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Abstract 

 Visual working memory is limited in capacity, so it is essential to use it efficiently.  

Previous work has shown that statistical learning can help boost working memory efficiency by 

prioritizing the encoding and/or maintenance of objects most likely to be tested.  In this study, 

we considered that the potential benefits of statistical learning could be limited by spatial 

constraints.  Across three experiments, we found that statistical learning prioritizes working 

memory allocation to items based on their likelihood of being tested, but this prioritization is 

greatly modulated by spatial constraints.  In particular, when two locations each had a high 

probability of being tested, we primarily observed performance benefits over low probable 

locations when these two locations were horizontally adjacent to one another.  Vertically 

adjacent and diagonally arranged high probable locations produced no accuracy benefit over low 

probable locations and a modest response time benefit.  These findings contrast with previously 

observed hemifield-independent effects (i.e., a “bilateral field advantage”) and reveal surprising 

limitations on the potential benefits of statistical learning.   

 

 

 

Keywords: statistical learning, working memory, spatial coding, hemifield independence, 
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Spatial constraints on probability learning in visual working memory  

 

Working memory, the ability to actively maintain representations of sensory information 

after the perceptual input is no longer available, is an essential cognitive function (Baddeley & 

Hitch, 1974; Luck & Vogel, 1997; Soto, Heinke, Humphreys, & Blanco, 2005).  However, we 

are only capable of maintaining a limited amount of information at a time.  Therefore, any 

opportunity to increase our encoding and maintenance of relevant information while rejecting 

irrelevant information should be highly desirable.  One such opportunity is provided by our 

implicit learning mechanisms, which constantly monitor the environment for statistical 

regularities, without the need conscious intent (Stadler & Frensch, 1998).   

For example, consider a radiologist who must compare a patient’s old and new scans for 

any adverse developments. This task requires the radiologist to store information from the first 

image in visual working memory in order to compare it to the second image. Since capacity is 

limited, he/she cannot store all of the first image’s contents, so the process can take many 

successive steps.  After some training, however, the radiologist will begin to learn which parts of 

the scan are the most relevant and which are totally irrelevant, making the comparison process 

more efficient. 

This scenario, in which statistical learning benefits working memory, is supported by 

several recent studies (Brady, Konkle, & Alvarez, 2009; Olson, Jiang & Moore, 2005; Umemoto, 

Scolari, Vogel, & Awh, 2010). For example, Umemoto, Scolari, et al. had participants store eight 

colored items for a brief delay, followed by a same/different judgment on a single test item. 

Without informing the participants, the experimenters tested items in one specific quadrant of the 

display (i.e., the high-probable quadrant) more frequently than items in the other quadrants (i.e., 
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the low-probable quadrants). As the experiment progressed, the participants became more 

accurate on test items from the high-probable quadrant than those in the low-probable quadrants, 

confirming that statistical learning beneficially biased working memory encoding.   

The results of Umemoto, Scolari, et al. (2010) underscore how working memory profits 

from statistical learning (see also Olson et al., 2005), but the extent of this benefit remains to be 

fully understood.  In this paper, we will further examine how statistical learning modulates 

working memory, particularly focusing on how the modulation is subject to spatial constraints.     

In pursuing these questions, we acknowledge the intellectual debt we owe to Glyn 

Humphreys, who, with his colleagues, made countless contributions to our current understanding 

of visual working memory and the representation of space.  For working memory, his 

contributions include studies of its basic properties (Delvenne, Braithwaite, Riddoch, & 

Humphreys, 2002), the relationship between visual working memory and other cognitive 

processes/phenomena, including perception (Soto, Wriglesworth, Bahrami-Balani & Humphreys, 

2010), attention (Soto et al., 2005; Soto, Hodsoll, Rotshtein & Humphreys, 2008), and visual 

marking (Olivers, Humphreys, Heinke, & Cooper, 2002; Watson, Humphreys & Olivers, 2003), 

as well as how visual working memory is characteristically impaired in neuropsychological 

patients (Duncan, Bundesen, Olson, et al., 2003; Riddoch, Humphreys, Blott, Hardy, & Smith, 

2003).  For the representation of space, or spatial coding (Humphreys, 1998), his work on 

hemispatial neglect and extinction helped to establish how distinct neural substrates control the 

allocation of attentional resources to the left vs. right portions of both space-based and object-

based representations (Heinke & Humphreys, 2003; Riddoch & Humphreys, 1983).  Additionally, 

his work in healthy adults has produced evidence for distinct processing resources in the left and 

right visual hemifields (Delvenne, Castronovo, Demeyere & Humphreys, 2009, 2011).   
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Informed by the work of Humphreys and others, we predicted that statistical learning 

would be limited in the ways that it can boost working memory performance.  For example, we 

were interested in determining the influence of a phenomenon known as the bilateral field 

advantage.  This refers to the finding, as discussed above (Delvenne, Castronovo, et al., 2009, 

