
Relational Pooling for Graph Representations

Ryan L. Murphy 1 Balasubramaniam Srinivasan 2 Vinayak Rao 1 Bruno Ribeiro 2

Abstract
This work generalizes graph neural networks

(GNNs) beyond those based on the Weisfeiler-

Lehman (WL) algorithm, graph Laplacians, and

diffusions. Our approach, denoted Relational

Pooling (RP), draws from the theory of finite

partial exchangeability to provide a framework

with maximal representation power for graphs.

RP can work with existing graph representation

models and, somewhat counterintuitively, can

make them even more powerful than the orig-

inal WL isomorphism test. Additionally, RP

allows architectures like Recurrent Neural Net-

works and Convolutional Neural Networks to be

used in a theoretically sound approach for graph

classification. We demonstrate improved perfor-

mance of RP-based graph representations over

state-of-the-art methods on a number of tasks.

1. Introduction

Applications with relational graph data, such as molecule

classification, social and biological network prediction,

first order logic, and natural language understanding, re-

quire an effective representation of graph structures and

their attributes. While representation learning for graph

data has made tremendous progress in recent years, current

schemes are unable to produce so-called most-powerful

representations that can provably distinguish all distinct

graphs up to graph isomorphisms. Consider for instance the

broad class of Weisfeiler-Lehman (WL) based Graph Neu-

ral Networks (WL-GNNs) (Duvenaud et al., 2015; Kipf &

Welling, 2017; Gilmer et al., 2017; Hamilton et al., 2017a;

Velickovic et al., 2018; Monti et al., 2017; Ying et al., 2018;

Xu et al., 2019; Morris et al., 2019). These are unable

to distinguish pairs of nonisomorphic graphs on which the

standard WL isomorphism heuristic fails (Cai et al., 1992;

Xu et al., 2019; Morris et al., 2019). As graph neural net-

works (GNNs) are applied to increasingly more challeng-

1Department of Statistics, and 2Department of Computer Sci-
ence, Purdue University, West Lafayette, Indiana, USA. Corre-
spondence to: Ryan L. Murphy <murph213@purdue.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ing problems, having a most-powerful framework for graph

representation learning would be a key development in ge-

ometric deep learning (Bronstein et al., 2017).

In this work we introduce Relational Pooling (RP), a novel

framework with maximal representation power for any

graph input. In RP, we specify an idealized most-powerful

representation for graphs and a framework for tractably ap-

proximating this ideal. The ideal representation can dis-

tinguish pairs of nonisomorphic graphs even when the WL

isomorphism test fails, which motivates a straightforward

procedure using approximate RP – we call this RP-GNN –

for making GNNs more powerful.

A key inductive bias for graph representations is invari-

ance to permutations of the adjacency matrix (graph iso-

morphisms), see Aldous (1981); Diaconis & Janson (2008);

Orbanz & Roy (2015). Our work differs in its focus on

learning representations of finite but variable-size graphs.

In particular, given a finite but arbitrary-sized graph G po-

tentially endowed with vertex or edge features, RP outputs

a representation f(G)∈ R
dh , dh> 0 , that is invariant to

graph isomorphisms. RP can learn representations for each

vertex in a graph, though to simplify the exposition, we fo-

cus on learning one representation of the entire graph.

Contributions. We make the following contributions: (1)

We introduce Relational Pooling (RP), a novel framework

for graph representation that can be combined with any

existing neural network architecture, including ones not

generally associated with graphs such as Recurrent Neu-

ral Networks (RNNs). (2) We prove that RP has maxi-

mal representation power for graphs and show that com-

bining WL-GNNs with RP can increase their representa-

tion power. In our experiments, we classify graphs that

cannot be distinguished by a state-of-the-art WL-GNN (Xu

et al., 2019). (3) We introduce approximation approaches

that make RP computationally tractable. We demonstrate

empirically that these still lead to strong performance and

can be used with RP-GNN to speed up graph classification

when compared to traditional WL-GNNs.

2. Relational Pooling

Notation. We consider graphs endowed with vertex and

edge features. That is, let G = (V,E,X(v),X
(e)) be a

graph with vertices V , edges E ⊆ V × V , vertex fea-

Relational Pooling for Graph Representations

tures stored in a |V | × dv matrix X(v), and edge features

stored in a |V | × |V | × de tensor X
(e)

. W.l.o.g, we let

V := {1, . . . , n}, choosing some arbitrary ordering of the

vertices. Unlike the vertex features X(v), these vertex la-

bels do not represent any meaningful information about

the vertices, and learned graph representations should not

depend upon the choice of ordering. Formally, there al-

ways exists a bijection on V (called a permutation or iso-

morphism) between orderings so we desire permutation-

invariant, or equivalently, isomorphic-invariant functions.

