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ABSTRACT

Automotive systems have always been designed with safety in
mind. In this regard, the functional safety standard, ISO 26262,
was drafted with the intention of minimizing risk due to random
hardware faults or systematic failure in design of electrical and
electronic components of an automobile. However, growing com-
plexity of a modern car has added another potential point of failure
in the form of cyber or sensor attacks. Recently, researchers have
demonstrated that vulnerability in vehicle’s software or sensing
units could enable them to remotely alter the intended operation
of the vehicle. As such, in addition to safety, security should be
considered as an important design goal. However, designing secu-
rity solutions without the consideration of safety objectives could
result in potential hazards. Consequently, in this paper we pro-
pose the notion of security for safety and show that by integrating
safety conditions with our system-level security solution, which
comprises of a modified Kalman filter and a Chi-squared detector,
we can prevent potential hazards that could occur due to violation
of safety objectives during an attack. Furthermore, with the help
of a car-following case study, where the follower car is equipped
with an adaptive-cruise control unit, we show that our proposed
system-level security solution preserves the safety constraints and
prevent collision between vehicle while under sensor attack.
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1 INTRODUCTION

Safety-critical systems comprising of computers and network com-
ponents have increasingly found their applications in various indus-
trial sectors such as healthcare, manufacturing, energy, transporta-
tion, and space. Such systems are required to operate safely as their
failure could lead to loss of life, significant damage of property, or
the environment. However, as these systems get larger, more com-
plex, and sophisticated, the range of vectors via which attack and
errors can be introduced into the system increases, which makes
ensuring safety and security difficult. Furthermore, these systems
are built by integrating components designed by various vendors,
which adds to the challenge of verifying safety and security of each
component.

One application which is extremely complex and consist of het-
erogeneous components from different vendors is the self-driving
car. Due to economic, social, and environmental benefits, govern-
ment and industry are investing a lot of effort on this technology.
Many autonomous features already exist in modern cars such as
adaptive cruise control (ACC), automatic forward collision braking,
automatic parking, autopilot, and lane-keep assistant. However, as
a result of these enhancements, these vehicles have become suscep-
tible to various safety and security threats. Some of the implication
of these hazards are unwanted steering, suppression of evasive
maneuvers, and faulty navigation.

Consequently, the ISO 26262 international standard for func-
tional safety in passenger vehicles was introduced to guide the
design of safety solutions. While these approaches enable the de-
sign of systems that are protected against hazards arising from
random hardware or software failures, the potential for the safety
of the system to be compromised by attacks is currently not consid-
ered. Recently, researchers have demonstrated successful spoofing
of sensor signals such as of GPS, radar, lidar, and ultrasonic along
with attack on cameras [8]. As such, autonomous CPS, which rely
heavily on sensing units for decision making, remain vulnerable
to such attacks. Thus, additional measures are required to prevent
vehicles from malicious attacks on sensors.

Thus, to ensure safety of the vehicular system during attack on
sensor measurements, we propose a system-level security solution
with integrated safety constraints, that is inspired from the lin-
ear dynamical systems literature. In our approach, we model the
vehicular dynamics as a stochastic linear system with zero mean,
white Gaussian noise. Malicious False Data Injection (FDI) attack



corrupt the measurements of the sensors of the considered sys-
tem. Consequently, we develop an attack resilient estimator in the
Bayesian framework and combine it with the Chi-squared detector
to address the problem of simultaneous attack detection and state
estimation that preserve safety constraints. For our method, the
estimation error asymptotically converges to zero when there is
no attack and has an upper bound on the error during attack. By
bounding the estimation error, we were able to obtain approximate
state estimates, when sensors of the system were compromised.
The unique features of our method are:

e Our method can recursively estimate states by consider-
ing safety constraints and perform better than the standard
Kalman filter and Robust Kalman filter of [6] against DoS
and FDI attacks.

e Our method can approximately (within an error bound) re-
construct the states when the sensors were attacked.

The rest of the paper is organized as follows: The state-of-the-art is
discussed in Section 2. In Section 3, we formulate the problem and
describe the stochastic linear model of the system and the attack
model. Our resilient state estimation algorithm is explained in Sec-
tion 4. The effectiveness of our estimation method is demonstrated
on a car-following case study in Section 5. Finally, conclusions are
drawn in Section 6.

