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INTRODUCTION

Origins and Diversity of Algae

The theme of this review is sex determination and sexual dimorphism in algae. It is important to

appreciate that the terms algae and eukaryotic algae refer to informal and paraphyletic groupings

of essentially all photosynthetic eukaryotes excluding land plants (Figure 1). Algae are also

informally subcategorized as microalgae (unicellular species or colonial species with a few cells)

and macroalgae (e.g., kelps, seaweed, sea lettuce), but these subcategories also do not describe

taxonomic groupings. While the signature organelles of nearly all eukaryotic algae, plastids,

are thought to be monophyletic in origin, their hosts have a complex history and distribution

across the tree of life, starting with a single primary endosymbiosis event at the root of the

Archaeplastida (glaucophyte algae, red algae, green algae/land plants), followed by secondary and

tertiary endosymbioses that occurred in distantly related and independently derived branches of

the eukaryotic tree and that gave rise to algae within the Heterokonta (e.g., diatoms, brown algae),

Alveolata (e.g., dinoflagellates), Rhizaria (e.g., chlorarachniophytes), Hacrobia (haptophytes and

cryptophytes), and Excavata (e.g., euglenids) (76). Their paraphyly and deep divergence at the

root of the eukaryotic tree make comparative studies of sex-related traits across all algal taxa prob-

lematic; but within specific monophyletic subgroupings algae show a wonderful propensity for

evolutionary experimentation on sex determination, sexual dimorphism, multicellularity, and/or

life cycle architecture. As such, eukaryotic algae represent a relatively understudied collection

of independent evolutionary vignettes and stories that may enable empirical investigations and

testing of theoretical models for the evolution of sex and sex-related traits (6, 26, 134). On a

practical level, algae have important biotechnological and aquacultural applications as potential
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Figure 1

Distribution and life cycles of eukaryotic algae. Cladogram of eukaryotes adapted from Reference 25 highlighting groups containing
algae, which are indicated by colored text at branch tips. Gray dashed branches are polyphyletic taxa that are grouped together for
simplicity. Solid black circles next to each algal clade indicate that there is direct observational evidence of sex for one or more clade
members, and open circles indicate indirect evidence based on presence of sex-related genes in one or more clade members. For
less-studied algal groups, references for sex or sex-related genes are as follows: chlorarachniophytes, 9, 82; cryptophytes, 67, 81;
cyanidiophytes, 94; dinoflagellates, 115; euglenoids, 42; glaucophytes, 128; haptophytes, 151; prasinophytes, 132; and trebouxiophytes,
45. Panels on the right show summaries of model algae discussed in more detail in this article. For Ostreococcus tauri, mating has not
been directly observed so assignment as isogamous and haplontic is provisional. Photomicrographs provided by Gavriel Matt
(Chlamydomonas reinhardtii), Yuki Tsuchikane and Hiroyuki Sekimoto (Closterium littorale), Mariella Ferrante (Pseudo-nitzschia
multistriata), Kevin Cascella (Ulva), Gwenael Piganeau (Ostreococcus tauri), and Susana Coelho (Ectocarpus). The Volvox carteri
photomicrograph was reproduced from Reference 96 (CC-BY 4.0 license).
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Anisogamy: condition
of having gametes that
differ in size

Oogamy: condition of
having large nonmotile
female gametes
fertilized by small
motile male gametes

Isogamy: condition of
having gametes that do
not differ in size

food crops and feedstocks for biomass/biofuel or other high-value products. Understanding their

sex-determination mechanisms and controlling their sexual cycles are prerequisites for exploiting

natural diversity of algae and generating advanced strains through breeding (15). Sex has been

described in many groups of algae (50) (Figure 1), and evidence of a meiotic tool kit has been

uncovered even in lineages where sex has not been directly observed, such as euglenoids (42),

glaucophytes (128), and cyanidiophytes (single-celled red algae) (94) (Figure 1). However, there

are only a few representative clades or species where any molecular characterization of sexual

cycles has been done. This review focuses on those species/clades where the most progress has

been made in understanding sexual cycles and those that are on the cusp of new discoveries

(Figure 1).

Evolution of Sex, Multicellularity, and the Emergence of Anisogamy

The evolution of eukaryotic sex and sex-related phenomena has engaged and puzzled biologists

since Darwin (36) first described his theories of sexual selection. The core set of molecular pro-

cesses that definemeiotic sex are thought to have emerged in the last eukaryotic common ancestor,

which was a single-celled organism, and have been largely conserved over the more than one bil-

lion years during which eukaryotes underwent spectacular diversification (8, 48, 128). Eukaryotic

sex (aka meiotic sex) is a cyclical process that involves alternation of ploidy between 1N haploid

gametic cells and 2N diploid zygotes. The transition from 1N to 2N (i.e., mating) involves dif-

ferentiation of haploid gametes into specific types that must be different for fertilization (gamete

fusion) and syngamy to occur. The reverse transition, from 2N to 1N, involves meiotic recombi-

nation and genome reduction (Figure 2). Intercalated into the haploid and/or diploid stages of

sexual cycles are extended phases of mitotic proliferation that allow organismal or lineage growth

in between sexually controlled ploidy transitions (12, 27, 66) (Figure 2). Life cycles and sexual

cycles of algae are highly diverse, and each taxonomic group has some specific nomenclature that

is defined in appropriate sections along with general terms and concepts.

