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Abstract

We develop an analytic method for implementing the IR-resummation of [1], which allows
one to correctly and consistently describe the imprint of baryon acoustic oscillations (BAO) on
statistical observables in large-scale structure. We show that the final IR-resummed correlation
function can be computed analytically without relying on numerical integration, thus allowing
for an efficient and accurate use of these predictions on real data in cosmological parameter
fitting. In this work we focus on the one-loop correlation function and the BAO peak. We
show that, compared with the standard numerical integration method of IR-resummation, the
new method is accurate to better than 0.2%, and is quite easily improvable. We also give an
approximate resummation scheme which is based on using the linear displacements of a fixed
fiducial cosmology, which when combined with the method described above, is about six times
faster than the standard numerical integration. Finally, we show that this analytic method is
generalizable to higher loop computations.

ar
X

iv
:1

81
0.

11
85

5v
1 

 [a
st

ro
-p

h.
C

O
]  

28
 O

ct
 2

01
8



Contents

1 Introduction 3

2 Decomposition of the power spectrum 6

3 An analytic implementation of the IR-resummation 7
3.1 Decomposition of the correlation function . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Tree-level resummation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 One-loop resummation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Evaluation strategies 12
4.1 Exact evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Saddle-point approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Fixed-displacements approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Results and conclusion 19

A IR-resummation expressions 24

B Subleading corrections to the wiggle/no-wiggle method 25
B.1 Derivation of wiggle/no-wiggle from the IR-resummation . . . . . . . . . . . . . . . 25
B.2 Subleading corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B.2.1 Smooth part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B.2.2 Peak part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C One-loop power spectrum 31

D Higher loops 33

E Recursion relations 35

2



1 Introduction

Upcoming large-scale structure (LSS) surveys have the potential to be the next leading sources
of cosmological information. This is because the amount of information contained in these three-
dimensional surveys scales roughly like k3

max, where kmax is the maximum wavenumber that is under
theoretical control. This is to be contrasted with the amount of information in two-dimensional
measurements, like the cosmic microwave background (CMB), which scales like k2

max. Unfortu-
nately, for the CMB, there is a physical upper limit for kmax due to Silk damping that makes
it difficult to improve the reach by a large amount beyond already existing analyses. Thus, we
are compelled to have a strong theoretical understanding of gravitational clustering at the highest
wavenumber (or smallest length scales) possible. In order to do this, the Effective Field Theory of
Large-Scale Structure (EFTofLSS) was introduced [2, 3] and subsequently developed [4–10, 1, 11–
38] to consistently describe clustering observables in the mildly non-linear regime. This list includes
studies of the dark-matter power spectrum, bispectrum, and trispectrum, lensing, redshift space
distortions, biased tracers, the baryon acoustic oscillation (BAO) peak, the effects of baryons and
massive neutrinos, dark energy, and non-gaussianity, thus putting the EFTofLSS in a position to
be able to be applied directly to the analysis of survey data.

In general, cosmological perturbation theory is a loop expansion, using Green’s functions, which
accounts for the effects of the non-linear evolution of initial conditions (see [39] for a review of
standard perturbation theory (SPT)). The loop corrections involve integrals over intermediate
momenta, and in particular, over short-scale (i.e. ultraviolet or UV) momenta for which the
equations of the theory are not specifically known. To account for the unknown physics at short
scales, the EFTofLSS introduces counterterms which allow for the effects of UV modes on large-
scale observables to be consistently incorporated in the perturbative expansion. Once this is done,
the result is a controlled expansion in k/kNL, where kNL is the strong coupling scale of the EFT
(or equivalently the non-linear scale of structure formation). For modes with k . kNL, observables
can be predicted to higher and higher accuracy (up to non-perturbative effects) by including more
and more loops.

The perturbative expansion can be done in two main frameworks: Eulerian perturbation theory
or Lagrangian perturbation theory (see [39] for reviews of these approaches in SPT). Most of the
developments in the EFTofLSS have been presented in the Eulerian framework, although there
have been some developments in the Lagrangian framework [6, 40]. The main difference between
the two is that the fundamental quantities in Eulerian perturbation theory are local fields (like
the over-density δ(~x) and velocity vi(~x)) in the fluid picture, whereas Lagrangian perturbation
theory expands around a fluid element’s full trajectory. Because of this, the Eulerian picture is
not as good at describing bulk (i.e. infrared or IR) displacement effects. While the EFTofLSS in
the Eulerian picture correctly deals with the UV and improves the maximum reach in k space, it
has been known that it does not converge rapidly when describing the BAO peak (see for example
[41]), see Fig. 1. This is due to Eulerian perturbation theory’s expanding in the long displacements,
which for our universe are order one, and so convergence is slow at best.

More specifically, we can look at the parameters that are relevant to the loop expansion of
Eulerian perturbation theory [1, 21, 42]

εs<(k) ≡ k2

∫ k

0

d3k′

(2π)3

P11(k′)

k′2
, εδ<(k) ≡

∫ k

0

d3k′

(2π)3
P11(k′) , and εs>(k) ≡ k2

∫ ∞
k

d3k′

(2π)3

P11(k′)

k′2
,

(1.1)
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Figure 1: The BAO peak in Eulerian perturbation theory at tree level (dark blue), one loop (red), and two
loops (purple), along with the individual one-loop contribution (dashed red). We see that the convergence is
quite slow since the difference between the tree-level and one-loop curves is about the same as the difference
between the one-loop and two-loop curves. In this plot, we also show the two-loop resummed correlation
function (thin black) as a proxy for the correct answer, see Sec. 5 for a more thorough discussion.

where 〈δ(1)(~k)δ(1)(~k′)〉 = (2π)3δD(~k + ~k′)P11(k) defines the linear power spectrum P11 in terms of
the linear solution δ(1)(~k). As is evident in eq. (1.1), εs< is related to IR displacements, εδ< is
related to IR density fluctuations, and εs> is related to UV displacements. Eulerian perturbation
theory expands equally in all three of these parameters. However, linear displacements make εs<
order one on the scales of interest, which affects the success of perturbation theory for describing
the BAO peak and non-IR-safe quantities.1 When computing equal-time correlation functions, it
is known that effects from deep IR modes must cancel [43–45, 5]. However, for IR modes around
the scale of the BAO oscillations, this cancellation does not happen, and because εBAO

s< is large,
the perturbative expansion fails to capture the BAO oscillations.

To deal with this, a controlled, hybrid Eulerian and Lagrangian picture IR-resummation was
developed [1] (see also [46, 28, 47] for related work). The IR-resummation is a method to treat
fully non-linearly the effects of IR displacements and resum the parameter εs< (for recent related
methods, see [21, 40, 48, 49, 35, 50], and for earlier reconstruction methods, see for example
[51, 52]). In summary, the correlation function at all orders in εs< and expanded to order N in

1For IR-safe quantities, the relevant parameter is actually εBAO
s< , which is defined the same as εs< in eq. (1.1),

but with the integral going from kBAO ∼ 2π/`BAO (where `BAO ≈ 100h−1Mpc is the position of the BAO peak) to
k. Quantitatively, εBAO

s< ' εs<.
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εδ< is given by,2

ξ(r)
∣∣
N

=
N∑
j=1

∫
d3q ξE

j (q)RN−j(~r − ~q, ~r) , (1.2)

where ξE
j (q) is the j-th order contribution to the Eulerian correlation function, and the kernels

RN−j contain the information about the long wavelength displacements: the form of the kernels
RN−j is derived from the Lagrangian picture [1, 47]. Many more details are given in the rest of the
paper (see App. A), but now we wish to stress one main point about the form of eq. (1.2). In order
to use eq. (1.2), one must first compute the standard Eulerian loops to compute the j-th order
piece ξE

j (q), then one must do another integral (which turns out to be a one-dimensional integral
over dq) to apply the IR-resummation. Typically, these integrals have been done numerically, but
this can be rather slow, especially for higher loops and in redshift space. Ultimately, in order to
make this method much more useful for data analyses, it is convenient to have a faster method:
speeding up the computation of eq. (1.2) is the main goal of this paper.

It is worth noting that other fast and analytic (or at least semi-analytic), methods of resum-
ming the long-wavelength displacements have also been developed, see for example [21, 48, 49].
These methods rely on breaking the power spectrum into a smooth part and a wiggle part, which
drastically simplifies the expressions of [1] for the full resummation. While this allows for a fast
computation, the procedure of splitting the power spectrum, along with ignoring certain angular
terms, introduces a small error in the computation. These errors, while small, are parametrically
different from the parameters in which we expand in the EFT and in general are only recovered
thanks to the slow convergence of the non-resummed perturbation theory. By using the exact
formulas, though, one can just dispense with this issue. See App. B for further discussion on this
issue.

To accomplish our goal, we start with the fast computation of the power spectrum, which uses
the FFTLog and dimensional regularization to compute the Eulerian loops [53–58]. The end result
of this procedure is that one decomposes the linear power spectrum P11 into a sum of complex
power laws, and for each power law, the one-loop integrals can be done analytically. Using this,
we show that, for each of the complex power laws in which P11 is decomposed, the integrals in
eq. (1.2) can be done analytically. Thus, the resulting expression for the IR-resummation does not
contain any numerical integrals, and we are left with a sum over analytical functions weighted by
the coefficients of the decomposition of P11 with the FFTLog. The final method presented in this
paper, which is a combination of the fixed-displacements approximation discussed in Sec. 4.3 and
the exact evaluation discussed in Sec. 4.1, is about six times faster than the numerical integral
technique. The accuracy of our approach depends on a few different approximations. When using
the fixed-displacements approximation on cosmologies which have linear power spectra different
by a few percent, the error in the one-loop resummation is approximately 0.1%, and the error in
the two-loop resummation is less than 0.05% (indeed the error is diminished at each loop order).
On the other hand, in order to have the analytical form of the resummation integrals, we have to
expand a Γ function in the integrand, and this introduces a systematic, although easily improvable,
error. We find that including the first two terms in that Γ function expansion, the result is within
0.2% of the numerical integral technique.

The layout of this paper is as follows. In Sec. 2 we review the decomposition of the power
spectrum using the FFTLog. In Sec. 3, we present the analytic IR-resummation for the one-loop

2For the purposes of this paper, we do not distinguish between εδ< and εs>, as the effect of both of those is
computed perturbatively.
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correlation function. In Sec. 4 we give three methods to efficiently evaluate our new formulas: using
the exact formulas, using the saddle-point approximation, and expanding around the displacements
of a fixed cosmology. Finally, in Sec. 5 we present and discuss our results, compare to the non-linear
data of the Dark Sky simulation [59], and conclude.3

2 Decomposition of the power spectrum

Following [53, 56, 57], we can decompose the linear power spectrum as a Fourier series in log k. To
reproduce the linear power spectrum at Nmax points kn, equally log-spaced from kmin to kmax, we
can write

P11(kn) =

Nmax/2∑
m=−Nmax/2

cmk
−2νm
n (2.1)

where −2νm ≡ ν + iηm, ν is a fixed real number called the bias, and the expansion coefficients cm
and frequencies ηm are given by

cm =
1

N

Nmax−1∑
l=0

P11(kl)k
−ν
l k−iηmmin e−2iml/N , ηm =

2πm

log(kmax/kmin)
. (2.2)

This decomposition can be done quickly and efficiently using the FFTLog [56, 53].
With the decomposition given in eq. (2.1), the authors of [57] used the fact that the one-loop

integrals (see App. C) for the individual power law terms in P11 can be done analytically to write
the one-loop power spectrum as a simple matrix multiplication. The end result is that the one-loop
contributions P13 and P22 can be written as (below σ ∈ {13, 22}),

Pσ(k) = k3
∑
m1,m2

cm1k
−2ν1Mσ(ν1, ν2)k−2ν2cm2 (2.3)

where we have introduced the shorthand νi ≡ νmi , the one-loop matrices Mσ are given by

