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Abstract
Model selection based on experimental data is an important challenge in biological
data science. Particularly when collecting data is expensive or time-consuming, as
it is often the case with clinical trial and biomolecular experiments, the problem
of selecting information-rich data becomes crucial for creating relevant models. We
identify geometric properties of input data that result in an unique algebraic model,
and we show that if the data form a staircase, or a so-called linear shift of a staircase,
the ideal of the points has a unique reduced Gröbner basis and thus corresponds to a
unique model. We use linear shifts to partition data into equivalence classes with the
same basis. We demonstrate the utility of the results by applying them to a Boolean
model of the well-studied lac operon in E. coli.

Keywords Biological data science · Algebraic design of experiments · Gröbner
bases · Ideals of points · Staircases of monomial ideals

Mathematics Subject Classification 14 · 92

1 Introduction

Developing predictivemodels from large-scale experimental data is an important prob-
lem in biological data science (Schatz 2015). In certain settings, such aswhenmodeling
biological switches (Dalchau et al. 2018), it is advantageous or even necessary to view
the input data as discrete (Dimitrova et al. 2010). While there are many classes of
functions that can fit data from an underlying network, data over a finite field can be fit
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by polynomials (Lidl et al. 1997). A useful consequence is that polynomial models of
such data can be written in terms of a monomial basis, where each choice of monomial
basis provides a different prediction regarding network structure (Jarrah et al. 2007).

More precisely, when the entries of a given data set are elements of a finite field, they
can be viewed as an algebraic variety of a systemof polynomials and the corresponding
set of polynomials which vanish on the points in the variety is a zero-dimensional
ideal of points (Cox et al. 1997). A popular computational tool for ideals of points is
a Gröbner basis (GB), which is a generalization of echelon forms of linear systems
(Abbott et al. 2000; Farr and Gao 2006; Dong 2016). Studying GBs, in particular the
number of different GBs for a given ideal of points, has impact on any application
which depends on GB computation for model construction.

While algebraic geometry literature is vast with regard to finding solutions of poly-
nomial systems, to the best of our knowledge, the only result which connects directly
geometric properties of points in a variety V to the uniqueness of reduced GBs of an
ideal of points I (V ) for any monomial order is found in Dimitrova et al. (2019, Theo-
rem 4.8(b)): it implies that an ideal of points I (V ) and the ideal of the set complement
of the points I (VC ) have the same number of reduced GBs and thus for any monomial
order, I (V ) has a unique reduced GB if and only if I (VC ) has a unique reduced GB.
The uniqueness of reduced GBs has significance in the following two applications.

In Laubenbacher and Stigler (2004), Gröbner bases were applied to the problem of
model selection in systems biology. They were introduced as a tool to select minimal
models from a set of polynomial dynamical systems that fit discrete experimental
data: for a given set of data points over a finite field, the ideal of points forms a
coset representing the space of polynomial dynamical systems that fit the data and a
minimal model is selected from the space by computing a reduced GB of the ideal and
taking the normal forms of the model equations. While this provides an algorithmic
solution to model selection, each choice of monomial order results in a different GB
and thus, likely, in a different minimal polynomial dynamical system. To remedy this
computational artifact, Dimitrova and Stigler (2014) proposed a systematic way of
adding new data points to an existing data set to ensure that the ideal of points has a
unique reduced GB, yielding a unique minimal model. They also gave an algebraic
characterization of the smallest set of points that need to be added. The method,
however, involves solving a large system of polynomial equations even for small data
sets.

More recently, neural ideals were introduced in Curto et al. (2013) as an algebraic
object that can be used to better understand the combinatorial structure of neural codes.
A neural ideal has a special generating set, called its canonical form that encodes a
minimal description of the so-called receptive field structure intrinsic to the neural
code. Also, for a given monomial order, a neural ideal is generated by its (reduced)
Gröbner basis with respect to that monomial order. It was shown in Garcia et al. (2018)
that for small dimensions, Gröbner basis computations are faster than canonical form
ones and it is thus desirable to be able to identify neural ideals whose canonical forms
are Gröbner bases. They proceeded to show that this is the case exactly when the
neural ideal has a unique Gröbner basis. However, there is still no known condition on
the neural codes themselves that guarantees that the corresponding neural ideal has a
unique Gröbner basis.
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Data Sets with Unique Reduced Gröbner Base 2693

This paper addresses an important question in algebraic design of experiments:
What properties should a discrete data set satisfy in order to uniquely identify an
algebraic model? Since the possibility of having multiple models that correspond to a
single data set arises from the fact that a polynomial ideal can have multiple reduced
GBs, we approach this question by identifying properties of the input data that result
in a unique reduced Gröbner basis for any monomial order.

