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We propose a characterization of quantum many-body chaos: given a collection of simple opera-
tors, the set of all possible pair-correlations between these operators can be organized into a matrix
with random-matrix-like spectrum. This approach is particularly useful for locally interacting sys-
tems, which do not generically show exponential Lyapunov growth of out-of-time-ordered correlators.
We demonstrate the validity of this characterization by numerically studying the Sachdev-Ye-Kitaev
model and a one-dimensional spin chain with random magnetic field (XXZ model).

INTRODUCTION

How do we characterize quantum chaos? Among
a wide variety of different approaches (see [1] for a
review), two rather different criteria are currently in
wide use. The first one is random-matrix-like uni-
versality of the fine-grained energy spectrum [2, 3]:
a given quantum system is chaotic in this sense if the
fine-grained energy spectrum is described by Ran-
dom Matrix Theory (RMT) [4-6]. The second one
is sensitivity to initial conditions: a given quantum
system is chaotic in this sense if it exhibits expo-
nential Lyapunov growth of a small perturbation
as probed by an out-of-time-order correlation func-
tion (OTOC) [7, 8]. OTOCs are closely related to
Loschmidt echoes which also probe chaos [9].

There are several unsatisfactory features regard-
ing these criteria. First, it is unclear how the two
criteria are related. Second, the connection of the
quantum criteria to the characterizations of classi-
cal chaos are unclear. One might expect that sen-
sitivity to initial conditions can characterize both
classical and quantum chaos, but there is a prob-
lem for local quantum systems. In the classical
theory, the initial perturbation can be taken ar-
bitrarily small in the mathematical sense, and the
exponential growth can continue forever. On the
other hand, in a quantum system the perturbation
cannot be arbitrarily small due to the uncertainty
principle, and local quantum systems do not gener-
ally show exponential growth except in special lim-
its [10-14]. [15] Hence, the characterization based
on the early growth of OTOCs does not work for

generic local quantum systems.

In a previous paper [16], we generalized the above
single chaos exponent to define a spectrum of quan-
tum Lyapunov exponents. Based on calculations
in the Sachdev-Ye-Kitaev (SYK) model and a spin
chain (XXZ) model, we proposed that the Lyapunov
exponents so defined exhibit a universal behavior:
the fine-grained Lyapunov spectrum agrees with
RMT when the system is chaotic. This characteri-
zation of quantum chaos circumvented the problem
of lack of exponential growth in generic local sys-
tems, since one needs only the statistical property
of the exponents instead of their detailed growth
behavior. Because RMT behavior in the Lyapunov
spectrum coincides with RMT behavior in the en-
ergy spectrum for the models we considered, the
Lyapunov spectrum may be useful for connecting
the different criteria for chaos. As a bouns, uni-
versality in the quantum Lyapunov spectrum has a
classical counterpart [17], so it may also be useful
to connect classical and quantum chaos.

We emphasize that these universalities are merely
empirical. There may be other observables that pro-
vide a similar characterization of quantum chaos
which are also more accessible to experiment. In
this paper, we consider time-ordered two-point cor-
relators that are easier to study, both theoreti-
cally and experimentally, than OTOCs. Specifi-
cally, given a set of simple operators {O;}, we con-
sider the matrix of all possible two-point functions
(0;(t)0;(0)) where O(t) = eftOe~"t construct
its time-dependent spectrum, and then study the
statistical properties of the spectrum. Based on



this study, we propose that this two-point corre-
lation spectrum, which is roughly a spectrum of de-
cay rates, has universal statistical properties for all
chaotic systems.

Below, we first define the two models, SYK and
XXZ, that we will consider. Next, we define a spec-
trum of decay rates derived from two-point func-
tions and propose a universal behavior for the spec-
trum in chaotic systems. Then we provide detailed
numerical evidence for the conjecture using finite
size exact diagonalization studies.

MODELS

The first example is the SYK model [18-20] (see
Ref. [21] for a recent review) consisting of N Majo-
rana fermions with Hamiltonian
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Majorana fermions satisfy the anti-commutation re-
lations {’(/AJZ', 1&]} = 0;; and Jjj; is random Gaussian
coupling with mean zero and standard deviation
1. The energy also includes a quadratic term, and
K;; is Gaussian random with mean zero and stan-
dard deviation K. The dimension of the Hilbert
space is 2V/2. When K = 0, this model is maxi-
mally chaotic at low temperatures, namely the MSS
bound [18, 20] is asymptotically saturated. When
K > 0, low-energy modes become non-chaotic,
while high-energy modes remain chaotic [22, 23].