M22(ν1, ν2) =
(3

2 − ν12)(1
2 − ν12)[ν1ν2(98ν2

12 − 14ν12 + 36)− 91ν2
12 + 3ν12 + 58]

196ν1(1 + ν1)(1
2 − ν1)ν2(1 + ν2)(1

2 − ν2)
I(ν1, ν2) , (2.4)

M13(ν1, ν2) =
1 + 9ν1

4

tan(ν1π)

28π(ν1 + 1)ν1(ν1 − 1)(ν1 − 2)(ν1 − 3)
, (2.5)

with4

I(ν1, ν2) =
1

8π3/2

Γ(3
2 − ν1)Γ(3

2 − ν2)Γ(ν12 − 3
2)

Γ(ν1)Γ(ν2)Γ(3− ν12)
, (2.6)

and we have used the notation ν12...n ≡ ν1 + ν2 + · · · + νn. This expression comes from using
dimensional regularization to do the following integral which is present in the one-loop computation
[58, 7] ∫

d3q

(2π)3

1

q2ν1 |~k − ~q|2ν2
≡ k3−2ν12 I(ν1, ν2) . (2.7)

3We have provided the Mathematica notebook developed during this project at the EFTofLSS repository.
4Here, the Γ function is given by Γ(s, x) =

∫∞
x
dt ts−1e−t and Γ(s) ≡ Γ(s, 0).
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Finally, the one-loop counterterm is given by

P ct
13(k) = −4πc2

s

∑
m

cmk
−2(νm−1) . (2.8)

For details concerning convergence of the loop integrals and the use of eq. (2.7), see App. C. The
end result is that, for the simplest application of the above formulas, one should consider −3 < ν,
although the adjustments to be made if ν is outside of this range are straightforward [57].

3 An analytic implementation of the IR-resummation

In this section, we focus on the one-loop IR-resummation (expressions related to higher loop
expressions can be found in App. D). As mentioned in the Introduction, the standard Eulerian
perturbation theory is an expansion in IR density fluctuations εδ<, IR displacements εs<, and UV
displacements εs>, which are all scale dependent [1]. A drawback of this expansion is that the
IR displacements become large on the scales of interest, and the Eulerian expansion is unable
to correctly describe the BAO oscillations [41]. On the other hand, Lagrangian perturbation
theory, which follows individual fluid elements, is much better at describing these bulk motions
(see e.g. [46]). With this in mind, [1] developed a hybrid perturbation theory, called the IR-
resummation, which treats the linear IR displacements non-perturbatively and then expands the
rest as in Eulerian perturbation theory. This procedure resums most of the IR displacements; the
effects from the remaining IR displacements, which are expanded in the loop expansion, are then
characterized by a new parameter ε̃s< � 1 . εs<, and so are perturbative and captured order by
order in the loop expansion. In this paper, we follow this method to resum the IR modes. Related
methods have been proposed in [21, 40, 48, 49, 35, 50].

3.1 Decomposition of the correlation function

In this paper, we will work mostly with the correlation function ξ(r), which is defined by

ξ(r) =

∫ ∞
0

dk
k2

2π2
j0(kr)P (k) , (3.1)

where j0(x) ≡ sin(x)/x is the spherical Bessel function of index 0. It turns out that with the
decomposition of the power spectrum given in Sec. 2, we can analytically compute the spherical
Bessel transform in eq. (3.1). This is not a surprise, however, since this is how the spherical Bessel
transform (SBT) based on the FFTlog works [56]. Using the fact that5∫ ∞

0
dx j0(x)x2−2νm = Γ(2− 2νm) sin(πνm) , (3.3)

we find (letting 2ωm = 2νm − 3 for later convenience),

ξ11(r) =
∑
m

cmM̃11(νm)r2ωm , with M̃11(νm) ≡ 1

2π2
Γ(2− 2νm) sin(πνm) , (3.4)

5This is a specific case of the more general identity∫ ∞
0

dx jµ(x)x2−2ν =
√
π 21−2ν Γ [(3 + µ− 2ν)/2)]

Γ [(µ+ 2ν)/2]
, (3.2)

where jµ(x) is the spherical Bessel function of index µ.
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and for the one-loop expressions

ξσ(r) =
∑
m1,m2

cm1r
2ω1M̃σ(ν1, ν2)r2ω2cm2 , (3.5)

with

M̃σ(ν1, ν2) ≡ 1

2π2
Γ(5− 2ν12) cos(πν12)Mσ(ν1, ν2) . (3.6)

Finally, the counterterm contribution is

ξct
13(r) = −4πc2

s

∑
m

cmM̃11(νm − 1)r2(ωm−1) . (3.7)

3.2 Tree-level resummation

We start with the tree level resummation; the relevant expressions for the IR-resummation can be
found in App. A. We must compute

ξ(r)
∣∣
0

=

∫
d3q R0(~r − ~q, ~r) ξE

11(q) , (3.8)

where here and elsewhere, the superscript E stands for Eulerian, meaning that the quantity is the
standard one computed in Eulerian perturbation theory expanded in both εδ< and εs<. Plugging
in the decomposition eq. (3.4) for ξE

11, we can write this as

ξ(r)
∣∣
0

=
∑
m

cmM̃11(νm)ξ̃(0)
ωm(r) (3.9)

where

ξ̃(0)
ωm(r) ≡

∫
d3q q2ωmR0(~r − ~q, ~r) =

(2π)−3/2√
|A(~r)|

∫
d3q q2ωm exp

{
−1

2
(~r − ~q)iA−1

ij (~r)(~r − ~q)j
}
.

(3.10)

The reason for the superscript (0) will become evident when we compute the one-loop resummation,
see eq. (3.26) later for example. To do the integral in eq. (3.10), we shift integration variable to
~q → ~r− ~q, then use the rotation invariance of the integral to rotate to integration variables which
diagonalize A−1 (see App. A) to get

ξ̃(0)
ωm(r) =

(2π)−3/2√
|A(~r)|

∫
d3q

(
q2

1 + q2
2 + (r − q3)2

)ωm
exp

{
−1

2

(
α0(q2

1 + q2
2) + (α0 + α2)q2

3

)}
,

(3.11)

where, to avoid clutter, here and below we will often drop the argument r on α0(r) and α2(r)
because these functions are constant for the purpose of the integrals that we are doing: they
should all be evaluated at the external point r. Now, the integrals over q1 and q2 can be done
analytically. This gives

ξ̃(0)
ωm(r) =

(2π)−3/2√
|A(~r)|

∫ ∞
−∞

dq3 π

(
2

α0

)1+ωm

(r − q3)2ωmΓ
(

1 + ωm,
α0

2
(r − q3)2

)
× exp

{
−1

2

(
(α0 + α2)q2

3 − α0(r − q3)2
)}

.

(3.12)
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Figure 2: We plot the functions α0(r) and α2(r) which are related to the long-wavelength displacements,
see App. A, for the cosmology C1 described in Sec. 5. The forms of the functions plotted here are the ones
which are most relevant for the calculations that we do in this paper.

In order to do this integral analytically, we can expand the Γ function in eq. (3.12) for the
large argument α0(r− q3)2/2. This is justified because the exponential will force the integral to be
dominated by q3 � r, and α0(r)r2 ∼ 80 for r ≈ 1, and is larger for larger r, see Fig. 2. As we will
see, it is easy to keep as many terms as necessary in this expansion, although as we will discuss
later, we find that it is enough for our purposes to keep just the zeroth- and first-order terms. The
expansion of the Γ function for z →∞ is given by

Γ(1 + ω, z) ≈ e−zzω
(

1 +
ω

z
+
−ω + ω2

z2
+ . . .

)
≡ e−zzω

∞∑
j=0

γj(ω)z−j , (3.13)

where the coefficients γj(ω) are defined by the expansion in eq. (3.13).6 This then allows us to

6To be more precise, as we will see, the largest value of |ω| that we will typically have is |ω| ≈ 20, and the smallest
value of z, which is approximately equal to α0(r)r2/2, that we will have is 40 (which occurs for r → 0, although
the value near the BAO peak is α0(r)r2/2 ≈ 150, see Fig. 2). Thus, the smallest value of ω/z that we expect to
have in eq. (3.13) is ω/z ≈ 1/2, which naively may not seem like a very good expansion parameter. However, there
are two reasons not to be worried. First, although the series for Γ(1 + ω, z) that we use is asymptotic, we find that
for the worst value of ω/z that we use, the maximum precision that the series obtains is better than 10−6, which
is much smaller than any other error discussed in this paper, so one can increase precision by using a higher order
expansion. Second, looking back at eq. (3.9), to get the final answer, we are ultimately summing over many values
of ω, and most of them have a smaller ratio of ω/z anyway. So, the ultimate precision of this method is a number
that is much better than 10−6, as terms with ω/z ∼ 1/2 do not make up most of the overall terms. As a final note,
other series representations of the Γ function appear in the literature which may have better properties, but we find
eq. (3.13) more than precise enough for our purposes. In any case, this 10−6 precision is such a high level of accuracy
that we can worry about this when we have computed the answer to such a high loop order that εδ< corrections are
comparable to this, or when we have observational data that match this precision (which does not appear to be any
time soon).
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write

ξ̃(0)
ωm(r) =

∑
j

γj(ωm)

(
2

α0

)j√α0 + α2

2π

∫ ∞
−∞

dq3 (r − q3)2(ωm−j) exp

{
−1

2
(α0 + α2)q2

3

}
. (3.14)

Thus, the integral that we must evaluate now is

Iω(r) ≡
√
α0 + α2

2π

∫ ∞
−∞

dq3 (r − q3)2ω exp

{
−1

2
(α0 + α2)q2

3

}
. (3.15)

This integral can be done analytically in terms of the confluent hypergeometric function of the
second kind (also known as the hypergeometric U function) to give

Iω(r) = lim
ε→0+

2ωeiπω

(α0(r) + α2(r))ω
U

(
−ω, 1

2
,−r

2(1 + iε)2

2
(α0(r) + α2(r))

)
for Imω ≥ 0 , (3.16)

and Iω(r) = Iω∗(r)
∗ for Imω < 0. Instead of taking the limit, in practice we simply take ε to be

a small positive real number.7 Letting ξ̃
(0),NΓ
ωm denote the expression in eq. (3.14) summed from

j = 0 to j = NΓ, we have

ξ̃(0),NΓ
ωm (r) =

NΓ∑
j=0

γj(ωm)

(
2

α0(r)

)j
Iωm−j(r) . (3.19)

This brings us to the final expression for the tree-level resummation, expanded up to order NΓ,

ξ(r)
∣∣NΓ

0
=
∑
m

cmM̃11(νm)ξ̃(0),NΓ
ωm (r) . (3.20)

In practice, as we will show, NΓ = 1 is sufficient to have better than about 0.2% accuracy.

3.3 One-loop resummation

The expression for the resummation at one loop is (see App. A for details),

ξ(r)
∣∣
1

=

∫
d3q

{
R1(~r − ~q, ~r)ξE

11(q) +R0(~r − ~q, ~r)ξE
1 (q)

}
. (3.21)

The approach to computing each term above is different, so we will look at each piece separately.