2011), in which objects presented between two hemifields (i.e., bilaterally) are more efficiently 

processed than the objects presented within a single hemifield (i.e., unilaterally; Alvarez & 

Cavanagh, 2005; Alvarez, Gill, & Cavanagh, 2012; Delvenne & Holt, 2012; Franconeri, Alvarez, 

& Cavanagh, 2013; Holt & Delvenne, 2015; Ludwig, Jeeves, Norman, & DeWitt, 1993; Störmer, 

Alvarez, & Cavanagh, 2014).  A few studies have demonstrated this phenomenon specifically in 

the domain of working memory (Delvenne, 2005; Holt & Delvenne, 2014; 2015; Umemoto, 

Drew, Ester, & Awh, 2010).  These effects are thought to be a consequence of the anatomical 

separation of the two hemispheres in the processing of our two visual hemifield representations 

(see Delvenne, 2012, for a review). 

How might the bilateral field advantage limit the positive benefits of statistical learning?  

If we return to the paradigm of Umemoto, Scolari, et al. (2010), recall that items were tested in 

one display quadrant with greater frequency than in the other quadrants and that participants 

began to perform better for the test items in the high-probable quadrant.  According to a strong 

version of the bilateral field advantage, known as hemifield independence (cf. Alvarez & 

Cavanagh, 2005), two totally separate pools of resources – in this case, working memory 

resources – are each devoted to one hemifield.  Here, participants should only be able to boost 

their performance by prioritizing the resource pool allocated to the side containing the high-

probable quadrant.  While it would be advantageous to withdraw processing resources from 

locations in the opposite hemifield and reallocate them to the high-probable quadrant, hemifield 
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independence stipulates that this would not be possible.  Therefore, we would predict any 

improved working memory performance in the high-probable quadrant to come at the expense 

only of the low-probable quadrant within the same hemifield.  The two quadrants in the opposite 

hemifield should yield similar performance to one another. 

Note that many studies do not report pure hemifield independence, including those of 

Delvenne (2005) and Umemoto, Drew, et al. (2010).  Those studies showed an improvement in 

working memory capacity  – but not a doubling of capacity (as predicted by pure hemifield 

independence) – when comparing between vs. within hemifield conditions.  It is believed that 

visually crowded displays, in which multiple items within the same hemifield occupy the same 

receptive fields, increase the degree of hemifield independence observed (Umemoto, Drew, et 

al., 2010); in cases with fewer objects, results are more likely to show semi-independent 

hemifield effects.  In such a scenario, we would predict perhaps some transfer of resources from 

the low-probable quadrants in the opposite hemifield to the high-probable quadrant; nevertheless, 

we would expect the largest effects of prioritization to occur within the hemifield containing the 

high-probable quadrant.   

Beyond the predictions of the bilateral field advantage, another way in which statistical 

learning could be influenced by spatial constraints is via a euclidian spatial coding scheme, in 

which spatial distance from the high probable location predicts performance in the low probable 

locations.  This account is drawn from work like the classic Kosslyn mental imagery study 

(1973), in which subjects took longer to confirm details of a remembered image the further these 

details were from an initial focus point.  Subsequent studies of working memory have shown that 

increased distance between to-be-memorized items led to poorer performance (Awh, Jonides, & 

Reuter-Lorenz, 1998; Bays & Husain, 2008).     
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All told, we sought to determine if statistical learning would be influenced by the 

bilateral field advantage, euclidian coding, or any other unanticipated spatial constraint.  In three 

experiments, we asked participants to perform a working memory task in which one rotated T 

stimulus was presented in each quadrant.  Then, after a working memory delay, the participants 

had to report the orientation of one of the four items.  Like Umemoto, Scolari, et al. (2010), we 

manipulated the frequency of the probed target locations, so that participants would learn to 

prioritize high-probable quadrants to boost their working memory performance accordingly.   

To assess working memory performance, we analyzed both accuracy and response time 

(RT).  While the earliest models of working memory, such as Sternberg’s serial scanning model 

(Sternberg, 1966), hinged on RT phenomena, most studies of visual working memory have 

focused on accuracy data.  This is because the more recent studies have primarily sought 

estimates of memory capacity, which do not consider RT (Cowan, 2001; Pashler, 1988).  That 

said, it has been argued that RT provides equally valuable data in evaluating the quality of 

memory representations (Gilchrist & Cowan, 2014; Jensen, 2006; Luce, 1986; Pearson, 

Raškevičius, Bays, Pertzov, & Husain, 2014; Posner, 1978).   