For m data points and n variables, an upper bound for the number of distinct
reduced Gröbner bases for an ideal of points is O(m2n(n−1)/(n+1)) (Babson et al.
2003); however, in the finite field setting, this upper bound will be much smaller.
From an algebraic geometry point of view, the problem is the following: find varieties
V in Z

n
p whose ideals of points I (V ) have unique reduced GBs for any monomial

order. Alternatively, the problem can be phrased as identifying varieties V for which
the universal Gröbner basis of I (V ) is itself a reduced Gröbner basis, or for which the
Gröbner fan of I (V ) consists of a single cone.

We define the concept of a linear shift, originally introduced in He (2016) for
varieties and extended to rings in Dimitrova et al. (2019). We show that linear shifts
are equivalence relations on data sets in Z

n
p (where Zp is the field of integers mod-

ulo p) of fixed size. We use linear shifts to partition data into equivalence classes with
the same basis. This impacts research in biological data science which uses discrete
data, including data storage in the biomedical sciences (Adam et al. 2017) and model
selection in functional genomics (Stigler and Chamberlin 2012).

In Sect. 3, we establish a geometric property of the points in V ⊆ Z
n
p which

guarantees that the ideal of the points I (V ) has a unique reduced Gröbner basis,
regardless of the monomial order: Corollary 3 to the main result, Theorem 2. Finally,
we apply the main result to a Boolean model of the well-studied lac operon in E. coli.

2 Background

Much of the notation and formalization in this section is due to Cox et al. (1997).
Let k be a field and n ∈ N. Let I ⊆ k[x1, . . . , xn] be an ideal and LT≺(I ) be

the leading term ideal of I with respect to some monomial order ≺. Recall that the
quotient ring k[x1, . . . , xn]/I is isomorphic to span{xα|xα /∈ LT≺(I )} as a k-vector
space. In fact, for each choice of monomial order, {xα|xα /∈ LT≺(I )} forms a basis for
k[x1, . . . , xn]/I . Suchmonomials are called standard with respect to≺; we denote the
set {xα|xα /∈ LT≺(I )} as SM≺(I ). Note that standardmonomials satisfy the following
divisibility property: if xα ∈ SM≺(I ) and xβ |xα , then xβ ∈ SM≺(I ).

In the current setting, as all ideals are zero-dimensional, the quotient ring
k[x1, . . . , xn]/I is finite dimensional as a vector space. Hence, the set SM≺(I ) of
standard monomials associated with I is finite and can be represented as a staircase,
which is a set λ ⊆ N

n of nonnegative integer vectors such that if v ∈ λ and u ≤ v

coordinate-wise, then u ∈ λ. Such staircases can be visualized on an integer lattice
where a monomial is depicted via its exponent vector: (m, n) ↔ xm yn ; see Fig. 1.

Finally, recall that if ≺ is a monomial order and I ⊆ k[x1, . . . , xn] is nonzero,
then a subset G = {g1, . . . , gt } is a Gröbner basis for I with respect to ≺ if
〈LT≺(g1), . . . , LT≺(gt )〉 = 〈LT≺(I )〉. Furthermore, a Gröbner basis is reduced if
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Fig. 1 Staircases of the ideal I (V ), where V = {(2, 0), (0, 1)} ⊆ Z
2
3. For a given Gröbner basis, each

diagram shows the interface between the standard monomials, which are represented by black dots, and the
leading terms, which are represented by white dots. Here, SM1(I (V )) = {1, y} and SM2(I (V )) = {1, x}

the leading coefficient of each element of the basis is 1 and no monomial in any ele-
ment of the basis is in the ideal generated by the leading terms of the other elements
of the basis. Given a fixed monomial order, an ideal I has a unique reduced Gröbner
basis.

The union of all reduced Gröbner bases is the universal Gröbner basis of I , which
is a Gröbner basis for every monomial order.We note that the universal GBmay not be
reduced when I has multiple reduced GBs associated with different monomial orders.