7The hypergeometric U function U(a, b, z) is a solution of

z
d2U

dz2
+ (b− z)dU

dz
− aU = 0 , (3.17)

with the limiting form U(a, b, z) ∼ z−a for |z| → ∞, and has an integral representation

U(a, b, z) =
1

Γ(a)

∫ ∞
0

dt e−ztta−1(1 + t)b−a−1 . (3.18)

The small positive real number ε must be included in eq. (3.16), even when evaluating numerically. This is because
the power (r− q3)2ω in eq. (3.15) has a branch cut on the real axis (−∞, 0] when Imω 6= 0: the ε chooses the correct
side of the branch cut. In practice, we take ε = 10−8 in our computations.
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We start with the second term, the R0ξ
E
1 term, which is most like the tree-level case. Here, we

must compute

ξσ(r)
∣∣(0,1)

1
≡
∫
d3q R0(~r − ~q, ~r)ξE

σ (q) (3.22)

where σ ∈ {13, 22}; we will look at the counterterm next. The integral to be done here is exactly
of the form eq. (3.10), but with a different value of ωm. This leads us to immediately find

ξσ(r)
∣∣(0,1)

1
=
∑
m1,m2

cm1cm2M̃σ(ν1, ν2)ξ̃
(0)
ω1+ω2

(r) . (3.23)

The counterterm is equally as simple; it is the tree-level resummation, but with ωm → ωm− 1, i.e.

ξct
13(r)

∣∣(0,1)

1
≡
∫
d3q R0(~r − ~q, ~r)ξct,E

13 (q) = −4πc2
s

∑
m

cmM̃11(νm − 1)ξ̃
(0)
ωm−1(r) . (3.24)

Next we move on to the R1ξ
E
0 term in eq. (3.21). We have

ξ(r)
∣∣(1,0)

1
≡
∫
d3q R1(~r−~q, ~r)ξE

11(q) =

∫
d3q

(
5

2
R0(~r − ~q, ~r) + ∂λR

λ
0 (~r − ~q, ~r)

∣∣
λ=1

)
ξE

11(q) , (3.25)

where we have used eq. (A.8) to replace R1. The first term above is simply the tree-level resum-
mation, so we will move on to the second. For this, it is useful to define

ξ̃λωm(r) ≡ (2π)−3/2√
|A(~r)|

∫
d3q q2ωm exp

{
−λ

2
(~r − ~q)iA−1

ij (~r)(~r − ~q)j
}
. (3.26)

and
ξ̃(1)
ωm(r) ≡ ∂λξ̃λωm(r)

∣∣
λ=1

, (3.27)

in terms of which the second term in eq. (3.25) can be written∫
d3q ∂λR

λ
0 (~r − ~q, ~r)

∣∣
λ=1

ξE
11(q) =

∑
m

cmM̃11(νm)ξ̃(1)
ωm(r) . (3.28)

Now, one can do the integrals over q1 and q2 in eq. (3.26) analytically as before. After doing that,
expanding the Γ function as in eq. (3.13), and taking the derivative with respect to λ, we have

ξ̃(1)
ωm(r) =

∑
j

γj(ωm)

(
2

α0(r)

)j (
− (j + 1)Iωm−j(r) + Jωm−j(r)

)
, (3.29)

where the new ingredient is

Jω(r) ≡
(
−α0 + α2

2

)√
α0 + α2

2π

∫ ∞
−∞

dq3 (r − q3)2ω q2
3 exp

{
−1

2
(α0 + α2)q2

3

}
. (3.30)

By writing q2
3 = r2 − 2r(r − q3) + (r − q3)2, we see that the integral is written in terms of pieces

which are all of the form eq. (3.15), and we can immediately write down

Jω(r) =

(
−α0(r) + α2(r)

2

)(
r2Iω(r)− 2rIω+1/2(r) + Iω+1(r)

)
. (3.31)
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With this in mind, the final expression for the R1ξ
E
0 term is

ξ(r)
∣∣(1,0)

1
=

5

2
ξ(r)

∣∣
0

+
∑
m

cmM̃11(νm)ξ̃(1)
ωm(r) . (3.32)

As in eq. (3.19), we can define ξ̃
(1),NΓ
ωm (r) as the expansion of the Γ function up to order NΓ

for the expression of ξ̃
(1)
ωm(r) in eq. (3.29). Then, as a final summary, the total one-loop resummed

correlation function, expanded to order NΓ is

ξ(r)
∣∣NΓ

1
=

5

2
ξ(r)

∣∣NΓ

0
+
∑
m

cmM̃11(νm)ξ̃(1),NΓ
ωm (r)− 4πc2

s

∑
m

cmM̃11(νm − 1)ξ̃
(0),NΓ

ωm−1 (r)

+
∑
m1,m2

cm1cm2

(
M̃13(ν1, ν2) + M̃22(ν1, ν2)

)
ξ̃

(0),NΓ
ω1+ω2

(r) .
(3.33)

Thus, we have successfully given an analytic formula for the one-loop IR-resummation of the
correlation function. Next, in Sec. 4, we will discuss a few different strategies to evaluate the final
expression in eq. (3.33). Then, in Sec. 5, we will see how the different strategies discussed in Sec. 4
compare to the standard numerical integral method for the IR-resummation.

4 Evaluation strategies

Although we have an analytic expression for the IR-resummed correlation function, there are some
challenges to the practical evaluation of the expression in eq. (3.33). In this section, we describe
three methods for evaluating the IR-resummation so that it is as fast as possible.

4.1 Exact evaluation

As a practical matter, evaluating the basis functions ξ̃
(0)
ω (r) and ξ̃

(1)
ω (r) for the number of necessary

ω’s is too slow; in particular, the one-loop term, which has ξ̃
(0)
ω1+ω2

(r), must be evaluated at the
O(N2

max/4) values of ω1 +ω2.8 The bottleneck in the computation is evaluating the hypergeometric

function U
(
−ω, 1

2 ,−
r2(1+iε)2

2 (α0(r) + α2(r))
)

in eq. (3.16) for all of the necessary values of ω.

Furthermore, as written in eq. (3.16), the argument of the hypergeometric function depends on
the cosmology through α0(r) and α2(r) (note that the values of ωm do not depend on cosmology,
just the interval over which we do the FFT for the initial decomposition of the power spectrum).

This means that the basis functions ξ̃
(0)
ω (r) and ξ̃

(1)
ω (r) would have to be evaluated at the relevant

ω each time that we change cosmology, and this indeed is too slow to represent any improvement
over existing IR-resummation techniques. However, we can sidestep this issue by scaling out the
dependence on α0(r) + α2(r), thus allowing us to evaluate the hypergeometric functions once and
for all in a cosmology independent way. Then, the values can be saved in a table that can be used
for any cosmology, so that the computation is made much faster. We now describe this process.

In general, we want to obtain the correlation function at a set of points {ri}. Let us imagine

that we evaluate the hypergeometric functions U
(
−ω, 1

2 ,−
x2(1+iε)2

2

)
, for all relevant values of ω,

8The factor of 1/4 comes from the fact that, first, ξ̃
(0)
ω1+ω2

(r) is symmetric in ω1 and ω2, and second, by looking

at the explicit formula for Iω(r) in eq. (3.16), that ξ̃
(0)
ω∗
1+ω∗

2
(r) = ξ̃

(0)
ω1+ω2

(r)∗.
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at a fixed set of points {xi}. Then, in a given cosmology, we should find the inverse of the rescaling

x = r [α0(r) + α2(r)]1/2 that we did inside of the hypergeometric functions. So let the function

r(x) be this inverse, i.e. let it satisfy x = r(x) [α0(r(x)) + α2(r(x))]1/2. Then, we have (taking
Imω > 0 in eq. (3.16) to be concrete),

Iω(r(x)) = 2ωeiπω(α0(r(x)) + α2(r(x)))−ω U

(
−ω, 1

2
,−x

2(1 + iε)2

2

)
. (4.1)

In this way, we will obtain the correlation function at a set of points {ri = r(xi)}.9 This set of points
depends on cosmology, but this is no worry since we will end up interpolating through the points
anyway. In this way, the hypergeometric functions only need to be computed once and then can be
saved as a table and used for any cosmology. Only the prefactors, 2ωeiπω(α0(r(x)) + α2(r(x)))−ω,
need to be computed for each cosmology. However, since they are simple functions, they evaluate
very quickly. The same approach can obviously be taken for the function Jω(r) in eq. (3.31), which
indeed is written directly in terms of Iω(r). In App. E, we present a recursion relation for the
hypergeometric function U(a, b; z) that appears in eq. (4.1) which relates the Iω−j for integer j
and can help limit the number of independent tables which must be computed.

4.2 Saddle-point approximation

Because the naive evaluation of the hypergeometric function U in eq. (3.16) is too slow for the
number of ω’s that we need for the one-loop expression in eq. (3.33) (though the improvements
we gave above make it actually feasible), we could imagine not using the explicit form of Iω(r) in
eq. (3.16), but instead approximating the integral in eq. (3.15). Indeed, the form of the integral
lends itself to the saddle-point approximation, especially because the expression for the saddle
point can be found exactly. We discuss this approach now.

First of all, we remind the reader that for the one-loop computation, the only integral that
we have to do is for Iω(r) in eq. (3.15) because the one-loop integral for Jω(r) (and indeed, as we
will see in App. D, for all loops) can be written in terms of Iω(r), see eq. (3.31). To simplify our
computation, we define x ≡ r

√
α0(r) + α2(r) and y ≡ q3

√
α0(r) + α2(r) in eq. (3.15) to get

Iω(r) =
(α0(r) + α2(r))−ω√

2π

∫ ∞
−∞

dy (x− y)2ωe−
1
2
y2

=
(α0(r) + α2(r))−ω√

2π

∫ ∞
−∞

dy e−gω(y) (4.2)

where we defined gω(y) ≡ 1
2y

2 − 2ω log(x− y). Because this function is so simple, we will be able
to find an explicit expression for the saddle point. To find the saddle point, we look for solutions
to g′ω(y) = 0, where we now consider y to be a complex number. To separate gω(y) into its real
and imaginary parts, it is helpful to define y = x − ρeiθ (with ρ ≥ 0 and 0 ≤ θ < 2π), and let
ω = ωr + iωi, so that we have

gω(ρ, θ) =
x2

2
+ 2θωi − xρ cos θ +

1

2
ρ2
(
cos2 θ − sin2 θ

)
− 2ωr log ρ

+ i
(
−2θωr − 2ωi log ρ− xρ sin θ + ρ2 cos θ sin θ

)
.

(4.3)

Then, defining the real functions uω and vω as the real and imaginary parts of gω, i.e. gω(ρ, θ) =
uω(ρ, θ) + ivω(ρ, θ), the condition that the complex derivative is zero is

cos θ
∂uω
∂ρ
− sin θ

ρ

∂uω
∂θ

= 0 , cos θ
∂vω
∂ρ
− sin θ

ρ

∂vω
∂θ

= 0 . (4.4)

9This inversion can be easily obtained numerically by using Mathematica’s FindRoot command, for example.
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This set of equations generates multiple solutions which can be found analytically with, for exam-
ple, Mathematica. Generically, there will be two viable solutions with ρ ≥ 0 and 0 ≤ θ < 2π: one
of them will have ρ ≈ x and one of them will have ρ � x. As expected, one can check that the
solution with y � x, i.e. with ρ ≈ x, is the dominant saddle, since it is larger by at least about a
factor of e

1
2
x2

than the sub-dominant saddle, and the smallest we have is x ∼ 5 (see Fig. 2) . In the
rest of this section, we will only include the dominant saddle, which we label (ρs, θs), although it is
trivial to include the subdominant saddle if one wishes (which however appears to be completely
negligible). Going back to the variable y = x − ρeiθ, the saddle point depends on the value of
ω and the point at which we want to evaluate the correlation function x(r), so we will label the
solution as ys[x, ω]. The explicit solution is, for ωi > 0,

ρs =
1

2

(
x2

1 + x2
2 + x2

)1/2
, and cos θs =

x2
1x

2
2 + 4x4 + x2

(
3x2

1 + 4x2
2 + 16ωr

)
2x
(
x2

1 + x2
2 + x2

)3/2 , (4.5)

where x2
1 ≡

√
2x2(x2

2 + x2 + 8ωr), x
2
2 ≡

√
x4 + 16x2ωr + 64(ω2

i + ω2
r ), and sin θs = +

√
1− cos2 θs.