Sex-determining or mating-type-determining systems govern the production and differentia-

tion of gamete types and dictate whether this differentiation occurs in the diploid or haploid stage

of the life cycle (Figure 2). By convention, the different gametic or conjugating cell types are de-

scribed as mating types when they are morphologically similar (isogamy), and they are referred to

as male/female when they are different in size (anisogamy and oogamy). A positive correlation be-

tween anisogamy and organismal size/complexity helps to support the most widely cited theory on

the evolution of anisogamy, originally developed by Parker, Baker, and Smith (abbreviated PBS)

(114), with further refinements of PBS described in subsequent studies (16, 112, 113). The key

element of PBS is the role of disruptive selection in the evolution of gamete size when survival of

the zygote and its development into a functioning diploid-stage individual are related to its size in

a nonlinear manner. Additional selection for anisogamy as a stable reproductive strategy may de-

rive from selection on fertilization kinetics (optimization of finding a mating partner in an aquatic

environment) (41, 73, 134) and from selection for uniparental organellar DNA transmission that

is thought to mitigate intergenomic conflicts between nuclear and organellar genes (32, 69, 71);

but a generally accepted theory for the origins of anisogamy has not yet emerged (84, 117). Eu-

karyotic algae encompass a full range of sexual dimorphism, from isogamy to moderate anisogamy

to oogamy, with some monophyletic subgroups containing both isogamous and anisogamous or

oogamous members. Moreover, the occurrence of anisogamy does not always follow a unicellular

to multicellular progression, as expected from PBS theory (6, 135). Thus, algae provide multiple

opportunities for exploring theories of sexual dimorphism and for understanding its evolution

across the tree of life.
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Figure 2

Algal life cycle architecture. Main types of sexual life cycles found in multicellular (left panels) and unicellular
(right panels) algae. Life cycles involve alternation between a haploid phase (1N) and a diploid phase (2N),
separated by meiosis and syngamy (i.e., fertilization). Differences between life cycles depend principally on
the extent of mitotic divisions and/or development that occurs in each of the two phases. Organisms that
spend the majority of their life cycle in the haploid phase are haplontic (upper panels) and those that spend the
majority of their life cycle in the diploid phase are diplontic (middle panels). Haplodiplontic organisms spend
significant portions of their life cycle in both phases (lower panels). Sex determination occurs in the haploid
phase for haplontic species and diploid phase for diplontic species. It may occur in either phase for
haplodiplontic species. Anisogamous gametes are shown in this figure, but any of the life cycles could have a
range of gamete dimorphism from isogamy to oogamy as described in the main text.

VOLVOCINE ALGAE

Life Cycles and Emergence of Anisogamy/Oogamy from Ancestral Isogamy

Volvocine green algae are an informal grouping that includes a monophyletic clade comprising

several multicellular or colonial genera plus the unicellular species Chlamydomonas reinhardtii

that is a relatively close outgroup (Figure 3a). While multicellularity is a monophyletic trait

in the volvocines, there has been extensive convergent evolution within the clade leading to

some traditionally designated genera such as Eudorina, Pleodorina, and Volvox turning out to be
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Figure 3

Volvocine algal sexual dimorphism and life cycles. (a) Cladogram of selected volvocine algal taxa adapted from References 59 and 60
depicting transitions in sexual dimorphism and distribution of heterothallism or homothallism. Note that several volvocine genera,
including Volvox, Eudorina, and Pleodorina, are polyphyletic. The key above the cladogram shows meanings of symbols and colors.
Orange and red arrows show nodes where anisogamy and oogamy evolved, respectively. Arrowhead shows predicted reversal from
oogamy to anisogamy. Branches terminating in triangles contain multiple species or genera. Note that Volvox carteri has three formas
(f. nagariensis, f. weissmannia, f. kawasakiensis) that are biological species, and V. carteri f. nagariensis is the one described in this review.
(b) Haplontic life cycle of Chlamydomonas reinhardtii. Transitions between life cycle stages are depicted similarly to the depiction in
Figure 2. Plus and minus mating types are indicated by + and − symbols. Gametogenesis is induced by the absence of nitrogen (−N).
Isogametes fuse and differentiate into a dormant diploid zygospore. Meiosis occurs during zygospore germination and produces a
tetrad with 2MT+ and 2MT− recombinant progeny. (c) Haplontic life cycle of Volvox carteri. Males and females undergo a similar
vegetative/mitotic reproductive cycle, diagrammed in four phases in the top-right part of the panel. Mature parental spheroids
( 1©) contain small somatic cells on their periphery and large reproductive cells (gonidia) in the interior, and they are filled with clear
extracellular matrix (ECM). During embryogenesis ( 2©) gonidia cleave and eventually form new spheroids ( 3©) that grow and hatch
from their parent ( 4©) and continue to grow and mature to complete the vegetative cycle. When exposed to sex inducer, gonidia
undergo sexually dimorphic cleavage programs and maturation (not shown) to produce adult male or females (bottom). Males contain
sperm packets, while females contain eggs. Sperm packets are released and swim to a sexual female, where they break apart, enter the
female ECM (bottom, expanded view), and complete fertilization. Meiosis occurs during zygospore germination as in Chlamydomonas, but
only one viable haploid meiotic progeny is formed.
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Haplontic life cycle:
life cycle with no or
highly reduced diploid
mitosis; zygote may be
only representative of
diploid stage

Dioecy: condition of
having separate
genetically determined
male and female
individuals in the
diploid (sporophyte)
phase; equivalent to
gonochorism in
animals

Monoecy: condition
of a diploid individual
(sporophyte) that
produces both male
and female gametes

Homothallism:
refers to self-mating
compatibility between
genetically identical
individuals

Heterothallism:
refers to mating
incompatibility
between genetically
identical individuals

polyphyletic based on molecular data (65) (Figure 3a). All volvocine algal life cycles are haplontic

with unlimited potential for vegetative reproduction in the haploid phase. In most genera veg-

etative cell division occurs via a multiple-fission cell cycle (33, 142) (Figure 3b). Gametogenesis

and mating are triggered by either nitrogen starvation (−N) or diffusible hormonal cues (28,

29). After mating and fertilization, a zygotic gene expression program is activated that leads

to immediate development of a dormant and environmentally resistant diploid zygospore cell

(29, 49, 74, 89). Upon encountering a favorable environment, zygospores undergo meiosis and

germinate to release recombinant haploid progeny (Figure 3b).

