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Abstract—For effective flow visualization, identifying representative flow lines or surfaces is an important problem which has been
studied. However, no work can solve the problem for both lines and surfaces. In this paper, we present FlowNet, a single deep learning
framework for clustering and selection of streamlines and stream surfaces. Given a collection of streamlines or stream surfaces
generated from a flow field data set, our approach converts them into binary volumes and then employs an autoencoder to learn their
respective latent feature descriptors. These descriptors are used to reconstruct binary volumes for error estimation and network
training. Once converged, the feature descriptors can well represent flow lines or surfaces in the latent space. We perform
dimensionality reduction of these feature descriptors and cluster the projection results accordingly. This leads to a visual interface for
exploring the collection of flow lines or surfaces via clustering, filtering, and selection of representatives. Intuitive user interactions are
provided for visual reasoning of the collection with ease. We validate and explain our deep learning framework from multiple
perspectives, demonstrate the effectiveness of FlowNet using several flow field data sets of different characteristics, and compare our
approach against state-of-the-art streamline and stream surface selection algorithms.

Index Terms—Flow visualization, streamlines, stream surfaces, deep learning, autoencoder, feature descriptor, clustering, selection.
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1 INTRODUCTION

Understanding large and complex 3D flow fields is
critically important in many aero- and hydro-dynamical
systems that dominate various physical and natural phe-
nomena in the world. Applications that study these dynamic
systems, such as computational fluid dynamics, automotive
and aircraft design, weather forecast and climate modeling,
and simulation of natural disasters (e.g., earthquakes, hur-
ricanes, tornados), generate large amounts of vector field
data that need to be analyzed and visualized. Most fluids
(air, water, etc.) are transparent, and thus their flow patterns
are invisible to us. Flow visualization is used to make
the flow patterns visible so that we can visually acquire
qualitative and quantitative flow information. In this paper,
we place our focus on integration-based flow visualization as
it is most widely used in practice. Specifically, we study
integral flow lines (streamlines, pathlines) and flow surfaces
(stream surfaces, path surfaces).

Many challenges exist when it comes to generating rep-
resentative flow lines or surfaces as well as visually explor-
ing a large collection of flow lines or surfaces. Although
seeding and selection of streamlines have been well studied,
the same problem for stream surfaces is clearly underex-
plored. All existing approaches for effective line and surface
seeding and selection explicitly make use of handcrafted
features (e.g., entropy, curvature, torsion, saliency, critical
points, separation lines, vortex cores) in their solutions. We
instead, take a drastically different approach that automat-
ically learns features from the input lines or surfaces and
encodes them implicitly in a latent space. This is achieved by
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borrowing techniques from deep learning that has made a
significant impact on many fields including those that are
closely related to scientific visualization, such as computer
vision and computer graphics.

We aim to automatically extract latent features from raw
streamline or stream surface data, which can be achieved
using an autoencoder. Note that generative adversarial net-
work is capable of generating novel data from a given
data set that look at least superficially authentic to human
observers, which does not directly match our purpose. We
choose the sparse and stacked version of the autoencoder
framework.

We introduce FlowNet, a single deep learning approach
for streamline and stream surface clustering, filtering, and
selection. The key lies in the design of an autoencoder that
automatically learns line or surface feature descriptors. We
show that by carefully designing the network architecture
and loss function, the features learned can be used to well
reconstruct the lines or surfaces with minimum errors. To
visually explore the features, we perform dimensionality
reduction and apply different clustering algorithms. We
further develop a visual interface along with intuitive and
convenient interactions to enable users to effectively explore
the underlying set of streamlines and stream surfaces.

The contributions of this paper are as follows. Our work
is the first one that applies deep learning techniques for
feature learning of streamlines and stream surfaces. Unlike
previous works, which need separated solutions for han-
dling streamlines and stream surfaces, our method can take
either streamlines or surfaces for feature learning using a
single framework. For either lines or surfaces, there is no
need to change the network architecture (as the network
input remains in the same form) or feature definition (as
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the feature descriptors are learned implicitly). We integrate
feature learning, projection, and exploration into a single
framework for visual analysis. Unlike previous methods
which are almost exclusively fully-automatic, the visual
interface enables users to customize their representative
flow line or surface selection results. We validate FlowNet
from different perspectives, demonstrate its effectiveness
using multiple data sets, and compare our deep learning
approach against existing streamline and stream surface
selection algorithms.

2 RELATED WORK

Flow line and surface selection. In flow visualization,
selecting representative flow lines has become a useful
alternative of seed placement. For view-dependent streamline
selection and filtering, Marchesin et al. [21] measured the
contribution of each streamline to the understanding of the
vector field and selected those streamlines that have a higher
contribution and lower probability leading to visual clutter.
Ma et al. [20] presented an importance-driven approach that
ensures coherent streamline update when the view changes
gradually. For view-independent streamline clustering and
selection, Yu et al. [43] clustered streamlines hierarchically
and formed streamline bundles as representatives that suc-
cinctly capture flow features and patterns at varying levels
of detail. Tao et al. [31] selected streamlines by considering
their contributions to all sample viewpoints. Both streamline
selection and viewpoint selection can be achieved using a
unified information-theoretic framework which builds two
interrelated information channels between a pool of stream-
lines and a set of sample viewpoints.

Lu et al. [19] advocated a distribution-based approach
and utilized dynamic time warping to define the similarity
between streamlines for clustering and query. Oeltze et al.
[24] evaluated three different kinds of clustering techniques
(k-means clustering, agglomerative hierarchical clustering,
and spectral clustering) in terms of clutter reduction when
visualizing streamlines traced from simulated blood flow.