Using the explicit equations in eq. (4.4), one can easily check that ys[x, ω
∗] = ys[x, ω]∗, so that

when ωi < 0, the solution is the same as above, but with sin θs = −
√

1− cos2 θs.
With the saddle point in hand, we can expand gω(y) around the saddle and shift the integration

variable to ∆y = y − ys in the integral in eq. (4.2) to get∫ ∞
−∞

dy e−gω(y) = e−gω(ys)

∫ ∞
−∞

d∆y e−
1
2
g′′ω(ys)∆y2− 1

3!
g

(3)
ω (ys)∆y3− 1

4!
g

(4)
ω (ys)∆y4+···

= e−gω(ys)

∫ ∞
−∞

d∆y e−
1
2
g′′ω(ys)∆y2

(
1− 1

4!
g(4)
ω (ys)∆y

4 + · · ·
)
,

(4.6)

where we have omitted the ∆y3 term in the last line because it integrates to zero here, and

g
(n)
ω ≡ ∂ngω/∂y

n. Now, one can keep as many terms as necessary in eq. (4.6), but we will see in
Sec. 5 that for practical purposes we only need the first term, which is simply a Gaussian integral.
The other terms in the series are higher moments of the Gaussian, and all of the integrals can be
done analytically.

Before moving on, let us comment on the size of the higher order corrections to the saddle-point

approximation. To find it, we need to estimate the size of the g
(4)
ω (ys) term in eq. (4.6). The size of

the region of integration is set by the overall exponential, so we can approximate ∆y2 ≈ 2/g′′ω(ys).

Next, at the order of magnitude level, we have g′′ω(ys) ≈ 1− 2ω/x2, and g
(4)
ω (ys) ≈ 12ω/x4, where

we have used ys � x. Now, the typical size of x near the BAO peak is between 10 and 20 (see
Fig. 2), and a conservative value for the largest value of ω that one has to use is Imω ≈ 20 (using
ν = −0.2, Nmax = 200, kmax = 100, and kmin = 10−5 in eq. (2.2)). All of this together means that
we can estimate ∫ ∞

−∞
dy e−gω(y) ≈ e−gω(ys)

√
2π

g′′ω(ys)

(
1 +O

(
2ω

x4

))
. (4.7)

As we will see later, without the 2ω/x4 correction, the saddle-point approximation works to better
than 0.2%, and since this additional subleading correction is less than 2ω/x4 ∼ 4 × 10−3, we are
justified in dropping it. However, as we mentioned, there is no difficulty in including the higher
order corrections. We can also compare this expansion to the one that we did in eq. (3.13) for
the Γ function in order to see which is the leading correction. There, the first correction came
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at order ω/z for z ≈ α0(r)r2/2, which is roughly the same order as the O(ω/x2) correction in
g′′ω(ys) ≈ 1− 2ω/x2 (recall that x2/2 ≡ r2 (α0(r) + α2(r)) /2, and so z is not quite equal to x2/2).
Thus, if we use the full g′′ω(ys) in eq. (4.7), we should use the Γ function expansion to first order; if
we use the next order saddle-point approximation in eq. (4.7), we should also go to the next order
in the Γ function expansion. Notice, however, that the expansion of the Γ function is not quite
the same as the saddle-point expansion. The Γ function is an expansion in powers of ω/z, while
the saddle-point approximation is an expansion in ω/x times powers of 1/x, i.e. there is simply
a linear power of ω, which is the potentially large parameter. This means that the Γ function
expansion is expected to be more important in general.

Thus, for the order that we work in this paper, we only need up to g′′ω, which is given by

g′′ω(ρ, θ) = 1 + ρ−2 (2ωr cos 2θ + 2ωi sin 2θ + 2i(ωi cos 2θ − ωr sin 2θ)) . (4.8)

In summary, the expression for the first-order saddle-point approximation is

Iω(r) ≈ (α0(r) + α2(r))−ω
e−gω(ys)√
g′′ω(ys)

=

(
r − ys√

α0(r) + α2(r)

)2ω
e−

1
2
y2
s√

g′′ω(ys)
, (4.9)

where we must evaluate the above at ys = ys

[
r
√
α0(r) + α2(r), ω

]
.

4.3 Fixed-displacements approximation

In this subsection, we describe a strategy for evaluating any implementation of the IR-resummation
presented in [1], although it will be particularly useful when combined with the two methods de-
scribed above. The main idea is that in any cosmology reasonably close to ΛCDM, the displace-
ments, which enter through the functions α0(r) and α2(r), will only be slightly different. This fact,
combined with the controlled expansion of [1], means that if one were to use the displacements of
a slightly different cosmology in the IR-resummation, the error with respect to the true cosmology
will decrease at each loop order. We will be more quantitative about this statement below, but
first we will discuss the implications.10

The main benefit of the above realization is that when scanning over cosmologies to do param-
eter fits, one can use the displacements of a single fiducial cosmology for the IR-resummation of
each separate cosmology. This simplifies and speeds up the IR-resummation in two ways. First,
one does not need to compute the functions α0(r) and α2(r) for each cosmology, but instead can
use the functions of a fiducial cosmology αfid.

0 (r) and αfid.
2 (r), for example using the Planck best fit

parameters. Secondly, and more importantly, all of the parts of the IR-resummation which depend
on the displacements will then be fixed and not have to be recomputed for each cosmology. To see
this advantage more specifically, we focus on the exact resummation of Sec. 4.1. We mentioned
in that section that one can pre-compute the hypergeometric U function in eq. (4.1) and factor
out all of the cosmology dependence so that one only has to compute simple prefactors for each

10In particular, we will compare the following two cosmologies in this section: C1 which has cosmological param-
eters {Ωm,Ωb,ΩΛ, h, ns, σ8} = {0.295, 0.0468, 0.705, 0.688, 0.9676, 0.835}, and C2 which has cosmological parameters
{Ωm,Ωb,ΩΛ, h, ns, σ8} = {0.295, 0.04914, 0.705, 0.688, 0.9676, 0.8224}. We have changed Ωb by about 4.8%, which
in turn changes σ8 by about 1.5%. The Planck data allows for approximately a 1.6% deviation of Ωb and a 1.1%
deviation of σ8 from the central values at 68% confidence level [60]. We have also checked that for other deviations,
for example changing As, the primordial scalar amplitude, by ≈ 2σ, the results of this section are not practically
changed.
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Figure 3: Here we show the difference between the two cosmologies used in this paper, C1 and C2, described
in Footnote 10, by plotting both the linear power spectra and the linear correlation functions. The cos-
mologies differ by about 4.8% in Ωb and 1.5% in σ8, both deviations which are greater than those allowed
by the 68% confidence limits of Planck [60]. Notice that while the power spectra are different by about 5%,
as expected from the change in Ωb, this causes an almost 15% change in the BAO peak. We note that the
correlation function goes through zero near r ≈ 120h−1Mpc, which is why the purple curve diverges above.

cosmology. However, if one fixes the displacements to some fiducial value, then the entire function

Iω(r) is cosmology independent. This means that in eq. (3.33), the functions ξ̃
(0)
ωm(r) and ξ̃

(1)
ωm(r) are

also cosmology independent, and the sums in eq. (3.33) are simple matrix multiplications where
the only cosmology dependence is through the linear power spectrum coefficients cm.

Let us now justify this fixed-displacements approximation. For simplicity, we will use the
expressions from [1] for the IR-resummation in momentum space, although the conclusions, in
particular about the dependence on εs<, will be the same in real space. In order to understand
the parametric dependence on the displacements εs<, we will consider a schematic version of the
exact formulas from [1], and we refer the reader to that reference for more details. Furthermore,
we will concentrate on the linear displacements, since it was shown that the next to leading order
corrections are small [47]. In Fig. 3, we show the differences between the linear quantities of the
two cosmologies C1 and C2 discussed in this section.

The IR-resummation of [1] defines a controlled expansion in εδ< while keeping the exact de-
pendence eεs< of the linear displacements, which is analytic [47]. In formulas, we can focus on
K ≡ eεs(εδ + ε2δ + ε3δ + · · · ), which, very schematically, represents the exact answer for the power
spectrum (the · · · stands for higher order terms in εδ, and for the rest of this section, εs,δ stands
for εs<,δ< for brevity). For the resummation at order N in εδ and to all orders in εs, we have

K
∣∣
N

=

N∑
j=1

MN−j K
E
j (4.10)

where KE
j is the j-th order piece of the expansion of K in εs and εδ (i.e. it is the Eulerian expansion,
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Figure 4: In this plot, we show the expansion parameters εs< and εδ< for the cosmologies C1 and C2
described in Footnote 10. Here, the unprimed quantities come from C1 and the primed quantities come
from C2. The blue curve is εs< and ε′s< (they are indistinguishable in this plot), the red curve is εδ< and
ε′δ< (they are also indistinguishable), and the green curve is the difference εs< − ε′s<. We see that the
difference in the displacements between the two cosmologies, which have a different Ωb by about 4.8%, is at
the percent level for k ∼ 0.12hMpc−1 ≡ ΛIR, which is the scale up to which we resum the IR modes.

and for example, KE
0 = εδ),

MN−j = K0 ·K−1
0

∣∣∣∣
N−j , (4.11)

K0 ≡ eεs , and the double bar ||N−j means to expand up to order N − j in both εs and εδ (in our
example K0 only depends on εs, but in general there can be a small dependence on εδ). As an
example, the one-loop expansion is

K
∣∣
1

= M1K
E
0 +M0K

E
1 = eεs (1− εs) εδ + eεsεδ (εs + εδ) = eεsεδ (1 + εδ) . (4.12)

We are now in a position to consider the effect of using the wrong displacements, called ε′s,
in the resummation. Letting K ′|N be the resummation when ε′s is used, we have, at tree level
K ′
∣∣
0

= εδe
ε′s , so that

K ′|0
K|0

= 1−∆εs , (4.13)

to first order in perturbations, where ∆εs ≡ εs − ε′s, which as can be seen in Fig. 4, is a small
parameter at ΛIR = 0.12hMpc−1, which is the scale of interest. Furthermore, at one loop, we
have

K ′
∣∣
1

= eε
′
s
(
1− ε′s

)
εδ + eε

′
sεδ(εs + εδ) . (4.14)

Notice that the εs that appears in the last term is the true cosmology εs because it comes from
the Eulerian loop KE

1 . This gives

K ′|1
K|1

= 1− 1

2
∆εs (∆εs + 2εδ) , (4.15)
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to second order in perturbations, and similarly at two loops

K ′|2
K|2

= 1− 1

6
∆εs

(
∆ε2s + 3εδ∆εs + 6ε2δ

)
, (4.16)

to third order in perturbations. Looking at Fig. 4, we see that, taking ∆εs at ΛIR, ∆εs . εδ,
so that the leading corrections above are the ones with the most powers of εδ: in general, the
correction to the N loop resummation is

K ′|N −K|N
K|N

∼ O
(
∆εs ε

N
δ

)
. (4.17)

This shows that the corrections become smaller and smaller because of the factor of εNδ . Let us
keep in mind that the IR-resummed expression to order N has a relative error of order εN+1

δ , so
this mistake in eq. (4.17) is an irrelevant mistake as long as ∆εs < εδ.

11

Figure 5: In this plot, we show the convergence of the fixed-displacements approximation as a function of
the number of loops, using the two cosmologies C1 and C2 described in Footnote 10, which have values
of Ωb which are different by approximately 4.8%. Here, ξresum is the correctly computed IR-resummed
correlation function using the base cosmology C1. On the other hand, for ξ′resum, the Eulerian loops are
computed in the cosmology C1, but the displacements from C2 are used in the IR-resummation. As we see,
the approximation gets better with the number of loops, in reasonable agreement with what is expected
from eq. (4.17).