Their phylogenetic coherence and experimental tractability make volvocines an ideal group

in which to investigate the evolution of anisogamy and oogamy. Sexual dimorphism within the

volvocines roughly follows a progression from isogamy in the smaller genera (Chlamydomonas,Go-

nium, Pandorina, Yamagishiella) through anisogamy in intermediate-sized genera (Eudorina, Pleodo-

rina) to oogamy in the genus Volvox (34, 60, 105) (Figure 3c). It has been noted that this pattern

of larger and more complex species showing greater gamete dimorphism and larger zygote sizes

fits with predictions of the PBS theory described above (6, 7, 34, 77, 116) (Figure 3a). A recent

study using an expanded volvocine data set confirmed the ancestral state of isogamy in the lineage

and estimated that anisogamy may have evolved two times with no reversions back to isogamy

(60) (Figure 3a). Overall, these data strengthen support for the PBS theory as they document not

just a general trend but multiple independent instances of increased degrees of sexual dimorphism

accompanying increased organismal size and complexity within the volvocine clade.

Additional Dimorphic Traits of Volvocine Algal Gametes and Gametogenesis

In Chlamydomonas, Tetrabaena, and Gonium a complete meiotic tetrad with four viable members is

formed upon zygote germination, while in the remaining genera that have larger, more complex

body plans only one of the four meiotic progeny emerges during zygospore germination (28,

60). This trait of reduced meiotic products in larger species, like anisogamy, may have evolved

under selection for partitioning more resources into fewer progeny to ensure higher net via-

bility (Figure 3c). While all anisogamous and oogamous volvocine algae have reduced meiotic

products, some isogamous multicellular genera (Yamagishiella, Pandorina, Astrephomene) also show

this trait, whose evolution likely preceded that of anisogamy (60). Reduced meiotic products

are also a feature of female reproductive development in many plants (121) and metazoans

(92). Another derived trait found in the anisogamous and oogamous volvocine algae is terminal

differentiation of sperm cells, which have highly specialized morphology and behavior compared

with other volvocine cell types (10). The bases for terminal differentiation of volvocine sperm are

unknown.

Volvocine Algal Mating-Type or Sex Determination Overview

In volvocine algae the terms heterothallic and homothallic are used to distinguish genetic and

epigenetic sex-determination mechanisms, respectively, while dioecy and monoecy (terms usually

reserved for diploid sex determination in plants) are used to distinguish two subcategories of ho-

mothallism: In homothallic dioecious species, individual sexual colonies derived from a parental

clone contain gametes that are exclusively male or exclusively female. In homothallic monoe-

cious species individual sexual colonies contain a mixture of both eggs and sperm packets. Het-

erothallism is likely the ancestral state in volvocine algae and is observed in the two best-studied

members—C. reinhardtii andVolvox carteri—but homothallism has arisenmultiple times with likely

transitions back and forth between hetero- and homothallism (59) (Figure 3a). The control of
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Pseudoautosomal
region (PAR): portion
of a sex chromosome
or mating type
chromosome that still
recombines with its
homolog

Gametolog: Allele of
a gene whose copies
reside in the
nonrecombining
regions of UV
chromosomes or
mating-type loci

homothallic sexual differentiation and of dioecy versus monoecy may be related to the timing of

sexual differentiation under the control of theMID gene, as speculated previously (44, 46, 147).

Genetic Control of Mating Types and Sex Determination in Volvocine Algae

The single locus that determines mating type or sex in heterothallic volvocine algae (designated

the MT locus) is a multigenic region with two haplotypes (one for each mating type or sex)

characterized by various sequence rearrangements and suppressed recombination across theMT

region R (rearranged) domain (140) (Figure 4a). The genetic contents of MT include mating-

type or sex-related genes as well as genes that are not sex related but were presumably trapped

in the R domain during its formation. Currently, MT sequences are available for five species:

C. reinhardtii (isogamous),Gonium pectorale (isogamous), Yamagishiella unicocca (isogamous), Eudo-

rina elegans (anisogamous), and V. carteri (oogamous) (38, 43, 57, 58) (Figure 4a) (Supplemental

Table 1). Comparison of pseudoautosomal gene contents of the two most distantly related

volvocine species in this list, C. reinhardtii and V. carteri, indicates that MT has remained on the

same chromosome since the two lineages diverged up to 200 Mya (43, 64). Despite this appar-

ent continuity of genomic location, there is little evidence of long-lived or shared strata in the R

domains or pseudoautosomal regions (PARs) of the above species (57). On the contrary, the MT

loci that have been sequenced so far show no shared syntenic blocs between species and appear

to have arisen through periodic destruction/reformation of theMT region. The oldest-appearing

and largest MT locus is from V. carteri, where gametologs show high divergence across most of

the locus (43) (Figure 4a). The idea that more complex and differentiatedMT loci might be as-

sociated with the transition to anisogamy or oogamy appears to have been ruled out by the lack

of correlation between MT size or genetic complexity and the presence of sexual dimorphism in

E. elegans, whoseMT region is the smallest and simplest identified to date among volvocine algae

(57) (Figure 4a).

MT loci control multiple aspects of the sexual cycle in volvocine algae: (a) gamete differen-

tiation, (b) organelle DNA inheritance, and (c) production of zygotic differentiation factors. Ad-

ditional traits that are encoded by MT locus genes but not universally shared across species are

(d) gamete recognition and fertilization factors and (e) specification of sexually dimorphic colony

development. Aspects a, b, and c are covered in other reviews (49, 99, 101, 123).We focus here on

gamete differentiation and dimorphic development in C. reinhardtii and V. carteri, as they are the

two best-studied volvocine species.

