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Synthetic biologists endeavor to predict how the increasing complexity of multi-step
signaling cascades impacts the fidelity of molecular signaling, whereby information
about the cellular state is often transmitted with proteins that diffuse by a pseudo-
one-dimensional stochastic process. This begs the question of how the cell leverages
passive transport mechanisms to distinguish informative signals from the intrinsic
noise of diffusion. We address this problem by using a one-dimensional drift-diffusion
model to derive an approximate lower bound on the degree of facilitation needed to
achieve single-bit informational efficiency in signaling cascades as a function of their
length. Within the assumptions of our model, we find that a universal curve of the
Shannon-Hartley form describes the information transmitted by a signaling chain
of arbitrary length and depends upon only a small number of physically measur-
able parameters. This enables our model to be used in conjunction with experimental
measurements to aid in the selective design of biomolecular systems that can over-
come noise to function reliably, even at the single-cell level. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5027508

The field of synthetic biology has spurred the development of biotechnologies capable of inter-
facing with the human body at the molecular level. From CRISPR/Cas9 gene drives that alter our
genetic code1 to proteins designed to modulate the sensitivity of molecular signaling cascades,2,3 the
state of the art has learned to imitate nature and, in so doing, surpass it. The cost of interfacing with
biology at its most granular level, however, is that we must leverage fragile biomolecular components
that transmit information far below the modern standards of electronic communications. For example,
the transcriptional signaling pathways in a cell cannot reliably cross the minimal single-bit threshold
required to distinguish meaningful signals from noise,4 and coherent communication is only achieved
when signaling is averaged over an entire cellular population.4–6

Although some biological signaling does utilize electric currents, such as that in the human
nervous system,7 information transmitted at the cellular level is often accomplished via so-called
molecular communication, in which discrete signaling molecules diffuse through an intervening
liquid medium from a transmitting to a receiving site.8,9 Because Brownian motion alone is slow and
unreliable, many biological systems attempt to facilitate this diffusion with a variety of mechanisms,
such as motor proteins that “walk” the molecules along cytoskeletal filaments,10 transcription factors
that locate their receiving site by sliding back and forth along the DNA contour,11 and bacterial
chemotaxis, in which molecules are carried by bacteria along a chemical gradient.12 These types of
directed-diffusion processes typically exhibit a superdiffusive mean squared displacement that scales
as tα, for 1 < α < 2,13 and are often well approximated as one-dimensional stochastic processes
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whose superdiffusivity can be decomposed as a linear combination of pure ballistic and pure diffusive
motion.14 The ratio of the drift speed to the diffusion constant can be used to determine α for any
time interval of interest. Such drift-diffusion processes have been studied as models of molecular
communications in the past.15–17

As synthetic biology pushes the boundary of more complex multi-stage signaling architectures,18

a more fundamental understanding of the information-processing capabilities of molecular commu-
nication is needed to optimally design constructs that perform reliably despite inherently noisy in vivo
environments. To this end, single drift-diffusion channels have been studied extensively,15–17,19,20 and
various upper and lower bounds have been placed on their mutual information and channel capac-
ity.21,22 Here we extend these analyses to a signaling cascade of multiple drift-diffusion channels
daisy-chained together and demonstrate, under suitable simplifying assumptions, that the mutual
information depends upon a single dimensionless ratio of physical parameters. We then use this
result to set a lower bound on the extent of passive molecular transport required to achieve molecular
communication with single-bit fidelity.

As our model system, we consider a one-dimensional molecular drift-diffusion channel of
length `. Molecules are emitted at the transmitting end (x = 0) of a one-dimensional channel, and move
toward a receiving end (x = `) with drift speed 3 > 0 where they are perfectly absorbed. Molecules
diffuse according to a stochastic Wiener process characterized by diffusion constant D. We assume
that molecules are indistinguishable from one another, that only two molecules can occupy the chan-
nel at any given time, and that both molecules must exit the channel before any new molecules can
be added. Although these latter assumptions restrict the information capacity of our channel,21 they
will immensely simplify our calculations and are consistent with our objective to establish a minimal
performance benchmark for the efficiency of passive transport required to communicate a single bit
of information.