In Fig. 5, we show how this works in the computation of the IR-resummation. In this plot, we
use the two cosmologies described in Footnote 10, which are the same except that Ωb is changed by
about 4.8%, which in turn changes σ8 by about 1.5%. The Planck data allows for approximately
a 1.6% deviation of Ωb and a 1.1% deviation of σ8 from the central values at 68% confidence level,
so what we consider is a fairly large deviation [60]. Because we want to show the result up to two
loops, we use the standard numerical integral resummation of [47], with ΛIR = 0.12hMpc−1. The

11To be more precise and take into account the case when εδ . ∆εs, the error goes like
(K′|N −K|N )/K|N ∼ O(max[∆εsε

N
δ ,∆ε

N+1
s /(N + 1)!]).
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quantity ξresum is the correctly computed resummed correlation function using the base cosmology
C1. In the quantity ξ′resum, the Eulerian loops are computed in the cosmology C1, but the dis-
placements from C2 are used in the IR-resummation: Fig. 4 shows the difference in displacements
between the two cosmologies. From Fig. 5, we can see that indeed the fixed-displacements approx-
imation gets better as the loop number increases. We can also see that our numerical results in
Fig. 5 are in reasonable agreement with the estimate in eq. (4.17). The corrections here are all
sub-percent, so this method will be accurate enough to be used in upcoming data analyses.

5 Results and conclusion

Figure 6: We show the result of the IR-resummation of the power spectrum in momentum space, compared
with non-linear (NL) data from the ds14 a run of the Dark Sky simulation [59]. Cosmological parameters
are given in the main text, and the values for the counterterms are taken from [22]. In this plot, all of the
thin resummed curves (blue, red, and purple) are evaluated with the standard numerical integral technique
[47]. The thick black curve (which is directly on top of the solid red curve) is evaluated using the exact
analytic method described in this paper in Sec. 4.1. In momentum space, the BAO feature shows up as
oscillations in the power spectrum. The fact that the resummed curves are not wiggly in this plot means
that the BAO features are being correctly taken into account.

In this section, we first compare our results to simulation data, and then we analyze in more
numerical detail the precision and accuracy of our present developments.12 In this paper, we
have presented three methods (Sec. 4) for computing the analytic IR-resummation: the exact
evaluation, the saddle-point approximation, and the fixed-displacements approximation. We have
already thoroughly discussed the fixed-displacements approximation in Sec. 4.3, so we will focus on
the former two in this section, and would like to reiterate here that the ultimate method that we
propose is a combination of the exact evaluation and the fixed-displacement approximation. We
will compare to data from the ds14 a run of the Dark Sky simulation which evolved 102403 particles

12A Mathematica notebook with our computations is available at the EFTofLSS repository.
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in a volume of (8h−1Gpc)3 with cosmological parameters Ωm = 0.295, Ωb = 0.0468, ΩΛ = 0.705,
h = 0.688, ns = 0.9676, σ8 = 0.835 [59].13 For the one- and two-loop EFT expressions for the
power spectrum and correlation function, we use the fitted parameters obtained in [22] which
compared to the same simulation. In particular we have, in the notation of eq. (C.1), c2

s(a0) =

0.0413
(
hMpc−1

)−2
. For all IR-resummation methods, we use the cutoff ΛIR = 0.12hMpc−1

(defined in eq. (A.6)). In all legends, “analytic” refers to the exact evaluation in Sec. 4.1, “saddle”
refers to the saddle-point approximation in Sec. 4.2, and “num. int.” refers to the numerical
integral method of [47]. For the tree-level power spectrum decomposition, we use the parameters
(see eq. (2.2)) ν = −0.2, Nmax = 200, kmax = 100, and kmin = 10−5, and for the one-loop
decomposition, we use ν = −1.2, Nmax = 250, kmax = 100, and kmin = 10−5.
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Figure 7: In this figure, we compare the new exact analytic and saddle point-approximation methods of
IR-resummation to the standard numerical integral (“num. int.” in the legend) method of [47]. In the
left panel, we give an overview of the various quantities, although curves of the same color are bunched
together because they are approximately equal. In the right panel, we show some more detail by comparing
the various curves directly with the two-loop numerical integral IR-resummation, which, as described at
the beginning of Sec. 5, we use as a proxy for the correct answer. In the right panel, we see two things.
First, we see convergence to the correct answer, as the one-loop quantities are clearly an improvement
over the tree-level quantities. Second, we see that all three methods of computing the IR-resummation are
approximately equal. More detail is shown in Fig. 8.

Because we are not aware of measurements of the correlation function for this simulation, we
make our comparison in momentum space in Fig. 6: the result of our one-loop, exact analytic
IR-resummation (Sec. 4.1) is shown as the black curve. The other curves are either the Eulerian
power spectra, or the IR-resummed power spectra using the numerical integral formulas of [47].
The BAO peak of the correlation function appears as oscillations in the power spectrum, so when
the curve of P (k)/PNL(k) is wiggly, this means that the computed P (k) is not correctly describing
the BAO peak of the non-linear (NL) data: this is the case with all of the Eulerian curves in Fig. 6,
and this is how the poor convergence of the Eulerian correlation function curves of Fig. 1 shows
up in the power spectrum. On the other hand, the IR-resummed curves do not show any residual

13These are the same parameters as for the cosmology C1 in Sec. 4.3.
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oscillations. Since we are ultimately interested in studying the BAO peak in this paper, the main
point of Fig. 6 is to show that the two-loop, IR-resummed EFT power spectrum from [47] fits the
the BAO oscillations very well. Thus, since we do not have the correlation function data for this
simulation, we will use the two-loop, IR-resummed EFT correlation function as a proxy for the
data. In any case, the main point of the current work is to study the accuracy of our method
against the existing computational methods of [1, 47].

Now, we look directly at the correlation function. First, in Fig. 7, we show an overview of two of
the methods proposed in this paper (the exact analytic and saddle-point approximation methods)
and the standard numerical integral method of [47], compared with the two-loop numerical integral
IR-resummation, which is our proxy for the true answer. We can clearly see that the loop expansion
is converging. However, because the different computational methods are all so close, this plot is
not very useful for showing the differences between them. For that comparison, we look at Fig. 8.

Figure 8: In this figure, which is our main result, we compare our new IR-resummation methods to the
standard numerical integral (“num. int.” in the legend) IR-resummation of [47]. We remind the reader
that ξ|N means that the correlation function is resummed in εs<, and expanded to order N in εδ<. We
see that the two methods proposed in this work are different from the numerical integral computations by
less than 0.2%. This difference is mainly due to the expansion of the Γ function in eq. (3.13), which also
explains why the mistake is not recovered by the loop expansion. One can easily include more terms in the
Γ function expansion, as described in the main text. Finally, we show the effect of the counterterm, which
is approximately 0.4%. For this curve (dotted red), we have included the counterterm in ξ|num.int.1 , but have
left it out of ξ|saddle1 . This shows quantitatively the effect of the counterterm on the BAO scales.

In Fig. 8, which summarizes our main results, we compare our methods of IR-resummation to
the standard numerical integral computation. In particular, we compare the tree-level and one-
loop resummations for both the exact analytic evaluation and the saddle-point approximation to
the corresponding computations done with numerical integrals. The difference is less than 0.2%
for both methods, and it does not improve with the number of loops. This makes sense, since the
expansion of the Γ function in eq. (3.13) is common to both methods and is a systematic error
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which is not recovered order by order in the loop expansion.14 This should be contrasted with the
fixed-displacements approximation of Sec. 4.3, where the mistake from the displacements leads to
a smaller and smaller effect as we go to higher loops. However, this is of little importance here,
since one can easily include higher orders in the Γ function expansion, and we are already at a
precision of better than 0.2%, which should be precise enough for any upcoming survey. Finally,
in Fig. 8, we look at the effect of the counterterm on the BAO peak. To get an idea, we plot the
one-loop saddle-point approximation without the counterterm, divided by the one-loop numerical
integral computation with the counterterm. We see that the effect is approximately 0.4%.

Figure 9: In this plot, we show the various contributions to the one-loop resummed correlation function. We
show the difference between the Eulerian terms (black dashed and dotted) and the corresponding resummed
contributions (teal dotted and dot-dashed), as well as the counterterm contribution (solid teal). Notice that
the counterterm contribution has been scaled by a factor of 100 to make it visible: it is much smaller than
the other one-loop pieces. For the full definitions of the R1ξ

E
11 and R0ξ1-loop contributions, see eq. (3.21).

The counterterm contribution, eq. (3.24), is plotted with c2s = 0.0413
(
hMpc−1

)−2
.

To put this into perspective, in Fig. 9 we show the various contributions to the one-loop exact
analytic resummation. We plot the full one-loop computation, along with the individual R1ξ

E
11

and R0ξ
E
1-loop contributions (see eq. (3.21) for notation), and also the counterterm contribution

(eq. (3.24), with c2
s = 0.0413

(
hMpc−1

)−2
). Notice that the counterterm contribution has been

scaled by a factor of 100: it is about 1/100 of the one-loop contribution. The smallness of this
contribution is to be expected since the counterterm describes UV physics, and the BAO peak is
dominated by IR physics.

Now that we have seen how precise our new computations are, we can discuss the improvements
in computational time. All comparisons made here have been done in Mathematica on a laptop.

14We can check that the order of magnitude of this mistake is what is expected. Looking back at eq. (3.13), the
first term that we we did not include in the Γ function expansion is of order ω2/z2. For our decomposition, we can
take representative values Imω ∼ 10 and z ∼ 170, which gives ω2/z2 ∼ 3.5× 10−3, in approximate agreement with
what we see in Fig. 8.
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Because we expect that everything can be run much faster with a more sophisticated code, we
simply report the ratio of times between different methods. As presented in Sec. 4.1 and Sec. 4.2,
the exact evaluation and saddle-point approximation take just about as long as the numerical
integral method per output r point, and so by themselves they do not represent much of an
improvement. This is observation is particularly relevant because we do not yet have the two-
loop analogue of the one-loop power spectrum decomposition of Sec. 2. However, we hope that
our formalism might simplify other computations, such as the IR-resummation of the bispectrum,
which to date has not been implemented.

More immediately, though, our formalism, combined with the fixed-displacements approxima-
tion of Sec. 4.3 does provide a significant improvement (about a factor of 6 to 10 in computational
time) over the standard computation. As we remarked in Sec. 4.3, once the IR-displacements are
fixed, the IR-resummation becomes simply a matrix multiplication between the cosmology depen-
dent cm coefficients and a fixed, cosmology independent resummation matrix. In particular, when
combining the exact evaluation method of Sec. 4.1 with the fixed-displacements approximation of
Sec. 4.3, we find that the error with respect to the numerical integrals is at the level of 0.3%, in
agreement with what one would guess by combining the errors of the individual methods.

We see a few interesting extensions of this work. First, concerning the power spectrum, we have
shown in App. D that the higher loop generalization of our work should be straightforward. Thus,
once we understand the two-loop FFTLog decomposition, we should be able to apply our formalism
to it without much trouble. Next, we hope that our work can also be used to implement the IR-
resummation for other cosmological observables, like the bispectrum and redshift space distortions.
In those cases, there are more numerical integrals to be done, and practical implementation is more
difficult than for the correlation function (for example, it does not exist yet for the bispectrum).
As always, having an analytical formula may help with simplifying numerical computations, but
we leave this exploration for future work.
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A IR-resummation expressions

In this appendix, we present some details for doing the IR-resummation presented in Sec. 3. First,
we introduce some notation. We use a double bar g(r)||n to mean that the quantity g(r) is expanded
up to n-th order in all of the parameters εs<, εδ<, and εs> (defined in eq. (1.1)): this is simply
the Eulerian expansion. We use a single bar g(r)|n to mean that g(r) is expanded up to n-th
order in εδ< and εs>, but that εs< has been resummed: this is the result of the IR-resummation.
Finally, for the correlation function, we use a subscript like in ξ(r)j to mean that we take the j-th
loop-order piece of the correlation function in Eulerian perturbation theory.

