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Abstract—The 3GPP suggests to combine dual polarized (DP)
antenna arrays with the double directional (DD) channel model
for downlink channel estimation. This combination strikes a good
balance between high-capacity communications and parsimo-
nious channel modeling, and also brings limited feedback schemes
for downlink channel state information within reach—since such
channel can be fully characterized by several key parameters.
However, most existing channel estimation work under the DD
model has not yet considered DP arrays, perhaps because of the
complex array manifold and the resulting difficulty in algorithm
design. In this paper, we first reveal that the DD channel with DP
arrays at the transmitter and receiver can be naturally modeled
as a low-rank tensor, and thus the key parameters of the channel
can be effectively estimated via tensor decomposition algorithms.
On the theory side, we show that the DD-DP parameters are
identifiable under mild conditions, by leveraging identifiability of
low-rank tensors. Furthermore, a compressed tensor decomposi-
tion algorithm is developed for alleviating the downlink training
overhead. We show that, by using judiciously designed pilot
structure, the channel parameters are still guaranteed to be
identified via the compressed tensor decomposition formulation
even when the size of the pilot sequence is much smaller than
what is needed for conventional channel identification methods,
such as linear least squares and matched filtering. Extensive
simulations are employed to showcase the effectiveness of the
proposed method.

Index Terms—Channel estimation, massive MIMO, dual-
polarized array, tensor factorization, identifiability.

I. INTRODUCTION

The dual-polarized (DP) antenna array has many appealing
features that make it a strong candidate for adoption in next
generation communication systems and massive MIMO [2]–
[5]. For example, Foschini and Gans [6] showed that the
capacity of systems with DP antennas at the transmitter can be
increased up to 50% compared to systems without polarization.
Besides the increased capacity, DP antenna arrays have other
key advantages relative to single-polarization counterparts with
the same number of antennas, including smaller form factor
and easier installation, better interference mitigation capability,
and higher link reliability.

In the recent releases of technical specifications suggested
by the 3GPP, the DP array and the double directional (DD)
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channel model are considered key techniques [3]–[5]. The DD
channel model is parsimonious for multipath channels with a
small number of dominant paths, and such scenarios arise in
millimeter wave (mmWave) based wireless communications.
Modlel parsimony is really essential for designing limited
feedback schemes for downlink channel state information in
frequency-division duplex (FDD) massive MIMO [3]. Specif-
ically, 3GPP suggests that the mobile users estimate the
DD channel parameters such as directions-of-arrival (DOAs),
directions-of-departure (DODs), the complex path-loss associ-
ated with each path, and then feed back these parameters to
the base station (BS). This strategy is rather economical, as it
is expected that the number of dominant paths will be small to
moderate in practical deployments. On the other hand, there
are very few works related to the DD-DP channel/parameter
estimation problem. Most of the existing channel estimation
algorithms such as [7]–[12] do not take polarization into
consideration, and thus cannot be applied to this particular
kind of system.

There are many challenges in the way of estimating the
key parameters of the DD-DP channel. First, considering
polarization adds another level of difficulty on top of the
(DODs, DOAs, path losses) parametrization, which is already
not easy to handle in some cases, e.g., when we have small-
size pilot matrices or a large number of multipaths. For-
mulating the parameter estimation problem for the DD-DP
channel in a mathematically tractable form and tackling it
using effective signal processing tools that provide analytical
performance guarantees is quite nontrivial. Second, although
the DD-DP channel (or to be more precise, blocks of the
channel) can be modeled using long-existing array processing
models (as we will show), it is hard to apply the classic array
processing algorithms (e.g., MUSIC [13] and ESPRIT [14]) for
estimating the key parameters. The reason is that classic array
processing methods usually work under relatively restrictive
assumptions—e.g., MUSIC and ESPRIT need the number of
multipaths to be smaller than the number of transmit and the
number of receive antennas, which may not be satisfied in
practice. Real systems often have to deal with more multipaths
than antennas on one end of the link. Third, the conven-
tional estimation methods use matched filtering or linear least
squares to extract an estimate of the channel matrix out of the
received signals, and then perform parameter identification.
To do this, the pilot sequence has to be quasi-orthogonal or
at least full row-rank, respectively. This is very expensive for
massive MIMO systems if the number of transmit antennas is
large.

Very recently, Zhu et. al., proposed an interesting framework
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for two-dimensional DOA and DOD estimation of wideband
massive MIMO-OFDM systems with DP arrays [5]. The key
idea behind this algorithm is to exploit a so-called multi-layer
reference signal structure to estimate the arrival and departure
angles. Specifically, the transmitter and receiver communicate
with each other iteratively, and in each iteration the transmitter
(or receiver) fixes a beam and then the receiver (or transmitter)
varies a paired beamforming vector to receive (or transmit)
data. This way, a closed-form formula for DOA/DOD can
be asymptotically derived. The total number of iterations is
proportional to the product of the number of paired beams
and the number of radio frequency bins at both transmitter and
receiver. This closed-loop iterative protocol implicitly assumes
that the transmitter, receiver, and scatterers remain static, and
the two ends of the link are synchronized in beam sweeping.
Its resolution is also limited by the utilized beamwidth.

In this work, we consider the parameter estimation prob-
lem for frequency division duplex (FDD) dual-polarized DD
channels—but the algorithms can be easily implemented in
the time division duplex (TDD) systems as well. We aim at
designing novel efficient channel estimation algorithms and
analyzing the identifiability of the key parameters, i.e., DOAs,
DODs and path-losses, of this model. Unlike the existing
methods for DD-DP channels as in [5], our proposed approach
does not require multiple iterations between the transmitter and
receiver, which may not be desired or realistic in practice, e.g.,
in a scenario with relatively higher mobility. Our method is
also naturally with high spatial resolution, inheriting nice prop-
erties of related array processing techniques. In addition, we
fully characterize the theoretical boundaries of our methods in
terms of parameter identifiability, leveraging advanced tensor
algebra, and show that our method can work under a variety
of challenging scenarios where existing methods tend to fail.
Our detailed contributions can be summarized as follows:

• Tensor-Based Formulation. We show that the DD-DP
channel can be naturally modeled as a low-rank tensor.
Leveraging this structure, we recast the associated channel
estimation problem as a low-rank tensor decomposition
problem [15] and handle it using effective tensor decom-
position algorithms.

• Rigorous Identifiability Analysis. On the theory side, we
show that the channel (i.e., the multipath parameters) are
identifiable under very mild and practical conditions—even
when the number of paths largely exceeds the number of
receive antennas, a practically important case that classic DP
array processing algorithms, e.g., [16], cannot cope with.

• Reduced-pilot Formulation and Identifiability. We pro-
pose a downlink signaling strategy that utilizes a judiciously
designed pilot structure. We show that this pilot structure
combined with compressed tensor modeling can substan-
tially reduce the downlink overhead, without losing identifi-
ability of the channel parameters. This design is particularly
suitable for massive MIMO systems, for which existing
methods usually need very long pilot sequences to help
the receivers extract the channel matrix and then perform
parameter estimation. An effective estimation algorithm is
also proposed for the designed piloting strategy.
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Fig. 1. DP MIMO system.

We should mention that some very recent work [11], [12]
also studied the downlink and uplink channel estimation prob-
lems from a tensor decomposition viewpoint. Nevertheless,
the work in [11], [12] did not consider dual-polarized antenna
arrays. Hence, the formulated problems and analyses there are
quite different from ours.