In this work, we encode G by two data structures: (1) a

|V | × |V | × (1 + de) tensor that combines G’s adjacency

matrix with its edge features and (2) a |V | × dv matrix

representing node features X(v). The tensor is defined as

Av,u,· =
[

1(v,u)∈E ⋊⋉ X
(e)
v,u

]

for v, u ∈ V where [· ⋊⋉ ·] de-

notes concatenation along the 3rd mode of the tensor, 1(·)

denotes the indicator function, and X
(e)
v,u denotes the fea-

ture vector of edge (v, u) by a slight abuse of notation.

A permutation is bijection π : V → V from the label

set V to itself. If vertices are relabeled by a permutation

π, we represent the new adjacency tensor by Aπ,π , where

(Aπ,π)π(i),π(j),k = Ai,j,k ∀i, j∈ V , k ∈{1, . . . , 1 + de};

the index k over edge features is not permuted. Simi-

larly, the vertex features are represented by X
(v)
π where

(X
(v)
π)π(i),l =X

(v)
i,l , ∀i ∈ V and l ∈ {1, . . . , dv}. The

Supplementary Material shows a concrete example and

Kearnes et al. (2016) use a similar representation.

For bipartite graphs (e.g., consumers × products), V is par-

titioned by V (r) and V (c) and a separate permutation func-

tion can be defined on each. Their encoding is similar to the

above and we define RP for the two different cases below.

Joint RP. Inspired by joint exchangeability (Aldous,

1981; Diaconis & Janson, 2008; Orbanz & Roy, 2015),

we define a joint RP permutation-invariant function of non-

bipartite graphs, whether directed or undirected, as

f(G) =
1

|V |!

∑

π∈Π|V |

f
⇀

(Aπ,π,X
(v)
π), (1)

where Π|V | is the set of all distinct permutations of V

and f
⇀

is an arbitrary (possibly permutation-sensitive) func-

tion of the graph with codomain R
dh . Following Murphy

et al. (2019), we use the notation · to denote permutation-

invariant function. Since Equation 1 averages over all per-

mutations of the labels V , f is a permutation-invariant

function and can theoretically represent any such function

g (consider f
⇀

= g). We can compose f with another func-

tion ρ (outside the summation) to capture additional signal

in the graph. This can give a maximally expressive, albeit

intractable, graph representation (Theorem 2.1). We later

discuss tractable approximations for f and neural network

architectures for f
⇀

.

Separate RP. RP for bipartite graphs is motivated by sep-

arate exchangeability (Diaconis & Janson, 2008; Orbanz &

Roy, 2015) and is defined as

f(G)=C
∑

π∈Π|V (r)|

∑

σ∈Π|V (c)|

f
⇀(

Aπ,σ,X
(r,v)
π ,X(c,v)

σ

)

(2)

where C = (|V (r)|!|V (c)|!)−1 and π, σ are permutations of

V (r), V (c), respectively. Results that apply to joint RP ap-

ply to separate RP.

2.1. Representation Power of RP

Functions f should be expressive enough to learn distinct

representations of nonisomorphic graphs or graphs with

distinct features. We say f(G) is most-powerful or most-

expressive when f(G) = f(G′) iff G and G′ are isomor-

phic and have the same vertex/edge features up to permu-

tation. If f is not most-powerful, a downstream function

ρ may struggle to predict different classes for nonisormor-

phic graphs.

Theorem 2.1. If node and edge attributes come from a fi-

nite set, then the representation f(G) in Equation 1 is the

most expressive representation of G, provided f
⇀

is suffi-

ciently expressive (e.g., a universal approximator).

All proofs are shown in the Supplementary Material.

This result provides a key insight into RP; one can fo-

cus on building expressive functions f
⇀

that need not be

permutation-invariant as the summation over permutations

assures that permutation-invariance is satisfied.

2.2. Neural Network Architectures

Since f
⇀

may be permutation sensitive, RP allows one to

use a wide range of neural network architectures.

RNNs, MLPs. A valid architecture is to vectorize the graph

(concatenating node and edge features, as illustrated in the

Supplementary Material) and learn f
⇀

over the resulting se-

quence. f
⇀

can be an RNN, like an LSTM (Hochreiter &

Schmidhuber, 1997) or GRU (Cho et al., 2014), or a feed-

forward neural network (multilayer perceptron, MLP) with

padding if different graphs have different sizes. Concretely,

f(G) =
1

|V |!

