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We analyze the problem of maximum likelihood estimation for Gaussian
distributions that are multivariate totally positive of order two (MTP,). By ex-
ploiting connections to phylogenetics and single-linkage clustering, we give
a simple proof that the maximum likelihood estimator (MLE) for such dis-
tributions exists based on n > 2 observations, irrespective of the underlying
dimension. Slawski and Hein [Linear Algebra Appl. 473 (2015) 145-179],
who first proved this result, also provided empirical evidence showing that
the MTP, constraint serves as an implicit regularizer and leads to sparsity
in the estimated inverse covariance matrix, determining what we name the
ML graph. We show that we can find an upper bound for the ML graph by
adding edges corresponding to correlations in excess of those explained by
the maximum weight spanning forest of the correlation matrix. Moreover,
we provide globally convergent coordinate descent algorithms for calculating
the MLE under the MTP; constraint which are structurally similar to itera-
tive proportional scaling. We conclude the paper with a discussion of signed
MTP, distributions.

1. Introduction. Total positivity is a special form of positive dependence be-
tween random variables that became an important concept in modern statistics; see,
for example, [3, 8, 23]. This property (also called the MTP, property) appeared in
the study of stochastic orderings, asymptotic statistics and in statistical physics
[15, 31]. Families of distributions with this property lead to many computational
advantages [2, 11, 33]. In a recent paper [13], the MTP, property was studied in
the context of graphical models and conditional independence in general. It was
shown that MTP; distributions have desirable Markov properties. Our paper can
be seen as a continuation of this work with a focus on Gaussian distributions.

A p-variate real-valued distribution with density f w.r.t. a product measure @
is multivariate totally positive of order 2 (MTP;) if the density satisfies

SO S fAy) f(xVy).
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A multivariate Gaussian distribution with mean p and a positive definite co-
variance matrix ¥ is MTP; if and only if the concentration matrix K := X! is
a symmetric M-matrix, that is, K;; <0 for all i # j or, equivalently, if all partial
correlations are nonnegative. Such distributions were considered by Bglviken [5]
and Karlin and Rinott [25]. Moreover, Gaussian graphical models, or Gaussian
Markov random fields, were studied in the context of totally positive distributions
in [29]. MTP; Gaussian graphical models were shown to form a sub-class of non-
frustrated Gaussian graphical models, which themselves are a sub-class of walk-
summable Gaussian graphical models. Efficient structure estimation algorithms for
MTP, Gaussian graphical models were given in [1] based on thresholding covari-
ances after conditioning on subsets of variables of limited size. Efficient learning
procedures based on convex optimization were suggested by Slawski and Hein [37]
and this paper is closely related to their approach; see also [4] and [12].

Throughout this paper, we assume that we are given n i.i.d. samples from
N(u, ), where T is an unknown positive definite matrix of size p x p. With-
out loss of generality, we assume that ;. = 0 and we focus on the estimation of .
We denote the sample covariance matrix based on n samples by S. Then the log-
likelihood function is, up to additive and multiplicative constants, given by

(D) L(K; S)=logdetK —tr(SK).

We denote the cone of real symmetric matrices of size p x p by SP, its positive
definite elements by Sio and its positive semidefinite elements by Sfo. Note that

£(K; S) is a strictly concave function of K € Sfo. Since M-matrices form a convex

subset of S’;O, the optimization problem for computing the maximum likelihood
estimator (MLE) for MTP, Gaussian models is a convex optimization problem.
Slawski and Hein [37] showed that the MLE exists with probability one when
n > 2; that is, the global maximum of this optimization problem is attained. This
yields a drastic reduction from n > p without the MTP, constraint. In addition,
they provided empirical evidence showing that the MTP; constraint serves as an
implicit regularizer and leads to sparsity in the concentration matrix K.

In this paper, we analyze the sparsity pattern of the MLE K under the MTP;,
constraint. For a p x p matrix K, we let G(K) denote the undirected graph on p
nodes with an edge i if and only if K;; # 0. In Proposition 4.3 we obtain a simple
upper bound for the ML graph G(K) by adding edges to the smallest maximum
weight spanning forest (MWSF) corresponding to empirical correlations in excess
of those provided by the MWSF. We illustrate the issues in the following example.

EXAMPLE 1.1. We consider the carcass data that are discussed in [19] and
can be found in the R-library gRbase. This data set contains measurements of the
thickness of meat and fat layers at different locations on the back of a slaughter
pig together with the lean meat percentage on each of 344 carcasses. For our anal-
ysis, we ignore the lean meat percentage, since by definition, this variable should
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be negatively correlated with fat and positively correlated with meat so the joint
distribution is unlikely to be MTP;. The sample correlation matrix R for these data
is

Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3
1.00 0.04 0.84 0.08 0.82 —0.03\ Fatll
0.04 1.00 0.04 0.87 0.13 0.86 | Meatll
R— 0.84 0.04 1.00 0.01 0.83 —0.03 | Fatl2
0.08 0.87 0.01 1.00 0.11 0.90 | Meatl2
0.82 0.13 0.83 0.11 1.00 0.02 | Fatl3
—0.03 0.86 —0.03 0.90 0.02 1.00/ Meatl3
and its inverse, scaled to have diagonal elements equal to one, K , 18
Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3
1.00 0.16 —-0.52 —-0.31 —-0.40 0.19\ Fatl1
0.16 1.00 —-0.05 —-0.42 —-0.17 —0.37 | Meatll1
k= —0.52 —0.05 1.00 0.25 —-0.45 —0.17 | Fatl2
—0.31 —0.42 0.25 1.00 —-0.02 —0.61 | Meatl2
—0.40 —0.17 —-0.45 —0.02 1.00 0.10 | Fatl13
0.19 —-0.37 -0.17 —0.61 0.10 1.00/ Meatl3

Note that the off-diagonal entries of K are the negative empirical partial cor-
relations. This sample distribution is not MTP,; the positive entries in K are
highlighted in red. The MLE under MTP; can be computed, for example, using
cvx [17] in matlab or using one of the simple coordinate descent algorithms
discussed in Section 2. In this particular example, the MLE can also be obtained
through the explicit formula (14) in Section 4. The MLE of the correlation matrix,
rounded to 2 decimals, is

Fatll Meatll Fatl2 Meatl2 Fatl3 Meatl3
1.00 0.10 0.84 0.09 0.82 0.09\ Fatll1
0.10 1.00 0.11 0.87 0.13 0.86 | Meatll1
p= 0.84 0.11 1.00 0.09 0.83 0.09 | Fatl12
0.09 0.87 0.09 1.00 0.11 0.90 | Meatl2
0.82 0.13  0.83 0.11 1.00 0.11 | Fatl3
0.09 0.86 0.09 090 0.11 1.00/ Meatl3

The entries of R that changed compared to the sample correlation matrix R are
highlighted in blue.? The sparsity pattern of K = £ ~! is captured by the ML graph

G(K) shown in Figure 1.