A preliminary conference version of part of this work
was presented at ICASSP 2018 [1]. The conference version
includes the basic modeling and identifiability claims without
detailed proofs. This journal version additionally includes de-
tailed proofs of the identifiability results, and the compressed
tensor factorization formulation, its identifiability proof, and a
new algorithm that handles the compressed formulation.
Notation: Throughout the paper, superscripts (·)T , (·)∗, (·)H ,
(·)−1 and (·)† represent transpose, complex conjugate, Hermi-
tian transpose, matrix inverse and pseudo inverse, respectively.
We use | · |, ‖ · ‖F , ‖ · ‖1 and ‖ · ‖2 for absolute value,
Frobenius norm, `1-norm and `2-norm, respectively; â denotes
an estimate of a, diag(·) is a diagonal matrix holding the
argument in its diagonal, vec(·) is the vectorization operator
and ∠(·) takes the phase of its argument; [·]i is the ith element
of a vector, [X]i,j is the (i, j) entry of X, and xr,k is the kth
column of Xr. Symbols ⊗,�,~ and ◦ denote the Kronecker,
Khatri-Rao, element-wise, and outer products, respectively;
[X][i:j,m:n] extracts the elements in rows i to j and columns
m to n, [X]:,i:j extracts the elements in the columns i to j
and [X]i:j,: extracts the elements in the rows i to j. Im is the
m×m identity matrix and 0m×n is the m× n zero matrix.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Double Directional Dual-Polarized Channel Model

We consider an FDD massive MIMO system, where there
are Mt DP transmit antennas and Mr DP receive antennas,
see Fig. 1. In the array processing literature, this type of DP
array is also known as “cross-polarized” array [16]. Under the
considered scenario, each antenna pair consists of a vertical
(V) polarized antenna and a twin horizontal (H) polarized
antenna—and each antenna is connected with an RF chain.
Therefore, the channel can be represented as a 2Mr × 2Mt

matrix, where each element of the channel matrix represents a
link between a transmit antenna (which could be a V-polarized
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or a H-polarized antenna) and a (V- or H-polarized) receive
antenna. The signal received by the user is given by [4]

x(t) = Hs(t) + n(t), t = 1, · · · , N (1)

where s(t) ∈ C2Mt×1 is the transmitted signal, n(t) is zero-
mean i.i.d. circularly symmetric complex Gaussian noise. The
downlink channel matrix can be represented as

H =

[
H(Vr,Vt) H(Vr,Ht)

H(Hr,Vt) H(Hr,Ht)

]
∈ C2Mr×2Mt , (2)

where H(Vr,Vt) ∈ CMr×Mt is a channel matrix between
all the V-polarized transmit antennas and V-polarized receive
antennas, H(Vr,Ht) ∈ CMr×Mt is a channel matrix between
all the H-polarized transmit antennas and V-polarized receive
antennas, and likewise for the other two blocks in (2).

For notational simplicity, let p ∈ {Vr,Hr} and q ∈
{Vt,Ht}. Then, according to the channel model suggested by
the 3GPP [4], the (p, q)th subchannel matrix is modeled as

H(p,q) =

√
κ

κ+ 1
H

(p,q)
LOS +

√
1

κ+ 1
H

(p,q)
NLOS (3)

where H
(p,q)
LOS is the component of line-of-sight (LOS) and

H
(p,q)
NLOS is the component of non-line-of-sight (NLOS),

√
1

κ+1

and
√

κ
κ+1 are energy normalization factors with κ being the

ratio between the power related to the LOS and the power
related to the NLOS, and

H
(p,q)
LOS = β̃

(p,q)
1 ar(θ1, φ1)aHt (ϑ1, ϕ1) (4)

H
(p,q)
NLOS =

K∑
k=2

β̃
(p,q)
k ar(θk, φk)aHt (ϑk, ϕk) (5)

where the first path is assumed to be the LOS path that usually
exists in systems operating at millimeter wave (mmWave)
frequencies, and K is the number of paths between the two
subarrays. ar(θk, φk) ∈ CMr is associated with the array man-
ifold of subarray p: θk and φk are azimuth and elevation DOAs
of the kth path, respectively. Similarly, at(ϑk, ϕk) ∈ CMt

is determined by the subarray q, and ϑk and ϕk are the
azimuth and elevation DODs of the kth path, respectively.
Note that {β̃(p,q)

k } are generalized path-losses, which are
random variables and affected by the small-scale loss, large-
scale loss, distance between BS and MS, and dual-polarization
parameters. We may express

β̃
(p,q)
k = αkγ̃

(p,q)
k , k = 1, · · · ,K (6)

where αk denotes the standard path-loss which is caused by
propagation and fading, while γ̃k denotes the polarization
factor. Without loss of generality, we can absorb

√
κ
κ+1 and√

1
κ+1 into γ̃

(p,q)
1 and {γ̃(p,q)k }Kk=2, respectively, and define

γ
(p,q)
1 =

√
κ
κ+1 γ̃

(p,q)
1 and

{
γ
(p,q)
k =

√
1

κ+1 γ̃
(p,q)
k

}K
k=2

. Thus,

β
(p,q)
k = αkγ

(p,q)
k , k = 1, · · · ,K. (7)

Substituting (4) and (5) into (3) produces

H(p,q) = Ardiag
(
β(p,q)

)
AH
t (8)

where

Ar =
[
ar(θ1, φ1) · · · ar(θK , φK)

]
(9)

At =
[
at(ϑ1, ϕ1) · · · at(ϑK , ϕK)

]
(10)

β(p,q) =
[
β
(p,q)
1 · · · β

(p,q)
K

]T
. (11)

Now the channel matrix in (2) can be rewritten as

H =

[
Ar

Ar

] [
diag

(
β(Vr,Vt)

)
diag

(
β(Vr,Ht)

)
diag

(
β(Hr,Vt)

)
diag

(
β(Hr,Ht)

)]×[
At

At

]H
(12)

which in a more compact form is

H = (I2 ⊗Ar)Λ(I2 ⊗At)
H (13)

where

Λ =

[
diag

(
β(Vr,Vt)

)
diag

(
β(Vr,Ht)

)
diag

(
β(Hr,Vt)

)
diag

(
β(Hr,Ht)

)] . (14)

The model in (12) has been advocated by the 3GPP as
a standardized channel modeling approach for the long-term
evolution (LTE) systems [3], [4]. As mentioned in [4], most
standardized channels like spatial channel model (SCM), SCM
extension (SCME) [17], WINNER [18] and ITU [19] are based
on this model. The model assumes that the H-polarized sub-
array and the V-polarized subarray share the same array man-
ifolds, while the polarization information is contained in the
path-loss vectors, i.e., β(p,q)’s. This model has many favorable
features. It concisely models the effect of polarization. More
importantly, it incorporates the elevation information of the
transmit and receive antenna arrays in addition to the azimuth
information—leading to the so-called 3-D channel modeling,
which is considered very useful for next generation wireless
communication systems, since it provides many more degrees
of freedom that can potentially enhance system performance;
see detailed discussion in [3], [4].

In practice, the specific form of ar(θk, φk) and at(ϑk, ϕk)
are intimately tangled with the array geometry. For example,
the BSs are usually equipped with uniform rectangular arrays
(URAs) that each has Mx and My horizontal and vertical array
units1. An illustration is shown in Fig. 2. In this special case,
the kth steering vector for the transmitter becomes

at(ϑk, ϕk) = at,k = ay,k ⊗ ax,k (15)

where [ax,k]lx = ejωx,k , lx = 0, · · · ,Mx − 1 and
[ay,k]ly = ejωy,k , ly = 0, · · · ,My − 1 with ωx,k =
2π(lx − 1)dx sin(ϕk) cos(ϑk)/ν and ωy,k = 2π(ly −
1)dy sin(ϕk) sin(ϑk)/ν. Here, ν is the wavelength, dx and
dy are the inter-element spacing distances for horizontal and
vertical units, respectively.