∑

π∈Π|V |

f
⇀(

vec(Aπ,π,X
(v)
π)
)

.

CNNs. Convolutional neural networks (CNNs) can also be

directly applied over the tensor Aπ,π and combined with

the node features X
(v)
π , as in

f(G)=
1

|V |!

∑

π∈Π|V |

MLP

(

[

CNN(Aπ,π)⋊⋉MLP(X(v)
π)
]

)

, (3)

Relational Pooling for Graph Representations

where CNN denotes a 2D (LeCun et al., 1989; Krizhevsky

et al., 2012) if there are no edge features and a 3D CNN (Ji

et al., 2013) if there are edge features, [· ⋊⋉ ·] is a concatena-

tion of the representations, and MLP is a multilayer percep-

tron. Multi-resolution 3D convolutions (Qi et al., 2016) can

be used to map variable-sized graphs into the same sized

representation for downstream layers.

GNNs. The function f
⇀

can also be a graph neural network

(GNN), a broad class of models that use the graph G itself

to define the computation graph. These are permutation-

invariant by design but we will show that their integration

into RP can (1) make them more powerful and (2) speed up

their computation via theoretically sound approximations.

The GNNs we consider follow a message-passing (Gilmer

et al., 2017) scheme defined by the recursion

h
(l)
u = φ(l)

(

h
(l−1)
u , JP

(

(h(l−1)
v)v∈N (u)

)

)

, (4)

where φ(l) is a learnable function with distinct weights at

each layer 1 ≤ l ≤ L of the computation graph, JP is

a general (learnable) permutation-invariant function (Mur-

phy et al., 2019), N (u) is the set of neighbors of u ∈ V ,

and h
(l)
u ∈ R

d
(l)
h is a vector describing the embedding of

node u at layer l. h
(0)
u is the feature vector of node u,

(X(v))u,· or can be assigned a constant c if u has no fea-

tures. Under this framework, node embeddings can be used

directly to predict node-level targets, or all node embed-

dings can be aggregated (via a learnable function) to form

an embedding hG used for graph-wide tasks.

There are several variations of Equation 4 in the literature.

Duvenaud et al. (2015) proposed using embeddings from

all layers l ∈ {1, 2, . . . , L} for graph classification. Hamil-

ton et al. (2017a) used a similar framework for node clas-

sification and link prediction tasks, using the embedding

at the last layer, while Xu et al. (2018) extend Hamilton

et al. (2017a) to once again use embeddings at all layers

for node and link prediction tasks. Other improvements in-

clude attention (Velickovic et al., 2018). This approach can

be derived from spectral graph convolutions (e.g., (Kipf &

Welling, 2017)). More GNNs are discussed in Section 3.

Recently, Xu et al. (2019); Morris et al. (2019) showed

that these architectures are at most as powerful as the

Weisfeiler-Lehman (WL) algorithm for testing graph iso-

morphism (Weisfeiler & Lehman, 1968), which itself ef-

fectively follows a message-passing scheme. Accordingly,

we will broadly refer to models defined by Equation 4 as

WL-GNNs. Xu et al. (2019) proposes a WL-GNN called

Graph Isomorphism Network (GIN) which is as powerful

as the WL test in graphs with discrete features.

Can a WL-GNN be more powerful than the WL test?

WL-GNNs inherit a shortcoming from the WL test (Cai

Gskip(11, 2) Gskip(11, 3)

Figure 1: The WL test incorrectly deems these isomorphic.

et al., 1992; Arvind et al., 2017; Fürer, 2017; Morris et al.,

2019); node representations h
(l)
u do not encode whether

two nodes have the same neighbor or distinct neighbors

with the same features, limiting their ability to learn an ex-

pressive representation of the entire graph. Consider a task

where graphs represent molecules, where node features in-

dicate atom type and edges denote the presence or absence

of bonds. Here, the first WL-GNN layer cannot distinguish

that two (say) carbon atoms have a bond with the same car-

bon atom or a bond to two distinct carbon atoms. Succes-

sive layers of the WL-GNN update node representations

and the hope is that nodes eventually get unique representa-

tions (up to isomorphisms), and thus allow the WL-GNN to

detect whether two nodes have the same neighbor based on

the representations of their neighbors. However, if there are

too few WL-GNN layers or complex cycles in the graph,

the graph and its nodes will not be adequately represented.