3We note that 5345 > S45; the entries appear equal only because of the 2-digit rounding.
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FI1G. 1. Undirected Gaussian graphical model for the caxrcass data obtained by estimating under
the MTPy assumption. The thick red edges correspond to the MWSF of the correlation matrix.

Note that all edges corresponding to blue entries in R are missing in this graph.
As we show in Proposition 2.2, this is a consequence of the KKT conditions. Con-
sider now the maximum weight spanning forest of the complete graph with weights
given by the entries of R. In this example, the spanning forest is a chain represented
by the thick red edges in Figure 1. By Corollary 4.7, these edges form a spanning
tree of the ML graph G(K).

Interestingly, applying various methods for model selection such as stepwise
AIC, BIC or graphical lasso all yield similar graphs, possibly indicating that the
MTP; assumption is quite reasonable.

The remainder of this paper is organized as follows: In Section 2, we review the
duality theory that is known more generally for regular exponential families and
specialize it to MTP;, Gaussian distributions. This embeds the results by Slawski
and Hein [37] into the framework of exponential families and also leads to two
related coordinate descent algorithms for computing the MLE, one that acts on the
entries of K and one that acts on the entries of X. In Section 3, we show how the
problem of ML estimation for MTP, Gaussian distributions is connected to single-
linkage clustering and ultrametrics as studied in phylogenetics. These observations
result in a simple proof of the existence of the MLE for n > 2, a result that was
first proven in [37]. Our proof is by constructing a primal and dual feasible point
of the convex ML estimation problem for MTP, Gaussian models. In Section 4,
we investigate the structure of the ML graph G(K) and give a simple upper bound
for it. Finally, in Section 5 we discuss how our results can be generalized to so-
called signed MTP, Gaussian distributions, where the distribution is MTP; up to
sign changes or, equivalently, | X| is MTP,. Such distributions were introduced by
Karlin and Rinott in [24]. We conclude the paper with a brief discussion of various
open problems.

2. Duality theory for ML estimation under MTP,. We start this section by
formally introducing absolutely continuous MTP, distributions and then discuss
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the duality theory for Gaussian MTP; distributions. Let V :={1,2,..., p} be a
finite set and let X = (X;, i € V) be arandom vector with density f w.r.t. Lebesgue
measure on the product space X =[],y &;, where &; C R is the state space of
X;. We define the coordinate-wise minimum and maximum as

x Ay = (min(xy, y,), v € V), x Vy = (max(x;, yi),i € V).

Then we say that X or the distribution of X is multivariate totally positive of order
two (MTP,) if its density function f on X satisfies

2) JOfM=fxnay)fxvy)  forallx,yed.

In this paper, we concentrate on the Gaussian setting. It is easy to show that a
Gaussian distribution with mean p and covariance matrix X is MTP; if and only
ifK=>"lisa symmetric M-matrix, that is, K is positive definite and:

(i) Ki; >0forallieV,
(ii) Kij <Oforalli, j eV withi # j.

Properties of M-matrices were studied by Ostrowski [32] who chose the name to
honor H. Minkowski. The connection to multivariate Gaussian distributions was
established by Bglviken [5] and Karlin and Rinott [25].

We denote the set of all symmetric M-matrices of size p x p by M?. Note that
MP? is a convex cone. In fact, it is obtained by intersecting the positive definite
cone S’;O with all the coordinate half-spaces

Hj; = {X e S"|X;; <0}

with i # j. For a convex cone C, we denote its closure by C. Then M? is given by
S’;O Ni<j Hf - and the ML estimation problem for Gaussian MTP, models can be
formulated as the following optimization problem:

max}(mize logdet(K) — trace(K S)

3)
subject to K e M?P

This is a convex optimization problem, since the objective function is concave on
SP,.

" Next, we introduce a second convex cone NP that plays an important role for
ML estimation in Gaussian MTP; models. To formally define this cone, we intro-
duce two partial orders on matrices. Let A, B be two p x p matrices. Then A > B
means that A;; > B;j forall (i, j) € V x V,and A > B means that A — B € S’;O.

Then the cone N7 is defined as the negative closure of S, that is,

NP ={X eSP|3Y €S’ with X <Y and diag(X) = diag(Y)}.
To simplify notation, we will suppress the dependence on p and write S, S»9, S0,

M and N, when the dimension is clear. In the following result, we show that the
cones NV and M are dual to each other.
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LEMMA 2.1. The closure of N is the dual to the cone of M-matrices M, that
is,

4 N ={SeS|S,K)>0forall K € M}.

PROOF. We denote the dual of a convex cone C by CY. Let Cy, C; be two
convex cones. Then it is an easy exercise to verify that
(&) CiNC)Y =C)+¢5;
here 4+ denotes the Minkowski sum. Note that
SYo=Ss0 and ’Hlvj =Hij.

This completes the proof, since M =S, ¢(;~; Hi;j and (5) can be applied induc-
tively to any finite collection of convex cones. [

Using the cones M and N, we now determine conditions for existence of the
MLE in Gaussian MTP; models and give a characterization of the MLE. We say
that the MLE does not exist if the likelihood does not attain the global maximum.

_ PROPOSITION 2.2, Consider a Gaussian MTPy model. Then the MLE )y (and
K) exists for a given sample covariance matrix S on V if and only if S € N. It
is then equal to the unique element > > 0 that satisfies the following system of
equations and inequalities:

(6) (7N, <0 foralli# ],
(7) Si—Si=0  forallieV,
®) (Zij—S8ij) =0 foralli#],
9) (i =S, =0 foralli# .

PROOF. It is straightforward to compute the dual optimization problem and
the KKT conditions. In particular, in [37] it was shown that the dual optimization
problem to (3) is given by

minimize —logdet(X) — p
x>0
(10) subject to i =S foralli e V,

Eij > S,'j forall i # j.

Note that the identity matrix is a strictly feasible point for (3). Hence, the MLE
does not exist if and only if the likelihood is unbounded. Since by Slater’s con-
straint qualification strong duality holds for the optimization problems (3) and (10),
the MLE does not exist if and only if S ¢ A/. [

We note that the conditions in Proposition 2.2 were also derived in [37], save
for the explicit identification of the dual cone N
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REMARK 2.3. Proposition 2.2 can easily be extended to provide properties for
the existence of the MLE and a characterization of the MLE for Gaussian graphical
models under MTP;. In this case, let G = (V, E) be an undirected graph. Then the
primal problem has additional equality constraints, namely K;; =0 for all ij ¢ E,
and hence the inequality constraints in the dual problem are restricted to the entries
in E, thatis, X;; > §;; forall ij € E. Note that if the MLE of X based on § exists
in the Gaussian graphical model over G, it also exists in the Gaussian graphical
model over G under MTP», since without the MTP; constraint the MLE needs to
satisfy f]ij = §;jforallij € E.