Only a few works address the issue of flow surface
selection. Martinez Esturo et al. [10] favored stream sur-
faces where the flow is aligned with principal curvature
directions. Simulated annealing is used to select a globally
optimal stream surface based on a set of stream surface
quality measures. Schulze et al. [29] extended the above
work to select a set of globally optimal stream surfaces
in an iterative manner. All selected surfaces are mutually
distant to convey different flow features while reducing
visual occlusion and clutter.

All these existing methods leverage handcrafted features
that explicitly define the feature representation. In this work,
we explore a very different way that implicitly encodes
features of lines or surfaces in a latent space. This eliminates
the need for users to enumerate individual features and
provides the opportunity to self-learn the feature represen-
tation, although no intuitive explanation of each dimension
can be conveyed. In this sense, our work is similar to Hong
et al. [15] which extracts pathline features through latent
Dirichlet allocation (LDA) and groups pathlines through
fuzzy clustering. The difference is that we employ a neural
net for flow feature extraction and they utilized LDA for
flow topic extraction.

2

Deep learning+VIS. Deep learning has been success-
fully applied to many applications such as computer vision,
speech recognition, natural language processing, and bioin-
formatics, achieving results comparable or even superior to
human experts [13]. In visualization, there is a burgeoning
of works that integrate deep learning with visualization,
especially visual analytics. Almost all of these works at-
tempted to “open the black box” of various neural network
models by designing effective user interfaces for interactive
exploration, visual understanding, and analytical reason-
ing [14]. However, little work has been done that applies
deep learning techniques to solve scientific visualization
problems, in our case, flow line and surface clustering and
selection. The challenges mainly lie in the missing of a con-
sistent representation for scientific data (e.g., flow surfaces)
as input to deep neural models, and the lack of sufficient
high-quality labeled data for achieving acceptable learning
performance.

3D shape analysis using CNN. Recently, computer vi-
sion and computer graphics researchers have investigated
the use of convolutional neural networks (CNN) for 3D shape
analysis [36]. These methods can be classified into manifold-
based [4], multiview-based [1], [25], [30], and voxel-based [27],
[39] methods. Manifold-based methods perform CNN oper-
ations over geometric features defined on a 3D mesh mani-
fold, which is typically a genus zero or higher genus surface.
This does not work for flow surfaces (which are non-closed)
and flow lines (which can be treated as degenerated cases of
flow surfaces where the seeding curve reduces to a seeing
point). Multiview-based methods represent a 3D shape with
a set of images rendered from different views and take the
image stack as the input of a 2D CNN. However, a flow
surface could be severely self-occluded, which renders a
multiview-based solution impractical. Voxel-based methods
model a 3D shape as a function sampled on voxels and
define a 3D CNN over voxels for shape analysis. We choose
this approach for our FlowNet design. Even though this
method is currently limited to a resolution around 642 due
to the high memory and computational costs [27], it still
works in our application as no precise line or surface is
required for computing the loss function and evaluating the
reconstruction quality. Therefore, we can downsample the
flow lines or surfaces to a resolution that is amenable to
GPU computation.

3 FLOWNET

Given a large set of streamlines or stream surfaces generated
from a flow data set, we aim to identify a subset that
best captures the underlying flow features and patterns.
Instead of identifying the representatives directly, we opt to
partition the input set into clusters and then select one from
each cluster to form the representatives. A key question is
how to learn the feature descriptor for a line or surface. We
propose FlowNet design based on an autoencoder [2] that
learns the feature representation using a deep neural net. We
first voxelize and downsample each object (line or surface)
into a 3D binary volume of an appropriate resolution, which
will be the input to the autoencoder. The autoencoder trains
the neural net and learns feature descriptors automatically.
Instead of relying on labeled data for supervised learning,
FlowNet applies the autoencoder for unsupervised learning,
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Fig. 1: (a) FlowNet for object feature learning. The input to FlowNet is the voxelized object representation. The network
includes convolutional (CONYV), batch normalization (BN), and fully-connected (FC) layers. (b) An example of a 3D CONV

operation.

or more precisely, self-supervised learning. This eliminates the
need to produce labeled data for training. Once the network
converges, we apply t-SNE [34] to the feature descriptors for
dimensionality reduction. We perform interactive clustering
using DBSCAN [9] to identify the representatives. Finally,
we design a visual interface for users to intuitively explore
the line or surface collection and perform visual analysis
and analytical reasoning.

3.1 Feature Descriptor Learning

Object voxelization. We define two representations of
an object: sequence and voxel representations. The se-
quence representation of an object is a 1D vector, s =
{z1,y1,21, " s @n, Yn, 2n}, Where (x;,;,7) is a point on
the object and n is the number of points. The voxel repre-
sentation of an object is a volume V with size L x W x H . For
streamlines, each object is a streamline represented by a se-
quence of points. For stream surfaces, each object is a stream
surface where the sequence representation stores, line by
line, the corresponding points following the streamline or
timeline direction. We apply the rounding strategy so that
each point on an object is mapped to its nearest voxel. If the
voxel V[l;,w;, hi] is occupied by the object, then the value
of this voxel is 1 otherwise the value is 0.

Object voxelization transfers the sequence representation
of an object into its voxel representation. The rule is that
Vi, yi, zi] = 1 for i = 1 to n and the remaining voxels are
filled with 0. Due to the GPU memory constraint, given the
original volume V of size L x W x H, we downsample it
into a volume V' of size L' x W' x H'. We first calculate
the downsamping ratio of each dimension: z, = L/ L,y =
W/W', 2z, = H/H' . Then we set V' [x},y;, 2] = 1 for i =
1 to n, where =, = /Ty, y; = Yi/Yr, 2, = %)% The
remaining voxels are set to 0.

