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Abstract

Attractor black holes in type II string compactifications on K3 x T2
are in correspondence with equivalence classes of binary quadratic
forms. The discriminant of the quadratic form governs the black hole
entropy, and the count of attractor black holes at a fixed entropy is
given by a class number. Here, we show this tantalizing relation-
ship between attractors and arithmetic can be generalized to a rich
family, connecting black holes in supergravity and string models with
analogous equivalence classes of more general forms under the action
of arithmetic groups. Many of the physical theories involved have
played an earlier role in the study of “magical” supergravities, while
their mathematical counterparts are directly related to geometry-of-
numbers examples in the work of Bhargava et al.

1 Introduction

Studies of BPS states provide one of the few windows we have into the
structure of non-perturbative field theory and string theory. It is therefore
interesting to ask if underlying (perhaps non-manifest) mathematical struc-
tures can be uncovered from studies of BPS spectra. One set of hints in this
direction appears in the papers [1, 2], where connections between arithmetic
and the study of attractor black holes [3] were discussed. A particularly
striking observation in these papers relates the numbers of attractor black
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holes at a fixed entropy in K3 x T2 compactification of type II strings to
class numbers of binary quadratic forms with negative discriminant.
These numbers are defined as follows. Consider quadratic forms

ax? + bry + cy? |

which have integral coefficients and are positive definite, so that in particular
the discriminant
D = b* — 4ac

is negative. The arithmetic group SL(2,7Z) acts on such quadratic forms by
simply acting on (z,y) by the SL(2,Z)-transformation. The number H (D)
of such SL(2,Z)-equivalence classes at a fixed discriminant D defines the
(Hurwitz) class number, which in turn may immediately be related to class
numbers of imaginary quadratic fields. For example, if D is squarefree, H(D)
is simply the class number' of Q[v/D].

The low energy effective supergravity describing the K3 x T? compactifi-
cation of type II superstring belongs to the family of N = 4 Maxwell-Einstein
supergravity theories that describes the coupling of N = 4 supergravity to
N = 4 vector multiplets with the global symmetry group SO(n,6)x SU(1,1)
— realizing the specific case n = 22. Moore argues in [1, 2] that given a BPS
black hole with quantized electric and magnetic charges (g, p) transforming
in the (n+ 6, 2) representation of SO(n,6) x SU(1,1), one may associate the
SL(2,7Z)-equivalence class of binary quadratic forms with

a:%pa b=p-q, c:%qz.
This association arises naturally from the geometry of the attractor K3 x T
associated to the black hole with those charges. Then H (D) gives the number
of distinct attractor black holes at a fixed value of the discriminant D, which
coincides with the quartic invariant of SO(n,6) x SU(1,1) and also governs
the supergravity black hole entropy:

S=VPE= P

This relationship, and its extension to the class groups which endow the
equivalence classes at fixed D with a group multiplication law [1, 2], was
reviewed recently in [4].

IStrictly speaking, the Hurwitz class number also has some fractional contributions to
correctly account for automorphisms.



It is natural to wonder whether this connection is an accident of special
coincidences about the geometry of K3 or if it might presage a more general
set of relations between BPS black holes and structures in number theory.
Here, we give evidence for the latter viewpoint by generalizing this observa-
tion to a wider class of supergravity theories, many of which arose originally
in the study of “magical” supergravities in the early 1980s [5, 6]. Many of
these theories, in turn, admit embeddings into string theory.?

The organization of this note is as follows. In the next section, we describe
examples of the physical theories of interest. In each, the classification of
attactor points is equivalent to the problem of counting equivalence classes
of certain forms modulo the action of an arithmetic group; the black hole
entropy is then further controlled by a suitable arithmetic invariant. In
several cases, this corresponding algebraic structure also appears in the study
of higher composition laws [7], and the class numbers governing attractor
degeneracies have been of independent interest in the study of arithmetic
statistics.> We conclude by discussing some natural directions for future
exploration. In an appendix we describe in more detail the connection of the
structures we study to Jordan algebras.

2 Physical theories and mathematical struc-
tures

In this section, we describe in telegraphic terms some of the supergravity
theories (often with string embedding) which figure in the sequel. They give
rise to mathematical structures which can be related to the work of Bhar-
gava, as discussed in a different language in e.g. the work of Krutelevich [9];
see particularly Table 1 there. We should stress that Krutelevich uses the
language of Jordan algebras and related Freudenthal triple systems which un-
derlie the symmetry groups and geometries of all extended Maxwell-Einstein
supergravity theories with symmetric target spaces in d= 5, 4, 3, in particular

2 More precisely, we are only concerned with the geometry of the vector multiplet
moduli space here. So realizations of these theories with extra purely neutral hypermul-
tiplets will constitute UV completions of our picture. In what follows, whether we know
an explicit string embedding or not, we will assume that the supergravity duality group
is broken to a corresponding arithmetic group in the full theory. This is certainly what
happens when a known string embedding exists.