We define the maximum likelihood graph (ML graph) G to be the graph deter-
mined by K, thatis, G =G (K ), where K = 27! is the MLE of K under MTP.
We then have the following important corollary of Proposition 2.2.

COROLLARY 2.4. Consider the Gaussian graphical model determined by

Kij =0 forij ¢ E(G), where G is the ML graph under MTP,. Let ¥ be the
MLE of X under that Gaussian graphical model (without the MTP, constraint).
Then' s = .

PROOF. The MLE of X under the Gaussian graphical model with graph G is
the unique element ¥ > 0 satisfying the following system of equations:

iii_Sii=0 foralli e V,
% —8;=0 forallij e E(G),

(E7),;=0  forallij ¢ E(G).

Proposition 2.2 says that also 3 satisfies these equations, and hence we must have
=% 0O

Note that this corollary highlights the role of the complementary slackness con-
dition (9) in inducing sparsity of the MTP; solution.

We emphasize that the MLE under M TP, is equivariant w.r.t. changes of scale
so that without loss of generality we can assume that the sample covariance is
normalized, that is, S;; = 1 or, equivalently, S = R, where R is the correlation
matrix. For certain of the subsequent developments, this represents a convenient
simplification.

LEMMA 2.5. Let S be the sample covariance matrix, R the corresponding
sample correlation matrix. Denote by %5 and XX the MLE in Proposition 2.2
based on S and R, respectively. Then

SiS;EE  foralli,jeV.
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Algorithm 1 Coordinate descent on K

Input: Sample covariance matrix S, and precision €.
Output: MLE K € M.

1. Let K9:= K := (diag(S)) .
2. Cycle through entries u # v and solve the following optimization problem:

maximize logdet(K) — trace(K S)
K>0

subject to Ky <0,
Kij=K};  forallij e (V x V)\ {uu,vv,uv},

and update K! = K. .
3. If |[KO = K| <e, set K = K'. Otherwise, set K = K'! and return to 2.

PROOF. Denote by D a diagonal matrix such that D;; = /S;; and S = DRD.
The likelihood function based on S is

logdet K — tr(SK) =logdet K — tr(RDK D).

If K’ = DKD, this can be rewritten as logdetK’ — tr(RK’) — Y ;logS;;.
Therefore, if KR is the maximizer of logdet K — tr(RK) under the MTP;
constraints, then D 'KRD=! is also an M-matrix and the maximizer of
logdet K —tr(SK). O

We end this section by providing simple coordinate descent algorithms for ML
estimation under MTP,. Although interior point methods run in polynomial time,
for very large Gaussian graphical models it is usually more practical to apply co-
ordinate descent algorithms. In Algorithms 1 and 2, we describe two methods for
computing the MLE that only use optimization problems of size 2 x 2 which have
a simple and explicit solution, and iteratively update the entries of K, respectively
of X. Algorithms 1 and 2 are inspired by the corresponding algorithms for Gaus-
sian graphical models; see, for example, [10, 39, 41]. Slawski and Hein [37] also
provide a coordinate descent algorithm for estimating covariance matrices under
MTP,. However, their method updates one column/row of ¥ at a time.

We first analyze Algorithm 1. Let A = {u, v} and B =V \ A. Then note that
the objective function can be written in terms of the 2 x 2 Schur complement
K' =Kaa— Kap Kgllg KB4, since up to an additive constant

logdet K — trace(K S) = logdet K’ — trace(K'Sa4).
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Algorithm 2 Coordinate descent on X

Input: Sample covariance matrix S > 0, and precision ¢.
Output: MLE ¥ with ! e M.

1. Let 20:=xl:=§
2. Cycle through entries u # v and solve the following optimization problem:

maximize logdet(X)
x>0
subject to Zuv = Suv,

Eij:Zilj forallij € (V x V) \ {uv}.

and update =!' = %,
3. If =0 — =1 <&, set £ = X!, Otherwise, set £ = ! and return to 2.

Defining L := K4pK gllg K p 4, then the optimization problem in step (2) of Algo-
rithm 1 is equivalent to

maximize  logdet(K') — trace(K'S44)
K’'>0

subjectto  K{,+ L2 <0.

The unconstrained optimum to this problem is given by K’ = S, }\ and is attained
if and only if (SX}‘) 12 + L12 <0, or equivalently, if and only if

Ly < %
Suuva - Su

v

Otherwise, the KKT conditions give that K {2 =—Ls.
Maximizing over the remaining two entries of K’ leads to a quadratic equation,
which has one feasible solution:

1+ /1 +48,,S0wL?,

(11) uu
o 141 +4Su 8w, /
K22= 28 , K12=—L12.
vV

Then the solution to the optimization problem in step (2) is given by K44 = K’ +
L.

Dual to this algorithm, one can define an algorithm that iteratively updates the
off-diagonal entries of ¥ by maximizing the log-likelihood in direction X,, and
keeping all other entries fixed. This procedure is shown in Algorithm 2. If p > n,
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S is not positive definite; in this case, we use as starting point the single linkage
matrix Z that is defined later in (13).

Similarly as for Algorithm 1, the solution to the optimization problem in
step (2) can be given in closed-form. Defining A = {u,v}, B =V \ A and
L =B Elgllg B4, then analogously as in the derivation above, one can show
that the solution to the optimization problem in step (2) of Algorithm 2 is given by

(12) Yy = max{Syy, L12}.

We end by proving that Algorithms 1 and 2 indeed converge to the MLE. We
here assume that n > 2 to guarantee existence of the MLE. Note that the suggested
starting points for both algorithms can be modified.

PROPOSITION 2.6. Algorithms 1 and 2 converge to the MLE K=S"1eM.

PROOF. The convergence to the MLE is immediate for Algorithm 2 because it
is a coordinate descent method applied to a smooth and strictly concave function;
see, for example, [28]. For Algorithm 1, we use the fact that it is an example of
iterative partial maximization. To prove convergence to the MLE, we we will show
that the assumptions of Proposition A.3 in [26] hold. The log-likelihood function
that we are trying to maximize is strictly concave and so the maximum is unique.
Clearly, K is the maximum if and only if it is a fixed point of each update. It only
remains to show that updates depend continuously on the previous value. For a
given S, fix K and consider a sequence of points K, converging to K. Denote
by K and K,, the corresponding one-step updates. We want to show that K,, also
converges to K. As above, let A = {u,v}, B=V\A, K =Kup— KABKEJIQKBA
and L = K4pK Ezls' K g 4. Outside of the block K 4 4, this convergence is trivial; so
we focus only on the three entries in K 44. The function L5 > (K 11 K5, Kiy)
is continuous if and only if each coordinate is. It is clear that these functions are

continuous if L1y # Mjﬁ It remains to show that if Ly = Sm,Siﬁ the
uv

update in (11) gives K’ = S;}\, which can be easily checked. [J

3. Ultrametric matrices and inverse M-matrices. In this section, we exploit
the link to ultrametrics in order to construct an explicit primal and dual feasible
point of the maximum likelihood estimation problem.