For ease of exposition, let us assume that the receivers
employ uniform linear arrays (ULAs). Note that the analytical
tools that we use can be easily extended to cover cases where
the receive array has a different geometry, e.g., URA. Under

1Note that in the DP arrays, each array unit consists of a pair of DP
antennas.
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dx

dy

Fig. 2. Illustration of a URA at the BS. Each “cross” represents a DP antenna
pair.

the ULA assumption, the kth steering vector for the receiver
is

ar(θk, φk) = ar,k =
[
1 ejωr,k · · · ej(Mr−1)ωr,k

]T
(16)

where ωr,k = 2πdr sin(θk)/ν with dr being the inter-
element spacing of the ULA at the receiver side. Note that
to avoid phase wrapping, dx and dy must be carefully chosen.
The most widely adopted choice for dx and dy is half-
wavelength. In this paper, given the angular ranges of ϕ, ϑ
and θ, we assume that dx, dy and dr are determined such
that 2πdx sin(ϕ) cos(ϑ)/ν ≤ π, 2πdx sin(ϕ) sin(ϑ)/ν ≤ π
and 2π sin(θ)/ν ≤ π for all ϕ, ϑ, θ in their own ranges,
respectively.

B. Problem Statement

Given the described channel model, our goal is to estimate
the key parameters of the 3-D downlink channel. Here, by “key
parameters”, we mean the set of DOAs and DODs that are
associated with the paths and the corresponding path-losses,
i.e., {θk, φk}Kk=1, {ϑk, ϕk}Kk=1 and β(p,q) for all p ∈ {Vr,Hr}
and q ∈ {Vt,Ht}. Note that for massive MIMO systems that
follow the channel model in (12), one is very well motivated to
estimate these parameters. The reason is that the (potentially
large) channel matrix H that has 4MrMt complex-valued
elements is fully characterized by the parameters of interest.
Since the number of multipaths is usually not large in practice,
the number of parameters is relatively small, i.e., 8K (2K for
the DOAs, 2K for the DODs and 4K for the complex-valued
path-losses) and we usually have

8K � 4MrMt.

For example, in a scenario where Mr = Mt = 20 and K = 6
paths exist, the channel matrix consists of 1, 600 complex-
valued elements while we only have 48 key parameters, of
which 24 are real-valued (DOAs and DODs). Therefore, by
estimating the key parameters, one can feedback the downlink
channel to the BS in a very economical way—only feeding
back the parameters rather than the whole channel H suffices
to recover the downlink MIMO channel at the BS. In fact, this
is the main idea enabling implementation of limited feedback
schemes in mmWave massive MIMO systems suggested by
the 3GPP [3].

In this work, we begin with the scenario where the downlink
channel matrix H can be estimated at the receiver via simple
procedures such as matched filtering or linear least squares
(LS). Our objective is to estimate the key parameters from a
given H. We will first study identifiability theory associated
with this simpler scenario—i.e., under what conditions the
DOAs, DODs and path-losses can be provably identified from
H? Effective algorithms based on the identifiability analysis
will also be proposed. In addition, we will consider more
challenging yet desirable scenarios where only a compressed
version of H available at the receiver, and provide a pragmatic
and effective algorithm to estimate the parameters of interest—
this approach can substantially reduce the pilot length, thereby
greatly saving the downlink training overhead.

C. Prior Art and Challenges

Estimating the DOAs, DODs and path-losses from H is not
a trivial task. Nevertheless, many classic methods from the ar-
ray processing society can be applied, under some conditions.
For example, if the submatrix H(p,q) = Ardiag

(
β(p,q)

)
AH
t

has full-column rank Ar, diag
(
β(p,q)

)
and At, and also if

the receive and transmit antenna arrays are ULAs/URAs, the
subspace methods such as ESPRIT and MUSIC can be applied
to estimate the DOAs and DODs. After that, the path-losses
can be recovered, e.g., via LS estimation.

This is viable, but can only work under relatively stringent
conditions. The classic array processing methods like ESPRIT
and MUSIC all assume full column rank of Ar, diag

(
β(p,q)

)
,

and At, which implicitly assumes that K ≤ min{Mr,Mt} (to
be precise, K + 1 ≤ min{Mr,Mt} is needed for subspace
methods like MUSIC). In many practical scenarios, Mr is
relatively small—e.g., the newest model of iPhone (i.e., iPhone
X released in 2017) only supports two receive antennas, while
the number of paths can easily exceed two. Is there a more
powerful method that can provably identify the parameters of
interest under much more relaxed conditions? We will address
this question in the next section.

Another possible way to handle the parameter estimation
problem is to treat each block H(p,q) = Ardiag

(
β(p,q)

)
AH
t

as a sparse optimization problem [8], [9]. For each subchan-
nel block, we discretize the DOA and DOD domains into
fine angle grids and then construct three overcomplete angle
dictionaries (codebooks), denoted by Dr, Dx and Dy . Then,
we have H(p,q) ≈ DrG

(p,q)(Dy ⊗ Dx)H , where G(p,q) is
a sparse matrix that selects out the columns associated with
the active DODs and DOAs from the dictionaries. This way,
the parameter estimation problem becomes a sparse recovery
problem that can be handled by formulations such as LASSO
[20], i.e.,

min
g(p,q)

‖h(p,q) − (D∗y ⊗D∗x ⊗Dr)g
(p,q)‖22 + λ‖g(p,q)‖1

where h(p,q) = vec(H(p,q)) with g(p,q) = vec(G(p,q));
and other sparse optimization algorithms such as orthogo-
nal matching pursuit [9]. The difficulty is that to ensure
good spatial resolution, Dr ∈ CMr×Dr , Dx ∈ CMx×Dx

and Dy ∈ CMy×Dy are very “fat” matrices, where Dr,
Dx and Dy denotes the number of angle grid points after



5

quantization. Consequently, (D∗y ⊗ D∗x ⊗ Dr) is of size
MrMxMy ×DrDxDy . If one quantizes the DOA and DOD
space (ranging from −90◦ to 90◦) using a resolution of one
degree, then DrDxDy = 5, 929, 741—which poses a very
hard sparse optimization problem.

III. PROPOSED APPROACH

In this section, we propose to estimate the key parameters
of interest using low-rank tensor factorization—which has
provable guarantees under realistic and relaxed conditions.

A. Tensor Preliminaries

To make the paper self-contained, we briefly present the def-
inition of tensor and some useful theorems on the uniqueness
of tensor decomposition in the following.

Definition 1: (Tensor). A tensor is a multidimensional array
indexed by three or more indices. Specifically, an N -th order
tensor XXX ∈ CI1×···×IN that has N latent factor matrices
U1 · · ·UN can be written as

XXX =
F∑
f=1

[U1]:,f ◦ · · · ◦ [UN ]:,f

where Un ∈ CIn×F and the minimal such F is the rank of
tensor XXX or the canonical polyadic decomposition (CPD) rank
of XXX . [15].

Definition 2: (Unfolding). For an N -th order tensor XXX ∈
CIn×···×IN in Definition 1, its n-mode matrix unfolding can
be written as

X(n) = (UN � · · · �Un+1 �Un+1 � · · · �U1)UT
n .

Simply speaking, each unfolding is obtained by taking the
mode-n slabs of the tensor (i.e., subtensors obtained by fixing
the nth index of the original tensor), vectorizing the slabs, and
then stacking all the vectors into a matrix—see details in [15].

Low-rank tensor decomposition [also known as CPD or
Parallel Factor Analysis (PARAFAC)] aims at factoring XXX into
a sum of column-wise outer products of U1, . . . ,UN—with
each such outer product being a rank-one tensor. Unlike matrix
factorization, which is in general non-unique, the PARAFAC
decomposition has unique solution under mild conditions, up
to scaling and permutation of the F components. One of the
best-known uniqueness results for third-order tensors is due
to Kruskal [21], which was later extended to higher orders by
Sidiropoulos and Bro [22].