With only two molecules in the channel at a time, this single bit corresponds to the capac-
ity to distinguish the order of emission times from measurements of the order of arrival times.
For a more general system, where an arbitrary number of molecules can simultaneously occupy
the channel, this determination of time orderings will require more than a single bit of informa-
tion, necessitating a greater degree of facilitated transport to achieve it. Nonetheless, our simple,
two-particle model may still provide a reasonable estimate of the information capacity for some
biological systems. For example, protein transcription often occurs in short stochastic bursts fol-
lowed by much longer intervals of inactivity,23 with each burst often producing as few as two RNA
transcripts.24

We define ∆τ as the difference in the release times of the two molecules sharing the channel
and model it as a random variable chosen from a known source distribution p(∆τ). As a result, the
difference in the arrival times of the two molecules at the receiver is also a random variable, which
we denote ∆t. The information-processing capabilities of this channel can be quantified as the mutual
information of these two time differences, I(∆t; ∆τ). Using standard definitions and methods,25 one
can compute this mutual information from only two probability distribution functions: the source
distribution, p(∆τ), and the conditional distribution, p(∆t|∆τ). We can compute this latter distribution
by noting that the time it takes for a molecule to cross our modeled channel is a random variable
obeying an inverse Gaussian distribution, IG(µ, λ; t):19

IG(µ, λ; t)=




√
λ

2πt3 exp
[
−λ(t−µ)2

2µ2t

]
t > 0

0 t ≤ 0

(1)

wherein the mean first passage time, µ, is equal to `/3, and the shape parameter, λ, is equal to
`2/2D, the average time it would take a particle to traverse the channel in the absence of any
drift.

If we assume that the first molecule is transmitted at time zero and is received at elapsed time
t, then the second molecule is transmitted at time ∆τ and received at time t + ∆t. We allow ∆t to
be negative, in which case the second molecule to be released arrives at the receiver before the first.
Of course, it is not possible for an observer at the receiver to measure a negative time difference
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between the arrivals of two indistinguishable particles. Rather, the observer would deduce that ∆τ is
negative for molecules that arrive in reverse order, assuming the channel can transmit the one bit of
information required to make that determination with certainty. The probability that ∆τ leads to ∆t is
the probability that the first and second-released particles have first passage times t and t + ∆t −∆τ,
respectively, integrated over all possible values of t:

p(∆t |∆τ)=
∫ ∞

0
dt IG(µ, λ; t + ∆t − ∆τ)IG(µ, λ; t). (2)

Although Eq. (2) is not strictly a convolution, it can, in principle, be evaluated using the known
Fourier transform of the inverse Gaussian distribution.26

In Fig. 1A we plotted Eq. (2) for several sets of parameters (solid curves), and compared each
conditional distribution to a Gaussian distribution with identical mean and variance (dashed curves).
The Gaussian fit is quantitative when the variance of the exact distribution is small, and reasonably
good even when it is large; so we shall henceforth use this fit to approximate p(∆t|∆τ).

The exact mean and variance of the conditional distribution can be computed from simple argu-
ments. Because the two molecules propagate across the channel without interaction, the mean of
the difference in their first arrival times, ∆t −∆τ, is the difference in the means of the independent,
identically distributed inverse Gaussian random variables t + ∆t −∆τ and t. The total variance is the
summation of their individual variances.

The mean of the distribution p(∆t −∆τ) is consequently zero, which implies that the mean
of p(∆t|∆τ) is ∆τ. The variance of an inverse Gaussian distribution is µ3/λ, so the variance

FIG. 1. (A) The conditional probability distribution, p(∆t|∆τ), as obtained by numerical evaluation of Eq. (2), is plotted
as a function of the difference ∆t −∆τ for six different values of the conditional variance, σ2

C ∈ {0.2, 0.8, 1.8, 5.0, 20, 45}.
(The smaller variances naturally correspond to the more sharply peaked distributions.) For each conditional distribution, the
Gaussian distribution with matching variance is plotted as a dashed curve and is a near perfect fit for smaller values of σ2

C .
(B) Numerically integrated values of the mutual information I(∆t; ∆τ) (purple diamonds), expressed in bits, for different
values of σ2

C . The approximate information (Eq. (4); black line) overlays the numerical results. (Inset) The numerical values
for the mutual information in the main plot (purple diamonds) are compared against those computed from different source
distributions–a uniform distribution (red squares) and an exponential distribution (blue circles)–both parametrized to have the
same information content as the Gaussian distribution.
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of the conditional distribution, σ2
C , is twice this value. In terms of the channel parameters, this

reduces to

σ2
C =

4D`

33
. (3)