The second example is the XXZ model, a one-
dimensional S = 1/2 spin chain with random mag-
netic field along z-direction (see e.g. [24]),
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Here & = (04,0y,0.) are Pauli matrices with peri-
odic boundary condition oy, +1 = &1. The ran-
dom magnetic fields w; are independent and uni-
formly distributed in [-W, +W]. At W 2 3.5, most
of the energy eigenstates are in the many-body lo-
calized (MBL) phase [24, 25]. (For the physics of
the MBL phase, see e.g. [26-29].)

PROPOSAL

The starting point is choosing a set of operators
and organizing the set of two-point functions into a

matrix. The matrix of two-point functions, Ggf)(t),
is defined by

G2 (1) = (8l ()5 (0)]¢) (3)
for SYK, and by
G (t) = (Blosi(t)o—;(0)]¢) (4)

for XXZ, where 0 = g;ay Here, we will take the
state |¢) to be an energy eigenstate, but this is not
essential as explained in the discussion. Note also
that we can consider other two-point functions, e.g.
GE?) (t) = (¢|o-,i(t)o-,;(0)|¢); the generalization to
other systems is straightforward.

Let the singular values of G(¢)( t) be M7 We

denote the /\Z@)( t) as ‘exponents’. Our conjecture is
two-fold:

e In quantum chaotic systems, Gl(f) becomes
‘random’ at sufficiently large ¢. Namely, in the
chaotic theories the exponents are described
by RMT.

e In non-ergodic theories (e.g. the MBL phase)
the exponents are not described by RMT.

The idea behind this conjecture is simple. When
the system is chaotic, the information about the lo-
cal perturbation should be washed away. Hence it
is natural to expect that GE?)(t) becomes a random
matrix. On the other hand, if the system is not
chaotic, some structure should survive and a devi-
ation from RMT should be observable.

How this characterization is related to other char-
acterizations, such as RMT universality in the en-
ergy spectrum or the exponential Lyapunov growth
of OTOCs, is not clear at this moment. Below,
we at least demonstrate that these characterizations
are compatible in the SYK and XXZ models.

NUMERICAL STUDY

In this section, we calculate the exponents /\Z(-(z)) (t)
numerically and study their statistical features.

‘() >

The exponents are sorted such that /\gd)



Agw (t) > > )\S\‘?) (t). The primary objects
of study are the nearest-neighbor level separation
sl@)(t) = )\E(b)(t) - /\Eﬁ)l (t) and the nearest-neighbor
gap ratio r; = % Because the number of
exponents we can obtain numerically is small, we
need to use the fixed-i unfolding method [16] (see
appendix for details).

Consider first the SYK model. When |¢) is en-
ergy eigenstate, then unless K = 0 and N mod 8 is
zZ€ero, Gl(?) (t) is a complex matrix without particu-
lar symmetry. Hence, when the system is chaotic,
if RMT behavior emerges, the relevant ensemble
would be the Gaussian unitary ensemble (GUE).
When K = 0 and N mod 8 is zero, Ggf)(t) is
complex and symmetric and in this case one ex-
pects Gaussian orthogonal ensemble (GOE) statis-
tics. Hence we expect GOE when K ~ 0 and N
mod 8 is zero.

At the values of N we study, the energy de-
pendence of the spectrum is not large. (The en-
ergy dependence is similar to the case of the Lya-
punov spectrum; see [16] for a detailed explana-
tion.) Hence, it is simplest to average over all en-
ergy eigenstates. Numerically we find that the gap
between Ay/o and Ay/24q is bigger than the other
gaps and appears to behave differently when K is
large, as explained in more detail in the supplemen-
tary material. Hence, we use only the first half of
the spectrum with N/2 exponents in the analysis.
We checked that similar results are obtained using
the other half of the spectrum.

Fig. 1 shows the nearest-neighbor level separa-
tion. Near K = 0 (chaotic phase) the spectrum is
GUE-like. [30] It is interesting that the GUE be-
havior can be seen at all time scales. We observed
the same phenomenon for other N # 0 mod 8.
For N = 0 mod 8, the spectrum is GOE-like at
sufficiently late time, but at early time there are
large deviations from GOE. In the opposite limit
of large K, in which the system is not chaotic to
leading order, the spectrum is Poisson-like. This
claim is substantiated in Fig. 2 which shows the
nearest-neighbor gap ratio. The GUE value is ap-
proximately obtained when K ~ 0, while at large
K the ratio is close to the Poisson value.