2 RELATED WORK

Integrating security with safety involves many challenges [5]. Due
to different objectives, security and safety solutions for vehicles
are often designed independently. To mitigate this issue, recent
efforts have been made to integrate them at the design stage. Burton
et al. [3] extended the ISO 26262 safety standard by considering
attacks as the third source of hazard. In their work, the lane keeping
assist system was considered as an application of interest. Hazards
causing lane departure were first identified and safety goals were
decided accordingly. Then, possible causes of violations of safety
goals were identified and new goals to prevent them were defined.
By repeating this procedure, security was integrated with safety
during the system design stage. Plosz et al. [9] proposed a method
for combining security with safety and demonstrated it on a remote
engine testing system. In their approach, a Data Flow Diagram
(DFD) was used to represent interaction among system components,
thereby enabling the assessment of security and safety in the same
system model. This was done to avoid independent assessment of
security and safety. Schmittner et al. [12] proposed Failure Mode,
Vulnerabilities and Effect Analysis (FMVEA) method, which is an
extention of the Failure Mode Effect Analysis (FMEA) approach
with a security model that captured failure of security attributes
associated with components.

Our proposed method is different from the existing approaches
in a way that we leverage estimation theory to design a system-
level security solution that preserves safety goals of the system.
Along these lines, robust and resilient state estimation methods,
which can withstand sensor measurement attack have been devel-
oped. The set of literature relevant to our work consider additive
zero mean, Gaussian white noise with unbounded attack signal
in the system model [4, 6, 7]. Forti et al. [4] designed a computa-
tionally expensive hybrid Bernoulli filter (in Bayesian Framework)

to simultaneously detect attacks (signal, packet substitution, and
extra packet injection) and estimate system states. Their filter could
recursively update in real-time the joint posterior density of the
attacks and of the state vector, provided all measurement were avail-
able upto that time. A Robust Kalman filter (RKF) for estimating
states during sparse sensor disturbances was developed in [6]. They
modified the measurement update equation of the standard Kalman
filter with the solution of ¢1-based convex optimization problem.
However, they did not provide any optimality guarantee. Mishra et
al. [7] used a bank of Kalman filters for secure state estimation of
noisy linear dynamical system subjected to sparse data injection
attack. They identify the subset of sensors that are not attacked
by using a block residue test and use their outputs to calculate the
secure estimate. However, they assume that all sensors data are not
corrupted and the number of Kalman filters used in their method is
dependent on the number of attacked sensors.

3 PRELIMINARIES
3.1 System Model

We model the dynamics of the CPS as a linear time-invariant (LTI)
system with process and measurement noise, which is described
by the following equations:

Xk = Axp + Bup + wy (1)
Y = Cxp + vk ()

where, x € R” is a real-valued system state vector at time k,
u € R™ is a real-valued control input vector, and y, € R9 is a real-
valued sensor measurement vector, wi ~ N(0, 24,) is the additive
white Gaussian system noise with zero mean and covariance %,,,
and v ~ N(0,%y) is the additive white Gaussian measurement
noise with zero mean and covariance 3, (in this work, N(y,X)
represents a Gaussian distribution with mean p and covariance ).
Both the noises are assumed to be independent of each other. Here,
A is the system matrix and B, C are the transformation matrices.
We assume that the time-invariant matrices A, B, C are known.

To mitigate the impact of noise on the estimation accuracy, a
Kalman Filter (KF) first predicts the state of the system then com-
bines the prediction with latest measurements to obtain the final
estimation. The prediction stage is represented by the following
equations:

Rtk = ARk + Bugs Pryqpe = APRAT + 3,

where, P} is the estimation error covariance matrix.

The measurement update equations of the KF are:
Zke1 = Ykat — Corrks Kirr = PrakCT(CPriqkCT + 30) 75
Rp+1 = Xpr1fk + Ker12k+1, and Peyg = (I = K1 C)Pryy |k
where, z; € RY is the estimation residue (without attack) at time k
with Gaussian distribution zx ~ N(0, CPg 4 |kCT +Xy) and K, is
the time-varying Kalman gain matrix. When the matrices (A, B) and
(A, C) of the system are assumed to be stabilizable and detectable
respectively, we get a steady-state KF, whose time-varying error
covariance matrices Py |x_; converges to P ie. P = limg_,00 Pr|k—1
and the time-varying Kalman gain converges to a constant value i.e.
K = limy_,, Ki and thus it reduces to K = pcT(cpcT + 3,)7 L
The estimation error of the filter is given by er = (x — Xi).