3For an accessible introduction to this subject, see e.g. [8].



the magical supergravity theories [5], as well as N > 4 simple supergravity
theories. For a review and references on the subject we refer to [10].

2.1 Example one

Consider pure 5d N = 2 Poincare supergravity, or more generally a 5d N = 2
theory with no vector multiplets (but perhaps coupled to hypermultiplets),
a theory with eight supercharges. Upon compactification on a circle, one
obtains 4d N = 2 supergravity with a single vector multiplet (coming from
Kaluza-Klein reduction of the graviton on the circle, plus its superpartners)
plus, perhaps, neutral hypers.* The cubic form that defines this theory is
simply N' = X? which leads to the prepotential

.F:X3/X0

in four dimensions.

The black holes in this theory are characterized by two electric charges
(under the matter vector multiplet and the graviphoton), and the correspond-
ing magnetic charges. They transform in the spin s = 3/2 representation of
an SL(2,R) duality group of the 4d supergravity. We should note that the
attractor flows for BPS black holes in general homogeneous supergravity the-
ories, including this theory, were studied in [11, 12]. The attractor flows for
non-supersymmetric black holes in this theory were studied in detail in [13].

In a non-perturbative completion of this theory, one expects SL(2,R) to
be demoted to SL(2,7Z). There is a U-duality invariant formula for the black
hole entropy in such a theory, given in e.g. [14]. We find it to be in beautiful
correspondence with the following construction.

Consider a binary cubic form

F(z,y) = ax® + bx’y + cxy® + dy® . (1)
It has a discriminant given by
D = 18abed + b*c* — dac® — 4b°d — 27a*d” . (2)
By a simple change of variables,

a:—£0/3, b:£1/3, C:—’fh/?), d:ﬂo/?)

4 We should note that there is another d=4 N = 2 Maxwell-Einstein supergravity with
one vector multiplet which does not have an uplift to five dimensions. Its quartic invariant
is given by the square of a quadratic form.




it takes the form 3
D=-1,/3

where

I = (€)%(m0)% + 4(61)3 (o) + 2&omo&am — 1/3(61)(m)? — 4/27(&o) (m)?

is the SL(2,R) invariant quartic form corresponding to eqn. (3.40) of [14].
This in turn governs the entropy of 4d charged black holes in our supergravity
theory.

There is a natural action of SL(2,7Z) on (x,y) which induces an action
of SL(2,7Z) on the set of binary cubic forms. Defining equivalence classes as
we did in the case of binary quadratic forms, we obtain class numbers for
cubic forms h3(D). These were studied by Davenport in 1951 [15]. These
count the inequivalent attractor black holes (at fixed entropy) in the physical
theory we are describing. The promotion of these class numbers to orders of
class groups is described in [7].

The geometry of numbers of this example proceeds by an intriguing
quadratic map from binary cubic forms to binary quadratic forms originally
investigated by Eisenstein [16]. We refer to [17] for a review of Eisenstein’s
work and further references on the subject, which we explain here to indi-
cate the special point structure as well as the fundamental importance of the
quadratic transformation of the charge lattice.

Indeed, given a binary cubic form F(z,y) as in equation (1) with dis-
criminant D one can associate with it a closely-related binary quadratic form
Qr(x,y) essentially given by the Hessian of F', so that the association is nat-
urally SL(2,Z)-equivariant. To be more explicit, it is convenient to restrict
our cubic form slightly and instead take

F(z,y) = ax® + 3bx*y + 3cay® + dy?,
with a, b, ¢, d still all integers. Then the associated quadratic
Qr(x,y) = Az* + By + Oy? (3)
is given by
A=0—ac, B=bc—ad, C=c*—bd (4)

and the discriminant D¢ of the quadratic form is related to the discriminant
D of the cubic form as

D
DQ:B2—4AC’:—2—7. (5)



As mentioned, the mapping from F(z,y) into Qr(x,y) commutes with
the SL(2,7Z) action, so we have a map from equivalence classes of integral
binary cubic forms at a given discriminant to those of binary quadratic forms
at (roughly) the same discriminant. It is obvious interest to understand if
this map is one-to-one and to characterize its image. We mention here only
the simplest case, of Dy = 0 (mod 4) and Dg/4 squarefree, in which case
the map is indeed injective but the image is striking: one obtains exactly
those points of order 3 in the class group CI(Q(1/Dg)).