CNN and autoencoder. As a class of deep, feed-forward
artificial neural networks, a CNN performs the computation
by neurons, which are organized into layers of different types:
convolutional (CONV) and fully-connected (FC). The CONV
layer detects local and non-linear combinations of features
from the previous layer to capture important information
from the raw data. The FC layer serves as further learning
(from general to specific) of the input observation, combin-
ing local features into global features.

An autoencoder consists of two parts: encoder and de-
coder. The encoder takes an object as input and maps it to a

feature descriptor. The decoder takes the feature descriptor
as input and reconstructs the object. The basic autoencoder
only consists of FC layers for unsupervised learning, which
cannot ensure that the network learns a concise data repre-
sentation and could impact its performance in reconstruct-
ing complex data such as 3D models. We can improve
the reconstruction results by introducing CONV into the
autoencoder. This is because there are always linear com-
binations of neurons in the FC layers while CONV layers
allow local and non-linear combinations of neurons, which
enables the network to learn a complex data representation.
Another advantage of using CONV layers is that it reduces
the parameters to be learned through parameter sharing.

FlowNet architecture. As sketched in Figure 1 (a), our
FlowNet design includes two stages: feature learning (en-
coder) and object reconstruction (decoder). The first stage
learns object features by non-linearly mapping each object
representation to a feature descriptor (we use 1024 dimen-
sions). Inspired by the work of Girdhar et al. [11], we
design a CNN for feature learning and object reconstruction.
Since there is no padding, we set the stride to 1 in all
CONV layers. Moreover, we apply the batch normalization
(BN) layer [16] to prevent the network from overfitting and
gradient vanishing, while speeding up network training.
The FC layers at the end enable the network to learn global
features from local ones. The second stage is the inverse
of the first. It reconstructs the object based on the feature
descriptor learned. A loss function is used to indicate the
error between the reconstructed and original binary volume
representations. FlowNet will adjust the parameters itera-
tively so that a more accurate feature representation can be
learned.

Specifically, FlowNet takes a L x W x H voxel repre-
sentation of an object as input. The encoder consists of four
CONV layers with BN added in between, one CONV layer
without BN, followed by two FC layers. With five CONV
layers and four BN layers, the decoder takes this embedded
feature and maps it to a L x W x H voxel grid. We apply
the rectified linear unit (ReLU) [23] at the hidden layers
and the sigmoid function at the output layer. Compared to
other activation functions (e.g., tanh and sigmoid), ReLU
can effectively avoid two major challenges in network train-
ing: gradient vanishing and explosion. Gradient vanishing
happens when the gradient is close to zero in some hidden
layers which prevents updating the parameters to their pre-
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Fig. 2: A sequence of cluster interactions in the t-SNE view and the linked volume view using the supernova data set: (a)
choosing multiple clusters simultaneously, (b) expanding from one selected cluster highlighted at the bottom of the t-SNE
view in (a) to its neighboring clusters, and (c) looping through each of these clusters (the focal cluster is highlighted with
additional + signs). In (c), the remaining streamlines in the neighborhood are drawn in gray as the context.
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Fig. 3: Comparison of t-SNE projections of (a) feature de-
scriptors and (b) binary volumes using the five critical
points data set. Two point groups (orange and green) are
selected via brushing and linking and their corresponding
streamlines are shown. The unselected points are in blue.

vious layers. Gradient explosion happens when the gradient
is close to infinity which keeps the network from learning
the structure of data. We train FlowNet with a binary cross-
entropy loss on the final voxel output against the original
voxel input. This loss qualifies the difference between the
probability distributions of the true and predicted data.
Other loss functions (e.g., mean squared error) will lead to a
slower convergence of the network because they are prone
to gradient vanishing [12]. The loss function of one training
sample is defined as

L

N
1 . .
— 2 [Pnlogpn + (1= pa)log(1 = )], (1)
i=1
where p,, is the target probability (1 or 0) of a voxel be-
ing filled, p,, is the predicted probability obtained through
FlowNet, and N = L x W x H. The total loss is the sum of
losses for all training samples.

3.2 Dimensionality Reduction and Object Clustering

Exploring the feature descriptors generated from FlowNet
for clustering and selection requires mapping these fea-
ture descriptors to a low-dimensional (e.g., 2D) space and
then grouping similar objects via clustering. The input to
dimensionality reduction is the distance matrix recording
the Euclidean distances between feature descriptors where

each feature vector has been individually normalized [16]
using L1-norm. After experimenting with three popular di-
mensionality reduction methods: t-SNE [34], MDS [18], and
Isomap [33], and three widely used clustering algorithms:
DBSCAN [9], k-means, and agglomerative clustering, we
choose the combination of t-SNE and DBSCAN. Readers
are referred to Section 1 in the Appendix for the details.
All results presented for the rest of the paper use this
combination.

3.3

Our FlowNet interface consists of two views: the volume view
and projection view. Both views are connected via brushing
and linking: when users interact with one view, the other
view will be automatically updated. The volume view dis-
plays the line or surface objects in the original 3D spatial do-
main and the projection view displays the objects as points
in the abstract 2D space. We provide the following functions
to explore these objects and their features descriptors:

Clustering. Our interface allows users to interactively
tune the parameters of DBSCAN (e.g., the maximum dis-
tance between two feature descriptors and the minimum
number of samples in one cluster) to generate the desired
clustering results. To distinguish each cluster, we draw
neighboring clusters using different colors. The selected
cluster is highlighted with a black boundary and the volume
view displays the corresponding objects. Users can also se-
lect multiple clusters simultaneously in the projection view
and examine the relationships among them in the volume
view. An example is shown in Figure 2 (a).