Gamete differentiation in volvocine algae is largely governed by a single transcription factor

(TF) called Mid (minus dominance), which is a member of the RWP-RK (aka RKD) family (17). A

MID ortholog is found in theminus or maleMT loci of all heterothallic volvocine algae identified

to date (43, 44, 56, 57, 106), and MID has also now been identified in a homothallic volvocine

species where its expression may be controlled epigenetically (147) (Figure 4a,b). These data and

others described below show the genetic continuity between isogamous mating types and sexes

in volvocine algae. Some volvocine species have a secondMT− or maleMT gene,MTD1, whose

C. reinhardtii ortholog contributes to minus gametic differentiation but is not essential for it (86)

(Figure 4a). In C. reinhardtii, and in other volvocine genera where −N is the cue for gametogene-

sis,MID expression is induced by −N (44, 55, 57, 86) (Figure 3b).C. reinhardtii midmutants have

a pseudo plus phenotype where they differentiate and agglutinate as plus gametes but cannot com-

plete fertilization due to absence of the FUS1 gene (Figure 4a), whose expression as a transgene

can fully rescue fertility in a mid mutant. Conversely, ectopic expression of a CrMID transgene

in aMT+ strain causes differentiation into functionalminus gametes (44). Intriguingly, RWP-RK

protein-coding genes have also been implicated in sexual development or mating-type determi-

nation in other green algal taxa (see below) (Figure 4b) and in land plants (78, 79, 119, 133),
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Figure 4 (Figure appears on preceding page)

Volvocine algal mating-type and sex determination. (a) Diagrams of volvocine sex-determining regions or mating-type-determining
regions adapted from Reference 57 (CC-BY 4.0 license). The heteromorphic regions (R domains) are depicted in blue (MT− or male)
and red (MT+ or female) for each species with colinear flanking regions in solid and dashed black lines. Rearranged genic or syntenic
regions between haplotypes are shown in gray. Blue and red triangles show locations of theMID gene as well asMTD and FUS.
Unlabeled triangles are sex-limited or mating-type-limited genes that are species specific. (b) Unrooted maximum likelihood tree of
selected RWP-RK domains from different green algae constructed using PhyML (53) and based on previous alignments (119). Prefixes
indicate species as follows: Cre, Chlamydomonas reinhardtii; Gpe,Gonium pectorale; Eel, Eudorina elegans; Mpu,Micromonas pusilla
CCMP1545; Ota,Ostreococcus tauri; Pst, Pleodorina starrii; Upa,Ulva partita; Vca, Volvox carteri; and Yun, Yamagishiella unicocca. Nodes
with likelihood support scores of >0.9 are marked by black circles and with scores >0.8 by open circles. The volvocine MID clade is
shaded light blue. Blue squares are shown next to Ulva and Ostreococcus RWP proteins that may be involved in sex or mating-type
determination. (c) Speculative model for sex and mating-type determination in volvocine algae. MID protein (blue rounded rectangle) is a
transcription factor that may form homodimers or heterodimers with a hypothetical partner protein X in red that is expressed in
gametes of both sexes or mating types. MID is produced inMT− or male gametes, where MID homodimers activate expression of male
or minus genes, while MID-X heterodimers repress expression of female or plus gamete genes. In the absence of MID (female or plus
gametes), X homodimerizes or interacts with other factors to activate female or plus genes, while male or minus genes have no activator.

suggesting a possible ancestral role in sex determination for this class of transcription factors

within the green lineage (Viridiplantae).

In V. carteri and other species of Volvox exposure of vegetative-phase spheroids to a diffusible,

species-specific glycoprotein hormone called sex-inducer (SI) triggers dimorphic sexual devel-

opment leading to production of sperm-packet-bearing males and egg-bearing females (28, 54)

(Figure 3c). SI is highly potent, acting at concentrations as low as 10−16 M, and also triggers an

auto-amplification loop that leads SI-exposed males to produce additional SI (129).While the SI-

encoding gene and its protein product from V. carteri have been known for decades (93, 136), the

receptor(s) for SI and its mode of action remain unknown.

MID is the only conservedMT gene between V. carteri and other volvocine algae (Figure 4a),

and its ectopic expression in V. carteri females leads to a pseudomale sexual phenotype where ga-

metic precursor cells that would normally be destined to differentiate as egg cells are converted

to functional sperm packets. Knockdown of VcMID in males leads to a reciprocal conversion of

what should be sperm packet precursor cells called androgonidia into functional eggs (46). Partial

knockdown of VcMID in males led to a self-fertile homothallic dioecious phenotype and sug-

gested that epigenetic modulation of MID expression could underlie homothallism in naturally

homothallic volvocine species (46).TheVcMID gene showed constitutive expression inmales with

evidence for posttranscriptional and posttranslational control restricting its function to the sexual

phase of the life cycle (46).

The finding that manipulating expression of a single conserved mating-type gene, VcMID,

could alter gamete differentiation in V. carteri sexes suggests that anisogamy or oogamy may have

evolved without the incorporation of separate gamete size-control genes into an ancestral MT

region (18, 43, 68); this finding is also supported by the discovery ofMID as the onlyMT-locus-

specific gene in males of the anisogamous species E. elegans (57). Cross-species testing of CrMID

and VcMID in V. carteri and C. reinhardtii, respectively, showed that the two genes could not

function interchangeably, leading to the hypothesis that MID protein function may have evolved

to control the transition to anisogamy/oogamy (46). However, a subsequent study revealed that

GpMID from the isogamous species G. pectorale was able to partially substitute for VcMID in V.

carteri spermatogenesis, indicating that additional components of the MID network must also be

involved in specifying anisogamous gamete differentiation (47). These other components could

be MID-interacting proteins and/or MID target genes that are specific to anisogamous and oog-

amous gamete differentiation. Although plus or female gamete differentiation is the default state
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Sex-determining
region (SDR):
genomic region that
differs between males
and females and
determines the sex of
anisogamous/
oogamous individuals

Mating-type-
determining region
(MDR): genomic
region that determines
the mating type of
haploid isogametes

Gametophyte:
haploid multicellular
generation of a life
cycle that produces
gametes

Sporophyte:
diploid multicellular
generation of a life
cycle that produces
spores and where
meiosis occurs

when MID is not expressed in gametes, it is likely that other TFs interact with MID to modulate

its roles as both activator of minus/male genes and repressor of plus/female genes (Figure 4c).

Dimorphic sexual development in the genus Volvox involves more than just egg cell and sperm

cell formation. Under the influence of SI males and females undergo modified embryogenesis

programs that differ from each other and from vegetative embryogenesis in terms of numbers

of somatic cells and reproductive cell precursors, as well as organismal size, which in some cases

manifests as dwarf sexual males (29, 60, 107, 140) (Figure 3c). In the case of V. carteri at least some

of its sexual development traits are governed by male or female MT genes independent of the

MID pathway, as revealed from transgenic experiments described above where early embryogenic

cleavage patterning retained male or female characteristics in strains where gamete differentiation

was reversed by manipulation of VcMID expression (46). Identification of these additional MT-

encoded sexual development and fitness genes (Figure 4a) may lead to further insight into how

sexually antagonistic functions are added to a sex chromosome to promotemale-specific or female-

specific traits.