Now consider the XXZ model. This model con-
serves the z-component of the total spin, and we
consider only the S* = 0 sector. We study two
values of the W parameter, W = 0.5 (the ergodic
phase) and W = 4 (the MBL phase). In this

model, G(®) is complex and symmetric when |¢4)
is an energy eigenstate (see supplementary mate-
rial). Hence, in the ergodic phase, we expect GOE
statistics.

To orient the discussion, we first discuss the time-
scale for the decay of the two-point functions. For
W = 4, we observe a clear split of the larger and
smaller halves. Hence, the larger half of the expo-
nents is used for the analysis, both for W = 0.5
and for W = 4. We checked that the result does
not change much if the smaller half, or all the ex-
ponents, are used provided Ngje is large enough
(Nsite = 12, 14).

The energy dependence is rather large unlike the
SYK model. (Again, see [16] for a detailed expla-
nation.) Hence we need to restrict the energy to be
in a small range in order to remove an uncontrolled
energy variation from the analysis.

Fig. 3 shows the distribution of the nearest-
neighbor level separation. The chaotic phase ex-
hibits a GOE distribution, while the distribution
is close to Poisson in the MBL phase. Note that,
unlike the SYK model, the chaotic phase is not de-
scribed by RMT at early time. Interestingly, the
deviation from RMT becomes large at 1 <t < 10,
but it eventually vanishes. [31] There is a curious
Ngite-dependence of this deviation at intermediate
time which is discussed further in the supplemen-
tary material.

In Fig. 4 the averaged nearest-neighbor gap ra-
tio is plotted. In the chaotic phase (W = 0.5), the
value of (r) is not strongly dependent on ¢ and ap-
proaches the GOE value [32]. The agreement with
the GOE value even at intermediate time is likely a
coincidence, because the nearest-neighbor level sep-
aration is not close to GOE. In the MBL phase
(W = 4), (r) is smaller than the GOE value and
decreases toward the Poisson value as N increases.

SUMMARY AND DISCUSSION

Here we introduced a spectrum defined from a
matrix of two-point functions ((3) for SYK and (4)
for XXZ), and proposed that the statistical features
of this spectrum exhibit random matrix universality
when the underlying system is chaotic.

While we have used the energy eigenstates to de-
fine the spectrum, this particular choice is not cru-
cial to observe universality. Spin eigenstates such as
[t - 11 and |14 - - 1)) also yield the same struc-



FIG. 1. SYK, the distribution of nearest neighbor level separation for various values of ¢, K = 0.0001 and K = 10.
All eigenstates are used and the larger N/2 exponents are used. N = 22, 24,

FIG. 2. 5YK, the time dependence of nearest neighbor
gap ratio {r) for N = 22 and 24, K = 0.0001 and K =
10. 2000 (16) samples are used for N = 22 (24).

ture [33] at long time, but the time-scale for the on-
set of RMT-behavior can depend on the choice of
state.

In this paper, all the models considered have some
degree of disorder in their definition. One could
worry that this disorder is the source of the RMT
behavior. The fact that we do not observe RMT
signatures in the MBL phase shows that this is not
so. However, given a theory without disorder and a
highly symmetric state |¢), the RMT behavior may
not be visible. In the case of a chaotic system with-
out disorder, we conjecture that, if randomness is

introduced in the choice of |¢), then RMT behavior

FIG. 3.

The distribution of nearest-neighbor level
separation s, XXZ, { = 0.1,10,20,100 for W = 0.5
and W = 4, with Ny = 14 for central 10 % of the
energy eigenstates. The largest Ny /2 exponents are
used. The technical details of the fixed-: unfolding and
the Nywe-dependence are discussed in the supplemen-
tary material.



0.6

0.56

0.1 1 10 100

FIG. 4. The averaged nearest-neighbor gap ratio for
the central 10 % of the energy eigenstates. At least
22000 {1200) samples are used for N = 12,10,8
{Naite = 14). The largest Nywe,/2 exponents are used.

will be observed.

There are various generalizations and extensions
of this work. One clear task is to see if the same
signatures are observed in other chaotic models.
Another poal is an analytic arpument for the ob-
served behavior. One can also consider Euclidean
two-point functions, which are more accessible in
a variety of systems thanks to Monte Carlo meth-
ods. If RMT universality can be observed there, it
would provide a powerful tool to study the chaotic
nature of large systems where real-time dynamics is
hard to access numerically. The matrix of two-point
functions considered here can be defined in classi-
cal systems as well. Whether the same universality
can be found in that context is another interesting
question.
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SUPPLEMENTARY MATERIAL

Symmetry of GE?

The matrix of two-point functions Ggf) is usually
a complex matrix without particular symmetry.