Theorem 1: [22] Given a N th order tensor as in Definition
1, if

∑N
n=1 krank(Un) ≥ 2F+N−1, then rank(XXX ) = F and

the decomposition of XXX is essentially unique, where krank(·)
denotes Kruskal rank.
The essential uniqueness makes the latent factors of a tensor
identifiable from the ‘ambient data’ XXX up to some trivial
ambiguities—which has enabled a tremendous amount of
applications—see an overview in [15]. Theorem 1 is known
to be a broadly applicable general result. In some special
cases where the factor matrices have special structure, e.g.,
Vandermonde structure, the uniqueness condition in Theorem

TABLE I
TENSOR ORDER OF H

Array Configuration Tensor order of H

Tx Rx Mr > 1

DP-URA DP-ULA Four
DP-URA DP-URA Five
DP-URA DP-UCA Four
DP-UCA DP-URA Four

1 can be improved. For example, we have the following
theorem:

Theorem 2: [23] Consider a tensor XXX =
∑F
f=1[U1]:,f ◦

[U2]:,f ◦ [U3]:,f , where U1 ∈ CI1×F , U2 ∈ CI2×F and
U3 ∈ CI3×F with U Vandermonde having distinct nonzero
generators. Then, if

krank(U2) + min{I1 + krank(U3), 2F} ≥ 2F + 2

the factors are essentially unique.
Theorem 2 presents a much milder identifiability condition
relative to that in Theorem 1. The result is tailored for
tensors that have a latent factor with Vandermonde structure.
Such structure emerges quite often in array processing, since
some array geometries (ULA, URA, nested or coprime arrays)
naturally give rise to Vandermonde matrices.

B. Tensor-Based Method and Identifiability

Our proposed approach starts by noticing that H is in fact
a tensor of rank (at most) K, when the BS is equipped with
a URA and the receiver with a ULA. To see this, let us
first vectorize each block H(p,q) as h(p,q) = vec(H(p,q)) =(
A∗y �A∗x �Ar

)
β(p,q), and stack the vectorized H(p,q)’s

into a matrix as follows:

Ȟ =
[
h(Vr,Vt),h(Vr,Ht),h(Hr,Vt),h(Hr,Ht)

]
=
(
A∗y �A∗x �Ar

)
BT (17)

where Ax = [ax,1 · · · ax,K ] and Ay = [ay,1 · · · ay,K ] and

B = [β(Vr,Vt) β(Vr,Ht) β(Hr,Vt) β(Hr,Ht)]T ∈ C4×K (18)

in which we have used (15) (or, more precisely At = Ax �
Ay) and vec(Xdiag(z)YH) = (Y∗ �X)z.

Eq. (17) is exactly the definition of a four-slab fourth-
order tensor of rank ≤ K in the matrix unfolding form [15]
when min(Mr,Mx,My) > 1 (cf. Definition 2). We have this
fourth-order tensor because of the array manifolds that we
have assumed for the transmit and receive arrays. The four
factor matrices Ar, (Ax, Ay) and B are the manifold of the
receive antenna array, the manifold matrices of (horizontal and
vertical) transmit antenna arrays, and the path-loss matrix,
receptively. A side comment is that if some other array
geometries are employed at both sides, one can also derive a
low-rank tensor from blocks of H by rearranging. We list the
resulting tensor structure of some pertinent cases for widely
used configurations of the transmit and receive antenna arrays
in Table I.
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1) Array Manifold Estimation: Our idea is to estimate Ax,
Ay , Ar and B from the tensor Ȟ, and then estimate the
multipath parameters using the estimated factor matrices. As
will be shown shortly, if Ax, Ay and Ar are accurately
estimated, the DOAs and DODs can then be estimated in
closed-form. To estimate the array manifolds and the path-
losses (i.e., B), we propose to employ the following tensor
decomposition formulation:

min
Ar,Ax,Ay,B

∥∥Ȟ− (A∗y �A∗x �Ar

)
BT
∥∥2
F
. (19)

which is the least squares fitting formulation for low-rank
tensor factorization.

Various low-rank tensor decomposition algorithms can be
applied to identify the loading matrices [15], [24], [25].
Among them, one of the most popular methods is the so-called
alternating least squares (ALS) technique. To implement ALS
for solving (19), we make use of different unfoldings of the
tensor Ȟ, which are denoted as follows:

H(1) = (B�A∗y �A∗x)AT
r (20)

H(2) = (B�A∗y �Ar)A
H
x (21)

H(3) = (B�A∗x �Ar)A
H
y (22)

H(4) = (A∗y �A∗x �Ar)B
T . (23)

Note that H(4) is exactly Ȟ. Using the unfoldings, one
can easily implement the following alternating optimization
algorithm:

Ar ← arg min
Ar

∥∥H(1) − (B�A∗y �A∗x)AT
r

∥∥2
F

(24a)

Ax ← arg min
Ax

∥∥H(2) − (B�A∗y �Ar)A
H
x

∥∥2
F

(24b)

Ay ← arg min
Ay

∥∥H(3) − (B�A∗x �Ar)A
H
y

∥∥2
F

(24c)

B← arg min
B

∥∥H(4) − (A∗y �A∗x �Ar)B
T
∥∥2
F

(24d)

where the four subproblems are all linear LS problems that
can be readily solved in closed-form. The ALS algorithm re-
peatedly solves the subproblems until convergence. Derivative-
based schemes can also be used for optimization, from Gauss-
Newton and BFGS to simple stochastic gradient type methods.
See [15] for more information.

2) Parameter Estimation: Once Ar, Ax, and Ar are ob-
tained from (24), the angles θk, ϑk and ϕk can be estimated
by exploiting the manifold structure of Ar,k,Ax,k and Ay,k.
To proceed, let us consider the following:

ω̂r,k = ∠(A
H

r,kAr,k) (25)

ω̂x,k = ∠(A
H

x,kAx,k) (26)

ω̂y,k = ∠(A
H

y,kAy,k) (27)

where x and x are the vectors consisting of the first and last
(M − 1) entries of x with length M , respectively. Then we
estimate θk from ω̂r,k, and ϑk and ϕk from ω̂x,k and ω̂y,k as

θ̂k = sin−1
(

ν

2πdr
ω̂r,k

)
(28)

ϕ̂k = sin−1

√( ν

2πdx
ω̂x,k

)2

+

(
ν

2πdy
ω̂y,k

)2
 (29)

ϑ̂k = tan−1
(
dxω̂y,k
dyω̂x,k

)
. (30)

Eqs. (28)-(30) hold because we have assumed that the transmit
and receive antenna arrays are URA and ULA, respectively.
The closed-form solutions are also rotationaly invariant—
not affected by scaling ambiguity that is brought by tensor
decomposition.

We should mention that the tensor decomposition algorithm
in (24) has already given an initial estimate of B, i.e., the path-
losses. However, since there is an intrinsic scaling ambiguity
of tensor decomposition (cf. Lemma 1 in Appendix A), such
an initial estimate may not be useful. Nevertheless, this is
easy to fix. Note that Âr, Âx, Ây can be reconstructed from
θk, ϑk and ϕk without scaling ambiguity. Then, the estimate
of B without scaling ambiguity can be computed as

B̂← arg min
B

∥∥∥H(4) − (Â∗y � Â∗x � Âr)B
T
∥∥∥2
F
. (31)

Algorithm 1 summarizes the tensor based parameter esti-
mation, where in the first step we have assumed that the pilot
matrix S has orthogonal rows so that XSH gives a fairly
accurate estimate of H. Note that the order of applying ten-
sor decomposition, angle estimation, and path-loss estimation
matters—since angle decomposition can naturally remove the
scaling ambiguity, as we discussed.

Note that the complexity of (25)-(27) is very low but the
resulting estimate could be suboptimal. For better accuracy,
one can resort to single-tone frequency estimation algorithms,
e.g., [26], [27] or maximum likelihood (ML)-based (peri-
odogram) methods, to estimate the DODs and DOAs from
the estimated manifolds. These latter methods are statistically
efficient (approximately) in the high SNR regime, but are
computationally more demanding than the simple closed-form
solutions provided earlier.