A nonnegative symmetric matrix U is said to be ultrametric if:

1) Ui > U,‘j foralli, jeV,
(i) U;j = min{Uj, Uj} foralli, j,ke V.

We say that a symmetric matrix is an inverse M-matrix if its inverse is an M-
matrix. The connection between ultrametrics and M-matrices is established by the
following result; see [9], Theorem 3.5.
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THEOREM 3.1. Let U be an ultrametric matrix with strictly positive entries
on the diagonal. Then U is nonsingular if and only if no two rows are equal.
Moreover, if U is nonsingular then U is an inverse M-matrix.

The main reason why ultrametric matrices are relevant here is the following
construction, which is similar to constructions used in in phylogenetics [34], Sec-
tion 7.2, and single linkage clustering [16].

Let R be a symmetric p X p positive semidefinite matrix such that R;; = 1 for
alli € V. Consider the weighted graph G = G (R) over V with an edge between
i and j whenever R;; is positive and assign to each edge the corresponding positive
weight R;;. Note that G in general does not have to be connected. Define a p x p
matrix Z by setting Z;; =1 foralli € V and

(13) Z;j :=max min Ry,,

P uveP
for all i # j, where the maximum is taken over all paths in G* between i and j
and is set to zero if no such path exists. We call Z the single-linkage matrix based
on R.

EXAMPLE 3.2. Suppose that

1 —05 05 0.6
-0.5 1 0.4 —-0.1
0.5 0.4 1 0.2
0.6 -0.1 02 1

R =

Then G* and Z are given by

1 04 05 0.6
04 1 04 04
05 04 1 05
06 04 05 1

7z =

For example, to get Z1, we consider two paths 1 —3 —2 and 1 —4 —3 — 2. The
minimum of Ry, over the first path is 0.4 and over the second path 0.2. This gives
Z1p=04.

Note that in the above example Z > R, Z is invertible, and Z —1 is an M-matrix.
We now show that this is an example of a more general phenomenon.
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PROPOSITION 3.3. Let R be a symmetric p X p positive semidefinite matrix
satisfying Ri; = 1 for all i € V. Then the single-linkage matrix Z based on R is
an ultrametric matrix with Z;j > R;; for all i # j. If, in addition, R;; < 1 for all
i # j, then Z is nonsingular and, therefore, an inverse M-matrix.

PROOF. We first show that Z is an ultrametric matrix. Z is symmetric by def-
inition. Because R is positive semidefinite, R;; < 1 for all i, j and from (13) it
immediately follows that Z;; < 1 and, therefore, Z;; > Z;; for all i, j as needed.
Finally, to prove condition (ii) in the definition of ultrametric, let i, j, k € V. Sup-
pose first that i, j, k lie in the same connected component of G*. Let Py, P, be
the paths in G* such that Z;; = minyyep, Ryy and Zj; = min,yep, Ryy. Let Prp
be the path between i and j obtained by concatenating P; and P». Then

Zij =max min Ry, > min R,, =min{Z;, Z}.
P uveP uve Py
Now suppose that i, j, k are not in the same connected component of G*. In
that case, 0 € {Z;;, Zix, Z jx}. Because zero is attained at least twice, again Z;; >
min{Z;i, Zj;}. Hence, Z is an ultrametric matrix. The fact that Z;; > R;; for all
i, j follows directly by noting that the edge ij forms a path between i and j.

Suppose now that R;; < 1 for all i # j. In that case also, Z;; < 1 for all i # j.
From this, it immediately follows that no two rows of Z can be equal. Indeed, if the
ith row is equal to the jth row for some i # j, then necessarily Z;; = Z;; = Z;,
a contradiction. From Theorem 3.1, it then follows that Z is an inverse M-matrix,
which completes the proof. [J

As a direct consequence, we obtain the following result.

PROPOSITION 3.4. Let S be a symmetric positive semidefinite matrix with
strictly positive entries on the diagonal and such that S;; < ./S;;Sjj forall i # j.
Then there exists an inverse M-matrix Z such that Z > S and Z;; = S;i; for all
ieV.

PROOF. Apply Proposition 3.3 to the normalized version R of S, with en-
tries R;; := S;;j/\/SiiSjj. Because R;; < 1 for all i # j, the corresponding single-
linkage matrix Z’ is ultrametric with Z’ > R and Z’ is an inverse M-matrix. Define
Zby Zij=/SiiS;;Z'. Then Z > S and Z;; = §;; for all i € V. Moreover, Z is an
inverse M-matrix because Z’ is. [

Proposition 3.4 is very important for our considerations. A basic application is
an elegant alternative proof of the main result of [37], which says that the MLE
under MTP; exists with probability one as long as n > 2. This is in high contrast
with the existence of the MLE in Gaussian graphical models without additional
constraints; see [40].
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THEOREM 3.5 (Slawski and Hein [37]). Consider a Gaussian MTP, model
and let S be the sample covariance matrix. If S;j < \/SiiSjj for all i # j, then the
MLE ¥ (and K) exists and it is unique. In particular, if the number n of observa-
tions satisfies n > 2, then the MLE exists with probability 1.

PROOF. The sample covariance matrix is a positive semidefinite matrix with
strictly positive diagonal entries. We can apply Proposition 3.4 to obtain an inverse
M-matrix Z that satisfies Z > § and Z;; = §;; for all i. It follows that Z satisfies
primal feasibility (6) and dual feasibility (7) and (8). By Proposition 2.2, the MLE
exists and it is unique by convexity of the problem. [

REMARK 3.6. Combining this result with Corollary 2.4 we note that the
cliques of G can at most be of size n. In this way the sparsity of G automatically
adjusts to the sample size.

The matrix Z can be computed efficiently.* To see that, note first that in Exam-
ple 3.2 we could first consider the chain T of the form 2 — 3 — 1 — 4, which is the
maximal weight spanning forest of G* and then construct Z by

Zij = min Ry,
uv=ij
where ij denotes the unique path between i and j in 7. For example, Z1, = 0.4,
which corresponds to the minimal weight on the path 2 — 3 — 1. This is a general
phenomenon.