If the source distribution, p(∆τ), is also Gaussian with a variance of σ2
S , then it can be shown that

the mutual information, I(∆t; ∆τ), has a form analogous to one derived by Shannon and Hartley:27

I(∆t;∆τ)=
1
2

log2
*
,
1 +

σ2
S

σ2
C

+
-
. (4)

To arrive at this result, we must assume that the mean release-time interval is sufficiently larger than
σS , so that the tail of the Gaussian p(∆τ) contributes negligible probability for ∆τ < 0. Fig. 1B
plots the mutual information (in bits), computed numerically from the true conditional distribution
(Eq. (2)), for several different values of σ2

C (Eq. (3)). The approximate mutual information in Eq. (4)
is plotted over the data, demonstrating an almost exact fit. The inset of Fig. 1B demonstrates that
the validity of Eq. (4) is not significantly affected by our decision to use a Gaussian as our source
distribution.

It is tempting at this point to try to generalize Eq. (4) to the case of an N particle channel. It is
simple to argue, for example, that the equivalent to Eq. (2) is

p({∆t1i}|{∆τ1i})=
∫ ∞

0
dt IG(µ, λ; t)

N∏
i=2

IG(µ, λ; t + ∆t1i − ∆τ1i), (5)

where ∆τ1i and ∆t1i are the release and absorption time intervals of the ith particle, and all N − 1 of
these intervals are defined relative to the absolute release and absorption times of the same reference
particle, labeled particle 1. While in the N = 2 case, we have demonstrated that this conditional
distribution is quantitatively Gaussian in shape, the same cannot be said for N > 2. Indeed, numerical
evaluation of Eq. (5) for even N = 3 yields a conditional distribution that is a highly asymmetric
function of its arguments, making it a poor candidate for a Gaussian fit. While Eq. (5) can still be
used alongside a suitably chosen source distribution to numerically evaluate the mutual information,
the conveniently simple and transparent form of Eq. (4) is a consequence of Gaussian inputs and will
not generalize to larger N.

A more fruitful generalization of Eq. (4) is to the case of a signaling cascade of n subchan-
nels, each with identical 3, `, and D. We assume that information is carried along the entirety
of this cascade by just two indistinguishable particles, so that the principal measure of informa-
tional fidelity remains the extent to which the difference in their release times can be deduced
from the difference in their arrival times at the cascade terminus. Particles absorbed at the ter-
minus of one subchannel are re-emitted at the source of the next, and these junctures constitute
n + 1-many nodes of the cascade, which we sequentially label with the integers 0 (transmitting
source) through n (final receiving site). We denote the difference in the absorption times of the par-
ticles at node i by ∆ti, and the time interval between their re-emission by ∆t ′i. If each molecule
were re-emitted instantaneously upon absorption, then p(∆t ′i |∆ti) = δ(∆t ′i −∆ti). However, we more
generally assume that elapsed times between absorption and re-emission vary stochastically. For sim-
plicity, we assume this delay time is normally distributed about the absorption time interval with a
characteristic variance of σ2

d . The conditional distribution, p(∆tn|∆τ) (where ∆τ ≡∆t ′0), may now be
expressed as:

p(∆tn |∆τ)=
∫ ∞
−∞

· · ·

∫ ∞
−∞

d∆t1d∆t ′1 · · · d∆tn−1d∆t ′n−1

× p(∆tn |∆t ′n−1)p(∆t ′n−1 |∆tn−1) · · · p(∆t ′1 |∆t1)p(∆t1 |∆τ). (6)

Here, each p(∆ti |∆t ′i−1) is given by Eq. (2), and each p(∆t ′i |∆ti) is modeled, as stated above, by either
a Dirac delta function or Gaussian distribution.

The integral in Eq. (6) is, to good approximation, a convolution of Gaussians, which eval-
uates to another Gaussian whose variance equals the sum of the variances of the individual
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distributions contributing to the integral. The conditional variance of the n-link drift-diffusion cascade
is thus

σ2
C =

4nD`

33
+ (n − 1)σ2

d . (7)

Using arguments similar to those used to derive Eq. (3), one can show that the above result is
exact.

To good approximation, the mutual information of the cascade is the same as in Eq. (4), only
with Eq. (7) substituted for σ2

C . In Fig. 2, we demonstrate that this curve is indeed a universal fit
for the mutual information of cascades with varying length, both in the case where there is no delay
(Fig. 2) and a Gaussian-distributed delay (Fig. 2, inset) between absorption and re-emission at the
intermediate nodes.