Example 1 Let V = {(0, 0), (1, 0), (2, 1)} ⊆ Z3 and I (V ) ⊆ Z3[x, y] be the ideal
of polynomials that vanish on the points in V . Let ≺1 denote the monomial order
with weight vector (1, 1) and ≺2 the order with weight vector (1, 3). Then, I (V ) has
two distinct reduced Gröbner bases, GB≺1(I (V )) = {y2 − y, xy + y, x2 − x + y}
and GB≺2(I (V )) = {x3 − x, y + x2 − x}. So the universal Gröbner basis for I (V ) is
G = {y2−y, xy+y, x2−x+y}∪{x3−x, y+x2−x}. This set has two different leading
term ideals: LT≺1(I (V )) = 〈y2, xy, x2〉 and LT≺2(I (V )) = 〈x3−x, y+x2−x〉. The
associated standardmonomial bases are SM≺1(I (V )) = {1, x, y} and SM≺2(I (V )) =
{1, x, x2}.

We note that every ideal of points over a finite field of characteristic p > 0 has
relations of the form x p − x for every variable. As such, the degrees of a variable in
a polynomial are bounded above by p − 1, though polynomials may have high total
degree due to many mixed terms.

Example 2 Consider a network of three nodes x, y, z with states in Z3, where 0 stands
for low, 1 for medium, 2 for high. Suppose that z is regulated by x and y and its outputs
are displayed in the table below for the input data in Example 1.

Time x y z = f (x, y)
t1 0 0 0
t2 1 0 0
t3 2 1 1
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As computed above, we know that I (V ) has two distinct reduced GBs with corre-
sponding standard monomial bases. Given each basis, f can be written as a linear
combination axα1 + bxα2 + cxα3 of the basis elements. To find the coefficients, one
can set up evaluation matrices X as follows:

(x, y) 1 x y
(0,0) 1 0 0
(1,0) 1 1 0
(2,1) 1 2 1

and

(x, y) 1 x x2

(0,0) 1 0 0
(1,0) 1 1 1
(2,1) 1 2 1

Solving each linear system X[a b c]T = [0 0 1]T results in two candidate models for
f which are compatible with the given data: f = y and f = x + 2x2.

Note that the first function model is regulated only by gene y but the second model
is regulated only by gene x . This presents a problem for experimentalists in that the
two models suggest different regulatory relationships. We therefore ask the question:
Which data sets generate a unique model? That is, we are interested in varieties for
which the universal Gröbner basis is itself a reduced GB and has a single leading term
ideal (and therefore single standard monomial basis) regardless of which monomial
order is chosen.

3 Geometric Properties of Data Sets Whose Ideals Have Unique
Reduced Gröbner Bases

In this section, we give a geometric characterization of V ⊆ Z
n
p such that I (V ) has

a unique reduced Gröbner basis, regardless of the monomial order. Unless otherwise
stated, definitions and results in this section are found in He (2016).

In Sect. 2, we recalled that exponent vectors of standard monomials of an ideal I
forma staircase since any divisor of a standardmonomial is again a standardmonomial.
Such a staircase is called initial (Babson et al. 2003); for example, the staircases in
Fig. 1 are initial. Furthermore, a staircase λ is basic for I if the congruence classes
modulo I of the monomials xv with v ∈ λ form a vector space basis for the quotient
space Zp[x1, . . . , xn]/I (Babson et al. 2003).

If λ is basic, then the class [ f ] = f + I of any f ∈ Zp[x1, . . . , xn] can be uniquely
represented as a linear combination of elements in {xv | v ∈ λ}. For a given monomial
order, any polynomial f ∈ Zp[x1, . . . , xn] has a unique normal form with respect to
I . Hence, an initial staircase of an ideal I is basic. As it will be shown in Theorem 1,
we can determine whether a set λ ∈ Z

n
p is basic by checking the invertibility of the

evaluation matrix defined next.

Definition 1 Let λ = {u1, . . . , ur } be an r -subset of Z
n
p and let V = {v1, . . . , vs} be

an s-subset ofZ
n
p. The evaluation matrix X(xλ, V ) is the s-by-r matrix whose element

in position (i, j) is xu
j
(vi ), the evaluation of xu

j
at vi .
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Example 3 Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)}, and V = {(2, 0), (0, 1)} be
subsets of Z

2
3. Then, X(xλ1 , V ) =

[
1 2
1 0

]
and X(xλ2 , V ) =

[
1 0
1 1

]
.

The following result from Babson et al. (2003) illustrates a connection between
basic sets and evaluation matrices, which will be used below.