3) Parameter Identifiability: As we mentioned, the channel
parameters can be estimated using some other methods, e.g.,
MUSIC and ESPRIT, which possibly admit lower complexity
compared to tensor decomposition. However, a salient fea-
ture of tensors is that the factors are uniquely identifiable
under mild conditions. For example, it can be shown that
{Ar,Ax,Ay,B} meet the k-rank condition [23] provided that
all the DOAs, DODs and path-losses are not the same, which is
a mild condition considering the random nature of the multiple
paths. Then we have the following theorem:

Theorem 3: Assume that the scenario where the transmitter
is equipped with a URA and the receiver a ULA, and that
(θk, ϑk, ϕk) and (θj , ϑj , ϕj) are different for any k 6= j.
Also assume that the pathloss parameters in B are generated
following some jointly continuous distribution. Then, the key
parameters {θk, ϑk, ϕk}Kk=1 and the path-losses β(p,q) for all
p ∈ {Vr,Hr} and q ∈ {Vt,Ht} are uniquely identifiable via
the proposed approach provided that

min (Mr,K) + min(Mx,K) + min(My,K)

+ min (4,K) ≥ 2K + 3 (32)
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almost surely.
The proof relies on the identifiability of the four-slab

four-way tensors and is relegated to Appendix A. Although
the proof is relatively straightforward for someone who is
frequently exposed to tensors, the implication of Theorem 3 is
important: Using the proposed approach, the key parameters
are uniquely identifiable even when the number of paths
largely exceeds the number of min{Mr,Mt}. This makes
the proposed method widely applicable to many realistic
scenarios, especially where the receive antenna array is of a
relatively small size, as in many mobile phones. Furthermore,
this identifiability is independent of the array configurations
of transmit and receive antennas.

Theorem 3 is intuitive and easy to read, but is not the best
bound that we can get. In fact, if we look at the parameter
estimation problem from a multi-snapshot 2-D harmonic re-
trieval viewpoint, a much stronger identifiability result can be
obtained, which is summarized in the following theorem:

Theorem 4: The parameters
{
θk, ϕk, ϑk, β

(p,q)
k

}
are all

uniquely identifiable provided that

K ≤ arg max
F,Pr,Px,Py

F

s.t. max
(

(Pr − 1)PxPy, Pr(Px − 1)Py,

PrPx(Py − 1)
)
≥ F

8QrQxQy ≥ F (33)

where Pr + Qr = Mr + 1, Px + Qx = Mx + 1, Py + Qy =
My + 1.

Theorem 4 can be proven by invoking identifiability results
in multi-dimensional harmonic retrieval, in particular, the
construction following the IMDF algorithm [28]. The result
in Theorem 4 is a bit harder to read compared to Theorem 3,
but is far better upon close inspection. For example, when
Mx = 4,My = 8, and Mr = 2, the identifiable case under
Theorem 3 is with K up to K = 7, while K = 32 multi-paths
can be guaranteed to be identified under Theorem 4. Further-
more, even when the MS only has a single dual-polarized
antenna, it can be shown using the IMDF based approach
that the number of identifiable paths is upper bounded by
K < 0.8187Mt. For details about the IMDF method, we refer
the readers to [28]. Due to its simplicity, it is either a good
candidate to initialize the method proposed in Section III-B or
can be directly applied for computational efficiency.

4) Computational Complexity: We should remark that the
complexity of the proposed tensor decomposition method is
dominated by the step for solving (24), where each subproblem
is a least squares problem. Taking (24a) as an example, the
solution to this subproblem is as follows:

ÂT
r =

(
(BHB) ~ (AT

y A∗y) ~ (AT
xA∗x)

)−1×(
B�A∗y �A∗x

)H
H(1),

which needs O
(
(4+Mx+My)K2+4K2+K3+4K2MxMy+

4KMrMxMy

)
flops if one uses the above relatively naive

implementation. The matrix inversion and large matrix product
(i.e.,

(
B�A∗y �A∗x

)H
H(1)) parts are the most costly to

compute. Nevertheless, these two operations can be avoided if
some advanced solvers are employed, e.g., [24], [29].

IV. PARAMETER IDENTIFICATION USING FRUGAL PILOTS

In the previous section, we have proposed a tensor
decomposition-based method for estimating the DOAs, DODs,
and path-losses of the MIMO 3-D channel when a reliable
estimate of H is available. This is viable when S is ‘fat’
or square and with full row-rank. In other words, when the
pilot sequence is long enough so that S has full row rank,
H can be estimated via least squares (or simply matched
filtering if SSH = I). Then, the method that is proposed
in the previous section can be applied. In practice, using a
long pilot sequence is not desirable since this creates large
downlink training overhead. When Mt is large, the size of
S is at least 2Mt × 2Mt if one wishes to make the rows
of S orthogonal to each other, that could be costly. In this
section, we propose another approach to handle the above
challenge. We carefully design the transmit pilot sequence and
formulate a compressed tensor decomposition (CTD) problem
for parameter estimation. As it turns out, we can use a pilot
matrix whose size is much smaller than 2Mt×2Mt to identify
the channel parameters.

A. Proposed Downlink Training and Parameter Identification
Approach

To reduce downlink overhead in a massive MIMO system
while keeping identifiability of the key parameters of interest,
we propose to employ the following specially structured pilot
matrix:

S =

[
Q 0
0 Q

]
∈ C2Mt×N (34)

where Q ∈ RMt×N/2 (assuming N is an even number for
simplicity) whose elements are generated following a certain
absolutely continuous distribution and N ∈ [4,Mt). This way,
the (noise-free) received data matrix becomes

X =

[
Ardiag

(
β(Vr,Vt)

)
AH
t Q Ardiag

(
β(Vr,Ht)

)
AH
t Q

Ardiag
(
β(Hr,Vt)

)
AH
t Q Ardiag

(
β(Hr,Ht)

)
AH
t Q

]
(35)

Given the above X, our goal is to identify Ar, At, β(p,q)—
i.e., the path losses and the array manifolds, since all the key
parameters can be easily estimated from them as described in
the previous section.

Physically, the proposed design of S in (34) corresponds
to a time-division multiplexing strategy that transmits pilots
from the H-polarized array first, and then transmits the same
pilots from the V-polarized array (or the other way around),
with the other turned off—which is very easy to implement in
practice. Nevertheless, as we will show, such a simple signal-
ing strategy combined with tensor algebra allows us to identify
the parameters of interest under very mild conditions—even
when the number of columns of S is much smaller than 2Mt.
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B. Identification Approach and Theoretical Guarantees

One can see that the four blocks in (35) comprise a four-slab
three-way tensor, where the (p, q)th block is defined as

X(p,q) = Ardiag
(
β(p,q)

)
AH
t Q (36)

for p ∈ {Vr,Hr} and q ∈ {Vt,Ht}. Taking the transpose of
X(p,q) and then vectorizing it yields

x(p,q) =
(
Ar � (QTA∗t )

)
β(p,q). (37)

Thus, by collecting {x(p,q)}, we have

Z =
[

x(Vr,Vt) x(Vr,Ht) x(Hr,Vt) x(Hr,Ht)
]

=
(
Ar �QTA∗t

)
BT ∈ CNMr/2×4 (38)

It is readily seen that Z is nothing but a matrix unfolding
of a third order tensor whose latent factors are QTA∗t , B
and Ar. It immediately follows that QTA∗t , B and Ar can
be identified under the proposed pilot design under certain
conditions. Hence, at least the angle of arrivals can be easily
estimated from Âr, under quite mild conditions that guarantee
identifiability of third-order tensors, as stated in Theorem 1.
Let

E = (QTA∗t )
∗ = QHAt. (39)

Estimating At from the compressed measurements E is
nontrivial—can we uniquely identify the DODs from E? The
answer is affirmative—if the transmit array is an ULA or URA
and certain mild conditions are satisfied, which we will explain
shortly.