Representatives. To identify one representative from
each cluster, we calculate the cluster’s center as the data
point where the sum of the Euclidean distances from this
point to all the other points in the same cluster is the
minimum. Users can interactively set the number of rep-
resentatives. The volume view displays these representative
objects, and the projection view shows the clustering result
with the centers highlighted. An example is shown in Fig-
ure 9.

Neighborhood. By computing the distance between the
centers of two clusters as their inter-cluster distance, we
allow users to “expand” one selected cluster to its neighbor-
hood and conveniently explore the neighboring clusters. An
example is shown in Figure 2 (b). To verify the similarities
and differences among these neighboring clusters, users can
examine these clusters one by one ordered by their distances
to the selected cluster. Such an example is shown in Figure 2

(©).

Interface and Interaction
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(a) FlowNet feature Euclidean distance

(b) streamline MCP distance

(c) streamline Hausdorff distance

Fig. 4: Comparison of different distance measures. Top row: the car flow data set showing 35 clusters. Two streamline
clusters are shown. Bottom row: the two swirls data set showing 36 clusters. Four largest streamline clusters are shown at
the top-right. Eight selected neighboring streamline clusters are highlighted in the t-SNE view and shown at the bottom-

right.

(a) binary cross-entropy, F; score = 0.88

3.4 Validation

Feature descriptor. To justify the need of deriving feature
descriptors from streamlines, we compare the results gener-
ated using feature descriptors with FlowNet employed vs.
direct use of binary volumes without FlowNet employed.
The distance between two binary volumes is their summed,
voxel-wise Euclidean distance. We project the streamline
binary volumes with t-SNE for the five critical points data
set, as shown in Figure 3 (b). The brushing and linking
result shows that projecting binary volumes directly does
not help to reveal useful potential structures, for example,
the streamlines around the critical regions that capture the
main flow features, while projecting feature descriptors with
t-SNE reveals these main features, as shown in Figure 3 (a).
This comparison indicates that by extracting feature descrip-
tors using the autoencoder, FlowNet can preserve structure
exhibited by the streamline set rather than manufacturing
structure by coincidence.

Distance measure. To verify the effectiveness of using
the Euclidean distance between the corresponding feature

(b) MSE, F; score = 0.75

(c) Dice loss [22], F; score = 0.84

Fig. 5: Comparison of feature descriptors under different loss functions using the two swirls data set. All generate 25
clusters through DBSCAN. The selected streamline clusters are highlighted and shown in the t-SNE view.

descriptors for dimensionality reduction, we compare our
distance measure against the mean of the closest point
(MCP) distances between streamlines [43] and Hausdorff
distance between streamlines [28] previously used to mea-
sure streamline similarity. We use t-SNE to project the data
points and DBSCAN to group these points using the car
flow and two swirls data sets, as shown in Figure 4. The
result of the car flow data set shows that our distance
measure can well separate the streamlines passing through
the car (refer to the cyan cluster) from those passing by the
car (refer to the green cluster), as shown in (a). Further
brushing and linking shows that the surrounding small
clusters correspond to streamlines located at the volume
boundary. The other two distance measures, however, sep-
arate the streamlines passing through the car into different
clusters, as shown in (b) and (c), which is not desirable.
The result of the two swirls data set shows that all these
three distance measures yield the four biggest streamline
clusters which reveal the major structure of the two swirling
patterns. However, our distance measure can better separate
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(a) training set only

(b) test set only

(c) training set + test set

Fig. 6: Evaluation of FlowNet using the tornado streamline and stream surface data via brushing and linking. Two selected
point groups and their corresponding streamlines or surfaces are shown. The training and test sets are in blue and red,

respectively.

contextual streamlines from those streamlines in the biggest
clusters. In addition, these contextual streamline clusters in
(a) exhibit a better symmetry compared with those in (b) or
(0).

Loss function measure. To verify the effectiveness of
using binary cross-entropy for FlowNet training, we com-
pare feature descriptors under three different loss functions:
binary cross-entropy, mean squared error (MSE), and Dice
loss [22]. We apply t-SNE projection and DBSCAN cluster-
ing for the two swirls data set, as shown in Figure 5. The
clustering result shows that all these three loss functions can
separate out the four biggest clusters. However, compared
to Dice loss, binary cross-entropy and MSE can discover the
streamlines located at the volume boundary and therefore,
better separate contextual streamlines. Moreover, using bi-
nary cross-entropy yields the highest F; score. Therefore, we
choose binary cross-entropy as the loss function.
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(a) binary cross-entropy loss (b) Fy score

Fig. 7: Performance curves under different numbers of train-
ing streamlines for the five critical points data set.

Underfitting and overfitting. Two central challenges in
machine learning are underfitting and overfitting [13]. Under-
fitting occurs when the model is not able to fit the training
set. Overfitting occurs when the model fits the training set
perfectly but fails to fit the test set. In Table 1, we report
for each data set, the sizes of training and test sets and their

corresponding F; scores. Note that the test sets are randomly
generated, in the same fashion as the training sets (refer to
Section 4.1).
F1 score is defined as
2 2

Fi=— 1~ TNs+TDs 4 EPs£TPs” &)
recall precision TPs TPs

where TPs, FPs, and FNs stand for true positives, false pos-
itives, and false negatives, respectively. In our context, given
a voxel in the binary volume, it is a true positive/false posi-
tive/false negative if the value of ground truth is 1/0/0 and
the possibility predicted by FlowNet is greater/greater/less
than 0.5. Ranging between 0 and 1, F; score defines the
similarity between the original and the predicted objects. If
F; score is closer to 1/0, it indicates that the predicted object
is more/less similar to the original object.