The y? detector is generally used with KF in a control system to
detect attacks [2]. Based on the estimation residue of the steady-
state KF, we can define a function, gg = zz(CPCT + 3)zk, whose
value is greater than a user specified threshold (1) i.e. g > 7, then
an alarm is triggered by the y? detector. Now, the probability of
triggering an alarm at time k can be given as . = P(gx > 1). When
the system is operating normally, the value of . is a constant, a,
which is the false alarm rate of the detector. Any other value of S,
correspond to an attack.

3.2 Attack Model

We consider an adversary whose intention is to make the system
violate safety constraints such as safe following distance among
vehicles. We assume that the adversary has knowledge of the model
of the plant and the filtering algorithm used during the feedback
control i.e. static matrices of the system A, B, and C, filter gain
K, and distribution of noises are known. We also assume that an
adversary can manipulate any number of sensors and actuators
of the system. For simplicity of analysis, we consider attacks on
sensors of the system and restrict our attention to the measure-
ment/output equation: y, = Cxi + vi. However, our results can
easily be extended to the case where attacks are on actuator inputs.
In this paper, we consider False Data Injection (FDI) attack and
make the following assumptions about it:
e Attacks do not corrupt all the measurements after its initia-
tion;
e Any of these attacks can be carried out at any time for a
finite duration, but not simultaneously.
Both of these assumptions are made to correspond to a real-world
attack scenario, where an adversary needs to operate within the
constrains of limited resource and access to measurements and con-
sider continuously changing dynamics of the autonomous system
with respect to its environment.

3.3 Problem Definition

Therefore, our objective stated formally is:

Given a stochastic linear time-invariant system whose sampled
sensor measurements yy. are under FDI attack, producing corrupted
measurements y,’c over a finite interval [k1, kp], k1 # 0,k, < oo, we
want to use a detector that can find the presence of an attack and
design a filter that can estimate system states with bounded estimation
error to prevent safety constraint violation during the duration of
attack.

4 RESILIENT STATE ESTIMATION

In this section, we explain our Bayesian inspired computationally ef-
ficient recursive algorithm, which is combined with the Chi-squared
(x?) detector to simultaneously detect and estimates states that are
resilient against FDI attack and prevent violation of safety con-
straints. In our algorithm design, we assume that the computational
delays incurred by the chi-squared detector prior to estimation is
minimal and hence are neglected [1].

The standard Kalman filter (KF) is robust to noise, but it has not
been designed to mitigate the effect of adversarial attacks on state
estimates. The y? detector has been used with KF to detect attack,
but to the best of our knowledge, there has been few attempts on

recursively estimating xj during an attack. Toward this objective,
we propose the following computationally efficient algorithm, that
combines the y? detector with our Bayesian inspired estimator.

First, let us briefly review the Bayesian interpretation of KF,
which uses Bayes rule, p(alb)p(b) = p(bla)p(a), to express the
posterior probability in terms of the likelihood and the prior. As-
suming that the distribution of x follows the Gaussian distribu-
tion N (X, Py ), we obtain a prior distribution that is P(xg 41 |xg) ~
N (&g 41|k> Pr+1)k)- By combining this prior information with yg 1 ~
N(Cxp1,2) and Bayes rule, we can show that the posterior dis-
tribution is xgy; ~ N(Xgi1, Pry1), where Xp,q and Py, are as
defined in the KF.

As a result, given xp ~ N(Xg, P), Yg+1 = CXpy1 + vk should
follow the distribution N(Ca?kﬂ‘k,CPkH“CCT + 3y). To detect

the attack in yg,q, a x? detector is applied to z (CPk+1|kCT +
P )_1 Zk+1-

To apply the Bayes rule for resilient estimation, we again assume
that for each k, x; ~ N(%g, P ). However, depending on whether
there is an attack at y;, 1, the estimation of the posterior distribution
of x4+1 would be different.

We first derive the prior distribution of xj . Let

T
k+1

Pri1jk = APLAT + S, X1k = A%k + Bug, 3

then the prior information of X1 is Xg41 ~ N(Xk41(k> Prs1)k)- As
a result, when xy. is given, to detect whether yi, is attacked, we
should apply the y? detector to gg 41 = (Ygr1—CXks1 |k)TPI;i1 |k(yk+1 -
CXp11)k)- As the residue, gi 41, satisfies x? distribution with g — 1
degrees of freedom, we can determine a threshold, 7, (based on our
chosen probability of interest) for the detector such that an alarm
for attack is triggered when gg 4 > 7.