Suppose again that R is a symmetric p X p positive semidefinite matrix satisfy-
ing R;; = 1 foralli € V.Let MWSF(R) be the set of all minimal maximum weight
spanning forests of R. Note that all edge weights of any such forest F € MWSF(R)
must be positive; hence we must have F € G ™. Also, if R is an empirical correla-
tion matrix, then MWSF(R) will be a singleton with probability one and in such
cases we shall mostly speak of the MWSE.

PROPOSITION 3.7. The single-linkage matrix Z as defined in (13) is block
diagonal with blocks corresponding to the connected components of any F €
MWSEF(R). Within each block, all elements are strictly positive and given by

Zij = min Ry,
UVEL]

where i is the unique path between i and j in a maximal weight spanning tree of
R. In particular, Z;j = R;; for all edges of MWSF(R).

4In our computations, we used the single-linkage clustering method in R.
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PROOF. First suppose that i, j € V lie in two different components of F €
MWSF(R). This means that there is no path between i and j in G and so, by
definition, Z;; = 0. Because Z;; > 0 if i, j lie in the same component of F, Z is
block diagonal with blocks corresponding to connected components of MWSF(R).

The rest of the proof is an adaptation of a proof of a related result [34], Propo-
sition 7.2.10. Suppose that i, j € V lie in the same connected component of F
and denote the tree in F' corresponding to this component by 7. By definition,
Zij > min, cij Ryy. Suppose that Z;; > min,,,, <7 R,,. We obtain the contradic-
tion by showing that under this assumption 7' cannot be a maximum weight span-
ning tree of the corresponding connected component of G*. Let k/ be a minimum
weight edge in the unique path between i and j in T'. Since Z;; > Ry, there exists
a path P in G* between i and j such that R,, > Ry for every uv in P. Now
deleting kI from T partitions the corresponding connected component of G* into
two sets with i being in one and j being in the other block. Since P connects i and
j in G™T, there must be an edge k'’ (distinct from k/) in P whose end vertices lie
in different blocks of this partition. Let 7’ be the spanning tree obtained from T
by deleting k/ and adding k'l’. Since Ry > Ry, the total weight of T' is greater

than 7', which is a contradiction. We conclude that Z;; = min 7 Ry, forall i, j

in the same connected component of G*. [J

To conclude this section, we note that the starting point X° of Algorithm 2
is arbitrary as long as £° > 0 and £° > . The single-linkage matrix constitutes
another generic choice when S = R is used as input. This is a particularly desirable
starting point, since it can also be used when p > n, in which case R ¢ S, ¢ and
hence not feasible.

4. The maximum likelihood graph. Fitting a Gaussian model with MTP,
constraints tends to induce sparsity in the maximum likelihood estimate K. In
this section, we analyze the sparsity pattern that arises in this way. We assume
again without loss of generality that S = R is a sample correlation matrix so that
R;i =1 for all i and R;; < 1 for all i # j. Consider again the weighted graph
Gt = GT(R). We begin this section with a basic lemma that reduces our analysis
to the case where the graph G is connected.

LEMMA 4.1. The MLE % under MTP, is a block diagonal matrix with
strictly positive entries in each block. The blocks correspond precisely to trees
in MWSF(R).

PROOF. First, since ¥ is an inverse M-matrix, it is block diagonal with strictly
positive entries in each block; see, for example, Theorem 4.8 in [22]. We will show
that each block of corresponds precisely to a tree in MWSF(R).

Denote the vertex sets for a forest F € MWSF(R) as Ty, ..., T; and the blocks
of ¥ as By, ..., B;. First, for any T; there must be a j so that 7; C Bj; this is true
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since all entries in R along the edges of 7; are positive, and thus >R > 0. Thus
the block partitioning corresponding to the trees is necessarily finer than that of s

On the other hand, suppose that two different trees 7; and T; in F are in the
same block of 3 so that ﬁuv > 0 for all u € T; and v € T;. Then, as we must
have R, < O,Aalso necessarily fluv — Ry, > 0. Complementary slackness (9) now
implies that K,, =0 for all u € T; and v € T}, and hence K is block-diagonal

with blocks corresponding to the trees in F'. Since T = K ~1 we also get S =0
which contradicts that # and v are in the same block of X. [J

This result shows that, without loss of generality, we can always assume that
G is connected and then MWSF(R) = MWST(R) consists of trees only. If there
are more than one connected component, we simply compute the MLE for each
component separately and combine them together in block diagonal form. Hence,
from now on we always assume that all forests in MWSF(R) are just trees.

4.1. An upper bound on the ML graph. In the following, we provide a simple
procedure for identifying an upper bound for G. This procedure relies on the es-
timation of the standard Gaussian graphical model over the tree MWSF(R). The
MLE under this assumption, denoted by %, can be computed efficiently and it

satisfies
ij = ] Ruw
uveij
where ij denotes the unique path between i and J in MWSF(R); see, for example,
[42], Section 8.2. To provide an upper bound on G, we will make use of a connec-

tion to so-called path product matrices: A nonnegative matrix R is a path product
matrix if forany i, je V,keN,and 1 <iy,...,ir < p,

Rij > Rii, Riji, - - Riy j.
If in addition the inequality is strict for i = j, we say that R is a strict path product

matrix. We note the following.

THEOREM 4.2 (Theorem 3.1, [21]). Every inverse M-matrix is a strict path
product matrix.

We are now able to provide an upper bound for the ML graph G.

PROPOSITION 4.3. The pair ij forms an edge in the ML graph only if
Rij= [] Ruw
uveP

or any path P in etween i and j. In particular, R;; < 0 implies that ij is not
y path P in G b i and j. In particular, R;; <0 implies thatij i
an edge of the ML graph.
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PROOF. Because ¥ is an inverse M-matrix it is necessarily a path product
matrix by Theorem 4.2. In particular, for all i, j and any path P between them,

2:ij > 1_[ Zuv-
uveP

By Proposition 2.2, we also have f),w > Ryy. Thus, if ij € G and P is a path in
G™ we have

as desired. [

Motivated by this result, we define the excess correlation graph (EC graph)
EC(R) of R by the condition

i~j <<= Rijziij: HRuv-
uveij
Thus the EC graph has edges i j whenever the observed correlation between i and j
is in excess of or equal to what is explained by the spanning forest; by construction,

G(K) CEC(R).

The inclusion is typically strict. For example, if R is an inverse M-matrix,
then EC(R) is the complete graph, whereas G(K) can be arbitrary; this follows
from [13], Proposition 6.3.

4.2. Some exact results on the ML graph. Next, we analyze generalization
of trees known as block graphs, where edges are replaced by cliques, and give a
condition under which the maximum likelihood estimator admits a simple closed-
form solution. More formally, G is a block graph if it is a chordal graph with only
singleton separators. It is natural to study block graphs, since viewing the MLE
T asa completion of S, block graphs play the same role for inverse M-matrices
as chordal graphs play for Gaussian graphical models; see, for example, [20] and
Corollary 7.3 of [13].