The F; scores reported for training show that FlowNet
is not underfitting. To visually demonstrate that FlowNet is
not overfitting, we qualitatively compare the t-SNE views
of the training set and test set via separate projections, as
shown in Figure 6 (a) and (b). Note that the embedding is
with respect to the data points, not the underlying space.
Although the orientations or spreads are different (which is
due to the randomness of the t-SNE algorithm), both views
share the similar global structure and local characteristics.
Through brushing and linking, we can further verify that
the trained model works as expected for the test set. We
also experiment with projecting the training and test sets in
the same view, as shown in Figure 6 (c). The interspersed
points from both sets confirm that the trained model can
map new, previously unseen inputs to appropriate feature
vectors.

4 RESULTS AND DiscussION
4.1 Data Sets and Network Training
Data sets. We experimented with the list of data sets
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TABLE 1: Left: the dimension of each data set and respective kernel size used. Middle: the training and test set sizes and
respective F; scores for streamlines. Right: the training and test set sizes and respective F; scores for stream surfaces.

Original Downsampled  Kernel Training  Training Testing  Testing Training Training  Testing Testing

Data Set Dimension Dimension Size # Lines Fi Score  #Lines F; Score | #Surfaces F; Score # Surfaces Fy Score
ABC 51 x 51 x 51 51 x 51 x 51 3x3x3 | 3,000 0.91 3,000 0.82 2,000 0.84 2,000 0.71
Bénard flow 128 x 32 x 64 64 x 16 x 32 4x1x2 | 3,000 0.87 3,000 0.80 2,000 0.84 2,000 0.79
car flow 368 x 234 x 60 92 x 59 x 15 6x4x1 | 3,000 0.81 3,000 0.69

computer room 417 x 345 x 60 105 x 87 x 15 8 x 6 x2 | 3,000 0.74 3,000 0.68 2,000 0.83 2,000 0.59
crayfish 322 x 162 x 119 81 x 40 x 30 4x2x2 | 3,000 0.86 3,000 0.78

five critical pts 51 x 51 x 51 51 x 51 x 51 3x3x3 | 3,000 0.96 3,000 0.72 2,000 0.72 2,000 0.57
solar plume 126 x 126 x 512 32 x 32 x 128 2x2x 8 | 4,000 0.83 4,000 0.76 1,000 0.84 1,000 0.57
square cylinder 192 x 64 x 48 96 x 32 x 24 8 x3x2 | 3,000 0.84 3,000 0.72 2,000 091 2,000 0.86
supernova 100 x 100 x 100 50 x 50 x 50 2x2x2 | 3,000 0.86 3,000 0.75

tornado 64 x 64 x 64 50 x 50 x 50 3x3x3 | 3000 0.91 3,000 0.76 2,000 0.88 2,000 0.78
two swirls 64 x 64 x 64 32 x 32 x 32 4 x4 x4 | 3,000 0.88 3,000 0.75 2,000 0.91 2,000 0.81

TABLE 2: F; scores under different training samples.

Data Set | computer room five critical pts  supernova  two swirls
#Lines | 1,000 1,000 1,000 1,000

Fy Score | 0.36 0.31 0.38 0.35
#Lines | 2,000 2,000 2,000 2,000

Fy Score | 0.62 0.68 0.69 0.67

Fig. 8: Representative stream surface selection with t-SNE
projection and DBSCAN clustering using the Bénard flow
data set.

shown in Table 1. From top to bottom, these data sets are:
the Arnold-Beltrami-Childress (ABC) incompressible flow
which is an exact solution of Euler’s equation [7], the liquid
flow between two parallel planes [38], the air flow around
a car [21], the air flow in a computer room [37], the heat
flow around a cooking crayfish [21], a synthesized flow field
consisting of five critical points [42], the compressible down-
flow solar plume [26], the flow around a confined square
cylinder [35], the flow of core-collapse supernovae [3], a
procedurally generated tornado [5], and swirls resulting
from wake vortices [21].

FlowNet training. We implemented FlowNet in PyTorch
using an NVIDIA TITAN Xp 1080 GPU for network training.
In the training process, we initialized all layers of FlowNet
from scratch using N(0,0.01) and applied the Adam opti-
mizer [17] with learning rate 1075 to update the parameters.
We used the minibatch size of 1 and trained FlowNet with
100 epochs. For training efficiency, we follow a simple
scheme to decide the training sample size. For streamlines,
we initialize the training sample size with 1,000 and train
FlowNet. Then, we check the F; score after training FlowNet
with 100 epochs. If the score is acceptable (e.g., larger than
0.7 based on our empirical experience), the training sample
size is determined. Otherwise additional 1,000 streamlines
will be added to the training pool to retrain FlowNet. For
stream surfaces, we initialize the training sample size with
1,000, and if the training F; score is less than 0.7, additional

500 stream surfaces will be added to the training pool
to retrain FlowNet. Based on this scheme, the size of the
training set and the corresponding kernel size are listed in
Table 1. The testing F; scores for the computer room, five
critical points, and solar plume surface data are relatively
low (less than 0.6), mainly due to the complex flow features
exhibited by these data sets.

In Figure 7, we report the binary cross-entropy losses
and F; scores under different training samples for the
five critical points data set. In (a), we can see that the
binary cross-entropy loss converges fast as the number of
training samples increases. In (b), we can see that the F;
score significantly improves when using more streamlines
in the training process. This indicates that the performance
of FlowNet is highly related to the number of training
samples used. Adding more streamlines to the training
pool, FlowNet converges faster and F; score also improves.
However, both benefits are at the expense of longer training
time. Balancing between performance and training time, we
choose an increment of 1, 000 streamlines for the training. In
Table 2, we report F; scores under different training samples
for different data sets. It is clear that using 1,000 and 2,000
streamlines cannot achieve a good performance (e.g., F;
score is larger than 0.7), while the performance is acceptable
if 3,000 samples are used for training, as shown in Table 1.
Based on this experiment, we conclude that using 3,000
streamlines is enough to train FlowNet. For the solar plume
data set, we use 4,000 streamlines for training, leading to
the F; score of 0.83 (3, 000 streamlines only give the F; score
of 0.67).