To preview our results, we found some evidence that euclidian coding interacted with 

statistical learning effects in Experiment 1.  In Experiments 1 and 2, we found what we believed 

to be support for a bilateral field advantage interacting with statistical learning.   However, to our 

surprise, the results of Experiment 3 suggested that a horizontal advantage, in which working 

memory is better for two horizontally adjacent items than two vertically adjacent items, could 

explain the apparent hemifield effects.  We conclude first and foremost that statistical learning is 

indeed bounded by spatial constraints.  Further, at least in tasks like ours, a horizontal advantage 

may explain apparent hemifield effects. 
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Experiment 1 

In this first experiment we asked participants to remember four items in a memory array, 

distributed across the four display quadrants (i.e., upper-right, upper-left, lower-left, and lower-

right). After these items disappeared, we implemented a partial report procedure (Sperling, 1960; 

Luck & Vogel, 1997), in which a retrospective cue pointed to one location; participants had to 

report the orientation of the item that was initially presented in the sample array, at the cued 

location. For each participant, we assigned one quadrant as the “high-probable” quadrant, which 

we tested more frequently than any of the other three “low-probable” quadrants. There were 

three types of low-probable quadrants, based on their relative positions with respect to the high-

probable quadrant: within-hemi-adjacent, across-hemi-adjacent, and across-hemi-diagonal (we 

will henceforth refer to these as within-adjacent, across-adjacent and across-diagonal, 

respectively).  

We expected to observe the best performance for the item in the high-probable quadrant, 

like Umemoto, Scolari, et al. (2010). Additionally, we also expected to observe differences 

among the three low-probable quadrants.  A bilateral field advantage would predict that, in order 

to boost processing of the high-probable quadrant, participants should withdraw more resources 

from the within-adjacent quadrant compared to the equidistant across-adjacent quadrant.  

According to a distance account, we should see the worst performance in the across-diagonal 

quadrant, which is farthest from the high-probable location. 

 

Method 

Participants  
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Forty individuals participated in Experiment 1 (18 females; mean age = 19.6 years). All 

participants reported normal or corrected-to-normal visual acuity and normal hearing. The Ohio 

State University IRB approved this protocol. Participants received course credit or monetary 

compensation ($10/hour).  

 

Apparatus and Stimuli  

Participants were tested in a dimly lit room. Stimuli were presented on a 24” LCD 

monitor and generated using MATLAB (www.mathworks.com), with Psychtoolbox extensions 

(Brainard, 1997; Pelli, 1997). In the working memory task, placeholder displays contained four 

circles (diameter: 2.55°; all visual angles are calculated for a typical viewing distance of 60 cm), 

each of which was centered within one of the four quadrants (eccentricity: 3.61° from center), on 

a gray background. Memory displays contained four differently rotated white Ts, each at a 

unique canonical orientation (i.e., 0°, 90°, 180°, and 270°), on a gray background.  The spatial 

placement of each orientation was shuffled randomly on each trial. Each T subtended 

1.02°x1.02° and was centered in the location that had been occupied by a placeholder. 

Retrospective cue displays contained a white triangle (0.05°) in the center of the screen 

indicating the location of T to be reported (i.e., the target). Correct responses were followed by a 

green fixation along with a three “chirp” sequence lasting 300ms; incorrect responses were 

followed by a red fixation along with a low-tone buzz for 200ms and a 1 sec blank screen to 

discourage incorrect responses.  

 

Design 
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During the training phase (epochs 1-4; 3 blocks per epoch; 36 trials per block), the cue 

pointed more frequently to one quadrant (50%; High-probable quadrant) than any of three other 

quadrants (16.7%; Low-probable quadrants, including within-adjacent, across-adjacent, and 

across-diagonal locations). The high-probable location was consistent for the duration of the 

training phase and counterbalanced across participants.  During the testing phase (epochs 5-6), 

the cue pointed to each quadrant with equal frequency (25% per quadrant; see Figure 1A). 

 

Procedure 

Partial report working memory task.   

Participants initiated each working memory trial by clicking on a small white square 

(.51°x.51°), which appeared in the center of screen. After the click, the placeholder display 

appeared for 500 ms, and then the memory display that contained four rotated Ts appeared for 

200 ms.  The Ts were then removed for a 700 ms retention period.  Next, participants were 

shown the cue in the center of screen for 100 ms. Participants reported whether the cued T was 

orientated at 0°, 90°, 180°, or 270°, using the up, right, down, and left arrow keys, respectively, 

on a standard keyboard, upon response, the display was removed, and the visual and auditory 

feedback were provided. Participants completed 24 practice trials before advancing to the main 

trials (Figure 1B).  They were encouraged to respond both accurately and quickly, but with a 

greater emphasis on the former. 

 

Recognition test  

 After the working memory task, we assessed explicit awareness of the probability 

manipulation, first by asking participants to self-report whether they thought the target was 
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Figure 2. Accuracy in Experiment 1. A. Experiment 1’s visual working memory performance as a 

function of the target’s quadrant and epoch. B. Overall performance after collapsing all epochs. 