Of particular interest is the formula for the growth of the class numbers
hs(D) with D. Davenport proves that

D 2
Y hy(N) = 7D+ O(DR).
108

N=1
It would be interesting to reproduce this formula directly from the perspective
of supergravity counts of black hole attractors.
We do not know of a string construction of the pure supergravity theory
with 8 supercharges in five dimensions, although its possible existence is
discussed (as a “fantasy island”) in [18].

2.2 Example two

In a similar spirit, one can consider a theory of 4d N = 2 supergravity coupled
to two vector multiplets that descends from N = 2 supergravity coupled to
one vector multiplet in d = 5. The cubic norm that defines this theory is
N = X?Y which leads to the prepotential X?Y/Xj in four dimensions. The
scalar manifold of the 4d supergravity is the symmetric space

S0(2,2)
U1 x U(1)

The discrete U-duality group is SL(2,Z) x SL(2,7Z) under which the six
charges (including electric and magnetic graviphoton charge) transform in
the (3,2) representation.

The mathematical structure here is that of pairs of binary quadratic
forms, which are exchanged by one of the SL(2,Z) symmetries. The other
acts on both (simultaneously) as described in the natural action on binary
quadratic forms above. A higher composition on pairs of binary quadratic
forms is described in [7].

My =



Given such a pair
az? + bry + cy?

Ax? + Bay + Oy?

there are three natural discriminants one can define; those of each of the
quadratic forms A, 5, and the codiscriminant

A, =bB —2aC — 2cA .

The problem of counting equivalence classes of such forms (up to action of
the arithmetic group) for triples of these quantities has been discussed by
Morales [19]. This is a more refined count than is natural in supergravity,
where the entropy would be determined by the single duality invariant

AZ — AN, .

Hence, (sums of) the class numbers of Morales govern the attractor counts
of black holes in this supergravity theory.

2.3 Example three

We can consider the famous STU model with three vector multiplets coupled
to 4d N = 2 supergravity. This theory descends from the 5d Maxwell-
Einstein supergravity with two vector multiplets defined by the cubic norm
XY Z that was first studied in [20]. A nice discussion of BPS black holes in
this model can be found in [21]. A promotion of this model to string theory
is described in [22] (where it is basically N = 2 Example D) and in [23].
The prepotential in d= 4 is XY Z /X, and is generally denoted as

F=STU

in the gauge Xy = 1. The model has an SL(2,7Z)? duality symmetry.® The 8
electric and magnetic charges transform in the (2,2, 2) representation of the
duality group.

5Tt is also easy to construct Calabi-Yau threefolds with h?! = 3 and a complex structure
moduli space governed by a prepotential of this form; we thank J. Bryan for discussions
of this point.

6The SL(2,Z) factors are broken slightly to congruence subgroups in the known string
embeddings, which would cause minor modification to the discussion below.



The algebraic structure involved here is
Va@Va®V,

with V5 the two dimensional representation of SL(2,7Z). Explicit actions of
the duality group on electric and magnetic charges can be found in [21]. In
a suitable basis of the electric and magnetic charges, the duality invariant
entropy is again given by

S =V —(p-a)?

Again, class numbers are determined by the numbers of elements in V;**
modulo the action of SL(2,7Z)3, and give the numbers of distinct attractor
points at different values of the entropy.

2.4 Example four

There is a similar story relating counts of BPS black holes to binary quartic
forms. Consider the family of forms

flz,y) = ax’ + ba’y + ca®y® + day® + ey’ .

Again, there is a natural SL(2,7Z) symmetry that acts on (z,y) and induces
an action on the space of forms. There are now two invariants:

I(f) = 12ae — 3bd + c*
J(f) = T2ace + 9bcd — 27ad® — 27eb* — 2¢° .

The discriminant of f is

A(f) = = (4 = T(4)?)