To better understand this challenge, consider the extreme

case illustrated by the two graphs in Figure 1. These are

cycle graphs with M = 11 nodes where nodes that are

R ∈ {2, 3} ‘hops’ around the circle are connected by an

edge. These highly symmetric graphs, which are special

cases of circulant graphs (Vilfred, 2004) are formally de-

fined in Definition 2.1 but the key point is that the WL test,

and thus WL-GNNs, cannot distinguish these two noniso-

morphic graphs.

Definition 2.1: [Circulant Skip Links (CSL) graphs] Let

R and M be co-prime natural numbers1 such that R <

M − 1. Gskip(M,R) denotes an undirected 4-regular graph

with vertices {0, 1, . . . ,M − 1} whose edges form a cycle

and have skip links. That is, for the cycle, {j, j + 1} ∈ E

for j ∈ {0, . . . ,M − 2} and {M − 1, 0} ∈ E. For the

skip links, recursively define the sequence s1 = 0, si+1 =
(si +R) mod M and let {si, si+1} ∈ E for any i ∈ N. ♦

We will use RP to help WL-GNNs overcome this short-

coming. Let f
⇀

be a WL-GNN that we make permutation

sensitive by assigning each node an identifier that depends

on π. Permutation sensitive IDs prevent the RP sum from

collapsing to just one term but more importantly help dis-

tinguish neighbors that otherwise appear identical. In par-

ticular, given any π ∈ Π|V |, we append to the rows of X
(v)
π

one-hot encodings of the row number before computing f
⇀

.

We can represent this by an augmented vertex attribute ma-

1Two numbers are co-primes if their only common factor is 1.

Relational Pooling for Graph Representations

trix
[

X
(v)
π ⋊⋉ I|V |

]

for every π ∈ Π|V |, where I|V | is a

|V | × |V | identity matrix and [B ⋊⋉ C] concatenates the

columns of matrices B and C. RP-GNN is then given by

f(G) =
1

|V |!

∑

π∈Π|V |

f
⇀
(

Aπ,π,
[

X(v)
π ⋊⋉ I|V |

])

(5)

=
1

|V |!

∑

π∈Π|V |

f
⇀
(

A,
[

X(v)
⋊⋉ (I|V |)π

])

,

where the second holds since f
⇀

a GNN and thus invari-

ant to permutations of the adjacency matrix. The following

theorem shows that f(G) in Equation 5 is strictly more ex-

pressive than the original WL-GNN; it can distinguish all

nodes and graphs that WL-GNN can in addition to graphs

that the original WL-GNN cannot.

Theorem 2.2. The RP-GNN in Equation 5 is strictly more

expressive than the original WL-GNN. Specifically, if f
⇀

is a

GIN (Xu et al., 2019) and the graph has discrete attributes,

its RP-GNN is more powerful than the WL test.

Equation 5 is computationally expensive but can be made

tractable while retaining expressive power over standard

GNNs. While all approximations discussed in Section 2.3

for RP in general are applicable to RP-GNN, a specific

strategy is to assign permutation-sensitive node IDs in a

clever way. In particular, if vertex features are avail-

able, we only need to assign enough IDs to make all

vertices unique and thereby reduce the number of per-

mutations we need to evaluate. For example, in the

molecule CH2O2, if we create node features with one-hot

IDs (C, 0, 1),(H, 0, 1),(H, 1, 0),(O, 0, 1),(O, 1, 0), then

we need only consider 1!· 2! · 2! = 4 permutations. For

unattributed graphs, we assign i mod m to node i; setting

m=1 reduces to a GNN and m=|V | is the most expressive.

More examples are in the Supplementary Material.

2.3. RP Tractability

2.3.1. TRACTABILITY VIA CANONICAL ORIENTATIONS

Equation 1 is intractable as written and calls for approxi-

mations. The most direct approximation is to compose a

permutation-sensitive f
⇀

with a canonical orientation func-

tion that re-orders A such that CANONICAL(A,X(v))=

CANONICAL(Aπ,π,X
(v)
π), ∀π ∈ Π|V |. For instance,

vertices can be sorted by centrality scores with some tie-

breaking scheme (Montavon et al., 2012; Niepert et al.,

2016). This causes the sum over all permutations to

collapse to just an evaluation of f
⇀

◦ CANONICAL.

Essentially, this introduces a fixed component into the

permutation-invariant function f with only the second

stage learned from data. This simplifying approxima-

tion to the original problem is however only useful if

CANONICAL is related to the true function, and can oth-

erwise result in poor representations (Murphy et al., 2019).