From [47], the IR-resummed correlation function ξ(r)
∣∣
N

, to order N in εδ< and to all orders

in εs<, in terms of the j-th order contribution to the Eulerian correlation function ξE
j (q), is given

by15

ξ(r)
∣∣
N

=
N∑
j=1

∫
d3q ξE

j (q)RN−j(~r − ~q, ~r) (A.1)

where

RN−j(y
i, ~r) = K−1

0

(
−i ∂
∂yi

, ~r

) ∣∣∣∣∣
∣∣∣∣∣
N−j

G(~y, ~r) , (A.2)

G (~y, ~r) =
(2π)−3/2√
|A(~r)|

exp

{
−1

2
yiyjA−1

ij (~r)

}
, (A.3)

K0(~k, ~q) = exp

{
−1

2
kikjAij(~q)

}
, (A.4)

Aij(~r) ≡ A0(r)δij +A2(r)r̂ir̂j , A−1
ij (~r) ≡ α0(r)δij + α2(r)r̂ir̂j , (A.5)

A0(r) =

∫ ΛIR

0

d p

2π2

2

3
(1− j0(rp)− j2(rp))P11(p) , A2(r) =

∫ ΛIR

0

d p

2π2
2j2(rp)P11(p) , (A.6)

α0(r) = A0(r)−1, and α2(r) = −A2(r)A0(r)−1(A0(r) + A2(r))−1. Here, ΛIR is the IR scale up
to which we resum the linear IR modes. This cutoff and the choice in eq. (A.4) to keep the
linear modes non-perturbative both serve to define a new expansion parameter ε̃s<, such that
ε̃s< � 1 . εs<. Because ε̃s< is small, the perturbative expansion now converges rapidly, and
higher loops will improve the computation. In practice, we use ΛIR = 0.12hMpc−1.

In this paper, we concentrate on the one-loop resummation, so the relevant functions for us are

R0(~y, ~r) =
(2π)−3/2√
|A(~r)|

exp

{
−1

2
yiyjA−1

ij (~r)

}
, (A.7)

and

R1(~y, ~r) =
(2π)−3/2√
|A(~r)|

(
5

2
− 1

2
ykylA−1

kl (~r)

)
exp

{
−1

2
yiyjA−1

ij (~r)

}
. (A.8)

15Here and in the rest of the paper, we only include the effects of the linear displacements; Ref. [47] showed
that the correction due to the three-point function of the displacement field is negligible with respect to higher loop
corrections.
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We will see that it is useful to introduce the following notation

Rλ0 (~y, ~r) =
(2π)−3/2√
|A(~r)|

exp

{
−λ

2
yiA−1

ij (~r)yj
}

(A.9)

so that we can write

R1(~y, ~r) =
5

2
R1

0(~y, ~r) + ∂λR
λ
0 (~y, ~r)

∣∣
λ=1

. (A.10)

Now let us briefly comment on some properties of the matrix Aij(~r) used in writing the integral
in eq. (3.10) as eq. (3.11). From the expression in eq. (A.5), we can immediately find the three

eigenvectors and eigenvalues of Aij(~r). Let v̂
(1)
i and v̂

(2)
i be two unit vectors that are orthogonal

to r̂i. Then v̂
(1)
i and v̂

(2)
i are eigenvectors with eigenvalues A0(r), and r̂i is an eigenvector with

eigenvalue A0(r) +A2(r). This means that we can diagonalize A and A−1 as

Aij(~r)→

A0(r) 0 0
0 A0(r) 0
0 0 A0(r) +A2(r)

 (A.11)

A−1
ij (~r)→

α0(r) 0 0
0 α0(r) 0
0 0 α0(r) + α2(r)

 (A.12)

where we have chosen the 3̂ direction to be parallel with r̂.

B Subleading corrections to the wiggle/no-wiggle method

B.1 Derivation of wiggle/no-wiggle from the IR-resummation

The expression for the resummed power spectrum at one loop in the wiggle/no-wiggle method is
given by [21, 48]

Pw/nw(k)|1 = P s11(k) + P s1 (k) + e−k
2Σ2 (

Pw11(k)
(
1 + k2Σ2

)
+ Pw1 (k)

)
(B.1)

where P s11(k) is the smoothed linear power spectrum (for example using the Eisenstein and Hu
smooth power spectrum [61]), Pw11(k) ≡ P11(k)−P s11(k), P s1 (k) is the one-loop contribution to the
power spectrum computed in Eulerian perturbation theory using only P s11(k) (including countert-
erms), Pw1 (k) ≡ P1(k)− P s1 (k), and Σ2 is defined differently in the two references [21, 48]. In [21],
calling their choice Σ2

1, they use

Σ2
1 =

1

2
A0(`BAO) , (B.2)

where A0 is defined in eq. (A.6), but with ΛIR = εk and ε � 1. On the other hand, using Σ2 to
denote the choice in [48], they use

Σ2
2 =

1

2π2

1

r3
max − r3

min

∫
d3r

(
As,∞0 (r) +

1

3
As,∞2 (r)

)
, (B.3)

which is the average of the smooth part of the displacement correlation functions over the range
where the wiggles are prominent (for example qmin = 10h−1Mpc and qmax = 300h−1Mpc), and
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As,∞0 and As,∞2 are as in eq. (A.6), but using P s11 and integrating with ΛIR = ∞. The difference
between evaluating the displacements at `BAO as in eq. (B.2) or averaging over them as in eq. (B.3)
is a small effect, for the same reason that the fixed-displacements approximation of Sec. 4.3 is a
good approximation.

In this appendix we are going to rigorously derive eq. (B.1) in such a way that all of the
approximations will be explicit and one could, in principle, include them.16 Let us first see how
eq. (B.1) can be simply derived from the expressions of [47], which are a simple manipulation
of the expressions of [1], after dropping some small corrections. The one-loop expression for the
correlation function is given by, see App. A,

ξ(r)|1 =
(2π)−3/2√
|A(~r)|

∫
d3q exp

{
−1

2
qiqjA−1

ij (~r)

}((
5

2
− 1

2
qkqlA−1

kl (~r)

)
ξE

11(|~r − ~q|) + ξE
1 (|~r − ~q|)

)
.

(B.4)
Breaking the power spectrum into a smooth part and a wiggle part means that we break the
correlation function into a smooth part and a peak part. Similarly to above, we define ξs11 and ξs1
as the Fourier transforms of P s11 and P s1 , and we also define ξp11 ≡ ξE

11− ξs11 and ξp1 ≡ ξE
1 − ξs1, where

p stands for peak.
We start by looking at the resummation eq. (B.4) applied to the smooth correlation functions.

One can notice immediately that if ξs(|~r − ~q|) → ξs(r) in eq. (B.4), which is generally a good
approximation since from [1] we know that at leading order, the IR-resummation does not change
a truly smooth function, one can do the Gaussian integral over d3q to obtain ξs(r)|1 → ξs11(r)+ξs1(r),
i.e., there is no resummation of the smooth part. We will comment below on the corrections to
this statement, but first we look at the leading resummation of the peak part.

Next, consider eq. (B.4) applied to the peak correlation function ξp (whose Fourier transform
is the wiggle power spectrum Pw), and write the expression in Fourier space. This gives17

Pw(k)|1 ≡
∫
d3r ei

~k·~rξp(r)|1 (B.6)

=
(2π)−3/2√
|A(~r)|

∫
d3r ei~r·

~k

∫
~k′
e−i

~k′·~r
((

5

2
G̃(~k′, ~r)− 1

2
G̃1(~k′, ~r)

)
Pw11(k′) + G̃(~k′, ~r)Pw1 (k′)

)
=

∫
d3r ei~r·

~k

∫
~k′
e−i

~k′·~r exp

{
−1

2
k′ik′jAij(~r)

}((
1 +

1

2
k′ik′jAij(~r)

)
Pw11(k′) + Pw1 (k′)

)
.

16We do this derivation at one-loop, but it is obvious how to extend it to all loops, as the trick of subtracting the
IR-resummation when adding the loop conbtribution so that we are not double counting is the same as introduced
in [1].

17We have used the Fourier transforms of the Gaussians

G(~q, ~r) ≡ exp

{
−1

2
qiqjA−1

ij (~r)

}
=

∫
~k

e−i
~k·~q G̃(~k, ~r)

G̃(~k, ~r) ≡
∫
d3qei

~k·~q exp

{
−1

2
qiqjA−1

ij (~r)

}
=

(2π)3/2√
|A−1(~r)|

exp

{
−1

2
kikjAij(~r)

}
G1(~q, ~r) ≡ qkqlA−1

kl (~r) exp

{
−1

2
qiqjA−1

ij (~r)

}
=

∫
~k

e−i
~k·~q G̃1(~k, ~r)

G̃1(~k, ~r) ≡
∫
d3q ei

~k·~qG1(~q, ~r) =
(2π)3/2√
|A−1(~r)|

exp

{
−1

2
kikjAij(~r)

}(
3− kikjAij(~r)

)
.

(B.5)
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Now, if Aij were not to depend on ~r, i.e. if Aij = Ā0 δij where Ā0 is constant, then one could do

the integral over d3r to get a factor of δ(~k − ~k′) and then do the integral over ~k′ to give

Pw(k)|1 → exp

{
−1

2
k2Ā0

}((
1 +

1

2
k2Ā0

)
Pw11(k) + Pw1 (k)

)
. (B.7)

This is almost the expression for the wiggle part in eq. (B.1), but we should make a few comments
related to the matrix Aij(~r) = A0(r)δij + A2(r)r̂ir̂j . To make this independent of r, one could
consider a spatial average over A0(r) and A2(r), as in eq. (B.3), or simply evaluate them near
the BAO peak, i.e. use A0(`BAO) and A2(`BAO) as in eq. (B.2) (the difference between these two
choices is small). In terms of the angular part of the matrix structure, to ignore the r̂i dependence,
one can either take the piece proportional to δij as in eq. (B.2), or take the trace, which is what
eq. (B.3) does. Finally, the displacement correlation functions A0 and A2 that we use have a cutoff
at ΛIR = 0.12hMpc−1, while the functions As,∞0 and As,∞2 in eq. (B.3) have a cutoff of ΛIR =∞,
and A0(`BAO) in eq. (B.2) has a cutoff of ΛIR = εk, with ε ∼ 1/2. With these caveats in mind, we
recover the wiggle part in eq. (B.1) by using

Ā0 → A0(`BAO) ' 2Σ2
1 , (B.8)

to match eq. (B.2), or

Ā0 →
(
A0(`BAO) +

1

3
A2(`BAO)

)
' 2Σ2

2 , (B.9)

to match eq. (B.3). In this way have shown how the wiggle/no-wiggle method is a relatively
straightforward approximation of the expression in [1]. Indeed, this had to be the case as there is
only one correct way to resum the displacements. However, our derivation allows us to estimate
the size of the approximations, or to include the corrections, which we do next.