Theorem 1 (Babson et al. 2003) Let λ and V be subsets of Z
n
p. Then, λ is basic for

I (V ) if and only if X(xλ, V ) is invertible.

Example 4 Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)}, and V = {(0, 0), (1, 0)}
be subsets of Z

2
3. Then, λ1 is basic for I (V ) since X(xλ1 , V ) =

[
1 0
1 1

]
is invertible;

however, λ2 is not basic for I (V ) since X(xλ2 , V ) =
[
1 0
1 0

]
is not invertible.

Notice that an initial staircase must be basic, while a basic staircase might not
be initial; however, if I (V ) has a unique initial staircase (and thus a unique reduced
Gröbner basis), then I (V ) has a unique basic staircase.

Proposition 1 An ideal I (V ) has a unique initial staircase if and only if I (V ) has a
unique basic staircase.

Proof We recall that the initial ideals of a polynomial ideal are in a one-to-one cor-
respondence with its reduced Gröbner bases. The result then follows directly from
Proposition 2.2 in Babson et al. (2003) and the fact that for every two monomials
xα, xβ with xα

� xβ , there exists a weight vector γ and monomial order ≺γ such that
xβ ≺γ xα . 
�
Based on Proposition 1, if we want to find out whether I (V ) has a unique reduced
Gröbner basis, we just need to check whether I (V ) has a unique basic staircase. In
other words, we can check if there exist a unique staircase λ ⊆ Z

n
p such that X(xλ, V )

is invertible.
Next, we present a sufficient condition for I (V ) to have a unique reduced Gröbner

basis. A construction that will aid in proving this condition is that of a layer of a
staircase.

Definition 2 Given a staircase λ = {(u1, . . . , un) : ui ∈ N}, the i th layer of λ with
respect to the j th coordinate is the subset {u ∈ λ : u j = i} ⊆ λ. Let � be the largest
integer such that {u ∈ λ : u j = �} �= ∅. The height of λ in the j th coordinate is
defined to be � + 1, denoted as h j (λ).

Note that we identify a layer of a staircase in N
n with a staircase in N

n−1.
Proposition 1 prompts the following natural question. If λ ⊆ Z

n
p is a staircase,

which subsets V ⊆ Z
n
p have λ as their unique basic staircase? Let us consider the case

when V is itself a staircase.

Theorem 2 Let λ and V be two staircases in Z
n
p. Then, λ is basic for I (V ) if and only

if λ = V .
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Proof We will prove this by induction on the number of variables.
Let n = 1. To prove the necessary condition, suppose λ �= V . Since there is only

one variable, we must have |λ| �= |V |. Therefore, X(xλ, V ) is not invertible since it is
not a square matrix. By Theorem 1, λ is not basic. For the sufficient condition, assume
λ = V . Then, X(xλ, V ) is a square Vandermonde matrix. Since V is a set of distinct
points, X(xλ, V ) is invertible. By Theorem 1, λ is basic.

Assume the inductive hypothesis holds for n = k and consider n = k + 1. We will
prove the inductive step by induction on the height of the monomial staircase with
respect to the first coordinate.

Consider the base case when h1(λ) = 1; in other words, for all u ∈ λ, we have
u1 = 0. That is to say all monomials of xλ do not involve x1.

(⇐) Suppose λ = V . Then, the first coordinate of any point in V is 0. Therefore,
λ and V are staircases with one fewer variable, x1. Based on our inductive
hypothesis for n = k, we have xλ are basic monomials of I (V ).

(⇒) Suppose λ �= V . Then, we consider three cases.

C1: |λ| �= |V |. In this case, X(xλ, V ) is not invertible as it is not square.
C2: |λ| = |V | and h1(V ) ≥ 2. In this case, X(xλ, V ) is not invertible as at least

two rows are the same.
C3: |λ| = |V | and h1(V ) = h1(λ) = 1, while λ �= V . In this case, the first

coordinate of any point in λ and V is 0. In other words, λ and V are staircases
with one fewer variable, x1. Based our inductive hypothesis for n = k, we
have that X(xλ, V ) is not invertible.

In each case, the evaluation matrix is not invertible and so λ is not basic, con-
cluding the base case of h1(λ) = 1.

Assume the inductive hypothesis holds for all monomial staircases λ with 1 ≤
h1(λ) ≤ d. Let us consider a staircase λ with h1(λ) = d + 1.