OTHER CHLOROPHYTE ALGAE

Sexual differentiation and mating-type control are best understood in volvocine algae, but most

groups of green algae are known to have sexual cycles and/or possess meiotic genes (45, 50, 94)

(Figure 1). Mechanistic insights into algal sexual cycles and sex determination are possible when

one or more of the following advances have beenmade: (a) identification of mating-type loci or sex

chromosomes for heterothallic or dioicous/dioecious species [see Supplemental Figure 1 for ex-

amples of methods used to identify sex-determining regions (SDRs) andmating-type-determining

region (MDRs)]; (b) reliable control of gametogenesis, mating, and meiosis; and/or (c) some form

of forward or reverse genetics to enable functional testing of regulatory systems. At least some of

these criteria have been met for several species of green algae (Supplemental Table 1).

Ulva

The green seaweed (or sea lettuce) Ulva belongs to the Ulvophyceae, one of several major classes

of green algae (85) (Figure 1). Most ulvophytes are macroalgae with either multicellular body

plans or single-celled syncytial body plans (23). Although little is known about sex determina-

tion in most ulvophytes, they are of particular interest in the study of anisogamy and oogamy,

as members of this group exhibit different degrees of gamete dimorphism (75, 134, 135). Unlike

volvocines and most other chlorophyte algae outside of the Ulvophyceae,Ulva has a haplodiplon-

tic life cycle with separate isomorphic haploid (gametophyte) and diploid (sporophyte) genera-

tions, both of which produce multicellular blade-like thalli (146) (Figure 2). Ulva is either isog-

amous or slightly anisogamous (75, 134, 135) and dioicous (heterothallic) with two mating types,

plus (MT+) and minus (MT−), determined by a UV chromosome system (70, 148). Cells within

the gametophyte thalli, usually near blade margins, may undergo sporogenesis to produce motile

biflagellate gametes that, upon fertilization, produce a diploid zygote that develops into a sporo-

phyte. Chloroplast DNA (cpDNA) inheritance in Ulva is uniparental and controlled by mating

type, with cpDNA being derived from theMT+ parent (75) while mitochondrial DNA is inher-

ited either from the MT− parent or biparentally (99). Cells within the thalli of the sporophyte

can undergo meiosis to produce haploid tetraflagellate spores that develop into gametophytes.

The sexual cycles of several Ulva species can be controlled, allowing them to serve as models for

further study of sex determination (145, 146, 148). An interesting feature ofUlva is its production
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of autoinhibitory substances that block sporulation and thereby regulate the extent and timing of

gamete production (131). The molecular identities of these inhibitors remain unknown.

A full genome sequence of ∼98 Mb has been reported for aMT− gametophyte of the species

Ulva mutabilis (37) (though theMT locus was not identified), while the mating locus of bothMT+

andMT− mating types has recently been reported for the slightly anisogamous species Ulva par-

tita (72, 148). The U. partita MT locus occupies 1–1.5 Mb of a heteromorphic region between the

MT+ and MT− haplotypes (Supplemental Table 1). Twenty-three MT genes are gametologs

that have undergone extensive rearrangements between the two haplotypes and show little or no

evidence of syntenic blocs or strata. The remaining genes (23 in MT−, 44 in MT+) are specific

to each mating haplotype and presumably include those controlling mating-type differentiation,

uniparental organelle inheritance (99), and/or production of factors needed for the haploid-to-

diploid transition in zygotes. Intriguingly, the male (MT−) locus contains an RWP-RK-related

gene, RWP1, whose predicted protein is in the same TF family as the volvocine MID pro-

tein, though its phylogenetic relationship to the Mid family versus other RWP-RK domain TFs

remains unresolved (148) (Figure 4b). Expression of RWP1 and several otherMT genes was up-

regulated during gametogenesis, making RWP1 a candidate sex-determining gene. While trans-

formation methods have not been reported forU. partita, they were developed for another species

of Ulva (108), and forward genetics are also possible for members of this genus (146), raising the

possibility of functional studies to test the roles of MT genes in sex determination and life cycle

transitions.

Ostreococcus

The unicellular marine picoalga Ostreococcus tauri belongs to the paraphyletic assemblage of

basal chlorophyte algae termed prasinophytes (85) (Figure 1). Ostreococcus cells are tiny (∼1 µm

diameter) and have relatively compact haploid genomes of ∼13 Mb (39, 111). Sex has not been

directly observed in this genus [though it has in at least one prasinophyte (132)], but strong

evidence of sexual exchange comes from testing polymorphic markers in population studies (11,

51) and is further supported by the retention of key meiotic genes in Ostreococcus genomes (39, 94,

111). A heteromorphic and nonrecombining region with two haplotypes of 450 and 650 kb on

chromosome 2 has hallmarks of a potential mating-type locus that appears to be a well-established

UV chromosome system (11, 25) (Supplemental Table 1). Because gametogenesis and mating

have not been directly observed forOstreococcus, it is unknown whether it has isogamous or anisog-

amous mating. Intriguingly, like the case for Ulva, one of the haplotype-specific genes in the

O. tauri putative mating locus is in the RWP-RK family (11), though its phylogenetic relationships

to the volvocine Mid family are somewhat unclear (119) (Figure 4b). Ostreococcus is a promising

model with some molecular genetic tools, such as transformation and homologous recombination

(90, 143). If the cues that induce gametogenesis and mating were identified, then this system

could be further exploited to investigate sex in one of the earlier-diverging groups of chlorophyte

algae.