Error bars show ±1 within-subjects standard error of the mean. 

 

Response Time (RT). 

 Correct responses were analyzed after removing trials with RTs slower than 3-standard 

deviations above the mean and faster than 250 ms, which eliminated 1.5% of trials.  Mean RTs 

for the remaining trials are plotted in Figure 3.  

As in the accuracy data, an analysis of Quadrant Type × Epoch (1-4) ANOVA revealed 

main effects of both quadrant type and epoch, F(3, 117) = 10.70, p < .001,  ηp2
 = .22 and F(3, 

117) = 36.08, p < .001,  ηp2
 = .48, respectively.  Also, the two-way interaction between quadrant 

type and epoch was marginally significant, F(9, 351) = 1.84, p = .066,  ηp2 = .04.  During testing 

(5-6 epoch), A Quadrant Type × Epoch (5-6) ANOVA showed a significant main effect of 

quadrant type, F(3, 117) = 7.89, p < .001,  ηp2 = .17, but not for epoch, F < 1. No significant 

interaction was found, F < 1.  These results essentially mirror our accuracy analysis (see Figure 

3A). 

 We next took a closer look at quadrants, again collapsing across all epochs (see Figure 

3B.  An ANOVA across the four quadrant types was significant, F(3, 117) = 8.68, p < .001, ηp2 

= .18. Pairwise t-tests showed that RTs to the target in high-probable quadrant was faster than 

that in the within-adjacent, across-adjacent, and across-diagonal quadrants, t(39) = 3.48, padjusted 

= 0.005, d = .59,  t(39) = 3.01, padjusted = 0.02, d = .50, t(39) = 3.80, padjusted < .001, d = .62, 

respectively. Importantly, RT in the across-adjacent quadrant was marginally faster than that in 

within-adjacent quadrant, t(39) = 2.01, padjusted = .10, d = .41, as well as that in the across-

diagonal quadrant, t(39) = 2.40, padjusted = .066, d = .44. RTs in within-adjacent and across-

diagonal quadrants did not differ, t(39) = .57, padjusted = .565.  Numerically, these results mirrored 
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This experiment returned several findings.  First, the statistical learning manipulation was 

effective, leading to greater working memory performance at the high-probable quadrant 

compared to the other quadrants, replicating previous work (Brady et al., 2009; Olson et al., 

2005; Umemoto, Scolari, et al., 2010).  Second, the prioritization of the high-probable quadrant 

produced clear distance effects, in which the worst accuracy and slowest RTs emerged from the 

across-diagonal quadrant.  Nevertheless, the results were somewhat statistically weak, as the 

high probable quadrant was not reliably more accurate than the within-adjacent quadrant.  

Was there a hemifield effect?  Pure hemifield independence would have predicted 

prioritization of working memory resources only within a single hemifield.  However, the across-

adjacent and across-diagonal conditions produced differential performance measures, in both 

accuracy and RT.  Support also fell short for semi-independence (i.e., a bilateral field 

advantage); while performance in the across-adjacent quadrant was numerically superior to the 

within-adjacent quadrant in both accuracy and RT, neither of these effects were statistically 

reliable.   

 

Experiment 2 

One limitation of Experiment 1 was that we may not have placed great enough demands 

on prioritizing working memory resources.  That is, we only incentivized the prioritization of one 

quadrant, and if participants had spare capacity beyond that, we had little control over how they 

might have used it.  In Experiment 2, we created two high probable quadrants for each 

participant.  Our intent in having participants prioritize two quadrants was to create a greater 

disparity in both accuracy and RT for high-probable vs. low-probable quadrants. 
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Given that we already acquired evidence for a distance effect, our present goal was to 

now specifically seek evidence for hemifield effects.  To do this, we assigned each participant to 

either the Between-hemifield or Within-hemifield group.  The former group had one high-

probable quadrant in one hemifield and the other in the adjacent quadrant in the other hemifield; 

the latter group had both high probable quadrants in the same hemifield (see Figure 4). 

By a pure hemifield independence account, working memory resources cannot be 

transferred from one hemifield to another.  In the case of the within-hemifield group, the high 

probable quadrants cannot be boosted by borrowing resources from the two low-probable 

quadrants in the other hemifield.  Therefore, a pure hemifield independence account predicts no 

difference in performance between the high and low probable quadrants for this group.  A semi-

independent bilateral field advantage would allow some sharing across hemifields and would 

thus allow for some performance benefits in the high-probable vs. low-probable quadrants for the 

within-hemifield group.  Both the pure hemifield independence and semi-independent bilateral 

field advantage accounts predict the same thing for the across-hemifield group: specifically, 

there should be greater performance in the high-probable than low-probable quadrants, since 

resources can be shifted within hemifields.  Finally, when comparing the two groups, all versions 

of the bilateral field advantage – i.e., both pure hemifield independence and semi-independence – 

predict that the working memory improvement in the high-probable vs. low-probable quadrants 

should be greater for the across-hemifield group than for the within-hemifield group. 