(⇐) Suppose λ = V . Let λ0 := {u ∈ λ : u1 = 0} denote the zeroth layer of λ and
V0 := {v ∈ λ : v1 = 0} denote the zeroth layer of V with respect to the first
coordinate. Since λ = V , we have λ0 = V0. By inductive hypothesis, the evalu-
ation matrix X(xλ0 , V0) is invertible. Now, let us consider the evaluation matrix
X(xλ, V ). We can reorder rows and columns of X(xλ, V ), so that X(xλ0 , V0)
appears as the upper left submatrix of X(xλ, V ). Since the upper left submatrix
of X(xλ, V ) is invertible, after elementary row and column operations, we can
transform X(xλ, V ) into a block matrix of the form

[
I 0
0 X(xλ\λ0 , V \V0)

]
.

Moreover, x1 divides all monomials in xλ\λ0 and for any point v ∈ V \V0,
we have v1 �= 0. Therefore, X(xλ\λ0 , V \V0) is invertible if and only if

X( x
λ\λ0
x1

, V \V0) is invertible. Note that xλ\λ0
x1

corresponds to a staircase with
height at most d and V \V0 is a linear shift of the same staircase, so X∗ is invert-
ible by the inductive hypothesis and Theorem 3. Hence, the original evaluation
matrix X(xλ, V ) is also invertible; thus, λ is basic.
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(⇒) Suppose λ �= V . If |λ| �= |V |, then X(xλ, V ) is not invertible since it is not a
square matrix.
Assume |λ| = |V |. We can reorder rows and columns so that X(xλ, V ) appears
in the form

[
X(xλ0 , V0) 0

A X(xλ\λ0 , V \V0)
]

.

Note that the row space of A is a subspace of the row space of X(xλ0 , V0).
Suppose X(xλ0 , V0) is not a square matrix. We then consider two cases.

C1: If X(xλ0 , V0) has more rows than columns, then the rows of [X(xλ0 , V0), 0]
are linearly dependent.

C2: IfX(xλ0 , V0)hasmore columns than rows, then the columnsof [X(xλ0 ,V0),A]T
are linearly dependent.

In either case, X(xλ0 , V0) is not invertible.
If X(xλ0 , V0) is a square matrix but λ0 �= V0, then X(xλ0 , V0) is not invertible
by the inductive hypothesis. So X(xλ, V ) is not invertible.
IfX(xλ0 , V0) is a square matrix and λ0 = V0, then wemust have λ\λ0 �= V \V0.
Note thatX(xλ\λ0 , V \V0) is invertible if andonly ifX( x

λ\λ0
x1

, V \V0) is invertible.
Since λ\λ0 �= V \V0, xλ\λ0

x1
corresponds to a staircase with height at most d, and

V \V0 is a linear shift of some other staircase, X( x
λ\λ0
x1

, V \V0) is not invertible
by the inductive hypothesis and Theorem 3. Therefore, X(xλ, V ) is also not
invertible.
Since the evaluation matrix is not invertible, λ is basic.

Hence, the inductive step holds for h1(λ) = d+1, thereby concluding the inductive
proof on the height ofλ. Completing the nested inductive proof completes the inductive
step for n = k + 1. Therefore, the original statement holds for all n ∈ N. 
�
Corollary 1 If V ⊆ Z

n
p is a staircase, then I (V ) has a unique reduced Gröbner basis

for any monomial order.

Proof It follows immediately from Theorem 2. 
�
Example 5 The set V = {(0, 0), (0, 1), (1, 0)} is a staircase in Z

2
3. Its corresponding

ideal I (V ) has a unique reduced Gröbner basis G = {y2 − y, xy, x2 − x} with respect
to any monomial order.

Before we state the main theorem of this section, we introduce an equivalence
relation on the subsets of Z

n
p that is useful in the context of staircases and Gröbner

bases.

Definition 3 For V1, V2 ⊆ Z
n
p with |V1| = |V2|, we say that V1 is a linear shift

of V2, denoted V1
L∼ V2, if there exists φ = (φ1, . . . , φn) : Z

n
p → Z

n
p such that

V1 = φ(V2) and φi : Zp → Zp is defined coordinate-wise as φi (xi ) = ai xi + bi for

some ai ∈ (
Zp

)× and bi ∈ Zp for i = 1, . . . , n.
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It is straightforward to see that linear shift is a bijection between two point sets and
defines an equivalence relation on subsets of Z

n
p of the same size.