CHAROPHYTE ALGAE

Charophyte algae are a paraphyletic grade within the streptophyte lineage (charophyte algae

and embryophytes) (Figure 1) and are the closest living relatives of land plants (85). There are

six major groups of charophytes that range from unicellular (e.g.,Mesostigma) to filamentous or

simple colonial (e.g., Klebsormidium, Chlorokybus) to those having more complex body plans and

cell-type differentiation (e.g., Chara, Nitella, Coleachaete) (97, 141). Sex has not been observed in
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the earlier-branching charophytes but is routinely seen in Zygnematales such as Closterium (see

below) and in the other more derived multicellular charophytes such as Chara and Coleochaete,

where sex is oogamous and species are monoicous with separate male and female reproductive

structures produced within the same multicellular individual (50, 97). Very little is known about

sex determination in charophytes other than in the model species Closterium, described below.

Closterium

Within the zygnematophytes are multiple species of the genus Closterium that have well-

characterized sexual cycles (reviewed in 124, 139). Closterium is unicellular and isogamous with

a haplontic life cycle (Figure 2), much like volvocine algae. Both heterothallic and homothallic

isolates exist (138), though the ancestral state and transitions between heterothallism and ho-

mothallism within this genus remain unresolved. While many species of green algae including

volvocines and Ulva species produce motile flagellated gametes, gametes and vegetative cells of

Closterium and other zygnematophytes are aflagellate, and sexual interactions occur through con-

jugation where adjacent cells of opposite mating type signal to each other to induce the process

of mating. Mating involves a round of sexual cell division induced by nitrogen starvation, and the

release of pheromones by opposite mating partners to induce production of mating-competent

daughter cells. mt− cells produce a hormone called protoplast-release-inducing protein (PR-IP)

inducer that stimulates sexual cell division and stimulatesmt+ cells to release PR-IP,which induces

mt− sexual cell divisions and causes gametangia to be released from their mother walls, allowing

protoplast fusion. Sexual cells of opposite mating type pair side-by-side and then release gametan-

gial protoplasts from their mother cell walls. The two released protoplasts undergo fertilization

(fusion) to form diploid zygotes that mature into dormant zygospores. Upon germination, the zy-

gospores undergo meiosis and produce two haploid meiotic progeny of opposite mating types (for

heterothallic strains) while the other two meiotic nuclei are discarded, as occurs in some modified

fungal meiosis under nutrient limitation (102, 118). The signaling pheromones of the Closterium

peracerosum-strigosum-littorale (C. psl) species complex have been purified and the genes encoding

them cloned (104, 125, 126, 137). Genes encoding PR-IP inducer and PR-IP were found to en-

code glycoproteins that are not related to each other or to known pheromones or hormones in

other taxa (125, 126, 137). Their receptors and modes of action remain undetermined.

The mating type loci of Closterium species have not yet been described, but an experiment to

test mating locus dominance was performed using artificially generated mt−/mt− diploids that

were mated to an mt+ haploid. The mating type ratios of resulting progeny were used to infer

thatmt− is dominant tomt+, an idea that will require direct testing. Identification of mating-type-

linked genes in C. psl has been reported, though details of these findings remain to be described

(139).When it becomes available, a fullmt locus sequence in Closterium should lead to the identifi-

cation of its mating-type regulators, whose functions may be tested or confirmed using transgenic

approaches.

RED ALGAE

Sexuality has never been observed in unicellular red algae (cyanidiophytes), but evidence exists

for genetic exchange in populations (150) and for meiotic tool kit genes (94) (Figure 1). Multi-

cellular red algae inhabit marine environments and exhibit several different types of sexual cycles

(62). In Bangiophyceae (e.g., Porphyra), the diploid sporophyte is microscopic and meiosis occurs

during germination of the spores. The postmeiotic tetrads stay together, forming a mosaic game-

tophyte thallus (98, 110). Multicellular red algae may reproduce asexually through production of
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Diplontic life cycle:
no or highly reduced
haploid mitosis after
meiosis; nonmitotic
gametes may be only
haploid stage
representatives

unicellular mitospores or sexually via dimorphic gametes, which may be either female macroga-

metes (oocytes) or male microgametes (spermatia) (66, 122). Although spermatia lack flagella and

other means of active motility, the sexual system is considered oogamous because male and fe-

male gamete sizes are so different from each other. Syngamy occurs while the egg is still attached

to the female gametophyte (61). The resulting zygotes divide to produce mitospores (or con-

chospores) that are released into the seawater. It is unknown how sexes are determined in red

algae, though the genome of a haploid Porphyra strain of unknown sex has been fully sequenced

(13).

The Florideophyceae constitute the second large multicellular red algal group and include

Chondrus crispus, whose genome has been sequenced (30). In this group fertilization occurs on the

female gametophyte, as it does in Porphyra, and involves the formation of a carposporophyte as

an epiphyte attached to the female gametophyte. Molecular genetic analyses indicate that both

self-fertilization and outcrossing occur in C. crispus (80). At maturity, the carposporophyte re-

leases diploid spores that develop as multicellular tetrasporophytes where meiosis may occur. Both

monoicous and dioicous species occur in florideophytes, for which, like bangiophytes, there is no

information about sex-determining mechanisms. However, RAPD and SCAR molecular markers

linked to sex determination in Gracilaria chilensis and Gracilaria gracilis have been identified and

may be a route toward cloning the SDRs (52, 95) (Supplemental Figure 1). Overall, the red algae

are an important taxonomic group and hold potential for understanding sex determination in the

context of complex life cycles (66). Species within the genera Porphyra and Gracilaria have poten-

tial for development into model organisms. Their genomes are relatively small (14, 30), their life

cycles can be controlled in the laboratory, and progeny from genetic crosses can be obtained. Pig-

mentation mutants in the model species Porphyra yezoensis have been described (103, 109, 149), so

in theory, developmental mutants and developmental genetics would also be possible to develop

for this and other genetically tractable species of red algae.

DIATOMS

Diatoms are an ecologically important and extremely diverse group of microalgae, belonging to

the stramenopiles, one of the largest groups of eukaryotes (Figure 1). All diatoms exhibit a diplon-

tic life cycle (Figure 2), involving a size-dependent transition from mitotically dividing cells to

sexual reproduction (20, 40). The vegetative cells are diploid, and the only haploid cells are the

postmeiotic gametes, which exist transiently and do not undergo any mitotic proliferation. With

each round of vegetative mitosis, cell size decreases due to constraints of enclosure of each cell

within a rigid bipartite silica cell wall or frustule that is incapable of expansion. Gametogenesis

and sexual development are initiated when mitotic cells fall below a certain size, called the sexual

size threshold. After mating (described below) the specialized zygotes, called auxospores, grow and

elongate to reconstitute the initial cell size, after which they differentiate back into vegetative cells

to restart the mitotic cycle. Thus, periodic sexual reproduction is an essential part of the diatom

life cycle.