B.2 Subleading corrections

B.2.1 Smooth part

Now that we have seen the approximations for which the IR-resummation reduces to the wiggle/no-
wiggle method, we can study the corrections. The first correction comes from the resummation of
the smooth part of the correlation function. As stated above, this comes from expanding ξs(|~r−~q|)
for q/r � 1. Looking back at eq. (B.4), plugging in the smooth correlation functions, expanding
ξs(|~r − ~q|) for q/r � 1, and looking at the first correction, we find

∆ξs(r)|1 ≈
1

2

∂2ξs1
∂ri∂rj

(~r)Aij(~r) . (B.10)

If one has a perfectly smooth function and there is no scale in it, then one has that

∂2ξs1
∂ri∂rj

(r) ∼ ξs1(r)

r2
. (B.11)

However, if during the arbitrary splitting of ξE, there are still some peak-like features in the smooth
correlation function, then

∂2ξs1
∂ri∂rj

(r) ∼ ξs1(r)

r2
+ εosc

ξs1(r)

σ2
, (B.12)
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where σ is the size of the feature near position q in configuration space (for example the width of
the BAO peak near `BAO), and εosc characterizes the oscillatory features that are still present in
the power spectrum. We will discuss these two corrections separately, so for convenience, let us
define

∆ξs1,smooth(r) ≡ 1

2
|A(r)|ξ

s
1(r)

r2
, and, ∆ξs1,osc(r) ≡

1

2
|A(r)|εosc

ξs1(r)

σ2
, (B.13)

where by |A(r)| we mean the typical size of the matrix Aij(~r), which for example, we can take to
be |A(r)| = A0(`BAO) for the purposes of this discussion.

We first discuss the correction ∆ξs1,smooth. It turns out that the size of the displacements

Aij at the BAO scale are of order the BAO peak width squared, σ2, so ∆ξs1,smooth(`BAO) is a

parametrically small correction if σ2/`2BAO � 1, which is more or less true since σ ≈ 10h−1Mpc
and `BAO ≈ 110h−1Mpc.18 This may not always be the case with ∆ξs1,osc, though. Looking at

Fig. 10, we see that ξs1 has features somewhat comparable to the scale of the BAO-peak width.19

These features come from the fact that the one-loop contribution to the power spectrum, even in
the absence of baryons, has an oscillatory-like feature before k ≈ 0.5hMpc−1. As can be seen in
Fig. 11, this leads to an approximately 0.5% correction near the BAO peak. In Fig. 11, we also
see that ∆ξs1,smooth is indeed negligible, and that the extra features in ξs1 make εosc ≈ 2.5.

Figure 10: In this figure, in the left panel, we show the smoothness of the tree level ξs11 and one-loop
contribution ξs1, and we see that, while ξs11 is quite smooth as expected, ξs1 is much less so. The reason that
ξs1 is not smooth is that there is a feature in the one-loop contribution to the power spectrum, even in the
absence of baryons, for k < 0.5hMpc−1, as can be seen in the plot of P s1 in the right panel (red curve).

B.2.2 Peak part

We now turn to the corrections to the resummation of the peak correlation functions, which turn
out to be comparable to the corrections found in the previous section. Recall that to get the

18The error is also small away from the BAO peak, i.e. for r � `BAO, because |A(r)|/r2 ' 0.014 as r → 0.
19A less optimal choice of ξs might put into ξs also some of the oscillatory features of the BAO. In fact, clearly,

if one were to choose, very suboptimally, ξs ≡ ξE, then the wiggle/no-wiggle procedure would be equivalent to SPT.
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wiggle/no-wiggle expression in eq. (B.7), we had to assume that Aij was independent of ~r. The
corrections to that assumption come from two sources: the first is the angular dependence in the
r̂ir̂j term, and the second is the magnitude dependence in A0(r) and A2(r). It turns out that the
angular dependence is most important, so we concentrate on that here.

To find the corrections due to the angular dependence, we write

Aij(~r) ≈
(
A0(`BAO) +

1

3
A2(`BAO)

)
δij +A2(`BAO)

(
r̂ir̂j −

1

3
δij

)
+ . . . , (B.14)

and expand Aij as above in the last line of eq. (B.6), keeping only the terms which are first order
in A2(`BAO)(r̂ir̂j − δij/3). The correction due to the angular terms then, is

∆ξp(r)|1 =

∫
~k
e−i

~k·~r exp

{
−1

2
k2

(
A0(`BAO) +

1

3
A2(`BAO)

)}(
−k

2A2(`BAO)

2

(
µ2 − 1

3

))
×
(

1

2
k2

(
A0(`BAO) +

1

3
A2(`BAO)

)
Pw11(k) + Pw1 (k)

)
,

(B.15)

where µ ≡ k̂ · r̂. To see how large of a correction this might be, we should compare it to the leading
term in eq. (B.6), which is

≈
∫
~k
e−i

~k·~r exp

{
−1

2
k2

(
A0(`BAO) +

1

3
A2(`BAO)

)}
Pw11(k) . (B.16)

To estimate the difference in the integrals over µ, we use that∫∞
0 dx

∫ 1
−1 dµ e

−ixµ∫∞
0 dx

∫ 1
−1 dµ e

−ixµ
(
µ2 − 1

3

) ≈ −3 , (B.17)

so that the size of the correction is approximately∣∣∣∣∆ξp(r)|1ξp(r)|1

∣∣∣∣ ' 1
4A2(`BAO)k4

(
A0(`BAO) + 1

3A2(`BAO)
)

3
≈ 0.009 (B.18)

where we have used k = 0.1hMpc−1, which is where the BAO wiggles have support. We see in
Fig. 11 that our estimate is of the correct order.

We should note that, at higher loop order, the effect of some of these corrections is expected
to diminish because of the analytic dependence of the power spectrum on εs< but that different
corrections will scale differently. For example, differences related to the cutoff ΛIR or to the dif-
ference between eq. (B.2) and eq. (B.3) with respect to evaluating the displacements at `BAO or
averaging over them, will be parametrized by ε̃s< � εs< ' 1 and are recovered in the SPT expan-
sion (this is analogous to the discussion in Sec. 4.3 about the fixed-displacements approximation).
On the other hand, differences related to the angular expansion are parametrized by the small-
ness of A2(`BAO)/`2BAO times small angular factors, which happen to be small in practice, but are
generically of the order εs<. However, it is not clear how the corrections due to not resumming
the higher order smooth parts scale, since this depends on how one defines the smooth parts.

In summary, we have derived the wiggle/no-wiggle formula from the IR-resummation expres-
sions of [1], including the two numerically leading corrections to the wiggle/no-wiggle method, due
to not resumming the smooth correlation function and to ignoring angular pieces, which are each
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Figure 11: In this figure, we plot various corrections to the wiggle/no-wiggle method. In the legend, δξresum1-loop

is the change in the IR-resummation going from tree-level to one-loop, ∆ξs|1 is defined in eq. (B.10),
∆ξs1,smooth and ∆ξs1,osc are defined in eq. (B.13), ∆ξp|1 is defined in eq. (B.15). In this figure, we use
εosc = 2.5 to show that the correction to the resummed smooth one-loop contribution comes from the fact
that ξs1 is not totally smooth and has sizeable features, even though the estimate of the correction from
the smooth correlation function (the dashed orange curve, which is barely different from 0 in this plot),
is negligible. We have also included the smooth one-loop contribution ξs1 as the dashed green curve for
comparison. It is however possible, and somewhat suggested by the plot, that these independent corrections
(the red and blue curves) might accidentally cancel, at least partially.

roughly 0.5% in size. However, it is possible that there is a partial accidental cancellation among
these corrections. These corrections should be compared with the size of the two-loop correction.
By using the method proposed in [1] to optimize convergence (i.e. rescaling A0 → (1 + α)A0

for α ∼ 0.85), the two-loop correlation function is about 0.4% of one loop, which appears to be
smaller, although not by much, than the estimated corrections to the wiggle/no-wiggle method.
Given that the error bars on upcoming surveys will be at the 1% level (see for example [62]), it is
interesting to understand the differences more thoroughly. Also, since one of the errors is related to
the angular pieces, it could be that the difference will be more severe in other observables like the
bispectrum and in redshift space, where these terms are expected to contribute at leading order
to higher moments. In order to do a useful and thorough comparison, we would need precise data
for the BAO peak, which is not currently available to us. However, since the main goal of this
paper is to develop an analytic implementation of the formulas of [1], we leave this comparison for
future work.
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C One-loop power spectrum

In this appendix, we give some general background formulas that are used in this paper. In the
EdS approximation, the power spectrum up to one loop is given by (for example, see [39])

P (k, a) = D(a)2P11(k) +D(a)4 (P13(k) + P22(k))− 4πc2
s(a)k2D(a)2P11(k) (C.1)

where the last term is the counterterm from the EFTofLSS [2, 3]. The explicit forms of the one-loop
pieces are

P22(k) = 2

∫
d3q

(2π)3
F2(~q,~k − ~q)2P11(q)P11(|~k − ~q|) ,

P13(k) = 6P11(k)

∫
d3q

(2π)3
F3(~q,−~q,~k)P11(q) ,

(C.2)

where the Fn are known kernels [39], and, in particular,

F2(~q,~k − ~q) =
5

14
+

3k2

28q2
+

3k2

28|~k − ~q|2
− 5q2

28|~k − ~q|2
− 5|~k − ~q|2

28q2
+

k4

14|~k − ~q|2q2
. (C.3)

and

F3(~q,−~q,~k) =− 97

1512
+
|~k − ~q|2

24k2
+

1195k2

6552|~k − ~q|2
− 19|~k − ~q|4

504q4
+
|~k − ~q|2k2

14q4
− 5k4

168q4

− k6

252|~k − ~q|2q4
+

211|~k − ~q|2

1512q2
− |

~k − ~q|4

72k2q2
− 187k2

1512q2
− k4

504|~k − ~q|2q2

− 19q2

504|~k − ~q|2
− q2

24k2
+

q4

72|~k − ~q|2k2
,

(C.4)

where in the expression for F3(~q,−~q,~k) we have changed variables of integration from ~q → −~q in
the terms which normally contain |~k + ~q| so that all terms are in the same form.

Next, let us comment briefly on some properties of the dimensional regularization expression
eq. (2.7) and subtleties mentioned in [57] related to using eq. (2.7) for the loop integrals. The
first thing to notice is that for any purely power law divergence, eq. (2.7) gives zero, that is,
I(ν1, ν2) = 0 if ν1 = 0 or ν2 = 0. This is typical when one uses dimensional regularization. On
the other hand, if an integral has a divergence, but also has a finite part, then eq. (2.7) gives the
finite part. For example, consider ν1 = ν2 = 1/2. In this case, the UV limit of the integrand
is d3q/q2 and the integral is linearly divergent in the UV, but eq. (2.7) gives a finite answer
because I(1/2, 1/2) = −1/(4π2). To understand this, consider doing the following part of the loop
calculation with a UV cutoff Λ,∫ Λ d3q

(2π)3

1

q|~k − ~q|
=

∫ Λ d3q

(2π)3

(
1

q|~k − ~q|
− 1

q2

)
+

∫ Λ d3q

(2π)3

1

q2
. (C.5)

In this expression, the integral over the parentheses on the right-hand side is manifestly convergent
in the UV because we have explicitly subtracted out the UV divergent piece. Then, if Λ is larger
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than all of the other mass scales, we can use the dimensional regularization expression eq. (2.7) to
approximate the integral over the parentheses on the right hand side by writing∫ Λ d3q

(2π)3

(
1

q|~k − ~q|
− 1

q2

)
=

∫ ∞ d3q

(2π)3

(
1

q|~k − ~q|
− 1

q2

)
−
∫ ∞

Λ

d3q

(2π)3

(
1

q|~k − ~q|
− 1

q2

)
(C.6)

and using eq. (2.7) to evaluate the
∫∞

term above, which is the finite piece that we mentioned
before, the one proportional to I(1/2, 1/2). Because the integrand in eq. (C.6) is convergent in the
UV, the piece

∫∞
Λ in eq. (C.6) goes to zero as Λ→∞, and so dimensional regularization eq. (2.7)

gives a very good approximation to the
∫ Λ

piece which we wanted to evaluate and use in eq. (C.5).
Now it is clear that if we wished to use dimensional regularization to match the numerical value of
the loop integral with a cutoff, we must add the last term in eq. (C.5) by hand, explicitly putting
the cutoff (and, for very accurate precision, also the last integral in eq. (C.6), which however is
very small for Λ → ∞). This is a general lesson: if we try to do an integral which has an IR or
UV divergence, eq. (2.7) will not pick up the divergent piece, and we should add it by hand as
on the right-hand side of eq. (C.5). We will see how this enters the loop computations a bit more
concretely next.