We first define a matrix W = W(R) by

(14) Wij := max [ Ruv.

uveP

where, like in (13), the maximum is taken over all paths in GT between i and j and
is set to zero if no such path exists. Transforming D;; = —log R;; gives a distance
based interpretation, in which W;; is related to the shortest distance between i
and j in G* with edge lengths given by D,,,. We also have the following simple
lemma.
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LEMMA 4.4. The matrix W is a path product matrix. Further, R is a path
product matrix if and only if W(R) = R.

PROOF. This is immediate from the definition of W. [

It is easy to show that Z > W > R and that W is always equal to the MLE T in
the case when p < 3. For general p we do not know conditions on R that assure
that W is an inverse M-matrix, or the MLE. Indeed, Example 3.4 in [21] gives a
strict path product correlation matrix R, and thus W = R, which is not an inverse
M-matrix, and thus W 3. We note that W = 3 for the carcass data discussed
in Example 1.1 and, as we shall see in the following, it reflects that in this example,
the ML graph is a block graph.

Let Gg(W) be the graph having edges ij exactly when R;; = W;; and no edges
otherwise. We then obtain the following result.

PROPOSITION 4.5.  If Gr(W) is a block graph and blocks of W correspond-
ing to cliques are inverse M-matrices, then ¥ = W and G C Gg(W).

PROOF. Note first that if ¥ = W, the KKT conditions (9) imply that Gc
Gr(W). Let ¥ denote the maximum likelihood estimate of ¥ under the Gaussian
graphical model with graph G g(W). Then, since G g(W) is a block graph, it fol-
lows from [26], equation (5.46) on page 145, that ¥ is an inverse M-matrix which
coincides with W and R on all edges of G g(W). Thus, ¥ = 3 and to show that
=W we just need to argue that & = W.

We proceed by induction on the number m = |C| of cliques of G g(W). If there
is only one clique in G g(W), we have ¥ = R and R is an inverse M-matrix, and
hence & = R = W. Assume now that the statement holds for |C| < m and assume
G r(W) has m 41 cliques. Since G g (W) is a block graph, there is a decomposition
(A, B, S) of GR(W) into block graphs with at most m cliques and with the sepa-
rator S = {s} being a singleton. But for a decomposition of Gg(W) as above we
have from [26], equation (5.31) in Proposition 5.6, and the inductive assumption
that

Yaus = Saus = W(Raus). ¥ pus = Sus = W(RpuS).

Now let P* be the path in G such that W;; = [],,,c p+ Ruv for any two vertices
i, j. We claim that all edges in P* must be edges of G g(W). Otherwise, suppose
P* contains an edge uv which is not an edge in Gr(W); then W,, > R,, and
so if we replace the edge uv with the path realizing W, the product would be
strictly increased, which contradicts the optimality of P*. Since S is a singleton
separator, this also implies that P* passes through S whenever it involves vertices
from both A and B. Suppose that i, j € A U S. Then optimality of P* implies
that P* is contained in A U S and so i:AUS = W (Raus) = Waus and by the same
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argument iBus = Wpus. Moreover, if i € A and j € B then W;; = W;; W;;. Now
the inductive assumption in combination with the expression [26], p. 140, yields
that

E,JIE EéjzwisWstWij fOI‘iEA,jEB,

and thus ¥ = 3 = W as required. [

REMARK 4.6. We note that with probability one, the slackness constraints in
(9) are not simultaneously active, and hence in Proposition 4.5 we have almost
sure equality between G r(W) and G. Thus we can identify G without first calcu-
lating K.

We further have the following corollary.

COROLLAR){ 4.7. Under the same conditions as in Proposition 4.5 we have
MWSF(R) C G C Ggr(W).

PROOF. Consider an edge ij between vertices in different cliques of G g(W)
and assume 51 {s1} and S» = {s»} are (i, j)-separators with i ~ s; and ] ~ 8.
Then, since G C Gr(W) we have i 1L j|s; and i 1L j|s> according to 3 and
therefore

Rij < Xjj = X, Xjs; = Xis, Xjs,
= Risl stl = Eisszsz < min{Risl7 stz},

so the edge ij can never be part of a MWSF because removing the edge ij would
render either 51 disconnected from i or s, disconnected from j and then the weight
of the MWSF would increase when replacing ij with is; or jsp, respectively. This
completes the proof. [

It is not correct in general that MWSF(R) C G as demonstrated in the following
example; although this has been the case in all nonconstructed examples we have
considered including the relatively large Example 5.8 below.

EXAMPLE 4.8. The following M-matrix

1 —0.116 0 0 —0.433

—0.116 1 —-0.097 —0.034 0
K= 0 —0.097 1 —0.149 —-0.413
0 —0.034 —-0.149 1 —0.604

—0.433 0 —-0.413 —-0.604 1
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is the inverse of the following correlation matrix

1 0.2861 0.5745 0.6242 0.7299

0.2861 1 0.2864 0.2696 0.2872

R=10.5745 0.2864 1 0.7149 0.7800

0.6242 0.2696 0.7149 1 0.8523
0.7299 0.2872 0.7800 0.8523 1

Here, MWSF(R) is the star graph with 5 as its center, but the edge 2 ~ 5 is not in
G(K). Note that all edges in G* adjacent to 2 have almost the same weight. We
have calculated K ~! using rational arithmetic to ensure the phenomenon cannot
be explained by rounding error.

5. Gaussian signed M TP, distributions. In this section, we discuss how our
results can be generalized to so-called signed MTP;, Gaussian distributions, where
the distribution is MTP, up to sign swapping. Such distributions were discussed
by Karlin and Rinott [24]. More precisely, a random variable X has a signed MTP,
distribution if there exists a diagonal matrix D with D;; = %1 (called sign matrix)
such that DX is MTP;. The following characterization of signed MTP, Gaussian
distributions is a direct consequence of [24], Theorem 3.1 and Remark 1.3.

PROPOSITION 5.1. A Gaussian random variable X has a signed MTP, dis-
tribution if and only if | X | is MTP;.

Gaussian graphical models with signed MTP, distributions are called nonfrus-
trated in the machine learning community. The following result is implicitly stated
in [29].

THEOREM 5.2. A Gaussian random variable X with concentration matrix K
has a signed MTP; distribution if and only if it holds for every cycle (i1, ..., i, i1)
in the graph G (K) that

(15) (=D*Ki i, Kiyiy - Kiyiy > 0.

PROOF. The “only if” direction is easy to check. Note that (15) can be
rephrased by saying that each cycle in the graph with edge weights given by the
oft-diagonal entries of —K has an even number of negative edges. The “if” direc-
tion can now be recovered from the proof of [29], Corollary 3. [J

Signed MTP, distributions are relevant, for example, because of their appear-
ance when studying tree models.