When an attack is not detected at y;, then we combine the
prior distribution of xg 41 ~ N(£g41|k> Pr+1)k) With the informa-
tion yg,1 ~ N(Cxps1,20) to obtain the posterior distribution of
Xr4+1- Applying Bayes rule, the posterior distribution of xj is pro-
portional to the product of these two probability density functions:

1 _
Xf+1 ~ €Xp ( -3 [(yk+1 = Cxr 1) 25 Ypesr — Cxpsr)

N T 1 N
(et = X1 1k)” Progy e o1 = xk+1|k)])

By calculation, we obtain xg 1 ~ N(Xg41, Pry1) with

-1
Prsy = (CT2;1C+P,;1A“C) (4)
Rea1 = Prgq (CT2T] rloog 5
Xk+1 = Prtr o Ykt T Py iXkerfk ) - ©)

When the detector suggests that there is an attack at yz, ¢, then
we propose to drop the information of yj ;. As a result, the poste-
rior distribution of xy, is the same as its prior distribution, that is,
Xp+1 ~ N(Rpr1s Prar), where £4q = Reg1)ks Prar = Pra1jke

Our procedure is summarized in Algorithm 1 and Figure 1 and its
computational time complexity is O(max(n, q)*), same as of KF. The
proposed method resembles an “event-triggered” approach: when a
detection alarm is triggered and safety constraint is violated, update
the Kalman filter in open-loop; otherwise, update the KF as usual.
Our solution is simple, but effective against sensor attacks. We also
use the Bayesian perspective to derive X3 and Py during filters
open-loop operation.



Algorithm 1 Attack Detection & Resilient State Estimation

Input: Observation {y; }r>; € RY; detection threshold 7; model
parameters A, B, C, 2, 2, {Uug }r »0; safety constraints c.
Output: Estimated values X,k > 1
Initialize: %y € R" and Py € R™¥";
1: fork=0,1,2,--- do

2 Calculate X 41| and Pyyq|x using (3).

3: Apply yx? detector to

4 g1 = W1 =CRia1)6) T (CPri1kCT +30) 7 Y1 —CRie1 )
5 if g1 > nand Xgyqk > c then Pryq = Pryq |k and

6 Rpa1 = Rpr1 k-

7: else Calculate Py, and X, using (4) and (5)

8: end if

9: Return: X, ;.

10: end for

y

Attacked

]f (time)
T

|1 1 1 1 1
!
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12345678 910111213 141516 17

Figure 1: Idea behind estimation in Algorithm 1: After y?
detect the attack at k = (6-9) and (13-15) and safety condition
is violated, sensor measurements at these time points are
discarded and state estimation is done using the last good
sensor value (at time points 5 and 12). For other values of k,
Algorithm 1 considers the measurements for estimation.

Compared to an ¢; optimization based RKF [6], our method is
simpler and more computationally efficient, as we do not solve an
optimization problem. In addition, RKF fixes Py to be the P of the
steady-state KF, which is different from our setting where Py is
derived from the Bayesian perspective and could be different for
different k. As shown later in Section 5.2, our proposed algorithm
outperforms RKF by producing smaller estimation error.

5 CASE STUDY

For demonstration, we consider a car-following scenario (resem-
bling a platoon of two vehicles), shown in Figure 2, in which a
follower vehicle (f) is equipped with an adaptive-cruise control
(ACC) unit and it follows a leader vehicle (I) on the same lane. The
ACC system uses mm wave radar (external) such as Bosch LRR2
long-range (2 < d < 200 meter) and internal sensors to measure
position of the preceding and follower vehicle. We consider attacks

()

that corrupt position (x,,, ) measurements of the follower vehi-
cle, as shown in Figure 3. As such, the goal of our Algorithm 1 is to
minimize the effect of corrupted sensor data on the inputs (relative
distance) of the ACC controller. Our method can be also extended
to multiple vehicle platoon. In such a case, our Algorithm 1 will

operate on each vehicle by considering details of the state-space
model of the platoon and network topology. In the following sub-
sections, we elaborate on the car-following setup and discuss our
simulation results.