For the XXZ model, Gz(f) is complex and sym-
metric when the reference state is an energy eigen-
state, |¢) = |E). To see this, first observe that
the Hamiltonian is real and symmetric. Hence
(e7HHT = =it Also, the energy eigenstates can
be chosen to be real unit vectors (unless there is
an accidental degeneracy in the energy spectrum,
which does not happen for generic values of w;’s),
and hence, (E|o; ;(0) = (o— ;(0)|E))T. Therefore,

G(¢)

j

(Eloy i(t)o— ;(0)|E)
= P Eloy ((0)e o ;(0)|E)

is complex and symmetric.

Next let us consider the SYK model. The original
Hamiltonian with K = 0 exhibits different symme-
try depending the value of N mod 8 — GOE for
N = 0, GUE for N = 2,6 and GSE for N = 4
[34, 35]. For N =0 and N = 4 mod 8, the Hamil-
tonian can be taken to be real and symmetric. It
can be seen by using the following representation:

P1=0.910101® - ®1®1,
1&2:0y®ay®0y®ay®~-~®oy®ay,

'12)3:O—y®0-z®1®0-y®"'®0y®0—y,
1/;4:ay®az®1®ay®~~®oy®ay,
Vs =0,00,00, 1 Q07,® 0y,
¢6=0y®ay®oz®1®---®0y®0y7

1/;N_3:Uy®ay®ay®oy®"'®ax®17

’([JN_Q:O'y®0y®ay®0y®"'®az®17

&N,l:Uy®1®ay®ay®--~®ay®ar,
7j,N:gy<g>1<g>cry<§<>ay(§©~~<§§>c7y<§<>dz- ()
When N = 0 or 4 mod 8, they are all real and

symmetric. (Note that o, and o, are real symmet-
ric, while o, is pure imaginary and anti-symmetric.)
Hence H = ‘/% Zi<j<k<l Jijihihj ety is real,
and of course it is hermitian, and therefore, real

and symmetric. Note that H is not real when K is
not zero.

When N =0 and K = 0, the energy spectrum is
not degenerate and the energy eigenstates are repre-
sented by real vectors. Therefore, just as in the case
of the XXZ model, the matrix of two-point func-
tions (3) is complex and symmetric for the energy
eigenstates. Hence we expect the GOE statistics.

The situation is a little bit complicated when
N = 4, because the energy spectrum is two-fold
degenerate. In general, an energy eigenstate is not
a real vector, but rather, just a linear combination
of two real vectors with complex coefficients. When
we take K to be small but nonzero, the degeneracy
is split, and the energy eigenstates are generically
far from real vectors. Therefore, we expect the GUE
statistics.

We can also see that Ggf)(t = 0) is real and sym-
metric when N = (0 and K = 0. From this it follows

G (04657 (0) e
that G (0) = Zo- 205 2 = L(E| {4, 4, }|E) =

%. Namely all exponents are —log2 at t = 0.

Time dependence of the exponents )\;

For the SYK model, in Fig. 5, the exponents \;(t)
are plotted as functions of time ¢ for X = 0.0001, 10
and various N. (When N = 2 or 6, it is possi-
ble to uniquely specify the energy eigenstates by
taking into account parity as well [34, 35].) Note
that, when N = 0 and K =~ 0, all exponents are
close to —log?2 at early time, as we have already
explained. Presumably, this is the reason for the
different early-time behaviors in the level statistics
of N=0and N = 2,4,6.

Next let us consider the XXZ model. In Fig. 6,
the exponents A;(t) are plotted as functions of time
t, for W = 0.5,4 and Ngte = 14. In the top pan-
els, we have plotted all the exponents, by using 10%
of the energy eigenstates in the middle of the spec-
trum. For W = 0.5, the largest exponent decays
more slowly (decay time scale ~ 20) than the other
exponents (decay time scale ~ 10). Due to this,
a better agreement with RMT can be seen when
we remove the largest exponent from the analysis
of the statistical property. (Even with the largest
exponent, the agreement with RMT is still good.)
For W = 4, we can see a clear split of the larger
and smaller halves. Hence we use the larger half
for the analysis of the statistical property. (The re-
sult does not change much when we use the smaller
half, or all exponents, at sufficiently large Ngite
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FIG. 5. SYK maodel, energy cigenstates, averaged ex-
ponents for K = 0.0001 (left), K = 10 for N =
12,14, 16, 18,20, 22, 24 from top to bottom as functions
of time t.
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FIG. 6. XXZ model, energy eigenstates, averaged ex-
ponents for Nawe = 14 and W = 0.5 (left), 4 (right) as
functions of time . Averages for the central 10% of the
eigenstates (45 - 55 %), shown in the upper row, and all
the eigenstates (0 - 100%) are compared in the plots in
the lower row for Ay, As, Ao, Ava.