A more flexible approach collapses the set of all per-

mutations into a smaller set of equivalent permutations

which we denote as poly-canonical orientation. Depth-

First Search (DFS) and Breadth-First Search (BFS) serve

as two examples. In a DFS, the nodes of the adjacency

matrix/tensor Aπ,π are ordered from 1 to |V | according to

the order they are visited by a DFS starting at π(1). Thus,

if G is a length-three path and we consider permutation

functions defined (elementwise) as π(1, 2, 3) = (1, 2, 3),
π′(1, 2, 3)=(1, 3, 2), DFS or BFS would see respectively
1 2 3 and 1 3 2 (where vertices are numbered by per-

muted indices), start at π(1)=1 and result in the same ‘left-

to-right’ orientation for both permutations. In disconnected

graphs, the search starts at the first node of each connected

component. Learning orientations from data is a discrete

optimization problem left for future work.

2.3.2. TRACTABILITY VIA π-SGD

A simple approach for making RP tractable is to sample

random permutations during training. This offers the com-

putational savings of a single canonical ordering but cir-

cumvents the need to learn a good canonical ordering for a

given task. This approach is only approximately invariant,

a tradeoff we make for the increased power of RP.

For simplicity, we analyze a supervised graph classifica-

tion setting with a single sampled permutation, but this

can be easily extended to sampling multiple permuta-

tions and unsupervised settings. Further, we focus on

joint invariance but the formulation is similar for sepa-

rate invariance. Consider N training data examples D ≡
{(G(1),y(1)), . . . , (G(N),y(N))}, where y(i) ∈ Y is the

target output and graph G(i) its corresponding graph input.

For a parameterized function f
⇀

with parameters W ,

f(G(i);W) =
1

|V (i)|!

∑

π∈Π|V (i)|

f
⇀

(Aπ,π(i),X
(v)
π (i);W),

our (original) goal is to minimize the empirical loss

L(D;W) =

N
∑

i=1

L
(

y(i) , f(G(i);W)
)

, (6)

where L is a convex loss function of f(·; ·) such as cross-

entropy or square loss. For each graph G(i), we sample

a permutation si ∼ Unif(Π|V (i)|) and replace the sum in

Equation 1 with the estimate

ˆ
f(G(i);W) = f

⇀

(Asi,si(i),X
(v)
si

(i);W). (7)

For separate invariance, we would sample a distinct permu-

tation for each set of vertices. The estimator in Equation 7

Relational Pooling for Graph Representations

is unbiased: Esi
[
ˆ
f(Gsi,si(i);W)] = f(G(i);W), where

Gsi,si is shorthand for a graph that has been permuted

by si. However, this is no longer true when f is chained

with a nonlinear loss L: Esi
[L(y(i),

ˆ
f(Gsi,si(i);W))] 6=

L(y(i), Esi
[
ˆ
f(Gsi,si(i);W)]). Nevertheless, as we will

soon justify, we follow Murphy et al. (2019) and use this

estimate in our optimization.

Definition 2.2: [π-SGD for RP] Let Bt =
{(G(1),y(1)), . . . , (G(B),y(B))} be a mini-batch

i.i.d. sampled uniformly from the training data D at step t.

To train RP with π-SGD, we follow the stochastic gradient

descent update

Wt = Wt−1 − ηtZt, (8)

where Zt =
1
B

∑B

i=1 ∇WL

(

y(i),
ˆ
f(G(i);Wt−1)

)

is the

random gradient with the random permutations {si}
B
i=1,

(sampled independently si ∼ Unif(Π|V (i)|) for all graphs

G(i) in batch Bt), and the learning rate is ηt ∈ (0, 1) s.t.

limt→∞ ηt = 0,
∑∞

t=1 ηt = ∞, and
∑∞

t=1 η
2
t < ∞. ♦

Effectively, this is a Robbins-Monro stochastic approxi-

mation algorithm of gradient descent (Robbins & Monro,

1951; Bottou, 2012) and optimizes the modified objective

J(D;W)=
1

N

N
∑

i=1

Esi

[

L

(

y(i),
ˆ
f(Gsi,si(i);W)

)]

=
1

N

N
∑

i=1

1

|V (i)|!