PROPOSITION 5.3. Every Gaussian graphical model over a tree consists of
signed MTPy distributions. The MTP; distributions among those are precisely
those without negative entries in the covariance matrix X.
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PROOF. Let T be atree and K = X! be a concentration matrix in the Gaus-
sian graphical model over 7. Then G(K) is a subgraph of T and in particular it
has no cycles. Hence by Theorem 5.2 it is signed MTP,. The second part of the
statement follows from [13], Corollary 7.3. [

Because signed MTP; distributions are closed under taking margins, Proposi-
tion 5.3 can be further generalized. The following theorem covers, in particular,
Examples 4.1-4.5 in [24].

THEOREM 5.4. Every distribution on a Gaussian tree model with hidden vari-
ables is signed MTP;.

Gaussian tree models with hidden variables have many applications, in partic-
ular related to modeling evolutionary processes; see, for example, [7, 36]. As an
important submodel they contain the Brownian motion tree model [14]. Another
example of a Gaussian tree model is the factor analysis model with a single factor;
it corresponds to a Gaussian model on a star tree, whose inner node is hidden. The
MTP, distributions in this model correspond to the distributions in a Spearman
model [27, 38], where the hidden factor is interpreted as intelligence.

Let R be a sample correlation matrix. Maximizing the likelihood over all signed
MTP, Gaussian distributions requires determining the sign matrix D, with D;; =
=+1, that maximizes the likelihood for all 27 possible matrices DRD. A natural
heuristic is to choose D* such that D; Djf L Rij = 0 for all edges ij of MWSF(|R|),
where |R| denotes the matrix whose entries are the absolute values of the entries
of R. We provide conditions under which this procedure indeed leads to the MLE
under signed MTP;, and we also provide examples showing that this is not true in
general. Quite interestingly, balanced graphs again play an important role in this
part of the theory.

First, we describe how to obtain a sign swapping matrix D* such that
D Djfj R;j > 0 for all edges ij of MWSF(|R]|). Root MWSF(|R|) at node 1, that
is, regard MWSF(|R|) as a directed tree with all edges directed away from 1. Set
D7, = 1. Then proceed recursively. For any edge i — j, suppose that D; is known
and set Djj :=sgn(D}; R;;). Note that by construction

(16) Dj; :=sgn(Ryi, Rii, - Riji),

where 1 — i| — ip — .-+ — i — i is the unique path from 1 to i in MWSF(|R|).
We set D}; = 0 if no such path exists. It is easy to check that the resulting D*
satisfies D D}Fj R;; > 0 for all edges ij of MWSF(|R|).

PROPOSITION 5.5. Suppose that R is a sample correlation matrix whose
graph is balanced, that is, such that for every cycle (i1, ia, ..., ik, i1) in the graph
G(R):

(17) Riliz Ri2i3 cee Rikil > 0.
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Then the MLE based on R over signed MTP, Gaussian distributions is equal to the
MLE based on the sample correlation matrix D* R D* over MTP; distributions.

PROOF. We first show that D* R D* has only positive entries. Let i, j be any
twonodes andlet 1 > iy —» ---—> iy >iand 1 - j; — --- = j; — j be the
paths in MWSF(|R|) from 1 to i and j, respectively. By (16), we obtain

sgn(Dj; D7 Rij) = sgn(Ruj, -~ Ri,i RijRjj -+ Rjj1),

which is positive by (17). This shows that without loss of generality we can assume
that all entries of R are nonnegative, and hence that D* is the identity matrix I,.
We now show that the likelihood over MTP, distributions given the sample corre-
lation matrix DR D is maximized by D = 1I,. This is because (D;;Dj; — 1) <0
and R;;K;; <0, and hence

L(K; R)—¢(K; DRD)=tr(DRDK) —tr(RK) = Z(DiiDjj — I)R,’jKij >0,
iJ

which completes the proof. [J

Note that any spanning tree T of G1(|R|) would suffice to identify the sign
switches as above.

Proposition 5.5 provides a sufficient condition for D* to be the optimal sign-
switching matrix; that is, it provides a sufficient condition such that for every K €
S, ¢ and every sign matrix D it holds that

¢(K:; D*RD*) > £(K; DRD).

As a consequence of Proposition 5.5 we obtain the following result for the case
when the sample size is 2.

COROLLARY 5.6. If the sample correlation matrix R is based on n =2 ob-
servations, then the MLE over signed MTP,> Gaussian distributions given R is
equal to the MLE over MTP;, Gaussian distributions given the modified sample
correlation matrix D* R D*.

Note that the case n = 2 is special and Proposition 5.5 does not extend to arbi-
trary sample correlation matrices. In the following, we give a simple counterexam-
ple.

EXAMPLE 5.7. Suppose that the sample correlation matrix is

1 03 0.11 03
0.3 1 -0.1 —-0.1
0.11 -0.1 1 —0.1
03 —-0.1 -0.1 1

R =
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Then MWSEF(|R]) is given by the star graph with edges 1 — 2, 1 — 3, 1 — 4. Since
R is positive on these entries, D* =1 ,. But one can check that the corresponding
MLE has a lower likelihood than the MLE after changing the sign of the third
variable.

The intuition is the following. The log-likelihood based on R is up to an additive

constant given by

minizmize — logdet(X)

subject to Yii=Xp=YX33=2u=1,
Y12 > R, 213 > Rys, 214 > Rug,
Y3 >0, Y04 >0, Y34 >0,
x >0.

By changing the sign of the third variable, we replace the constraint 1 — 3 by two
constraints 2 — 3 and 3 — 4. The resulting optimization problem is

minizmize — logdet(X)

subject to Y=Xp=YX33=2u=1,
212 > Rio, Y14 > Rua, 223> —Ro3, Y34 > — Raa,
X3 >0, Y4 >0,
Y >0.

Note that R;3 is only slightly larger than — R»3 and — Rp4. Hence, in essence we
are increasing the number of constraints by one, which explains the decrease of
the log-likelihood value.

We conclude this paper by illustrating how our results can be applied to factor
analysis in psychometrics.

EXAMPLE 5.8. Single factor models are routinely used to study the personali-
ties in psychometrics. Consider the following example from [30]:> 240 individuals
were asked to rate themselves on the scale 1-9 with respect to 32 different person-
ality traits. The resulting correlation matrix is shown in Figure 2. It appears to have
a block structure with predominantly positive entries in each diagonal block and
negative entries in the off-diagonal block. Also analyzing the respective variables,
they seem to correspond to positive and negative traits. It is therefore natural to

SWe downloaded the data from http://web.stanford.edu/class/psych253/tutorials/FactorAnalysis.
html.
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FI1G. 2. Correlation matrix of personality traits from the data set described in [30].

assume that this data set follows a signed MTP, distribution and analyze it under
this constraint.