Follower
(ACC)

O O >> @ @
—r]

o)

radar signal

Figure 2: Car-following with ACC equipped follower whose
radar measures position (xVyand velocity (©V) of the leader

5.1 Leader and Follower Vehicle Models

We use kinematic equations to describe leader vehicle (I) dynamics.
Changing velocity of the leader is generated using,

v}fil = Ug) +aDAr (6)

where, k € {0, 1,2, ...} is the number of time iteration and a oD
are constant acceleration and velocity respectively. Here, At = 0.01
is the size of time increment. The position of the leader (D) at any
time can be determined using the equation,

xgil = x](cl) + vg)At + %a(l)(At)2 (7)
These velocity and position measurements of the leader are cap-
tured by the radar of the follower vehicle.

The ACC system (shown in Figure 3) drives the follower vehicle
(f) at a user-set speed (vse;) in the absence of a preceding/leader
vehicle. When a vehicle is detected, the ACC unit uses the constant
time-gap (CTH) spacing policy (8) for maintaining desired inter-
vehicular distance (d(l’f )) to its preceding vehicle,

d®D = d, + hof) ()

where, h is the headway time (h = 3 sec) between the vehicles, d,
is the minimum stopping distance (d, = 5 m), and speed of the
follower vehicle is (/). According to [11], such a spacing-policy
improves traffic throughput and safety. Here, (8) is the safety con-
straint.

Autonomous controller designed based on the CTH policy has
a hierarchical architecture [10]. The upper level controller of the
architecture determines the desired longitudinal acceleration (a(fd))
according to speed of the follower vehicle (0)), relative velocity
(i), and relative distance (1) between the leader and the follower
vehicles. As such, the control law is given by the following equation,

a4 = —%(u +yu+ yhv(f)) 9)
u=xD



where, y = 0.9 is a system parameter and ) is position of the
follower at any time.

The lower level controller of the architecture determines the
acceleration of pedal (a,¢q41) and brake pressure (Pp, k) of the
vehicle. Due to the presence of actuator dynamics and the lower
controller, acceleration (a<f)) obtained is not same as the desired
value (a/'9). This is shown by the following equation,

a¥) + zal) = gUD (10)

where, 7 = 1.008 is the time constant, and a’) is the jerk. While
designing the upper level controller, internal and external distur-
bances are neglected to ensure the lower level controller works
correctly and satisfy dynamics of (10). Similarly, non-linearity at the
lower level controller are compensated using inverse longitudinal
dynamics.

Based on (9) and (10), the ACC vehicle dynamics can be rep-
resented in the following discrete time, multi-input multi-output
state-space form,

X = 15X+ Guy +wl) (1)
v = ex ol (12)

where, X = [x(f), vq), a(f)] € R3*1 is the state vector, relative
distance, u, is the input, Y& = [x(f), v(f)] € R?%1 js the output
vector, and the matrices are Hy = I + AtAy, G = AtB, and

1 0 0
€= [0 1 0]
Notice, that Ay € R33 is a time-varying matrix that changes

according to acceleration (A,) and deceleration (A,) of the vehicle,
where

0 1 0

Ag = 0 0 1
o by 0+

T T

0 1 0

Ag = 0 0 1
0 (+3)y (1+3)

T T

. . 1+g .
The input matrix, B = [(TZZ) - ﬁ,—ﬁ,o] € R¥™! and time-

varying Gaussian process and measurement noises are given by

W and o)

and v, ” respectively. During attacks, the output (12) changes

k

and it produces malicious measurements (x(f) s o) ). To mit-
. attack’ “attack

igate the effect of attacks, we use our Algorithm 1, which produces
estimated values of position #) and velocity (©)) (shown in Fig-
ure 3). With these estimates, we obtain corrected values of inputs:
relative distance (u) and relative velocity (), of the ACC controller.