We use stochastic simulations to evaluate the mutual information for n > 2, because numerical
evaluation of Eq. (6) becomes cumbersome for longer cascades. In these simulations, each particle
travels a distance 3δt + δx in each time step, where δx is a normally-distributed random variable with
variance 2Dδt and the time step is δt = 0.01. For each set of conditions studied, 105 replicate simula-
tions were performed, with the results histogrammed (bins of width δt) to generate discrete estimates
of the probability distribution functions needed to calculate the mutual information. For cascades of
one and two links, in which direct numerical evaluation of Eq. (6) is feasible, the simulations yield
nearly identical values for the mutual information.

According to Eq. (4), the mutual information of an n-link cascade is, in principle, unbounded from
above so long as the parameters `, D, and 3 can be freely varied. However, this is not typically true for
synthetic biological constructs that are meant to interface with cells through existing molecular chan-
nels. Here, the channel length, `, will necessarily be no larger than the size of a cell (∼100 µm)
and the diffusion constant D will be controlled by the size of the signaling molecules and the
hydrodynamic properties of the cytosol, typically varying between ≈ 1 − 10µm2/s.28 Detailed
studies of cellular signaling mechanisms13 suggest that molecular transport is superdiffusive but
non-ballistic, which means that v cannot be arbitrarily large. A suitable value for v may be found by
fitting the mean squared displacement (MSD) of our drift-diffusion model to superdiffusive scaling
data.

The position of a particle in our drift-diffusion channel at elapsed time t is equal to
x(t)= 3t +

√
2DWt , wherein W t is the standard Wiener stochastic process. We choose our coordinate

FIG. 2. Numerical values of the mutual information of a cascade channel are plotted versus the conditional variance σ2
C for

three different values of the source variance σ2
S (from top to bottom, 0.331, 0.234, and 0.1655). All three datasets use the

same physical parameters (`, 3, D) for each subchannel of the cascade, and σ2
C is modulated only by varying the number of

subchannels. From left to right, the five points on each curve correspond to n = 1, 2, 3, 4, and 5. In all cases, the black curves
correspond to Eq. (4), evaluated with Eq. (7). (Inset) The impact of having a normally-distributed delay time with variance
0.01 at each intermediate node of the cascade is illustrated using the top dataset. In each case, the effect is to reduce the mutual
information, with the effect being more pronouned for larger n, since there are in that case more intermediate nodes. (Arrows
are used to emphasize the amount each point shifts.)
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system such that x(0) = 0. By definition, W t −W0 is normally distributed as N(0, 2Dt), so the distance
a particle travels in a time t will have the following Gaussian distribution:

p(x(t))=

√
1

4πDt
exp

[
−

(x(t) − 3t)2

4Dt

]
. (8)

The MSD is the expected value of x(t)2 with respect to the above distribution:

MSD(t)= 32t2 + 2Dt. (9)

Experimental measurements of MSD in biological facilitated diffusive systems are typically fit to a
single power law Atα, where 1 ≤ α ≤ 2 is the superdiffusivity scaling exponent of the motion. To
estimate the superdiffusivity exhibited by our drift-diffusion model, we must find the values of A and
α that best fit the above quadratic over the average time interval of observation, which is in our case
just the mean first passage time µ. To that end, we define the function

F(α, A)=
∫ µ

0
dt

(
3

2t2 + 2Dt − Atα
)2

(10)

and attempt to find values for α and A such that ∇F = 0. Since scaling F by a multiplicative constant
will not change these values, we can rewrite the right-hand side of Eq. (10) as∫ µ

0
dt

(
ωt2 + t − A′tα

)2
, (11)

where we have defined A′ ≡ A/2D and ω ≡ 32/2D. This makes it clear that α can only depend upon
the frequencyω and the time scale µ, which itself can be related to ω through the relation µ=

√
λ/ω.

