves on the scale 1–9 with respect to 32 different person-
ality traits. The resulting correlation matrix is shown in Figure 2. It appears to have
a block structure with predominantly positive entries in each diagonal block and
negative entries in the off-diagonal block. Also analyzing the respective variables,
they seem to correspond to positive and negative traits. It is therefore natural to

5We downloaded the data from http://web.stanford.edu/class/psych253/tutorials/FactorAnalysis.
html.

http://web.stanford.edu/class/psych253/tutorials/FactorAnalysis.html
http://web.stanford.edu/class/psych253/tutorials/FactorAnalysis.html
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FIG. 2. Correlation matrix of personality traits from the data set described in [30].

assume that this data set follows a signed MTP2 distribution and analyze it under
this constraint.

The correlation matrix resulting from the sign switching procedure described
in (16) is shown on the left in Figure 3, while the correlation matrix resulting
from switching the signs of the 16 (negative) traits that constitute the first block
of variables in Figure 2 is shown on the right in Figure 3. These plots suggest that
the matrix on the right is closer to being MTP2. In fact, its log-likelihood [i.e., the
value of n

2 (log detK − tr(SK))] is −2046.146, as compared to the log-likelihood
value of −2071.717 resulting from the sign switching procedure described in (16).
For comparison, the value of the unconstrained log-likelihood is −1725.075 and
the value of the log-likelihood under MTP2 without sign switching is −2356.639.
The unconstrained log-likelihood gives a lower bound of 642.142 on the likelihood
ratio statistic to test signed MTP2 constraints, while the likelihood ratio statistic to
test MTP2 constraints against the saturated model is equal to 1263.128.

The graphical models based on no sign switching and switching the signs of the
16 negative traits are shown in Figure 4. The vertex labels are as shown in Table 1.

The red edges correspond to the maximum weight spanning trees. Red and blue
edges together form the edge set of the ML graph so in both of these cases we
have MWSF(R) ⊂ Ĝ. Finally, the grey edges are the remaining edges in the EC
graph. As expected, the graph on the right looks denser. The interpretation of the
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FIG. 3. The correlation matrix of the data set on personality traits after performing the sign
switches as defined in (16) is shown on the left. The correlation matrix resulting from switching
the signs of the 16 (negative) traits that constitute the first block of variables in Figure 2 is shown on
the right.

spanning tree in both cases is very different. Edges in the first one connect similar
personalities such as 6–24 (agreeable and cooperative), 12–22 (outgoing and so-
ciable), 11–23 (disorganized and lazy). On the other hand, the second tree looks
similar but it links also some almost perfect opposite personalities such as 12–14
(outgoing and shy), 22–30 (sociable and withdrawn), 11–26 (disorganized and or-

FIG. 4. On the left, the graphical models resulting from estimation under MTP2 based on the
correlation matrix shown in Figure 2 and, on the right, the correlation matrix shown in Figure 3
(right). The thin gray edges correspond to the edges of the EC graph that are not part of the ML
graph. The blue edges represent edges of the ML graph that are not part of the minimum weight
spanning tree. The latter is represented by thick red edges.
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TABLE 1
Vertex labeling for Figure 4

1 2 3 4 5 6 7 8
distant talkatv carelss hardwrk anxious agreebl tense kind
9 10 11 12 13 14 15 16
opposng relaxed disorgn outgoin approvn shy discipl harsh
17 18 19 20 21 22 23 24
persevr friendl worryin respnsi contrar sociabl lazy coopera
25 26 27 28 29 30 31 32
quiet organiz criticl lax laidbck withdrw givinup easygon

ganized), 7–10 (tense and relaxed). Note that none of these four edges are part of
the ML graph on the left in Figure 4.

6. Discussion. In this article, we have investigated maximum likelihood esti-
mation for Gaussian distributions under the restriction of multivariate total posi-
tivity, used a connection to ultrametrics to show that it has a unique solution when
the number of observations is at least two, shown that under certain circumstances
the MLE can be obtained explicitly, and given convergent algorithms for calculat-
ing the MLE. For signed MTP2 distributions, we have also given conditions under
which a heuristic procedure for applying sign changes is correct and can be used
to obtain the MLE.

It remains an issue to consider the asymptotic properties of the estimators we
have given, and to derive reliable methods for identifying whether a given sample
is consistent with the MTP2 assumption.

On the former issue, standard arguments for convex exponential families ensure
that if the true value K0 is an M-matrix, K̂ is a consistent estimator of K0; and this
is true whether or not the MTP2 assumption is invoked.

Another question is whether the ML graph Ĝ will be consistent for the true de-
pendence graph. It is clear that without some form of penalty or thresholding, it
cannot be the case. For example, if p = 2 and the true � is a diagonal matrix, the
distribution of the empirical correlation R12 will be symmetric around 0. Hence,
with probability 1/2 the ML graph contains an edge between 1 and 2 and with
probability 1/2 it does not contain such an edge. This phenomenon persists for
any number of observations n. Thus, to achieve consistent estimation of the de-
pendence graph of �, some form of penalty for complexity or thresholding must
be applied, the latter being suggested by [37], who also suggest a refitting after
thresholding to ensure positive definiteness of the thresholded matrix. However,
positive definiteness is automatically ensured, as shown below.
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PROPOSITION 6.1. Let K be an M-matrix over V and G = (V ,E) an undi-
rected graph. Define KG by

KG
uv =

{
Kuv if u = v or uv ∈ E,

0 otherwise.

Then KG is an M-matrix.

PROOF. We may, without loss of generality, assume that K is scaled such that
all diagonal elements are equal to 1; also it is clearly sufficient to consider the case
when only a single off-diagonal entry Kuv is replaced by zero. We have to show
that the resulting matrix KG is positive definite.

Now, let A = {u, v} and B = V \ A and consider the Schur complements

K/KBB = KAA − KAB(KBB)−1KBA;
KG/KBB = KG

AA − KAB(KBB)−1KBA.

Since KG
BB = KBB , KG is positive definite if and only if KG/KBB is. Because K

is an M-matrix, all entries in KAB(KBB)−1KBA are nonnegative. Hence, we can
write the Schur complements as

K/KBB =
(

1 − c −(a + b)

−(a + b) 1 − d

)
; KG/KBB =

(
1 − c −b

−b 1 − d

)
,

where c, d ∈ (0,1) and a, b ≥ 0. Since K is positive definite, we have

(a + b)2 < (1 − c)(1 − d)

and hence

b2 < (1 − c)(1 − d) − a2 − 2ab ≤ (1 − c)(1 − d)

implying that KG/KBB is positive definite. This completes the proof. �

The consistency of the estimator K̂ ensures that the ML graph will eventually
contain the true dependence graph when n becomes large and with an appropriate
thresholding or penalization; this ensures that the true graph can be recovered, as
also argued in [37].

The issue of the asymptotic distribution of the likelihood ratio test for MTP2 is
an instance of testing a convex hypothesis within an exponential family of distribu-
tions. In our particular case, the convex hypothesis is a polyhedral cone with facets
determined by the dependence graph G(K). In such cases, the likelihood ratio test
for the convex hypothesis typically has an asymptotic distribution which is a mix-
ture of χ2-distributions with degrees of freedom determined by the co-dimension
of these facets; see, for example, the analysis of the case of multivariate positivity
in models for binary data by [3], using results of [35].
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While these issues are both interesting and important, we consider them to be
outside the scope of the present paper as they may be most efficiently dealt with in
the more general context of exponential families, containing both the Gaussian and
binary cases as special instances. We plan to return to these and other problems in
the future.
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