All streamlines are traced from seeds randomly placed
in the domain. All stream surfaces are traced from ran-
dom seeding curves following the binormal directions. Each
seeding curve is generated by tracing in the binormal field
with a random starting point and length [32]. For stream
surfaces, we do not experiment with the car flow, crayfish,
and supernova data sets, since the flow patterns in these
data sets are either laminar or too complex to be effectively
captured by the randomly-placed surfaces. The training
time is mainly determined by the sizes of the kernel and
training set. Our experiments show that the Bénard flow
stream surface data require the lowest training time (15 min-
utes per epoch) while the computer room streamline data
require the highest training time (90 minutes per epoch). So
training 100 epochs would take anywhere from one to seven
days.
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Fig. 9: Representative stream surfaces of the solar plume,
five critical points, tornado, and two swirls data sets. (a) to
(d) show 7, 7, 4, and 4 representative surfaces, respectively.

4.2 Results and Feature Understanding

Clustering and selection results. In Figure 2, Figures 4 to 6,
Figures 8 to 10, and Figure 2 in the Appendix, we show
the results of clustering and selection of streamlines and
stream surfaces. The brushing and linking results in Figure 3
(a), Figure 6, and Figure 1 (a) in the Appendix show the
good correspondence of neighboring points in the t-SNE
view and neighboring lines or surfaces in the spatial view.
This indicates that FlowNet feature vectors are a faithful
representation of the underlying streamlines and stream
surfaces in terms of their shapes and locations. It also shows
that the t-SNE projection well preserves neighborhood in-
formation. The clustering results in Figures 2, 4, 5, and
Figure 2 in the Appendix show that meaningful clustering
and flexible exploration can be achieved using our method.
In Figures 8 to 10, we show representative streamline and
stream surface results. Unlike representative streamlines
which are normally in the range of tens to hundreds,
representative stream surfaces are typically within ten or
up to tens. Therefore, we select representative streamlines
automatically, while giving the option of a two-step pro-
cess for representative stream surface selection. With this
option, we first generate a certain number of representative
stream surfaces and then let users pick a subset that strikes
a balance between surface representativeness and domain
coverage. In Figure 8, we show a set of representative
surfaces following this two-step process. Four surfaces are
selected from the t-SNE view showing 11 clusters. These
four surfaces are the centroids of the largest four clusters.
Figure 12 (a) and (c) show two other sets of representative

Fig. 10: Representative streamlines and stream surfaces of
the computer room data set. (a) to (c) show 70, 150, and
300 streamlines, respectively. (d) to (f) show 40, 60, and
80 stream surfaces, respectively. Velocity magnitudes are
mapped to streamline colors.

surfaces based on the t-SNE view shown in Figure 8 (a).
With this process, users are able to generate customized
representative surface results. In Figure 10, the representa-
tive streamlines and surfaces show that we can generate a
good representation of the flow fields with representative
streamlines and surfaces at varying levels of detail. The
appropriate number of representatives is determined em-
pirically as users can make the adjustment interactively to
generate desirable results.

Separation of cross-dataset features. We also experi-
ment with the joint training of streamline and stream surface
data drawn from different data sets. We select two data
sets and use half of the training samples from each data
set for joint training. The results are shown in Figure 11.
We can see from the t-SNE view that the two data sets are
largely separated in the projection as these two data sets
contain very dissimilar flow features and patterns. The first
row of Figure 11 shows that the overlapped points in the
t-SNE view correspond to similar streamlines around the
volume boundary while the separated points correspond to
streamlines of distinct spatial locations and flow patterns.
The stream surface results in the second row also confirm
similar findings, although there is a less number of similar
surfaces. This is mainly because stream surfaces are one
dimension higher than streamlines. Using random seeding,
it is less likely to generate similar stream surfaces from
these two data sets. This experiment shows the potential
of FlowNet in separating cross-dataset features and the
possibility to generalize FlowNet to handle multiple data
sets.
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Fig. 11: Joint training of the five critical points (green) and ABC (orange) streamline and stream surface data. (a) highlights
where the two data sets overlap in the t-SNE view. (b) and (c) show an example of where the two data sets are separated

in the t-SNE view.

(e) our method

(f) Edmunds et al. [8]

(g) Schulze et al. [29]

Fig. 12: Top to bottom: comparison of surface selection results of the Bénard flow and square cylinder data sets using
different methods. (a) to (d) show four stream surfaces each. (e) to (g) show three, five, and four stream surfaces,

respectively.

4.3 Comparison against Existing Methods

Stream surface selection. In Figure 12, we compare our
stream surface selection results against those generated from
the feature-centered automatic surface seeding by Edmunds
et al. [8] and the global selection of stream surfaces by
Schulze et al. [29]. Both methods being compared are fully
automatic, while our method provides the two-step process
to users so that they can handpick representative stream
surfaces. With this flexibility, for the Bénard flow data set,
we are able to generate representative stream surface results
similar to those generated by Edmunds et al. [8] (see (a) and
(b)) and Schulze et al. [29] (see (c) and (d)). For the square
cylinder data set, although the numbers of representative
stream surfaces are not the same, the important surface
features on the left are well captured by all three methods.
Streamline selection. In Figure 13, we compare our
streamline selection results against those generated from the
dual information channel based method of Tao et al. [31]

and the entropy-based method of Xu et al. [41]. For fairness,
each method produces the same number of streamlines. The
information channel is built between the set of streamlines
and a set of sample viewpoints. We generate the selection
results using three criteria: p(s) (streamline probability),
I(s; V) (streamline information), and REP (streamline rep-
resentativeness). Our method and each of the three crite-
ria of Tao et al. [31] select representatives from the same
pool of streamlines. The entropy-based method generates
streamlines iteratively guided by the conditional entropy
between the original vector field and the field reconstructed
from selected streamlines. By comparing the results side by
side, we can observe that our method strikes a good balance
between streamline informativeness and domain coverage,
achieving comparable results with respect to those of REP.
For the solar plume data set, our method yields the best
domain coverage. For the five critical points data set, p(s)
fails to select surrounding streamlines which correspond to
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(b) p(s) Tao et al. [31] (c) I(s; V)