1) Manifold Estimation via Smoothed ESPRIT: There are
many ways to estimate QTA∗t , B and Ar from Z, since this is
nothing but a third-order tensor decomposition problem. The
identifiability of this kind of tensor (in which there is at least
one factor which has a Vandermonde structure) has also been
well understood—e.g., the aforementioned Theorem 2 that
was derived in [23]. Here, we propose to employ a method
that was recently proposed in [30] to handle this problem.
The method is in nature a subspace method, which works
under very relaxed identifiability conditions by exploiting the
Vandermonde structure of a latent factor of the tensor. The
detailed proof of the algorithm can be found in [30]. Here, we
refer to this algorithm as the smoothed ESPRIT algorithm.

The algorithm starts by working with a third-order tensor
as follows (with a bit of notational abuse):

X = (A�B)CT (40)

where B and C are drawn from some continuous distributions,
and J ≤ K, and A ∈ CI×F is Vandermonde with distinct
nonzero generators. To identify A, B and C, one can employ
the following procedure:

First, let us define a cyclic selection matrix Ji2 =
[0I1×i2 II1 0I1×(I−i2−I1)]. It is easy to check that

(Ji2 ⊗ IJ)X =
(
(Ji2A)�B

)
CT

= (A1 ⊗B)diag
(

[ A ]i2+1,:

)
CT (41)

where A1 = J0A = [A]1:I1,: contains the first I1 rows of A.
Thus, by varying i2 from 0 to (I2−1) where I2 = I+ 1− I1,
we can construct a smoothed matrix as

Xs =
[
J0X · · · JI2−1X

]
= (A1 �B) (A2 �C)

T ∈ CI1J×I2K . (42)

where A2 takes the first I2 rows of A. Starting from (42), the
smoothed ESPRIT algorithm applies a series of re-arranging
of the tensor elements and finally converts the factorization
problem to a classical DOA estimation problem that can be
handled by ESPRIT—and solves it via eigen-decomposition—
see details in [30]. The algorithm also offers very favorable
identifiablity guarantees:

Theorem 5: [30] Consider a third-order tensor X = A(B�
C)T , where A ∈ CI×F , B ∈ CJ×F , C ∈ CK×F , A
is Vandermonde with distinct nonzero generators. Assume
that B and C are drawn from certain absolutely continuous
distributions, respectively. Then, if

F ≤ min
(

(I1 − 1)J, I2K
)

(43)

where I1 ≥ I2 andI2 = I + 1− I1 are chosen from

{I1, I2} = arg max
{I1,I2}∈Z+

min
(

(I1 − 1)J, I2K
)

(44)

Then A, B and C are identifiable up to permutation and
scaling of columns, almost surely.

The above method can be directly applied to Z in (38),
if we treat Ar, QTA∗t , B as A, B, C, respectively, and
the corresponding dimensions are I = Mr, J = N/2 and
K = 4. It is clear that the Ar, B, and QTA∗t are identifiable
up to scaling and permutation ambiguities under quite mild
conditions—both N and Mr can be smaller than the number
of paths. We remark that Ar, B, and QTA∗t can be identified
using any tensor factorization method, e.g., the least squares
fitting formulation for tensor decomposition and ALS, which
may have some other benefits such as being more noise-
robust. Nevertheless, the employed approach admits by far the
strongest identifiability result for a third-order tensor which
has a Vandermonde latent factor. Another good feature of the
employed approach is that it is very lightweight and consists
of only simple algebraic procedures and eigen-decomposition,
which is very friendly to real-time implementation.

2) Identification of DODs: By the proposed procedure (or
any other tensor factorization algorithm), Ar,B and QTA∗t
can be identified. However, whether At is identifiable from
QTA∗t is not yet clear. Recall that we previously defined E =
QHAt in (39). Since there is complex scaling ambiguity in
the estimate of E, i.e., Ê, the problem is equivalent to solving

ê = ξQHat

when QH is a known compression (fat) matrix and ê is a given
compressed measurement vector, where ê can represent any
column of the estimated E and at represents the corresponding
column in At. Here, ξ is a complex-valued non-zero scalar
that represents the scaling ambiguity inherited from the tensor
factorization phase. Solving the above underdetermined system
of equations to recover the vector at is quite similar to the
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problem of compressive sensing [31]. However, our at is not
sparse, and sparsity is what modern compressive sensing relies
on to establish signal identifiability—this raises the question if
at is still identifiable from the system of linear equations, since
an underdetermined system could have an infinite number of
solutions?

To address this issue, we have the following lemma:
Lemma 1: Given a system of equations ê = ξQHat where

Q ∈ CMt×N/2, ξ ∈ C, ξ 6= 0, and at ∈ CMt is a function
of θ. Assume that Q is generated following some absolutely
continuous distribution, and that at is a steering vector keeping
the transmit array structure. Also assume that Mt ≥ N/2 ≥ 2.
Then, at is identifiable from ê = ξQHat almost surely.

Proof: Let us assume that there exists another steering
vector a′t that also satisfies c = ξ′QHa′t, where a′t 6= at and
ξ′ 6= ξ. Hence, we have

QH [ξat,−ξ′a′t] = 0. (45)

Since at and a′t are Kronecker product of two Vandermonde
vectors, we have

rank([ξat,−ξ′a′t]) = 2

if Mt ≥ 2. Also because Q is a random matrix generated
following some absolutely continuous distribution and ξ, ξ′ 6=
0, we have

rank(QH [ξat,−ξ′a′t]) = 2

holds with probability 1 (Lemma 1, [32])—which is a contra-
diction to (45). This completes the proof.

Lemma 1 clearly indicates that if Mt, N/2 ≥ 2, the solution
to Ê = QHAtdiag(ξ) is unique (where ξ contains the
inherited scaling ambiguities from the tensor factorization
stage)—if the columns of At are Vandermonde vectors that
have different generators. To be specific, we have the following
corollary:

Corollary 1: Assume that Mt, N/2 ≥ 2, and that At is the
manifold of an URA or ULA, which has a set of different
DODs, i.e, (ϑk, ϕk) 6= (ϑj , ϕj) for k 6= j. Then, At can be
uniquely identified from the system Ê = QHAtdiag(ξ).

Corollary 1 indicates that under the premise that the third-
order tensor Z is identifiable, then one can use a pilot matrix
has as few as 4 columns, which can be rather economical
in practice. On the other hand, the results in Lemma 1 and
Corollary 1 are not entirely surprising: After all, all the
columns in At are parametrized by only two variables—
it makes much sense that we can identify them from two
equations.

Combining the above results, we have the following theorem
that states an integrated result of the two steps (i.e., tensor
factorization and At identification):

Theorem 6: Assume that the receive antenna array is a ULA
and the transmit array is a URA, and that every component
in (θk, ϑk, ϕk) is different. Moreover, the path-loss matrix B
is random. Then, the array manifolds Ar, Ax, Ay and the
path-losses are uniquely identifiable with probability one via
the proposed approach if

K ≤ min
(

4(Pr − 1), (Mr + 1− Pr)N/2
)

(46)

where Pr is chosen from

Pr = arg max
{t,Pr}∈Z+

t

s. t. 4(Pr − 1) ≥ t
(Mr + 1− Pr)N/2 ≥ t. (47)

The above theorem shows that when Mt > N/2, the
identifiability is only determined by Mr and N . This means
that no matter what the transmit antenna is, as long as the
number of multipaths satisfies (46), we can always identify the
whole channel matrix. The associated algorithm, dubbed CTD,
that ensures the above identifiability result is summarized in
Algorithm 1.

To recover (ϑk, ϕk) for all k from Ê = QHAtdiag (ξ), one
can formulate this problem as a fitting problem, i.e.,

min
ϑk,ϕk,ξ

∥∥∥[Ê]:,k − ξQHat,k

∥∥∥2
2
, ∀k = 1, · · · ,K (48)

where at,k = ay,k ⊗ ax,k if a URA is used at the transmitter.
Problem (48) can be solved via many nonlinear programming
algorithms since it is continuously differentiable. The only
difficulty might be that the gradient w.r.t. (ϑk, ϕk) could
be tedious to derive. Here, we use a simpler approximate
algorithm to estimate (ϑk, ϕk) from Ê = QHAtdiag (ξ),
which works well in practice. The detailed method is presented
in Appendix B.