Example 6 Consider V1, V2, V3 ⊆ Z
2
3, where V1 = {(0, 0), (0, 1)}, V2 = {(1, 1),

(1, 2)}, and V3 = {(1, 1), (2, 2)}. Then, V1 L∼ V2 since V1 = φ(V2), where φ =
(x + 1, x + 1). On the other hand, V1 /

L∼ V3 since the first coordinates of the points in
V1 are the same, while in V3 they are different.

We will see next that linear shifts preserve standard monomial bases.

Theorem 3 If V1, V2 ⊆ Z
n
p and V1

L∼ V2, then I (V1) and I (V2) have the same leading
term ideals and thus the same standard monomial bases.

Proof Let V1
L∼ V2. Then, there is a permutation φ(x1, . . . , xn) = (a1x1 +

b1, . . . , anxn + bn) for some ai , bi ∈ Zp with ai �= 0 for all i , such that φ(V1) = V2.
Observe that

I (V2) = { f : f (v) = 0,∀v ∈ V2}
= { f : f (φ(u)) = ( f ◦ φ)(u) = 0,∀u ∈ V1}.

Thus, for any f ∈ I (V2), we have f ◦ φ ∈ I (V1). Since V2 is a linear shift of V1
via φ, ( f ◦ φ)(x1, . . . , xn) = f (φ(x1, . . . , xn) = f (a1x1 + b1, . . . , anxn + bn). So
f and f ◦ φ have the same leading monomial with respect to any monomial order ≺.
Therefore, LT≺(I (V2)) ⊆ LT≺(I (V1)). We can show LT≺(I (V1)) ⊆ LT≺(I (V2))
by replacing φ with φ−1. Hence, LT≺(I (V1)) = LT≺(I (V2)) with respect to any
monomial order. 
�
Corollary 2 If V1, V2 ⊆ Z

n
p and V1

L∼ V2, then I (V1) and I (V2) have the same number
of reduced Gröbner bases. In particular, for any monomial order, I (V1) has a unique
reduced Gröbner basis if and only if I (V2) has a unique reduced Gröbner basis.

Proof Due to the one-to-one correspondence between initial ideals and reduced Gröb-
ner bases, Theorem 3 implies that I (V1) and I (V2) have the same number of reduced
Gröbner bases. 
�
Corollary 3 If V ⊆ Z

n
p is a linear shift of a staircase, then I (V ) has a unique reduced

Gröbner basis for any monomial order.

Proof This follows from Theorems 2 and 3. 
�
Example 7 Consider subsets V1 = {(0, 0), (0, 1), (1, 0)} and V2 = {(0, 1), (0, 2),
(2, 2)} of Z

2
3. Notice that V1 is a staircase, while V2 is not. As V2 = φ(V1), where

φ = (2x, 2x + 2), we have that V1
L∼ V2. We see that I (V2) has a unique reduced

Gröbner basis G = {y2 − 1, xy + x, x2 + x}.
A set of points being a linear shift of a staircase is not a necessary condition for the

corresponding ideal of points to have a unique reduced Gröbner basis, as is shown in
the following example.
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Example 8 Consider the set V = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. Since each
function in the component-wise definition of a linear shift φ is of the form φi (xi ) = xi
or xi + 1 for i = 1, 2, 3, there are only 23 possible linear shifts, and by inspection,
we see that when applied to V none of them results in a staircase. Therefore, V is
not a linear shift of a staircase in Z

3
2. However, using Theorem 3.3(b) in Dimitrova

et al. (2019), for example, we see that I (V ) has this single reduced Gröbner basis
G = {z2 + z, yz + z, y2 + y, xz + z, xy + y, x2 + x} regardless of the choice of
monomial order.

We conclude this section by noting that V ⊆ Z
n
2 is a simplicial complex if and only

if it is a staircase. Thus, Corollaries 1 and 3 generalize Proposition 4.2 in Garcia et al.
(2018) for an arbitrary finite field and linear shift.

4 Applications

In this section, we apply our main results to a small Boolean model of the well-studied
lac operon and highlight a possible improvement on the time to compute multiple
Gröbner bases.