 

Method 

The method was identical to Experiment 1, except where noted below. 

Participants  
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The procedures for the Working Memory task and Recognition Test were the same as in 

Experiment 1. 

 

Results and discussion 

Accuracy. 	

Response accuracy during training for the quadrant types and groups are plotted, by 

epoch, in Figure 5A. A group as between-subject factor × quadrant type (high-probable 

quadrants and low-probable quadrants) x epoch (1-4) ANOVA revealed significant main effects 

of both quadrant type, and epoch, F(1, 46) = 10.13, p < .005, ηp2 = .18; F(3, 138) = 12.75, p 

< .001,  ηp2 = .22, respectively. Importantly, we found a significant interaction between group 

and quadrant type, F(1, 46) = 8.08, p < .01,  ηp2 = .15. Other effects were not significant 

(smallest p = .12).  

We found similar results in the testing phase (epochs 5-6). A Group (between-subject) × 

Quadrant type (within-subject) x Epoch (within-subject) ANOVA showed a significant main 

effect of quadrant type, F(1, 46) = 12.94, p = .001, ηp2 = .22. Again, importantly, quadrant type 

and group significantly interacted, F(1, 46) = 6.06, p < .05, ηp2 = .12. Other effects were not 

significant (smallest p = .18).   

In both training and test, the main effects of quadrant type confirm robust statistical 

learning, but this was qualified by the group x quadrant interactions, which showed that the 

expression of learning was contingent on the hemifield placement of the high-probable 

quadrants. To get a closer look at the quadrant effect within each group, we next collapsed across 

all epochs (see Figure 5B), and computed pairwise t-tests.  Results confirmed a significant 

quadrant effect for the between-hemifield group, t(23) = 3.81, p = .001, d = .98, but no difference 
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Testing phase results (epochs 5-6) were similar to those of training. The Group x 

Quadrant Type × Epoch ANOVA revealed a main effect of quadrant type, F(1, 46) = 6.61, p 

< .02, ηp2 = .13, and marginally significant main effect of epoch, F(1, 46) = 2.98, p = .091, ηp2 

= .06. Also, the quadrant type x epoch interaction was significant, F(1, 46) = 6.26, p < .02, ηp2 

= .12.  This resulted from a larger effect of quadrant in epoch 6 than epoch 5, although we do not 

have any clear prediction for the effect to increase over time, especially since the probability 

manipulation was removed.  At the very least, we can say that the learning effect did not subside 

during test.  Again, there was no significant interaction between group and quadrant type, F(1, 

46) = 1.04, p > .3. Further, the main effect of group was significant, F(1, 46) = 4.14, p < .05, 

with faster RTs in the within-hemifield group. Other effects were not significant (smallest p 

= .31). 

 We next collapsed across all epochs and looked more closely at the effect of quadrant 

within each group (see Figure 6B).  For the between-hemifield group, RTs to the high probable 

quadrants were marginally faster than to the low-probable quadrants, t(23) = 2.00, p = .059, d 

= .43. Interestingly, unlike in the accuracy data, the within-hemifield group also showed a 

marginally significant quadrant effect, t(23) = 1.89, p = .071, d = .39. The similar effect size 

across the two groups explains why we failed to see any significant interactions between group 

and quadrant type.  We note that, when both groups were combined in the initial analysis above, 

the quadrant effect was significant, whereas it was only marginal in each group when analyzed 

separately.  We assume this was due to the reduction in statistical power – due to smaller 

respective sample sizes – for each of these tests.   
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Overall, this experiment returned several findings of note.  First, the quadrant by group 

interaction in accuracy suggested the existence of at least some degree of independent working 

memory resources across the two hemifields.  At the very least, we have identified a clear spatial 

constraint in how statistical learning can benefit working memory.  Based on the accuracy data 

alone, in which there was no advantage for high-probable over low-probable quadrants in the 

within-hemifield group, we might conclude pure hemifield independence.  However, the 

statistically similar RT effects of quadrant in the two groups – with no group x quadrant type 

interaction – contradicts the pure hemifield account and instead favors semi-independence. 

One additional intriguing pattern we observed was a tendency toward greater overall 

performance in the within-hemifield group than the between-hemifield group.  For the within-

hemifield group, this was manifested, numerically, as a selective decrease in accuracy as well as 

RT slowing in the low-probable condition.  However, the overall performance difference 

between groups was not robust, as we only saw a significant main effect of group in the test 

phase RT.  Nevertheless, the pattern is counterintuitive; why should the one group that is able to 

exploit the probability manipulation – the between-hemifield group – perform worse overall?  