The correlation matrix resulting from the sign switching procedure described
in (16) is shown on the left in Figure 3, while the correlation matrix resulting
from switching the signs of the 16 (negative) traits that constitute the first block
of variables in Figure 2 is shown on the right in Figure 3. These plots suggest that
the matrix on the right is closer to being MTP;. In fact, its log-likelihood [i.e., the
value of 5 (logdet K — tr(SK))] is —2046.146, as compared to the log-likelihood
value of —2071.717 resulting from the sign switching procedure described in (16).
For comparison, the value of the unconstrained log-likelihood is —1725.075 and
the value of the log-likelihood under MTP, without sign switching is —2356.639.
The unconstrained log-likelihood gives a lower bound of 642.142 on the likelihood
ratio statistic to test signed MTP; constraints, while the likelihood ratio statistic to
test MTP, constraints against the saturated model is equal to 1263.128.

The graphical models based on no sign switching and switching the signs of the
16 negative traits are shown in Figure 4. The vertex labels are as shown in Table 1.

The red edges correspond to the maximum weight spanning trees. Red and blue
edges together form the edge set of the ML graph so in both of these cases we
have MWSF(R) C G. Finally, the grey edges are the remaining edges in the EC
graph. As expected, the graph on the right looks denser. The interpretation of the
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F1G. 3. The correlation matrix of the data set on personality traits after performing the sign
switches as defined in (16) is shown on the left. The correlation matrix resulting from switching
the signs of the 16 (negative) traits that constitute the first block of variables in Figure 2 is shown on
the right.

spanning tree in both cases is very different. Edges in the first one connect similar
personalities such as 6-24 (agreeable and cooperative), 12-22 (outgoing and so-
ciable), 11-23 (disorganized and lazy). On the other hand, the second tree looks
similar but it links also some almost perfect opposite personalities such as 12—-14
(outgoing and shy), 22-30 (sociable and withdrawn), 11-26 (disorganized and or-

FIG. 4. On the left, the graphical models resulting from estimation under MTP, based on the
correlation matrix shown in Figure 2 and, on the right, the correlation matrix shown in Figure 3
(right). The thin gray edges correspond to the edges of the EC graph that are not part of the ML
graph. The blue edges represent edges of the ML graph that are not part of the minimum weight
spanning tree. The latter is represented by thick red edges.
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TABLE 1
Vertex labeling for Figure 4

1 2 3 4 5 6 7 8
distant talkatv carelss hardwrk anxious agreebl tense kind

9 10 11 12 13 14 15 16
opposng relaxed disorgn outgoin approvn shy discipl harsh
17 18 19 20 21 22 23 24
persevr friendl worryin respnsi contrar sociabl lazy coopera
25 26 27 28 29 30 31 32
quiet organiz criticl lax laidbck withdrw givinup easygon

ganized), 7-10 (tense and relaxed). Note that none of these four edges are part of
the ML graph on the left in Figure 4.

6. Discussion. In this article, we have investigated maximum likelihood esti-
mation for Gaussian distributions under the restriction of multivariate total posi-
tivity, used a connection to ultrametrics to show that it has a unique solution when
the number of observations is at least two, shown that under certain circumstances
the MLE can be obtained explicitly, and given convergent algorithms for calculat-
ing the MLE. For signed MTP; distributions, we have also given conditions under
which a heuristic procedure for applying sign changes is correct and can be used
to obtain the MLE.

It remains an issue to consider the asymptotic properties of the estimators we
have given, and to derive reliable methods for identifying whether a given sample
is consistent with the MTP; assumption.

On the former issue, standard arguments for convex exponential families ensure
that if the true value K¢ is an M-matrix, K is a consistent estimator of Ko; and this
is true whether or not the MTP, assumption is invoked.

Another question is whether the ML graph G will be consistent for the true de-
pendence graph. It is clear that without some form of penalty or thresholding, it
cannot be the case. For example, if p =2 and the true X is a diagonal matrix, the
distribution of the empirical correlation Rj> will be symmetric around 0. Hence,
with probability 1/2 the ML graph contains an edge between 1 and 2 and with
probability 1/2 it does not contain such an edge. This phenomenon persists for
any number of observations n. Thus, to achieve consistent estimation of the de-
pendence graph of ¥, some form of penalty for complexity or thresholding must
be applied, the latter being suggested by [37], who also suggest a refitting after
thresholding to ensure positive definiteness of the thresholded matrix. However,
positive definiteness is automatically ensured, as shown below.
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PROPOSITION 6.1. Let K be an M-matrix over V and G = (V, E) an undi-
rected graph. Define K© by
kG — K, ifu=voruvek,

v 0 otherwise.

Then KC is an M-matrix.

PROOF. We may, without loss of generality, assume that K is scaled such that
all diagonal elements are equal to 1; also it is clearly sufficient to consider the case
when only a single off-diagonal entry K, is replaced by zero. We have to show
that the resulting matrix K ¢ is positive definite.

Now, let A = {u, v} and B =V \ A and consider the Schur complements

K/Kpp=Kan— Kap(Kpp) 'Kpa;
K%/Kpp =K, — Kap(Kpp) 'Kpa.

Since KgB =Kpp, K9 is positive definite if and only if KG/KBB is. Because K
is an M-matrix, all entries in K 4g(Kp B)_lK BA are nonnegative. Hence, we can
write the Schur complements as

K/Kpp = (_ i ‘i“fdb)) . KS/Kpp= (1__; 1__bd) ,
where ¢, d € (0, 1) and a, b > 0. Since K is positive definite, we have
(@+b)?*<1—-c)(1—d)
and hence
b <(1—c)(1—d)—a*—2ab < (1 —c)(1 —d)

implying that K¢ /K pp is positive definite. This completes the proof. [J

The consistency of the estimator K ensures that the ML graph will eventually
contain the true dependence graph when n becomes large and with an appropriate
thresholding or penalization; this ensures that the true graph can be recovered, as
also argued in [37].

The issue of the asymptotic distribution of the likelihood ratio test for MTP; is
an instance of testing a convex hypothesis within an exponential family of distribu-
tions. In our particular case, the convex hypothesis is a polyhedral cone with facets
determined by the dependence graph G (K). In such cases, the likelihood ratio test
for the convex hypothesis typically has an asymptotic distribution which is a mix-
ture of x2-distributions with degrees of freedom determined by the co-dimension
of these facets; see, for example, the analysis of the case of multivariate positivity
in models for binary data by [3], using results of [35].
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While these issues are both interesting and important, we consider them to be
outside the scope of the present paper as they may be most efficiently dealt with in
the more general context of exponential families, containing both the Gaussian and
binary cases as special instances. We plan to return to these and other problems in
the future.
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