4.1 Design of Experiments in the Lac Operon

The lac operon is a system of genes which control the transport and metabolism
of lactose in many bacteria including E. coli. While there are numerous models for
the lac operon (see, for example, Santillán 2008; Goodwin 1963; Ozbudak et al.
2004; Wong et al. 1997), we consider a Boolean model proposed in (Veliz-Cuba and
Stigler 2011). There the authors reduced the system to a core subnetwork consisting
of the following four variables: M representing lac mRNA, L intercellular lactose,
Le extracellular lactose, and Ge extracellular glucose. The Boolean model for this
subnetwork is given by the following Boolean functions, where extraneous variables
are introduced to capture intermediate values (Lm, Lem) of lactose inside and outside
of the cell, respectively: see Section 4.2.2 in Veliz-Cuba and Stigler (2011) for a full
description of the model.

fM = ¬Ge ∧ (L ∨ Lm)

fL = M ∧ Le ∧ ¬Ge

fLm = ((Lem ∧ M) ∨ Le) ∧ ¬Ge

fLe = Le

fGe = Ge

fLem = Lem

For the sake of illustrating the utility of the above results, we reduce this model to
only include the four essential variables. To this end, we replace Lem with Le and Lm
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with L , and remove all instances of Lem and Lm via substitution. Doing so produces

fLm = ((Le ∧ M) ∨ Le) ∧ ¬Ge = Le ∧ ¬Ge

which we substitute into the function fM :

fM = ¬Ge ∧ (L ∨ (Le ∧ ¬Ge)) = ¬Ge ∧ (L ∨ Le).

This results in the following Boolean network on four variables, with wiring diagram
depicted in Fig. 2:

fM = ¬Ge ∧ (L ∨ Le)

fL = M ∧ Le ∧ ¬Ge

fLe = Le

fGe = Ge.

Boolean functions can be rewritten as polynomial functions over Z2 using the fol-
lowing translations: the Boolean expression x∨y can be represented as the polynomial
x + y + xy, x ∧ y as xy, and ¬x as x + 1. Applying these rules to the above functions
yields the finite dynamical system f : Z

4
2 → Z

4
2 where f = ( fx1, fx2 , fx3 , fx4) and

each fxi is a polynomial in the variables x1 := M , x2 := L , x3 := Le, and x4 := Ge.

fx1 = x2x3x4 + x2x3 + x2x4 + x3x4 + x2 + x3
fx2 = x1x3x4 + x1x3
fx3 = x3
fx4 = x4 (1)

Consider the first component of the state space of f = ( fx1 , fx2 , fx3 , fx4) in Fig. 3:

C1 = {{0, 0, 0, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}, {1, 1, 0, 0}}.

Fig. 2 Wiring diagram for a
simplified Boolean model of the
lac operon in E. coli. Directed
edges with pointed ends indicate
positive regulation, while
directed edges with round ends
indicate negative regulation. The
variables Ge and Le regulate the
operon from outside the cell,
represented by a rectangle
around M and L
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Fig. 3 State space graph for the four-dimensional finite dynamical system given by f =
( fx1 , fx2 , fx3 , fx4 ). Each node is a state (M, L, Le,Ge) of the network, and a directed edge from state a
to state b indicates that f (a) = b. Figure created using Hosny et al. (2016)

Note that the data points in C1 form a staircase. By Corollary 3, the ideal I (C1) has a
unique reduced Gröbner basis for any monomial order, namely

G1 = {x21 + x1, x
2
2 + x2, x3, x4}.

In particular, the data set C1 has the unique leading term ideal L = 〈x21 , x22 , x3, x4〉
and standard monomial basis S = {1, x1, x2, x1x2} for any monomial order.

If we label the other components similarly,

C2 = {{0, 0, 0, 1}, {0, 1, 0, 1}, {1, 0, 0, 1}, {1, 1, 0, 1}},
C3 = {{0, 0, 1, 0}, {0, 1, 1, 0}, {1, 0, 1, 0}, {1, 1, 1, 0}},
C4 = {{0, 0, 1, 1}, {0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 1, 1}},

we find that they are linear shifts of C1, that is, C1
φ12∼ C2, C1

φ13∼ C3, and C1
φ14∼ C4,

where

φ12 = (x1, x2, x3, x4 + 1)

φ13 = (x1, x2, x3 + 1, x4)

φ14 = (x1, x2, x3 + 1, x4 + 1).

According to Corollary 2, the data sets C2, C3, and C4 have the same leading term
ideal and standard monomial basis as C1. So each of C2, C3, and C4 also has a unique
reduced Gröbner basis. As such, each of the four data sets will identify a unique
polynomial involving the monomials in S = {1, x1, x2, x1x2}. The advantage here is
that each data set produces only one model; however, since the polynomials in Eq. (1)
involve other monomials, we see that none of these data sets would correctly infer the
original model.