3) Complexity Analysis: The computational complexity for
CTD consists of two parts, i.e., the smoothed ESPRIT in
Step 3 and the refinement in Step 5 of Algorithm 1. The
complexity for smoothed ESPRIT is dominated by the singular
value decomposition (SVD) of Xs in Step 2, which needs
O(2PrQrNK+8P 2

rQrN+64P 3
r ) flops. The refinement takes

O(K3 +K2NMr + 2KNMr) flops. The overall complexity
of CTD is O(2PrQrNK + 8P 2

rQrN + 64P 3
r ) flops when

K ≤ min(4(Pr − 1), QrN/2). Otherwise, the complexity is
O(2PrQrNK+8P 2

rQrN+64P 3
r +K3+K2NMr+2KNMr)

flops.

Algorithm 1 CTD for channel estimation with frugal pilot
1: Determine Pr and the maximum K from Theorem 6, and

then compute Qr = Mr + 1− Pr
2: Follow (42) to construct Xs =

(Ar,Pr
�B)

(
Ar,Qr

� (AH
t Q)T

)T
, and estimate

the signal subspace Us via the SVD of Xs.
3: Apply smoothed ESPRIT [30] to estimate Ar, QHAt and

B.
4: Estimate θk from Ar and ϑk and ϕk from the estimate

of AH
t Q column-by-column via gradient descent (see

Appendix B)
5: Finally, refine Âr from {θ̂k}, Ât from {ϑ̂k, ϕ̂k} and B̂ =((

Âr � (QT Â∗t )
)†

Z
)T

6: Recover the channel from Âr, Âx, Ây and B̂.

V. NUMERICAL RESULTS

We consider a massive MIMO system with a DP URA
at the BS and a DP ULA at the MS. This particular case



10

is of considerable practical interest in 3GPP as a candidate
for implementation [3]. In the simulation, we assume that the
multipath propagation gains are Rician distributed, and all the
multipath parameters are randomly (uniformly) drawn. The
BS covers [0◦, 90◦] elevation angular range and (−45◦, 45◦)
azimuth angular range, while the MS only covers [−60◦, 60◦]
azimuth angular range since the elevation angle is zero for
ULA, i.e., θk ∼ U(−π/3, π/3), ϕk ∼ U(0, π/2), ϑk ∼
U(−π/3, π/3). Moreover, similar to [5], [33], we set κ = 13.2
dB, which is representative of urban propagation scenarios.
We use the LS estimator of H as a baseline to compare with
the reconstructed channel from the estimated key parameters,
when LS is applicable. All the results are averaged over 500
Monte-Carlo trials using a computer with 3.2 GHz Intel Core
i5-4460 and 4 GB RAM. The normalized MSE (NMSE) of
channel estimates is computed from

NMSE =
1

500

500∑
i=1

‖Ĥi −H‖2F /‖H‖2F (49)

where Ĥi denotes the channel that is reconstructed from the
estimated key parameters from the ith Monte-Carlo trial. In
all the simulations, we assume that the number of paths (i.e.,
K) is known or has been estimated. Estimating K is a tensor
rank estimation problem, which is known to be NP-hard [34].
In practice, we are interested in the useful signal rank, i.e., the
number of significant paths, and for this task we have a few
practically effective algorithms, such as the one in [35]–[37].

In the first example, we compare the performance of the
proposed tensor factorization-based method (implemented us-
ing alternating least squares (ALS); labeled as ‘PARAFAC’)
with IMDF [28], LS, multidimensional unitary ESPRIT (U-
ESPRIT) [38] and a CS based technique [8] which is briefly
summarized in Section II-C. Note that in the CS method, we
quantize each angle using 7 bits , so the resulting dictionary
has size 4MrMt × 223, which is intractable in a conventional
desktop computer. To circumvent this, we implement the CS
algorithm as follows. After obtaining the LS channel estimate,
we first reshape each sub-block of the channel estimate as a
Mr×Mx×My tensor, and average the resulting tensors. Then
we implement 3-D FFT with 128×128×128 points to estimate
{θ, ϑ, ϕ}, using the so-called peak-picking technique. Finally,
we update the path-loss matrix B via (24d). We consider a DP
MIMO scenario where the receiver has a ULA with Mr = 2
sensors and the transmitter has a 4×8 URA. Thus, the channel
matrix has size 4 × 64. The number of multipaths randomly
varies from 1 to 6. A row-orthogonal pilot matrix S is used
in this case. Thus, PARAFAC, IMDF and CS are performed
based on the LS channel estimate. It is worth noting that we
initialize PARAFAC using the IMDF estimates. Specifically,
we first implement IMDF to estimate {ωr,k, ωx,k, ωy,k}Kk=1

which are then used to initialize Ar, Ax and Ay , respectively.
Finally, the B matrix is refined via the LS estimate of (24d).
We test the performance of all the competitors under known
and unknown number of multipaths. For the latter, we set
K = 6 for all the algorithms.

It is observed from Fig. 3 that PARAFAC (i.e., ALS)
outperforms the IMDF, U-ESPRIT, LS and CS algorithms
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Fig. 3. NMSE versus SNR.

in both cases. Compared to Fig. 3(a), PARAFAC, IMDF, U-
ESPRIT and CS exhibit slight performance loss in Fig. 3(b),
where the exact number of multipath is unknown. When SNR
> 14 dB, we see that the NMSE of CS is even worse than
the LS method. This is mainly because as SNR increases,
the performance of CS is limited by the resolution of the
dictionary grids. We observe that U-ESPRIT occasionally fail
to produce reasonable results. Such failure does not occur
frequently, but due to this reason the NMSE of U-ESPRIT
is relatively high even in the high SNR cases. It is worth
noting that if we remove such outlying cases, then U-ESPRIT
performs better than the CS method but is still not as good as
IMDF and ALS based PARAFAC.

The second example examines the NMSE performance
versus Mt, where Mt varies from 8 to 128 and the size of URA
with (Mx,My) ∈ {(2, 4), (4, 4), (4, 8), (8, 8), (8, 16)}. SNR is
fixed at 10 dB, and the other parameters keep the same as the
previous example. Fig. 4 shows similar results as Fig. 3, where
PARAFAC performs the best. Combining the results in Figs.
3 and 4, we see that PARAFAC has similar accuracy as IMDF
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Fig. 4. NMSE versus Mt. (Mr = 2, SNR = 10 dB, the number of multipaths
varies from 1 to 6.)

in low SNR and small sample size cases. With increasing
SNR or Mt, PARAFAC outperforms IMDF evidently. Over-
all, PARAFAC performs better than IMDF. This is because
PARAFAC employs the LS criterion, which corresponds to
Vandermonde structure-agnostic ML for Gaussian noise, and
thus is more robust to noise. IMDF is an algebraic closed-form
method, which exploits Vandermonde structure and is much
faster than PARAFAC, but is not optimal in handling Gaussian
noise. On the other hand, PARAFAC accounts for the low-
rank structure of the channel matrix, so it works well even
though there are path-losses smaller than the noise variance.
However, IMDF is inherently a subspace method, which picks
the signal subspace according to the principal eigenvalues or
singular values. Once the noise variance is greater than the
path-loss values, the signal subspace may be miss-estimated.