Defining the function Gm(x) as

Gm(x)≡
ln(xm) − 1

m
, (12)

we can express the optimal value of α implicitly as the solution of the following equation, which
must be solved numerically or graphically:

(λω)1/2

α + 3
Gα+3

(√
λ/ω

)
+

1
α + 2

Gα+2

(√
λ/ω

)
=

(
(λω)1/2

α + 3
+

1
α + 2

)
G2α+1

(√
λ/ω

)
. (13)

We can set a rough upper bound on the mutual information of our cascade by making several
additional assumptions. Because a delay time can only increase the conditional variance, which
decreases mutual information, we shall set σ2

d = 0. The standard deviation in the release time interval
of two molecules can be bounded above by σS < λ = `2/2D, which is the average time it takes for an
individual molecule to diffuse across the channel in the absence of drift. Note that because we have
already assumed that the mean release time interval must be much greater than σS , σS > λ would
make it virtually impossible for the second molecule released to arrive before the first, rendering the
molecules distinguishable by their arrival times and contradicting a basic assumption of the model.
These new assumptions, along with the relation 32 = 2ωD, reduce the mutual information to the
following:

I(∆t;∆τ)<
1
2

log2

(
1 +

(λω)3/2

2n

)
. (14)

To evaluate the right-hand side of Eq. (14), we estimate the diffusion constant as D=5 µm2/s
and the channel length as `=10 µm (the signaling molecules likely only need to cross a fraction of
the cellular diameter). This results in λ=10 s. For any value of ω, we can use Eq. (13) to extract
a corresponding value for α, and the upper bound in Eq. (14) can thus be plotted as a function of
α for different length cascades, as shown in Fig. 3. The inset plots the critical value of the scaling
exponent, α?, needed for single-bit information transmission as a function of cascade length. This
latter curve is exceptionally well fit by a stretched exponential function. To maintain a fixed level
of informational efficiency in a molecular signaling cascade, the length of the cascade can only be
increased at the cost of improving the efficiency of the molecular transport, and this cost goes down
as the cascade gets progressively longer.
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FIG. 3. The approximate upper bound on the mutual information given by Eq. (14) is plotted in bits as a function of the
superdiffusivity exponent α for three different cascade lengths: n = 1 (red), n = 3 (green), and n = 5 (blue). A dashed line
demarcates the 1-bit threshold needed to minimally distinguish two identical molecules by their arrival times. The inset plots
the critical value of α needed to cross this threshold as a function of n (data points) and is fit by an extended exponential
function of the form 2 − A exp(−BtC ), where A, B, and C are fitted parameters.

Although the curves in Fig. 3 can be shifted dramatically by choosing different values of the
parameters in Eq. (14), our order-of-magnitude estimates give results that agree with the findings of
related studies. For example, we predict that the α = 3/2 scaling reported by A. Caspi et al., which
describes an enclosed microsphere transported by microtubule-walking motor proteins near the cell
nucleus,13 is just shy of single-bit mutual information. Since these predictions are based off an upper
bound on the mutual information, it is likely that this level of facilitation will actually fall well short
of the one-bit threshold. This is consistent with the findings of R. Suderman et al. that transcriptional
signaling at the single-cell level, which involves the facilitated diffusion of proteins along DNA,
generally transmits less than one bit of information.4

The model we have developed to describe information transfer in molecular signaling cas-
cades is general enough to be applicable to a broad range of biological signaling systems that
utilize pseudo-one-dimensional facilitated transport mechanisms. Tuning it towards a specific
biological process only requires a small number of physical parameters such as the diffusion
constant for the signaling molecules and the superdiffusivity scaling exponent of the molec-
ular transport, both of which can be extracted from single-molecule experiments.28 It should
be cautioned that while many biological signaling processes feature highly facilitated transport,
there are numerous others that involve substantial three-dimensional Brownian motion29,30 and
are better modeled as a “narrow escape” problem31,32 rather than a 1D drift-diffusion problem.
It should also be emphasized that the simplicity of our model limits it to providing only a lower
bound on the degree of facilitation required for meaningful communication. If, for some suit-
able biological signaling process, our model predicts information transmission below one bit,
then any molecular signal transmitted across that system will be indecipherable from measure-
ments of the response. On the other hand, if our model predicts information transmission above
the one-bit threshold, we cannot say with any accuracy precisely how complex a message could
successfully be communicated by the system because we have derived our model under the
assumption that the signal always consists of a pair of particles. These caveats aside, the model
we have presented still quantifies a useful minimal performance benchmark for biological hard-
ware that many cellular systems fail to reach. While nature has managed to function adequately
despite this, thanks to the noise-averaging properties of a large cellular population,4 the increas-
ingly complex constructs engineered by synthetic biologists will ultimately require higher fidelity
communication, and our model demonstrates at least qualitatively how such fidelity might be
attained.
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