Now we discuss the convergence properties of the loop integrals eq. (C.2). When using the
decomposition eq. (2.1), the convergence of the loop integrals depends on ν, the real part of −2νm
in eq. (2.1), so for the purposes of this discussion, let us assume that the linear power spectrum is
a single power law, i.e. P11(k) ∝ kν where ν is real (properties of IR and UV divergences in power-
law cosmologies have been thoroughly discussed in the literature, see for example [43, 44, 7, 5].)
By taking the IR limit (q � k) and UV limit (q � k) of eq. (C.2) with P11(k) ∝ kν , one can see
that the P22 integral is convergent in the IR for −1 < ν and convergent in the UV for ν < 1/2, and
the P13 integral is convergent in the IR for −1 < ν and convergent in the UV for ν > −1 (i.e. it
is never convergent). For concreteness, let us momentarily focus on the P22 integral. If we choose
a value of ν such that the full integral is convergent, then using eq. (2.7) will certainly give us the
same answer as the numerical integration. Notice that if we expand F2(~q,~k − ~q)2 and write the
P22 integral as a sum of terms of the form eq. (2.7), many of the individual terms will have IR or
UV divergences. However, as mentioned before, these divergences are set to zero by dimensional
regularization, and one is left with only the finite contributions which indeed add up to the final
finite answer for the convergent integral. If, on the other hand, we choose a value of ν, say ν = 1,
for which the full P22 integral really contains a divergence (in this case there is a linear divergence
in the UV), then this piece will not be captured by dimensional regularization, and as discussed
around eq. (C.5), one has to add this piece by hand. In equations, this is

2

∫ Λ d3q

(2π)3
F2(~q,~k − ~q)2qν |~k − ~q|ν ' k3k2νM22(−1/2,−1/2) + 2

∫ Λ d3q

(2π)3

9

196

k4

q4
q2ν , (C.7)

where the ' is used above because the left-hand side is equal to the right-hand side up to the
integral from Λ to ∞ of a UV convergent integrand, as discussed near eq. (C.6).

Let us now discuss how this all plays out for the one-loop power spectrum in the EFTofLSS.
We start with the UV divergences. As mentioned above, P13 is UV divergent for ν > −1. For
−1 < ν < 1, there is only one term that is set to zero by dimensional regularization and that we
have to add by hand. This term is

− 61

630π2
k2P11(k)

∫ Λ

0
dq P11(q) , (C.8)

32



where Λ is the UV cutoff in the EFTofLSS. Notice that this term is of exactly the same form, as a
function of k, as the counterterm which is already included in eq. (C.1). This is not an accident,
since the counterterms in the EFTofLSS are designed to absorb the cutoff dependence of the loop
integrals in the UV. Thus, if we include the counterterm from the beginning, which has the free
coefficient c2

s(a), there is no need to add the term in eq. (C.8), since this simply adjusts an already
unknown coefficient. Indeed, this logic holds for all UV divergent pieces, and at higher loops, since
they will already be included in the EFTofLSS expansion.20

Finally, we move on to the IR properties of the full P13 +P22. As discussed above, P13 and P22

are separately convergent in the IR for −1 < ν. However, due to the equivalence principle, the
sum P13 + P22 is actually convergent in the IR for −3 < ν [43–45, 5]. Thus, if one uses a linear
power spectrum with −3 < ν < −1, there is no need to add the IR divergent pieces separately to
P13 and P22 because they will cancel in the full sum anyway [57]. However, if one uses ν < −3,
there are subleading IR divergences which are not guaranteed to cancel in P13 + P22, and so one
would have to add these pieces by hand, since dimensional regularization also sets IR divergences
to zero.

D Higher loops

The generalization of the analytic IR-resummation to higher loop expansions of the power spectrum
is straightforward once the decomposition of the power spectrum, analogous to eq. (2.3), is known
(relevant formulas for the two-loop power spectrum have been given in [57]). It is clear that a
term in the expression for the N -loop power spectrum, which contains N + 1 factors of the initial
power spectrum P11, will have N + 1 general complex parameters νm. Each individual term will
also have additional integer parameters related to the kernel of the specific diagram. For example,
the basic two loop integral, analogous to eq. (2.7), is [57]∫

d3q

(2π)3

1

q2νm4 |~k − ~q|2νm5

∫
d3p

(2π)3

1

p2νm1 |~k − ~p|2νm2 |~q − ~p|2νm3

, (D.1)

but only three of the νmi are general complex numbers. For concreteness, we call I the total
number of exponents that are needed to describe a given diagram, i.e. I = 5 for the expression in
eq. (D.1). Then, a general N -loop Eulerian term will have the form

PE
N (k) ∼

∑
{mi}

cm1 · · · cmN+1k
−2νm1···mIMN (νm1 , . . . , νmI ) (D.2)

where the sum is over each of the indices m1, . . . ,mI , the matrix MN gives the information of
the specific kernel in the diagram, and νm1···mI ≡ νm1 + · · · + νmI . Here, and in the rest of this
section, we will not keep track of all of the factors in each expression: we simply wish to show

20There is also a leading UV divergence in the P22 diagram. For 1/2 < ν < 3/2, the only UV divergent piece to
be added to P22 is

9

196π2
k4

∫ Λ

0

dq
P11(q)

q2
. (C.9)

This term is related to the stochastic counterterm in the EFTofLSS, and is typically subleading in a one-loop
computation, which is why it is not included in eq. (C.1). In any case, following the above discussion, as long as one
includes the k4 counterterm consistently in the EFT expansion, one does not have to explicitly add eq. (C.9) to the
dimensional regularization computation.
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the general form of the result, and leave a more careful presentation for future work. Although
numerical implementation of higher-loop expressions analogous to eq. (D.2) may be challenging
using the FFTLog decomposition, this will be the general form. We leave a thorough study of how
feasible this approach is for higher loops to future study.

Next, in order to use the resummation formula eq. (A.1), we must convert the power spectrum
to the correlation function. Now that we have the general form eq. (D.2), we see that the correlation
function takes an equally simple form

ξE
N (r) ∼

∑
{mi}

cm1 · · · cmN+1r
2νm1···mI M̃N (νm1 , . . . , νmI ) , (D.3)

where M̃N is related to MN through some combination of Γ functions coming from the Bessel
transform in eq. (3.3).

Now, we apply the formulas of Sec. A to eq. (D.3). Again, we will not keep track of all terms
and coefficients, just the general form of the new terms. Since, as a function of r, all of the N -loop
correlation functions eq. (D.3) are the same (a sum over complex power laws), there is nothing
new about the form of the general N -loop correlation function. Because of this, we will focus on
the new kernel RJ(~r − ~q, ~r) (where J runs over the relevant values of N − j) applied to a general
complex power q2ω ∫

d3q RJ(~r − ~q, ~r) q2ω . (D.4)

Using eq. (A.2) - eq. (A.4), we see that contained in this term is

ξ̃(J)
ω (r) ≡ ∂Jλ

∫
d3q Rλ0 (~r − ~q, ~r) q2ω = ∂Jλ ξ̃

λ
ω(r)

∣∣
λ=1

, (D.5)

where ∂Jλ ≡ ∂J/∂λJ , Rλ0 is given in eq. (A.9), and ξ̃λω is given in eq. (3.26). The q1 and q2 integrals
in the definition eq. (3.26) for ξ̃λω can be done for general λ, and, after expanding the Γ function
as in eq. (3.13), one is left with

ξ̃λω(r) =

√
α0 + α2

2π

∑
j

γj(ω)

(
2

α0

)j ∫ ∞
−∞

dq3 (r − q3)2(ω−j)λ−j−1 exp

{
−λ

2
(α0 + α2)q2

3

}
. (D.6)

Now, we have to take J number of derivatives with respect to λ. There will be many terms, with
coefficients that depend on j and are easily calculable using the above expression, but we simply
write the general term and ignore the coefficients here. The form of the resulting integral depends
on how many times the derivative hits the exponent, which we call J ′, and the integral to be done
is ∫ ∞

−∞
dq3 (r − q3)2(ω−j)q2J ′

3 exp

{
−1

2
(α0 + α2)q2

3

}
. (D.7)

The final step is to write q2J ′
3 = (r − (r − q3))2J ′ , expand this in powers of r − q3 and r, and

write the result in terms of the basic function Iω(r) which is defined in eq. (3.15) and whose exact
expression is given in eq. (3.16). In this way, we see that the general IR-resummation of an N -loop
power spectrum can be written in terms of a single function Iω(r). The main challenge, of course,
is that this function must be evaluated for many values of ω, approximately O

(
NN+1

max

)
, i.e. for all

of the terms in the sum in eq. (D.3). We have discussed in the main text how to do this for the
one-loop result.
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E Recursion relations

In this appendix, we would like to mention a general simplifying relation which can be used in any
of the strategies presented in this paper. As can be seen from eq. (3.19), eq. (3.29), and eq. (3.31),
the non-trivial functions that we have to evaluate are Iωm+n/2, where n is an integer. For the
one-loop computation presented above, one needs to evaluate for n = {−1,−1/2, 0, 1/2, 1}, but if
one wishes to go to higher order in the Γ function expansion, or to higher loops, then one will have
to evaluate for more n. Naively, this means that for each r and n, we have to evaluate Iωm+n/2(r)
for Nmax number of ηm. However, we can reduce the number of evaluations by using recursion
relations that are satisfied by the hypergeometric function U(a, b; z) that enters the definition of
Iωm in eq. (3.15). In particular, one recursion relation connects functions with an integer difference
in the first argument a:

U(a, b; z) + (b− 2a− 2− z)U(a+ 1, b; z) + (a+ 1)(a− b+ 2)U(a+ 2, b; z) = 0 , (E.1)

where ultimately we will set a = −ω, b = 1/2 and z = −r2(1 + iε)2(α0(r) +α2(r))/2. Because this
relation involves three terms, it means that we have to initially evaluate two of them, and then
the recursion relation determines all of the rest. We have to do this once for the integer shifts in
ωm, and also once for the half-integers shifts in ωm, so it means we have to evaluate a total of four
shifts. For example, we can evaluate Iωm+n/2(r) for n = 0, 1/2, 1, 3/2 and for all of the m and r of
interest, and then use the relation eq. (E.1) to determine Iωm+n/2(r) for all of the other relevant
n. While this is not so important for the order at which we work, as it reduces the number of
computations by just ∼ 20%, it means that it is essentially trivial to go to higher orders in the
expansion of the Γ function that enters eq. (3.19), and also, as we will discuss, to go to higher
loops, as no evaluations of the U functions are needed beyond the ones that we do at one loop.

To solve the recursion relation, one can write it in matrix form:(
U(a+ 2, b; z)
U(a+ 1, b; z)

)
= K[a]

(
U(a+ 1, b; z)
U(a, b; z)

)
, (E.2)

where K[a] is a 2 × 2 matrix with elements K[a]11 = −(b − 2a − 2 − z)/[(a + 1)(a − b + 2)],
K[a]12 = −1/[(a + 1)(a − b + 2)], K[a]21 = 1, and K[a]22 = 0. Then, one can easily solve for the
k-th term by writing(

U(a+ k, b; z)
U(a+ k − 1, b; z)

)
= K[a+ k − 2]K[a+ k − 3] · · ·K[a]

(
U(a+ 1, b; z)
U(a, b; z)

)
. (E.3)
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