{Nage = 12,14).) In the bottom panels, we have
compared the exponents calculated by using 10%
of the enerpy eigenstates in the middle of the spec-
trum, and all the energy eigenstates. There are vis-
ible differences, and due to them, better agreement
with RMT can be seen when the energy range is
restricted.

Details of unfolding

Because the number of exponents we can obtain
numerically from each matrix of two-point functions
is small, we need to use the fixed-i unfolding method
[16]: for each i, we rescale s; so that the average
over many samples becomes 1. Namely, we take
§ = ry, where { -} stands for the average. We
will call this 5; simply as s; when there is no risk
of confusion. The values of r;'s shown below are
calenlated from these rescaled s,'s.

In order to reduce finite-N effects further, we
can use the sample-by-sample rescaling method as
well. We shift the exponents so that the average
becomes zero, and then rescale them so that the
standard deviation becomes 1. Namely, J'.E'ﬁl[t} —
A9 = aral®(t) + 8 so that ¥, A%(t) = 0
and 211 il-:'ﬂ{t}z = N. This can remove the N-
dependent fluctuation of the entire width. When



FIG. 7. The distribution of nearest=neighbor level sepa-
ration s, SYK, ¢ = 0.1, 2, 10 for K = 0.0001 and K = 10,
with W = 12,14, 16,18,20,22 and 24. The larger N/2
exponents are nsed.,

this method was applied to the energy spectrum of
the SYK model [36], the statistical properties were
improved substantially. In this paper, we have used
only the fixed-i unfolding for both the SYK model
and the XX7 model. The sample-by-sample rescal-
ing slightly changes the results, often bringing the
results closer to random matrix or Polsson values,
however we did not observe a qualitative change.

Dependence on NV for the SYK model

In Fig. 7, the nearest neighbor level separation s
for the SYK model is plotted, for varions values of
N. When K is close to zero, GUE and GOE can
be seen at sufficiently late time, for N = 2, 4,6 and
N = 0 mod 8, respectively. Early-time behaviors
are rather different: for N = 2,4,6, GUE can be

FIG. 8 5SYK model, energy eigenstates, the aver-
aged gap ratio as a function of the time ¢ for N =
12,14,...,24 for K = 00001 and N = 12,14,...,22
for K = 10.

seen from ¢t = (0, while for ¥ = 0 substantial de-
viation from GOE can be seen. Presumably this
deviation is related to the exact degeneracy of the
exponents at + = 0. When K is large, we do not
see RMT at all. The nearest gap ratio {r) plotted
in Fig. 8 shows the same pattern.

Dependence on Ny, for the XXZ model

In Fig. 9, we have plotted the distribution of
the nearest neighbor level separation for Ngg. =
8,10,12 and 14. We can see the GOE distribution
in the chaotic phase at late time (f = 100 in the
plots), while the distribution is close to Poisson in
the MBL phase. Note that the chaotic phase is
not described by RMT at early time. Indeed, at
t = 0.1, we can see small but non-negligible devi-
ation from RMT. Interestingly, the deviation from
RMT becomes large at 1 < t < 10, but it eventu-
ally vanishes. This deviation at intermediate time
becomes larger at larger Ngjge.

The nearest gap ratio {r) for the central 10% of
eigenstates is plotted in Fig. 4 in the main text. In
Fig. 10 we also plot the value of {r} averaged over
the entire energy spectrum for comparison. The
better agreement to the value for GOE at 1 S ¢ <
20 for W = 0.5 should be a coincidence, becanse
as in Fig. 9, the distribution of nearest-neighbor
level separations significantly deviates from that for
GOE at these times.
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FIG. 9. The distribution of nearest-neighbor level separation s, XXZ, t = 0.1, 10,20, 100 for W = 0.5 and W =4,
with Ngte = 8,10,12 and 14. The larger Nsite/2 exponents are used. Left two columns: 45% - 55%, right two
columns: 0% - 100%. Rescale and shift method is not used, only the fixed-i unfolding has been used.
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FIG. 10. XX7Z model, dependence of {r} for Mo = 14
and W = 0.5, 4, using different mumbers of eigenstates
{central 10% of the eigenstates or all eigenstates for each
sample). The larger N /2 exponents are used. In the
figure, Muee 15 shown as N for brevity.
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