We can speculate that participants could have exploited the probability information not to 

improve overall behavior but instead to focus and reduce overall resource expenditure.  Note that 

our ANOVAs, in computing the main effect of group, collapsed across quadrants in such a way 

that gave equal weight to the means for low and high probable conditions; yet, participants 

actually saw twice as many high probable targets than low probable ones.  That is, net accuracy 

and RT across the full experiment was not equal to the average of low and high probable target 

means; rather, these performance measures were dominated by the high-probable trials. 
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Therefore, the true performance difference across groups was smaller than what the main effects 

of group – which were already largely non-significant – imply. 

 

Experiment 3 

In this third experiment, we pursue one additional, critical issue, in which we question 

whether our results reflect a horizontal advantage instead of a true hemifield effect.  Consider 

that, in Experiment 2, the two high probable quadrants were horizontally adjacent in the 

between-hemifield group, while they were vertically adjacent in the within-hemifield group.  

Rather than showing a bilateral advantage, perhaps the participants were better at encoding 

and/or maintaining horizontally vs. vertically adjacent objects.  Similarly, in Experiment 1, the 

numerical advantage of the across-adjacent over the within-adjacent quadrant could also be 

explained by a horizontal advantage. 

Previous researchers exploring hemifield effects have taken steps to address this concern, 

typically by shifting the displays such that all objects were then presented in the same hemifield, 

whether vertically or horizontally aligned (e.g., Alvarez & Cavanagh, 2005; Delvenne, Kaddour 

& Castronovo, 2011; Holt & Devlenne, 2014).   These studies all found no differences for 

vertical vs. horizontal conditions, concluding that the observed bilateral advantages in their main 

experiments were due to separating objects across the visual hemifield.   

In this experiment, we attempted a conceptually similar approach, although instead of 

shifting our displays to the left or right – and introducing variation to the objects’ eccentricities – 

we used the same displays as in Experiment 2 but chose diagonal high-probable quadrants.  That 

is, each participant had either upper-left and lower-right or lower-left and upper-right pairings 

assigned as their high probable quadrants.  Thus, the two high-probable quadrants were always in 
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different hemifields but were not horizontally aligned.  By the bilateral field advantage account, 

we should expect greater performance in the high-probable than low probable quadrants, as seen 

in the between-hemifield group of Experiment 2.  By the horizontal advantage account, we 

should expect no difference in performance for the high-probable vs. low-probable quadrants, as 

seen in the within-hemifield group of Experiment 2. 

 

 

Method 

The method was identical to Experiment 2, except where noted below. 

 

Participants  

Twenty-four individuals from The University of California, Davis, participated in 

Experiment 3 (18 females; mean age = 19.7 years). All participants reported normal or corrected-

to-normal visual acuity and normal hearing. The University of California, Davis IRB approved 

this protocol. Participants received course credit.  

 

Apparatus and Stimuli  

Participants were tested in a dimly lit room. Stimuli were presented on a 24” LCD 

monitor. 

 

Design 
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Instead of having two high-probable quadrants adjacent to one another, they were 

positioned diagonally (e.g., upper-right and lower-left). We counterbalanced across participants 

whether these were upper-right and lower-left quadrants, or upper-left and lower-right quadrants.  

 

Procedure 

The procedures for the Working Memory task and Recognition Test were the same as in 

Experiments 1 and 2. 

 

Results and discussion 

Accuracy. 	

Response accuracy for the quadrant types and groups are plotted, by epoch, in Figure 7A. 

A Quadrant type (high-probable quadrants and low-probable quadrants) x Epoch (1-4) ANOVA 

revealed a significant main effect of epoch, F(3, 69) = 4.77, p < .005, ηp2  = .17, but neither a 

significant main effect of quadrant nor an interaction between quadrant and epoch, F(1, 23) = 

2.64, p > .1, F < 1, respectively.  

In the testing phase (epochs 5-6), a Quadrant type x Epoch ANOVA showed neither main 

effect of quadrant type nor epoch, F(1, 23) = 1.82, p > .1, F < .1, but a significant interaction 

between two factors, F(1, 23) = 5.70, p < .05, ηp2   = .20.  This interaction represents a very 

slight crossover effect between epochs 5 and 6.  Given the overall lack of a reliable quadrant 

effect, there is no clear interpretation of this interaction, and we expect it could have been a Type 

I error.  

We next collapsed across all epochs (see Figure 7B), and a pairwise t-test confirmed no 

overall quadrant effect, t(23) = 1.25, p > .2.   
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1. In contrast, we did not find any significant effects from the ANOVA on the diagonal vs. 

within-hemifield group, Fs < 1.  