N I

(a) our method

Tao et al. [31] (d) REP Tao et al. [31]

)
\\ |

(e) Xu et al. [41‘]’

N

Fig. 13: Top to bottom: comparison of streamline selection results of the crayfish, solar plume, five critical points, tornado,
and two swirls data sets using different methods. All methods show the same number of streamlines: 70, 100, 140, 60, and

80, respectively.

TABLE 3: Comparison of PSNR and AAD of reconstructed vector fields under different streamline selection methods. For
each data set, the largest PSNR and the smallest AAD are highlighted in bold.

PSNR (db) AAD
Data Set #Lines | Ours p(s) I(s;V) REP  Xu's | Ours p(s) I(s;V) REP  Xu's
crayfish 70 30.94 30.84 30.91 30.02 2897 | 0.102 0.105 0.103 0.116  0.144
solar plume 100 30.68 30.37  30.07 30.75 1578 | 0.283  0.309 0.286 0.280  0.303
five critical pts 140 26.25 2123 21.13 25,50 20.16 | 0.023 0.031 0.036 0.026  0.031
tornado 60 29.74 2812 2944 29.13  28.30 | 0.080 0.167 0.116 0.105  0.101
two swirls 80 36.35 36.30 34.55 36.21 27.72 | 0.065 0.066 0.079 0.070  0.071

the saddle pattern, while our method and REP best capture
the source at the center of the volume. For the tornado data
set, I(s; V) gives the best result by revealing the swirling
pattern surrounding the vortex core at the bottom. For the
two swirls data set, our method strikes the best balance
between domain coverage and feature highlighting. Overall,
we feel that using FlowNet features generates competitive
streamline selection results comparing to these state-of-the-
art solutions.

To quantitatively evaluate the quality of selected stream-
lines, we use them to reconstruct the vector field V' through

gradient vector flow [40]. We follow the work of Tao et
al. [31] to initialize V' and iteratively refine V' using the
generalized diffusion equations. After that, we compute
the peak signal-to-noise ratio (PSNR) and average angle
difference (AAD) of V' with respect to the original vector
field V. PSNR is defined as

PSNR(V, V') = 20log,, I(V)—10log,, MSE(V, V'), (3)

where I(V) is the difference between the maximum and
minimum vector component values of V, MSE(V,V’) is
the mean squared error between V and V’. For AAD,
we calculate the angle difference between the original and
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Fig. 14: Comparison of PSNR (top row) and AAD (bottom row) of reconstructed vector fields under different streamline
selection methods and different numbers of training streamlines.

reconstructed vectors for all voxels and then get the average.
We normalize the error to [0, 1] by dividing the AAD by .
A method is the best if it leads to the largest PSNR and
the lowest AAD. In Table 3, under a given setting for the
number of streamlines, we can see that our method achieves
the highest PSNR and lowest AAD except for the solar
plume data set. For that data set, REP achieves the best
quality, while our method is the second best in terms of
both PSNR and AAD. More extensive quality comparison
results are given in Figure 14. We can see that in general,
our method is the best under different streamline selection
methods and different numbers of training streamlines. It is
the clear winner for the five critical points and tornado data
sets. For the crayfish data set, our method starts with the
worst quality but ends with the best. For the solar plume
data set, our method achieves the highest PSNRs very
similar to REP, while loses to I(s; V) and REP by a small
margin in terms of AAD when the number of streamlines
is larger than 140. For the two swirls data set, our method
achieves the highest PNSRs very similar to p(s) and REP,
while the lowest AAD when the number of streamlines
is larger than 80. We conclude that our method actually
performs almost the best quantitatively compared to p(s),
I(s; V), REP, and Xu’s method.

5 CONCLUSIONS AND FUTURE WORK

We have presented FlowNet, a novel approach for clustering
and selection of streamlines and stream surfaces. Based
on the encoder-decoder, FlowNet is able to learn latent
features of streamlines and stream surfaces within a single
framework in an unsupervised manner, which distinguishes
itself from all previous works which have to solve them
separately and explicitly utilize handcrafted features. These
latent features encode the shape and location information of
objects rather than the physical flow information. We then
project the resulting feature vectors into a low-dimensional
space, which lends itself to a visual mapping and interface
for user interaction. Brushing and linking yields meaningful
clustering and selection results. The line and surface clusters
generated from FlowNet capture both spatial proximity
and/or geometric similarity. We validate FlowNet using the
network learned from the training set to examine the test
set, and compare the results using FlowNet-trained features
against those using other state-of-the-art methods.

To the best of our knowledge, our work is the first that
applies deep learning to solve flow visualization problems.
Our current work relies on downsampling binary streamline
or stream surface volumes to make the network training
possible in the GPU. In the future, we would like to explore
a more efficient way that maps these 3D volumes to 2D
images for network training. The 2D images could capture
intrinsic volumetric information in a different space such
as the spectrum space. This treatment allows us to handle
much larger flow field data without sacrificing data resolu-
tion. Furthermore, we plan to explore how well FlowNet
learned from streamlines or stream surfaces drawn from
multiple data sets could capture cross-dataset latent fea-
tures. Finally, we will develop a visual analytics interface
that helps to make FlowNet explainable (for instance, iden-
tifying what about the learning process leads to clusters that
can be explained with physical characteristics), which can
also assist in network diagnosis and parameter tuning.