The discriminant A(f) has the form of the entropy of the 5d uplift of an
extremal black hole of N = 2 Maxwell-Einstein supergravity with one vector
multiplet in d=4, except for the fact that it involves an extra parameter in
addition to four charges (two electric and two magnetic) with respect to the
4d vector fields. This is easily established by setting the integer e in the
binary cubic form equal to zero. We then find that the discriminant takes

the form
A(f)]e=o = d*D

8



where D is the discriminant of the binary cubic form given above. The
quartic invariant I, that defines the entropy of charged black holes given in
equation (3.40) of [5] can be written in a more symmetrical way between the
electric and magnetic charges, via the identification

o=—q=-9, n=p=d/3, &L =q/3=0b/3, m=3p=c

Then the quartic invariant takes the form

Ii=11/9=—D/3 = 4(p1)3q +4(q1)*po + (00)*(q0)* — 6pogoprar — 3(q1)*(p1)?

The quadratic and cubic invariants I(f) and J(f) associated with the binary
quartic form then take the following form in terms of these variables and the
extra parameter e

I(f) = —4/3eqo — Ipoqs + 9(p1)?

J(f) =3 (=9e(q1)* — 9q0(po)® + Beqopr + 27p1poqi — 18(p1)?)

Now for e = 0 the discriminant A describes the duality invariant form
governing the entropy of a 5d uplift of an extremal black hole of a 4d, N = 2
Maxwell-Einstein supergravity with one vector multiplet, since

Ale—o = —27(po)*1s . (6)

This follows from the general result that the entropy of a spinning charged
black hole (or ring) that is an uplift of 4d extremal black hole with charges
", P, qo, ¢; has the form [24, 25, 26]

Ssa = (2m)/(N3(Q:) — J?) .

where
0 1 Pk
Qi=pq+ §Cijkp’p

Ny(Q1) = £C7QuQ, 4

1 . 1 o
J=§Qﬂﬁ%+ﬁm+§ﬁm@%0~



Then the entropy of the corresponding 4d BPS black hole is given by

= N@ - T
|pol
where J is the 5d angular momentum.

Therefore the invariant J(f)|.—o describes the 5d angular momentum of
the spinning black hole in our example. We should note that the general
black hole solution of pure N = 2 supergravity in five dimensions involving
six parameters, namely the four electromagnetic charges, mass and angular
momentum was given in [27] to which we refer for references on earlier work
on the subject. However the general solution has not been written in terms
of an invariant corresponding to the discriminant A with non-vanishing pa-
rameter e. On the basis of the above analysis we predict that there exists a
five parameter family of extremal black ring solutions of pure N = 2 5d su-
pergravity whose entropy is described by the invariants J(f), I(f) and A(f).

As was shown in [28] for fixed invariants /(f) and J(f) there exists a single
orbit of SL(2,R) in the space of quartic forms F(z,y) if A(f) < 0 and the
orbit lies in the subspace of quartic forms with one pair of complex roots. For
fixed invariants I(f) and J(f) with positive discriminant A(f) > 0 one finds
three different orbits of SL(2,R). Two of these orbits lie in the subspace
where the quartic form admits two pairs of complex roots while the third
orbit lies in the subspace with real roots only.

Aspects of the asymptotics of class numbers h(I,.J) of binary quartic
forms with given values of I, J are determined by Bhargava and Shankar in
[28]. Theorem 1.6 of that paper tells us the following. If we define

H(1,.J) = max| %], |J°/4]

Sad

then
> h(I,J) ~ ()X + O(X)
H(I,J)<X
Again, it would be nice to present a physics proof.

2.5 A magical example

We close with a brief mention of a slightly richer example. It is the com-
plex magical N = 2 Maxwell-Einstein supergravity with 9 vector multiplets,
spanning the moduli space[5, 6]

Myeetor = SU(3,3; Z)\SU(3,3)/(SU(3) x SU(3) x U(1)) -

10



The moduli space is 9 (complex) dimensional, and the prepotential is given
by
_det(X)

F o~ 0
where X is a three-by-three Hermitian matrix. It descends from the complex
magical supergravity in 5d with the scalar manifold

Ms = SL(3,C)/SU(3).

This theory is discussed in detail in [29].

This vector multiplet moduli space arises as item 5 in Table 1 of [9].
The charges transform in the 20 dimensional irreducible representation of
the arithmetic group, and an appropriate highest weight module V' (w3) is
identified in [9] and serves as the analogue of the binary forms in our earlier
examples.

This model has a known string theory embedding, as a Zs orbifold of T
compactification.

3 Discussion

In this note, we outlined a connection between the class numbers character-
izing forms with fixed values of various arithmetic invariants and BPS black
holes in supergravity and string theory. While we provided a few examples
in §2, it should be clear that similar considerations extend to many further
constructions. Extension of our results to other supergravity theories, in par-
ticular those that have stringy extensions, and possible extensions along the
lines of example four above will be left to future investigations.