We now consider a DP MIMO system where Mx =
My = 8, Mr = 3 and N = 16. Thus, the task here
is to recover a 6 × 128 matrix from 6 × 16 received data
matrix. We compare the CTD method with the LS and joint

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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CTD with exact K
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Fig. 5. NMSE versus K.

orthogonal matching pursuit (J-OMP) algorithm [9]. Specif-
ically, for the J-OMP method, we implement it for each
column of Z in (38), and solve the following optimization
problem mingi

‖[Z]:,i − ΦJ-OMPgi‖22, s. t. supp(gi) ≤ K,
where ΦJ-OMP =

(
(Φy ⊗Φx)HQ

)T ⊗ Φr. Finally, we use
the estimates of {gi}4i=1 to recover the whole channel. For
simplicity, the dictionaries Φr,Φx and Φy corresponding to
ωr, ωx and ωy , respectively, are all computed via uniformly
dividing [−π, π] into 128 points, such that ΦJ-OMP is of size
16 × 221. We set K = 6 for CTD and J-OMP and compare
the NMSE performance by varying the number of multipaths
from 1 to 6 under SNR = 20 dB. We also plot the NMSE of
CTD and J-OMP with the correct number of multipaths.

Fig. 5 shows the simulation results. We see that the J-OMP
and LS do not work well, while our method can offer reliable
performance. The reason for the failure of LS is obvious, i.e.,
the LS channel estimate is rank deficient. Due to the high
coherence between the grids of the flat dictionary, solving
the linear inverse problem is hard, so J-OMP does not work
very well. Since the CTD does not have the aforementioned
issues, and its maximum number of resolvable multipaths is
guaranteed by Theorem 6, it achieves the best estimation
accuracy, especially for small K settings. The performance
gap better the NMSE curves of CTD with the correct K < 6
and with fixed K = 6 is relative large when the actual
number of multipaths is small. The main reason for this
phenomenon is that compared to CTD with the correct K,
the channel estimate of CTD with K = 6 is composed of
several redundant multipaths that do not appear in the actual
channel. Furthermore, it is worth noting that the dictionary in
J-OMP is huge – it takes about 400 MB memory for storage
and must be updated when Q changes. In contrast, our method
is dictionary-free. In many cases, it employs only one SVD
to identify the channel matrix, so that its complexity is much
lower. In this example, the average CPU times for CTD and
J-OMP are 0.2694 and 2.9541 seconds, respectively.
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VI. CONCLUSION

The downlink channel estimation problem for the DP
massive MIMO system has been studied through a tensor
decomposition perspective. Using row-orthogonal training pi-
lot matrices, a low-rank tensor decomposition method was
devised for channel estimation, and identifiability of the key
parameters of interest was established under mild and practical
conditions. Furthermore, for non-orthogonal ‘frugal’ training
pilot matrices, a two-stage compressed tensor decomposition
approach with identifiability guarantees was developed for
retrieving the channel matrix and estimating the key pa-
rameters, with which the downlink training overhead can
be reduced significantly. Numerical simulations support our
analysis and show that the proposed schemes are very effective
and promising.

APPENDIX A

The loading matrices Ax, Ay , At and B are uniquely
identifiable up to scaling and a common column permutation
ambiguity provided that

min (Mr,K) + min(Mx,K) + min(My,K)

+ min (4,K) ≥ 2K + 3. (50)

Specifically, if Ãr, Ãx, Ãy and B̃ generate H (i.e., H̆ =
(Ã∗y � Ã∗x � Ãr)B̃

T ), then it must hold that

Ãr = ArΠΣ1, Ãx = AxΠΣ2,

Ãy = AyΠΣ3, B̃ = BΠΣ4 (51)

where Π is the permutation matrix and {Σi}4i=1 are diagonal
scaling matrices satisfying Σ1Σ2Σ3Σ4 = IK .

APPENDIX B
UPDATING ϑk AND ϕk

The goal here is to estimate ϑk and ϕk that satisfies the
following nonlinear equations”

[Ê]:,k = ξkQ
Hat,k, ∀k = 1, · · · ,K.

For notational convenience, let êk = [Ê]:,k and vk = QHat,k.
Solving the above is similar to the 2-D single-tone harmonic
retrieval problem. However, the difficult here is that the
measurement is compressed by a fat matrix, and thus the
conventional harmonic retrieval methods do not apply. We note
the fact that ek is parallel to vk, and its orthogonal projection,
i.e., P⊥ek

= IN/2 − eke
†
k, is perpendicular to vk, i.e.,

P⊥ek
(ξkvk) = P⊥ek

vk = 0. (52)

which implies that the problem of estimating {ϑk, ϕk} is
independent of the scaling ξk. Therefore, we propose to solve

min
ϑk,ϕk

{
f =

∥∥[P⊥ek
vk
∥∥2
2

}
, ∀k = 1, · · · ,K. (53)

It is easy to check that the nullity of P⊥ek
is one, so the recovery

of vk from (53) is unique. This way, we get rid of ξ in our
problem formulation.

The last step is to design an efficient method to estimate
(ϑk, ϕk). Problem (53) is a non-constrained optimization

problem with a smooth objective, and thus it can be handled by
gradient descent. To further simplify the procedure, consider
the following method: Since ϑk and ϕk are embedded in the
ωx,k and ωy,k, instead of directly estimating ϑk and ϕk, it is
easier to find ωx,k and ωy,k first and then update ϑk and ϕk
via (30) and (29), respectively.

To this end, let us compute the gradient w.r.t. ωx,k and ωy,k,

which equals to ∇f =
[

∂f
∂ωx,k

∂f
∂ωy,k

]T
, where

∂f

∂ωx,k
= 2Re

(
aHt,kQP⊥ek

QH(ay,k ⊗ (tx ~ ax,k))
)

(54)

∂f

∂ωy,k
= 2Re

(
aHt,kQP⊥ek

QH((ty ~ ay,k)⊗ ax,k)
)

(55)

with tx = j [ 0 1 · · · Mx − 1 ]
T and

ty = j [ 0 1 · · · My − 1 ]
T . Then we update ωx,k and ωy,k

through [
ωx,k
ωy,k

](r+1)

=

[
ωx,k
ωy,k

](r)
− µ(r)

[
∂f

∂ωx,k
∂f

∂ωy,k

](r)
. (56)

We see that the objective in Problem (53) is the same as
that of the 2-D MUSIC algorithm. Therefore, the initial point
can be estimated from the following spectrum

P =
1

(ay(ωy)⊗ ax(ωx))HQP⊥ek
QH(ay(ωy)⊗ ax(ωx))

(57)

where the maximum is attained at (ax = ax,k,ay = ay,k).
This way, searching ωx and ωy over a certain angle range
and picking the one that maximizes P , we can obtain the
initial estimate of ωx,k and ωy,k. One key notice here is
that the global optimal solution for ωx and ωy is the phase
that corresponds to the peak of the main beam, where the
optimization problem in the main beam is locally concave.
Hence, we need to find an initial guess of ωx and ωy that is
within the main beam. According to the antenna beamwidth
(BW) formula for uniform linear array, i.e., BW = 0.886 ×
Carrier wavelenth/Antenna diameter, we can pre-calculate
the half-power BW (HPBW) and then use it to determine the
searching step-size. For a URA, the HPBW along the x- and y-
aperture positions are approximate 0.886/Mx and 0.886/My ,
respective. We choose the searching step-size as half of the
HPBW, such that the initial guess may be found in the main
beam. It is instructive for illustrating how to select the step-
size. For example, when Mx = My = 8, the HPBW is about
0.12 rad. So the step-size can be determined as 0.06 rad. In
practice, the antenna usually covers only a certain angle range,
e.g., [−π/4, π/4]. In such cases, the 2-D search is efficient.

When the transmitter is a ULA, the problem w.r.t. DOD is a
1-D single-tone estimation problem. Then (57) reduces to the
cost function of the 1-D MUSIC. Since at is Vandermonde,
we do not need search any more in this case. Instead, the
root-MUSIC comes into play. More importantly, in the 1-D
single-tone case, the theoretical variance of the estimate of
root-MUSIC is approximately the Cramér-Rao bound [39].
Therefore, we do not need the gradient update to further refine
the root-MUSIC estimate.
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