This promising direction offers other opportunities that
are worth exploring. For example, could we design a deep
neural net that learns the intricate relationships between the
input and the output? In the context of flow visualization,
the input could be a set of streamlines and the output could
be representative stream surfaces, or the input could be a
seeding curve and the output could be the quality of the
corresponding stream surface. We would like to explore
these opportunities in the future.
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APPENDIX

1 CHOOSING DIMENSIONALITY REDUCTION AND
OBJECT CLUSTERING METHODS

Dimensionality reduction. To project feature descriptors
to 2D, we experiment with three popular dimensionality
reduction methods: t-SNE [34], MDS [18], and Isomap [33].
Among them, t-SNE is a neighborhood-preserving method
while MDS and Isomap are distance-preserving methods. t-
SNE is expected to perform the best because it preserves the
local neighborhood of the data by minimizing the Kullback-
Leibler divergence between the distribution over the high-
dimensional data and the distribution over their low-
dimensional projections. MDS performs low-dimensional
embedding based on the pairwise Euclidean distance be-
tween data points. Isomap uses the geodesic distance in-
duced by a neighborhood graph embedded in MDS. In
addition, when the dimensionality is high (in our case,
1024), distance-preserving methods may not work as well
as neighborhood-preserving methods [6], [34].

(c) Isomap

(a) +-SNE (b) MDS

Fig. 1: Comparison of different dimensionality reduction
methods via brushing and linking using the tornado data
set. Two selected point groups and their corresponding
streamlines are in orange and green. The unselected points
are in blue.

In Figure 1, we visualize these feature descriptors using
the three methods in order to identify the most desirable
one. For each projection, we brush two groups of points
and show their corresponding streamlines. We find that
t-SNE best preserves the similarity structure (i.e., similar
streamlines should be projected to neighboring points). In
(a), we can see a clear 1D ‘S’-shape layout of the feature
descriptors. Brushing and liking shows that this 1D direc-
tion corresponds to streamlines from top to bottom of the
tornado. This is not the case for (b) and (c). In (b), the MDS
view shows a nearly uniform distribution of points. Both the
orange and green points include streamlines at the top of the
tornado, but these points are separated on different sides in
the projection. Compared with (a), streamlines within the
same local neighborhood in (b) are less similar. In (c), the
orange cluster shown in the Isomap view corresponds to
streamlines at both ends, which is not desirable.

Object clustering. After projecting these feature de-
scriptors to 2D, we explore three types (i.e., density-based,
partition-based, and hierarchy-based) of clustering algorithms
to group similar objects. Based on the t-SNE projection
results, density-based algorithms could be the best choice.

1

Partition-based algorithms aim to divide the data points
into clusters with similar sizes but this guideline may not be
ideal for all kinds of data sets. Hierarchy-based algorithms
build a tree to store all data points and group them through
the parent-child relationship but the hierarchical structure
may not always be the desirable representation for all kinds
of data sets. Density-based algorithms group the data points
through projection density, meaning that data points located
around a small local neighborhood will be grouped together,
which is exactly what the t-SNE projection shows.

3

@& | o™
(a) DBSCAN (b) k-means (c) agglomerative

Fig. 2: Comparison of different clustering algorithms along
with t-SNE projection using the two swirls data set. Each
produces 13 clusters and two streamline clusters are shown.

In Figure 2, we show the clustering results using
three widely used clustering algorithms: DBSCAN (density-
based), k-means (partition-based), and agglomerative clus-
tering (hierarchy-based), to identify the best one. For all
three clustering algorithms, the distance between two data
points is computed as their Euclidean distance in the pro-
jection view. We use Ward’s minimum variance method for
agglomerative clustering. All three cases use the same t-SNE
projection and yield 13 clusters. Among them, we find that
DBSCAN achieves the best clustering results. In (a), we can
observe that the cyan cluster corresponds well to boundary
streamlines. This is not the case for (b) and (c) as this cluster
is separated into smaller ones and both boundary and inner
streamlines are grouped into the same cluster.
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Fig. 3: Comparison of different clustering algorithms along
with t-SNE projection using the crayfish data set. FS =
feature space. TS = t-SNE space. AM = agglomerative. KM
= k-means. DS = DBSCAN. Each produces 156 clusters and
two streamline clusters are shown.
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We also conduct a comparative study to justify clustering
feature vectors in the projection space (in our case, the t-SNE
space) rather than clustering directly in the feature space.
From Figure 3, we can see that the results of clustering
directly in the feature space are not satisfactory, regardless of
which clustering method is employed: DBSCAN generates
the worst results while k-means and agglomerative cluster-
ing generate similar results. However, all of them cannot
group similar streamlines together. One possible explana-
tion is that in the feature space, data are rather sparse,
which is problematic for any method that requires statistical
significance. Moreover, these data are dissimilar in many
different ways, which prevents the traditional clustering
algorithm from working efficiently. By clustering feature
vectors in the t-SNE space, we keep all important infor-
mation and decompose co-related factors, which ensures
that the clustering algorithm can work well. In addition,
projection-space clustering guarantees that points close to
each other are clustered together, which clearly is not the
case if clustering is performed in the feature space.

Therefore, we choose the combination of t-SNE and DB-
SCAN for dimensionality reduction and object clustering,
and perform clustering of feature vectors in the t-SNE space.
Unless otherwise stated, all results presented in the paper
use this combination.
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