In the prototype case involving binary quadratic forms and BPS black
holes on K3 x T2, it has been observed that the generating function

> H(D) q”

(with suitable constant term) provides the holomorphic piece of a weight 3/2
mock modular form [30]. It would be very interesting to relate the black hole
counting problems above to modular objects in a similar manner. In fact
it seems very likely that the count of attractor black holes in our Example
2 is governed by a degree 2 weight 2 Siegel form studied by Kohnen [31].

11



This should follow from the relationship of the general philosophy of Kudla-
Millson theory in arithmetic geometry to physics described in [32].
The results here suggest many other natural questions:

e Can we find proofs of the asymptotic results governing class numbers (some
of which were presented above) using physical arguments?

e The theories most closely tied to these arithmetic variants seem to be
N > 2 supersymmetric theories which enjoy a certain finiteness property (no
instanton corrections to the prepotential). Can we demonstrate a connection
of all such N = 2 theories to the theory of arithmetic invariants? Can we
turn this around and propose a classification of such theories in terms of
invariant theory?

e Most ambitiously, one would like to find a version of this story which holds
in quantum geometry, e.g. for counts of BPS black holes in the mirror quintic.
This should involve a suitable generalization of the various classical number
theoretic notions that played a role here. Progress on this front would be
most interesting.
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Appendix

The examples we considered in this paper correspond to the N = 2 Maxwell-
Einstein supergravity theories with zero, one, two and eight vector multiplets

12



in d=5 and their 4d counterparts. Five dimensional N = 2 Maxwell-Einstein
supergravities with symmetric target spaces GG/H ,such that G is a symme-
try of the Lagrangian, are in one-to-one correspondence with the Euclidean
Jordan algebras of degree three [5, 6]. The C-tensor C} i appearing in the
coupling

C[JKFI/\FJ/\AK

in these theories determines their Lagrangian uniquely and is given by the
cubic norm of the underlying Jordan algebra J.

The Jordan algebras of degree three admit 3 idempotents ey, es and e3
with the identity element given by

H:€1+62+€3

which corresponds to the bare graviphoton in the corresponding supergravity
theory. Hence the pure N = 2 supergravity is described by the norm

N3(XT) = X3 .

The example 2 we considered above corresponds to the N = 2 Maxwell-
Einstein supergravity described by the cubic norm

./\/‘3(X€1 + Y62 + Y€3) = XY2
and the STU model in five dimensions is defined by
/\/},(Xel + Y62 + Z€3) =XYZ

as found in [20]. The complex magical supergravity in 5d is defined by the
Jordan algebra Ji of three-by-three complex Hermitian matrices and the
norm of an element J is given by its determinant

Na(J) = det(J) .

By the action of the automorphism group H of the underlying Jordan
algebra every element of J can be brought to the form (Xe; + Ye, + Zes)
of the STU model. For the complex magical supergravity the automorphism
group of J£ is SU(3). This shows clearly that there exist natural extensions
of the invariants we studied to more general classes of invariants related to
the arithmetic subgroups of the global symmetry groups of the N = 2 su-
pergravity theories. For N = 4 Maxwell-Einstein supergravities in 5d, the

13



underlying Jordan algebras of degree three are non-Euclidean. Similarly the
symmetries of maximal N = 8 supergravity are given by the symmetries of
the non-Euclidean exceptional Jordan algebra of Hermitian 3 x 3 matrices
over the split octonions [33]. Under dimensional reduction to four dimen-
sions the correspondence between Jordan algebras of degree three and 5d
supergravities goes over to a correspondence between Freudenthal triple sys-
tems F(J) associated with the Jordan algebras J of degree three and 4d
supergravities [33, 34, 10].

Orbits of extremal black hole solutions of supergravity theories under the
action their continuous U-duality groups G have been studied extensively
beginning with the work of [33]. For those theories that have stringy exten-
sions the relevant orbits are with respect to the discrete U-duality groups
which are typically the maximal arithmetic subgroups G(Z) of G [35, 36].
Motivated by the works of [33, 35] Krutelevich considered the integral ver-
sion of Freudenthal’s construction of exceptional groups and studied their
connection to higher composition laws of Bhargava [9]. There is a one-to-
one or two-to-one correspondence between known supergravity theories with
symmetric target spaces and the rows of the Table 1 in [9]. The first three ex-
amples we gave above correspond to the first three rows of the Table 1 of [9],
and our fifth (magical) example is the fifth entry in his Table. However our
fourth example does not have a corresponding entry in Krutelevich’s table.
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