 In RTs, there was a significant main effect of quadrant type, F(1, 69) = 9.82, p < .005, 

ηp
2 =.13, and a significant main effect of group, F(2, 69) = 5.60, p < .01, ηp2 = .14, but the two 

factors did not interact significantly, F < 1.   This result reflects the similar effect sizes of 

quadrant in all three groups. 

 Taken together, these results confirm that the diagonal positioning of the high-probable 

locations in Experiment 3 produced results closely matching those of the within-hemifield group 

of Experiment 2.  This suggests that a horizontal advantage largely explained the strong quadrant 

effect of the between-hemifield group in Experiment 2.   

 

 

Recognition.  

Thirteen participants among 24 participants reported that the target was not evenly 

distributed across four quadrants. Also, participants chose one of the high-probable quadrants at 

an above-chance rate (83.3%; chance: 50%), X2(1, N =24) = 10.7, p = .001. This robust explicit 

knowledge contrasts with the relatively weak behavioral advantages for quadrant shown during 

the main task.  This suggests a dissociation between the ability to exploit incidentally acquired 

statistical information and to acquire explicit knowledge of such information. 

 

General discussion 

 We are able to maintain internal representations of only few items at the same time, even 

when the items are very simple, such as colors or shapes. Therefore, other cognitive functions 
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such as statistical learning help to increase our performance by focusing on the items most likely 

to be task relevant.  As has been previously shown, we found that statistical learning can robustly 

guide working memory prioritization (Brady, et al., 2009; Olson, et al., 2005; Umemoto, Scolari, 

et al., 2010).  However, we found here that such learning was subject to spatial constraints.  

We initially hypothesized that we would find a bilateral field advantage – expressed as 

either total hemifield independence or semi-independence.  Indeed, the results of Experiment 1 

were consistent with a bilateral field advantage, although not robustly so.  Stronger apparent 

evidence came from Experiment 2.  When we placed two high-probable quadrants in one 

hemifield and two low-probable quadrants in the other hemifield (i.e., for the within-hemifield 

group), we found no accuracy advantage for the high-probable quadrants.  It would have been 

advantageous for participants to transfer spare memory capacity from low-probable locations in 

one hemifield to high probable locations in the other.  This is especially the case given that 

capacity is limited and performance is not at ceiling. Yet, when it was possible to transfer such 

resources within hemifields, our participants did not hesitate to do so:  in the between-hemifield 

group, in which one high-probable quadrant was placed within each hemifield, we found robust 

statistical learning effects on accuracy.  The significant RT benefit for high-probable vs. low-

probable quadrants in the within-hemifield group contradicted a pure hemifield independence 

account, which predicted no performance difference between the two hemifields.  Overall, our 

support for the bilateral field advantage was consistent with many other studies, including 

several with working memory that had not used a statistical learning manipulation (Delvenne, 

2005; Holt & Delvenne, 2014; 2015; Umemoto, Drew et al, 2010). 

Nevertheless, the results of Experiment 3 force a total reinterpretation of our data.  In this 

last experiment, the bilateral field advantage disappeared when we placed one high probable 
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location in each hemifield -- but in diagonal positions, so that they were not horizontally adjacent 

to one another.  We did observe a small RT benefit in the high probable condition here, but this 

benefit was no greater than that seen in the within-hemifield group of Experiment 2 (which could 

not have arisen from a bilateral field advantage).   

We can only speculate as to why we saw a horizontal advantage but no bilateral field 

advantage in this study, especially given the previous demonstrations of the latter in working 

memory tasks that did not use a statistical learning manipulation.  One key difference between 

our study and the previous ones, brought on by the nature of our statistical learning 

manipulation, is that our high-probable locations remained the same on every trial.  Therefore, 

participants had extended practice in repeatedly prioritizing these display locations.  In contrast, 

the studies by Delvenne and colleagues (Delvenne, 2005; Holt & Delvenne, 2014; 2015) and by 

Umemoto, Drew, et al. (2010) required trial-by-trial shifting of the locations to be stored in 

memory. It is possible that the repeated nature of our task reduced resource demands and 

overcame the hemifield constraints observed by others, leaving only a horizontal advantage. 	

Horizontal advantages have often been reported in the broader literature on attention and 

perception, including studies on texture segregation (Ben-Shahar, Scholl & Zucker, 2007), 

object-based attention (Marino & Scholl, 2005), the Simon effect (Nicoletti & Umiltà, 1984), 

saccadic eye movements (Goldring & Fischer, 1997), and peripheral letter recognition 

(MacKeben, 1999), among other phenomena.  Such horizontal effects have been attributed to the 

typically broader expanse of behaviorally relevant information along the horizontal meridian 

than the vertical one, and, in Western cultures, to lifelong experience in reading horizontally 

(Abed, 1991).  That said, many studies reporting horizontal effects presented stimuli spanning 

the left and right visual hemifields, so it is not always clear whether such effects represent 
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bilateral or horizontal advantages (see, e.g., Greenberg et al., 2014).  Overall, our current results 

could potentially share common mechanisms underlying other horizontal advantages reported in 

the literature.   