4.2 Using Linear Shifts to Compute Gröbner Bases

In Dimitrova et al. (2007) and Dimitrova and Stigler (2014), the authors highlight
the significance of being able to compute all reduced Gröbner bases, as each one
potentially corresponds to a distinct model. Here, we show how to use linear shifts to
compute other Gröbner bases given one. For example, given the Gröbner basis G1 and
linear shift functions φ12, φ13, φ14 from the previous section, we can directly apply
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the linear shift functions to produce the generators of the other reduced Gröbner bases
explicitly, rather than computing them from the respective ideals.

G2 = GB(I (C2)) = {x21 + x1, x
2
2 + x2, x3, x4 + 1},

G3 = GB(I (C3)) = {x21 + x1, x
2
2 + x2, x3 + 1, x4},

G4 = GB(I (C4)) = {x21 + x1, x
2
2 + x2, x3 + 1, x4 + 1}.

While algorithms (and their corresponding complexities) related to the above theo-
retical results are not in the scope of the presented work, we close with a note about its
potential to greatly reduce the time to compute Gröbner fans of zero-dimensional ide-
als. The worst-case complexity of computing one Gröbner basis of a zero-dimensional
ideal in a general setting is quadratic in the number of variables n and cubic in the
number of pointsm, that isO(nm3+n2m2) (Abbott et al. 2000), with various improve-
ments in specialized settings. Computing a Gröbner fan for a zero-dimensional ideal
from a given Gröbner basis is proved to be “a polynomial-time algorithm in the size
of the output” (Fukuda et al. 2007). In settings where data sets yield Gröbner fans
with distinct cones, we can take advantage of linear shifts: from one data set and its
calculated fan (set of reduced Gröbner bases), use the linear shift functions to produce
the reduced Gröbner bases for the ideals of the linearly shifted points. We expect that
finding linear shifts between data sets will have smaller complexity than computing
multiple Gröbner fans; this analysis will be performed in future work.

5 Discussion and FutureWork

We addressed the problem of characterizing data sets which correspond to ideals with
a unique reduced Gröbner basis with respect to all monomial orders. Our results fill
in important theoretical gaps in the use of polynomial dynamical systems as models
in systems biology by providing a criterion for determining whether a set of data will
give rise to a unique set of predictions (i.e., a uniquemodel) without having to compute
all reduced Gröbner bases associated with the data. Furthermore, this work decreases
the computational cost of modeling using polynomial dynamical systems and has the
potential to reduce the financial cost in collecting experimental data by identifying
data sets that result in unambiguous hypotheses for future testing. This is especially
important in experimental settings since it is common for the number of observations
(m) to be much smaller than the number of variables (n) in the system being studied.

For example, the set {{0, 0, 1, 0}, {0, 1, 0, 1}, {1, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 1, 1}}
of five data points in Z2 has 13 distinct reduced Gröbner bases and 13 corresponding
standard monomial bases. If these are considered as inputs into the lac operon as
described in Sect. 4.1, these standard monomial bases give rise to 4 distinct functions
for x1, 7 for x2, 3 for x3, and 5 for x4, totaling 420 different finite dynamical systems,
each with a different set of predictions that must be tested. The number of points (new
experiments) that must be added to the existing data set to guarantee a unique model is
an astonishing six: that is, the data set must be more than doubled! Instead, our work
identifies candidate sets that are linear shifts of a staircase and have unique bases. (In
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fact, there are close to 600 sets with unique GBs out of nearly 4400 sets of size five;
though there are many such sets, the chances of successfully picking such a set at
random is about 14%.)

We note that partitioning data sets of same size into equivalence classes under
the linear shift equivalence relation leaves many interesting question to explore. For
example, knowing the number and size of equivalence classes aswell as the distribution
of the number of Gröbner bases across equivalence classes would provide valuable
information for design of experiments and model inference.

Finally, while we were able to prove a sufficient condition for a set of points to
have an ideal with a unique reduced Gröbner basis (Corollary 3), the condition is not
necessary. A necessary and sufficient condition on the set of points which guarantees
a unique reduced Gröbner basis for any monomial order would be of great value as it
could lead to an algorithm for generating all such sets. These results are likely to also
benefit other areas that use Gröbner bases such as neural ideals computation.
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