5.2 Simulation and Results

The car-following scenario consisting of leader and follower ve-
hicle models, False Data Injection (FDI) attack, and our resilient
state estimation and detection algorithm with safety measure are
simulated in MATLAB. In the car-following scenario, we consider
the leader vehicle decelerates and accelerates at -0.1082 m/sec?
and +0.012 m/sec? respectively. The follower vehicle has to slow
down accordingly to ensure the inter-vehicular distance is greater

than the desired distance (d(l’f )) to avoid rear end collision (safety
constraint). We consider 65 miles/hr and 60 miles/hr as the initial
velocities of the leader and the follower vehicles respectively. The
leader starts slowing down when the distance between the vehicles
is 10 m. For such a scenario, an adversaries intention is to corrupt
measurements of the internal sensors of the follower vehicle so
that it leads to undesired consequences.

o Setup for Algorithm 1

The threshold of the y? detector of the algorithm is fixed for both
the attacks at = ¢4, where we choose the constant c¢; = 20. The

initial state for the leader vehicle is set to Xgl) = [12,29.05, —0. 108]T.

For the follower vehicle it is ng) = [2,26.82,0.112]7 and covari-
ance of the process and measurement noises are assumed to be
3w = diag(1,1,1) and X, = diag(1, 1) respectively. The estimation
results of our method is compared against the standard Kalman
filter and the Robust Kalman filter [6]. The estimator [6] requires a
parameter A and we pick the one that gives optimal performance.

o Case 1: Attack free scenario

We first evaluate our algorithm against the standard Kalman filter
and Robust Kalman filter in the attack free case. For our experiment,
we consider a time frame of (0 - 1.5) sec with step size of 0.01 sec and
k ={1,2,...,150} iterations. Figures 4 compares true and corrected
values of relative distance. We observe that the three estimators
minimizes the effect of noise in both the measurements. To highlight
the performance of our filter, we calculate the estimation error using

\/ Flo 2}5% I Xtrue — Xestimate |2 and found that the error produced

by our algorithm for followers’ position (3.604 m) is less than the
Robust Kalman filter: 3.673 m (followers’ position).

e Case 2: False Data Injection attack

We consider a scenario where an adversary corrupt measure-
ments of internal sensors of the follower vehicle after a certain time
point. In case of FDI attack on our experimental system, malicious
data of random value are added to the position ) outputs at ran-
dom time points and duration. We assume that the signal attack vec-

f

tor yZ is injected into the output data at random time points after
k = 5, but the attack does not corrupt all the measurements after its
initiation. For instance, in our experiment, the attack occurs at time
points such as 0.05,0.11,0.23 — 0.25,0.44, 0.5 — 0.52,1.18 — 1.2 and
1.46. The y? detector of our Algorithm 1 promptly detect the attacks
by comparing the value of the function g;. against the threshold 7.
Subsequently, the estimated values of position @)y generated by
our algorithm is used for calculating relative position of the ACC
controller. Figures 5 provides comparison between the true and
corrected values of relative distance. Note that the effect of follower
vehicles position estimate on the ACC controller inputs, (u, &), gen-
erated by our method at attack time points outperform the results
of the traditional Kalman filter and the Robust Kalman filter. Most
significantly, unlike the other two methods, the position estimates
from our algorithm ensures that the relative distance values are
always positive, which indicate that the leader and the follower ve-
hicles never collide at any time. At all other time points (when there
is no attack), our method performs as well as the optimal Kalman
Filter. We also calculated the estimation error during FDI attack
and found that the error produced by our algorithm for followers’
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Figure 4: Plots of relative distance between leader and fol-
lower vehicles for the attack free case. Estimation of Our
Filter is as good as the Kalman Filter (KF) and the Robust
Kalman Filter (RKF)
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Figure 5: False Data Injection attack: comparison of true
and corrected values of relative distance by Kalman Filter
(KF), Robust Kalman Filter (Robust KF) and Our Filter.

position (5.75 m) measurement were again less than the Robust
Kalman filter (RKF): 10.97 m (followers’ position). Consequently,
since the minimum stopping distance, d, = 5 m, the likelihood of
our algorithm preventing a collision is higher than the RKF.

6 CONCLUSION

In this paper, we have proposed a novel attack resilient filter that
can recursively estimate states within an error bound and preserve
safety constraints, when sensors of the system are compromised.
Our approach leverages Bayesian interpretation of the Kalman
filter and combines it with the y? detector to ensure safety of CPS

against Denial of Service and False Data Injection attacks. The
computational complexity of our method is O(max(n, g)*), which
is same as that of the Kalman filter and it performs better than the
standard and the Robust Kalman filters during attack as was shown
in the car-following case study. In future, we intend to extend our
algorithm toward other attacks such as Denial of Service and Replay
and include extensive security analysis.
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