 The present results speak to the value of collecting and analyzing RT data in working 

memory tasks, something that was practiced in the earliest studies in this research area 

(Sternberg, 1966), but has since been done only occasionally (Gilchrist & Cowan, 2014; Hyun, 

Woodman, Vogel, Hollingworth & Luck, 2009; Jensen, 2006; Luce, 1986; Pearson, et al., 2014; 

Posner, 1978).  In all three experiments, we found at least one significant effect of statistical 

learning in RT that was not present in accuracy.  This included the quadrant effect for the within-

hemifield group in Experiment 2 and the diagonal group in Experiment 3.  We cannot be sure 

why we saw these dissociations between our two dependent measures.  It is possible that RT is 

simply a more sensitive measure of performance.  Another possibility is that the RT effect could 

have carried some distinct information relating to the time it took participants to successfully 

retrieve and reach a decision on the correct object representation from working memory.  A third 

possibility is that the observed slowing in the low-probability quadrants could have been due to 

an expectancy violation; that is, participants on each trial anticipated a cue pointing toward a 

high probable location and may have experienced some degree of surprise when low probable 

locations were cued.  Such an expectancy violation could have led to a response slowing that was 

unrelated to target processing.  Further work, using computational modeling (e.g., Pearson et al., 

2014), could help tease apart these various possibilities.  

One potential concern with these experiments is that we did not track eye position to 

verify fixation.  It is possible that participants moved their eyes to the high probable locations, 

which could potentially have brought performance benefits in both accuracy and RT.  However, 
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it is unlikely that eye movements could account for our data in a parsimonious way.  First, the 

memory displays were presented only briefly (200 ms), and were followed soon after by the 

retro-cue, which was at the display center.  Because of the small size of this cue, it would have 

been difficult to discriminate outside of the fovea, so participants would have needed to make 

multiple eye movements in rapid succession during each trial.  Moreover, moving the eyes 

during working memory retention has been shown to impair performance, especially when 

spatial information must be preserved (Golomb & Kanwisher, 2012; Lawrence, Myerson, Oonk 

& Abrams, 2001).  These points notwithstanding, let us assume participants did move their eyes.  

In Experiment 2, the most strategic position would be at the midpoint between the two high-

probable locations.  Here, we would expect both accuracy and RT benefits for these locations, 

compared to the low probable locations.  However, we saw this pattern only for the between-

hemifield group, not for the within-hemifield group.  In Experiment 3, the midpoint of the two 

high-probable locations was at fixation, so participants had no incentive to move their eyes.  

Thus, an eye movement account does not provide a parsimonious explanation for the spatial 

constraints on performance that we observed. 

Another question we can ask is which stage(s) of visual working memory is/are 

influenced by either statistical learning and/or the horizontal advantage? Here, we can only 

speculate, as our manipulations were not designed to assess separate processing stages, such as 

encoding vs. storage.  If we look to previous work, Umemoto, Scolari, et al. (2010) suggested 

that statistical learning acted upon the stage of memory encoding. For the horizontal advantage, 

we of course do not have previous studies to consider. However, researchers examining the 

bilateral field advantage have suggested that it acts upon both encoding and storage stages 

(Umemoto, Drew, et al., 2010; Holt & Delvenne, 2014, 2015; Alvarez & Cavanagh, 2005). For 
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example, Umemoto, Drew, et al. (2010) compared simultaneous vs. sequential presentation of 

the to-be-remembered objects and found a similar advantage for unilateral vs. bilateral 

presentation.  This showed that the bilateral advantage was not working to ease the demands of 

encoding multiple vs. single objects at a time, thus suggesting that the advantage was manifested 

during storage.  In additional work, Holt and Delvenne (2014; 2015) produced evidence that the 

bilateral field advantage affects both encoding and storage stages. Ultimately, we cannot be sure 

which stages of processing the joint influence of statistical learning and the horizontal advantage 

acted upon; future studies, using more suitable experimental design, will be needed.  

A further question we can ask of our data was the importance of explicit knowledge of 

the statistical learning manipulation.  We found that many participants had indeed become aware 

of the high probable quadrants.  Interestingly, while this awareness was consistent across the 

experimental manipulations, the quadrant effects during the memory tasks were not.  Therefore, 

awareness could not explain the overall pattern of data we observed; nevertheless, it would be 

useful to use a more subtle statistical manipulation in future experiments to better compare 

explicit vs. implicit knowledge states. 

 In summary, our experiments confirmed the effects of statistical learning on working 

memory performance, albeit subject to spatial constraints. These findings demonstrate interesting 

limitations on how learning can benefit visual working memory.  
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