The mechanisms of gametogenesis and sexual reproduction among diatoms are diverse. Two

major groups of diatoms are the ancestral centrics, whose cells exhibit radial symmetry and which

are oogamous, and a large derived clade of pennate diatoms that are generally isogamous and

produce nonflagellated gametes,with sexual interactions taking place via a spatially and temporally

controlled process of conjugation that bears similarity to sexual conjugation in Closterium (see

above) (19, 40). Heterothallic reproduction is widespread in pennate diatoms, with two mating

types (MT+ or MT−), but many centrics are homothallic (20). In homothallic species the size

ranges in which cells differentiate as eggs or sperm are different, with oogenesis starting first,
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followed by a phase when both eggs and sperm are produced; finally, when the cells are small,

only sperm cells are produced (20, 130).

The raphid pennate diatom Seminavis robusta is particularly suitable for studies on life cycle

regulation (21, 100), and construction of MT-specific linkage mapping has identified the MT+

and MT− SDRs, with the MT+ haplotype dominant to MT− for sexual differentiation. While

no genomic information is available currently for this species, linkage mapping suggests thatMT

chromosomes in this species are homomorphic, with a small nonrecombining region and a large

PAR (144). More recently, Pseudo-nitzschia multistriata has also emerged as a model to look at sex-

ual cycles in diatoms. This species has a typical, controllable size reduction–restitution life cycle

in which isogamous diploid cells of opposite mating type (MT+ andMT−) undergo meiosis and

produce gametes when they are below the size threshold for sex (35). The diploid genome of

P. multistriata has been sequenced and phylogenomic and transcriptomic analyses have docu-

mented gene gains and losses, horizontal gene transfers, conservation, and evolutionary divergence

of sex-related genes (5). A recent study has shown that in P.multistriata, gamete differentiation into

MT+ orMT− mating types is defined by the monoallelic expression of the geneMRP3 inMT+

cells. The specific function ofMRP3 is unknown, but it appears to regulate the expression of sev-

eral autosomal genes (120).MRP3 is conserved in other Pseudo-nitzschia species and in the closely

related Fragilariopsis cylindrus, but it remains to be determined whether it acts as a mating-type de-

terminant in these relatives. Orthologs of MRP3 were not detected in centric and other pennate

diatoms, including S. robusta, a result that may be due to true absence of an ortholog, incomplete

genome sequence, or rapid sequence evolution (120).

BROWN ALGAE

The brown algae (phaeophytes) are a clade of multicellular stramenopile eukaryotes that have

been evolving independently from animals and plants for over a billion years (Figure 1). They

encompass a large diversity of life cycles and reproductive systems (22, 63) (Figure 5) and

have recently emerged as interesting model organisms to investigate the evolution of sexes

(1, 25).

Evolution of Sexual Dimorphism in Brown Algae

All brown algae are traditionally considered to have sexes, since all species exhibit some degree

of gamete size dimorphism. Indeed, contrary to the case of algae from the green lineage, no strict

isogamy exists in the brown algae. While in some species the two gamete types are very close in

size (mild anisogamy), they still differ in behavior and physiology: Shortly after formation and

release into the water column, female gametes quickly settle onto the substrate and reabsorb

their flagella. Pheromones released into the seawater by female gametes attract fast-swimming

male gametes. Among brown algal species there is a wide degree of variability in gamete size

dimorphism, ranging from mild anisogamy (e.g., Ectocarpus), to strong anisogamy and oogamy

(91). Interestingly, phylogenetic reconstruction suggests that oogamy is the ancestral state in

brown algae, with several independent reversals to anisogamy and mild anisogamy (63, 127).

These reversals from oogamymay be especially valuable for testing ideas about the selective forces

that maintain anisogamy and oogamy. As described above (see the section titled Introduction)

Bulmer & Parker (16) proposed that both anisogamy and zygote size are expected to increase

with organism size and complexity, and Lehtonen and Kokko (83) confirmed this expectation

but also showed that evolution of anisogamy requires some level of gametic competition and

limitation. Thus, brown algae might be predicted to vary according to their level of anisogamy in
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Figure 5

Brown algal life cycle and sexual cycle diversity. (a) The kelps exhibit a haplodiplontic life cycle. The gametophyte generation is
reduced but nonetheless develops independently of the sporophyte, and the male and female gametophytes are strongly anisomorphic.
In Fucus serratus (b) and Fucus spiralis (c), the gametophyte generation has been lost, resulting in a diplontic life cycle, with dioecious or
monoecious individuals and strongly dimorphic male and female gametes. The Ectocarpales include species with isomorphic
haplodiplontic life cycles, but they also include species with slightly heteromorphic life cycles (such as Ectocarpus sp., depicted in
panel d) and species with strongly heteromorphic haplodiplontic life cycles, with either the gametophyte or the sporophyte generation
being microscopic (panel e represents an example of the latter). Gamete size dimorphism in the Ectocarpales is very slight. ( f ) Halopteris
congesta is an example of a monoicous haplodiplontic brown alga. In many brown algae, a vegetative or mitotic cycle that includes
parthenogenetic development of gametes is superimposed in the sexual cycle (dashed arrows). Male (V) and female (U) sex
chromosomes are depicted for species that express sex during the haploid phase of the life cycle. Note that dioecious Fucus species such
as F. serratus (b) have a diploid sex-determining system (XY or ZW) whose details are unknown.
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Dioicy: condition of
having separate
genetically determined
male and female
individuals in the
haploid (gametophyte)
stage (e.g., mosses,
brown algae)

Sexual antagonism:
situation where
optimal alleles or
strategies for
reproductive fitness
differ between sexes

terms of gamete competition, gamete limitation, and/or resource requirements for zygotic fitness.

This variation in sexual dimorphism may also impact evolution of brown algal SDRs, though as

described for volvocine algae (see above) (Figure 4), there may not be a strong correspondence

between level of sexual dimorphism and the degree of MDR or SDR haplotype differentiation.

Sex Determination in Ectocarpus

The genus Ectocarpus has recently emerged as a model for studies on the evolution of sex deter-

mination in the brown algae, in particular evolution of UV sex chromosomes. The haplodiplontic

life cycle of Ectocarpus consists of an alternation of generations (Figure 5) and represents what

is thought to be the most frequent type of sexual system in the brown algae (dioicy), in which

male and female sexes are determined during the haploid, gametophyte, generation by a pair of

UV sex chromosomes, a feature that has important implications for SDR evolution (1, 4, 25). The

UV sex chromosomes of Ectocarpus sp. have been identified, and an ∼1 Mb nonrecombining re-

gion that contains the SDR has been characterized (1) (Supplemental Table 1). At the sequence

level, the male and female haplotypes of the SDR in Ectocarpus sp. are highly divergent. The only

regions found with high similarity are the gametolog exons, and large blocks of highly similar

sequences are absent. Genetic crosses using life cycle mutants (2, 24) have shown that the male

SDR is dominant over the female (1), and one particularly interesting male-limited gene encoding

an HMG (high mobility group)-domain putative TF is predicted to be a master regulator of sex

determination. This gene is strongly upregulated during fertility and consistently male linked in

all the brown algal species whose sex chromosomes have been identified so far (1, 88). Although

the key regulator(s) of Ectocarpus sex determination residing in the SDR has yet to be definitively

validated, a transcriptome data set of two ontogenetic stages of male and female gametophytes has

revealed the expression network involved in Ectocarpus sex differentiation (87). Coding regions of

both male- and female-biased genes in Ectocarpus had a greater proportion of sites experiencing

positive selection, suggesting that their accelerated divergence is at least partly driven by adaptive

evolution. Interestingly, gene duplication appears to have played a significant role in the gener-

ation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism

for the resolution of sexual antagonism in diploid systems (31). These patterns of sex-biased gene

expression in Ectocarpus correspond to the distinctive aspects of this organism’s reproductive bi-

ology, which involves separate sexes at the haploid stage of the life cycle and overall low levels of

sexual dimorphism.

Evolution of Ectocarpus and Other Brown Algal Sex-Determining Regions

Because the heteromorphic regions of U and V chromosomes (SDRs) are nonrecombining, they

are expected to evolve differently compared with autosomal regions (25).EctocarpusU andV SDRs

exhibit about half as much neutral diversity as the autosomes, and this difference is consistent with

the reduced effective population sizes of these regions compared with the rest of the genome.This

suggests that the influence of additional factors such as background selection or selective sweeps

is minimal (3).

The sex-specific genes of several brown algal species that have diverged over a time frame of

100 million years were compared, and this helped shed light on long-term properties of UV sex

chromosomes (88). This study revealed a substantial amount of gene traffic in and out of the sex-

linked region but also highlighted a group of genes that has been stably maintained on the SDR

of all the brown algae studied so far, suggesting that the genes are important for sex determination

and/or originated on an ancestral sex chromosome. A comparative analysis of sex chromosomes

www.annualreviews.org • Algal Sexes and Mating Systems 283

A
n
n
u
. 
R

ev
. 
M

ic
ro

b
io

l.
 2

0
1
9
.7

3
:2

6
7
-2

9
1
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 W

as
h
in

g
to

n
 U

n
iv

er
si

ty
 -

 S
t.

 L
o
u
is

 o
n
 0

1
/0

9
/2

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



from the kelp Saccharina japonica and Ectocarpus sp. suggested that the two species resolve sexual

conflict by different strategies—with Ectocarpus modifying expression levels of sex-related genes

(sex-biased gene expression of autosomal or PAR loci) and kelps integrating dimorphically ex-

pressed sex-related genes into the SDR.

It will be fascinating to explore the wealth of life cycles and reproductive systems in the brown

algae to increase our understanding of the mechanisms underlying transitions among the different

types of sexual systems, specifically the switches between developmental and genetic sex determi-

nation (i.e., from combined to separate sexes, and vice versa).The Fucales, in particular, are unique

models to examine the genetic and evolutionary forces underlying transitions from haploid (UV)

to diploid (XY/ZW) systems (26, 91).

SUMMARY POINTS

1. Algae are a diverse collection of photosynthetic eukaryotes with different types of life

cycles and sexual cycles, including those with isogamous mating systems and those with

male/female sexes.

2. Volvocine green algae have well-studied haplontic sexual cycles and sex-determination

systems that include a progression from unicellular species with isogamous mating types

like Chlamydomonas reinhardtii to multicellular species with dimorphic sexes like Volvox

carteri.

3. Ulva is an emerging model genus within the major green algal clade Ulvophyceae. Se-

quenced genome and SDRs forUlva help set the stage for understanding the origins and

maintenance of its slightly anisogamous haploid mating system.

4. RWP-RK family transcription factor genes including the volvocine master regulatory

MID gene are implicated in haploid mating-type or sex determination across the green

lineage including in ulvophytes (Ulva) and prasinophytes (Ostreococcus) and in early di-

verging land plants (Marchantia).

5. The charophyte algae are the closest relatives of land plants, and haplontic Closterium

is a model for isogamous mating-type determination with a conjugation-based mating

system coordinated by intercellular pheromone signaling.

6. The diatom Pseudo-nitzschia multistriata is emerging as a model for studies on isoga-

mous sexual reproduction and mating-type determination in unicellular stramenopiles.

Its mating-type locus has recently been identified.

7. Brown algae display a wide diversity of life cycles and reproductive systems and have

recently emerged as model organisms to investigate the evolution of sexes and sex-

determination mechanisms that control gametogenesis in either the haploid or diploid

phase of the life cycle.

8. Advances in genomics will continue to enable progress in understanding algal sex deter-

mination in a broader representation of algal species and taxa.
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