∑

π∈Π|V (i)|

L

(

y(i),
ˆ
f(Gπ,π(i);W)

)

. (9)

Observe that the expectation over permutations is now

outside the loss function (recall f(G(i);W) in in Equa-

tion 6 is an expectation). The loss in Equation 9 is also

permutation-invariant, but π-SGD yields a result sensitive

to the random input permutations presented to the algo-

rithm. Further, unless the function f
⇀

itself is permutation-

invariant (f = f
⇀

), the optima of J are different from those

of the original objective function L. Instead, if L is convex

in f(·; ·), J is an upper bound to L via Jensen’s inequality,

and minimizing this bound forms a tractable surrogate to

the original objective in Equation 6.

The following convergence result follows from the π-SGD

formulation of Murphy et al. (2019).

Proposition 2.1. π-SGD stochastic optimization enjoys

properties of almost sure convergence to optimal W under

conditions similar to SGD (listed in Supplementary).

Remark 2.1. Given fixed point W ⋆ of the π-SGD opti-

mization and a new graph G at test time, we may ex-

actly compute Es[
ˆ
f(Gs,s;W

⋆)] = f(G;W ⋆) or esti-

mate it with 1
m

∑m

j=1 f
⇀

(Gsj ,sj ;W
⋆), where s1. . . ,sm

i.i.d.
∼

Unif
(

Π|V |

)

.

2.3.3. TRACTABILITY VIA k-ARY DEPENDENCIES

Murphy et al. (2019) propose k-ary pooling whereby the

computational complexity of summing over all permuta-

tions of an input sequence is reduced by considering only

permutations of subsequences of size k. Inspired by this,

we propose k-ary Relational Pooling which operates on

k-node induced subgraphs of G, which corresponds to

patches of size k × k × (de + 1) of A and k rows of X(v).

Formally, we define k-ary RP in joint RP by

f
(k)
(G;W)=

1

|V |!

∑

π∈Π|V |

f
⇀
(

Aπ,π[1:k, 1:k, :],X
(v)
π [1:k,:];W

)

,

(10)

where A[·, ·, ·] denotes access to elements in the first, sec-

ond, and third modes of A; a : b denotes selecting ele-

ments corresponding to indices from a to b inclusive; and

“:” by itself denotes all elements along a mode. Thus, we

permute the adjacency tensor and select fibers along the

third mode from the upper left k × k × (de + 1) subten-

sor of A as well as the vertex attributes from the first k

rows of X
(v)
π . An illustration is shown in Figure 2. The

graph on the right is numbered by its ‘original’ node in-

dices and we assume that it has no vertex features and one-

dimensional edge features. This ‘original’ graph would be

represented by a 5 × 5 × 2 tensor A where, for all pairs

of vertices, the front slice holds adjacency matrix informa-

tion and the back slice holds edge feature information (not

shown). Given the permutation function π† ∈ Π|V | defined

as π†(1, 2, 3, 4, 5) = (3, 4, 1, 2, 5), the permuted Aπ†,π† is

shown on the left. Its entries show elements from A shuf-

fled appropriately by π†. For k = 3 RP, we select the upper-

left 3×3 region from Aπ†,π† , shaded in red, and pass this to

f
⇀

. This is repeated for all permutations of the vertices. For

separate RP, the formulation is similar but we can select k1
and k2 nodes from V (r) and V (c), respectively.

In practice, the relevant k-node induced subgraphs can be

selected without first permuting the entire tensor A and ma-

trix X(v). Instead, we enumerate all subsets of size k from

index set V and use those to index A and X(v).

More generally, we have the following conclusion:

Proposition 2.2. The RP in Equation 10 requires summing

over all k-node induced subgraphs of G, thus saving com-

putation when k < |V |, reducing the number of terms in

the sum from |V |! to
|V |!

(|V |−k)! .

Fewer computations are needed if f
⇀

is made permutation-

invariant over its input k-node induced subgraph. We now

show that the expressiveness of k-ary RP increases with k.

Proposition 2.3. f
(k)

becomes strictly more expressive as

k increases. That is, for any k∈N, define Fk as the set of all

permutation-invariant graph functions that can be repre-

sented by RP with k-ary dependencies. Then, Fk−1 ⊂ Fk.

Relational Pooling for Graph Representations

A(3,3,2) A(3,4,2) A(3,1,2) A(3,2,2) A(3,5,2)

A(4,3,2) A(4,4,2) A(4,1,2) A(4,2,2) A(4,5,2)

A(1,3,2) A(1,4,2) A(1,1,2) A(1,2,2) A(1,5,2)

A(2,3,2) A(2,4,2) A(2,1,2) A(2,2,2) A(2,5,2)

A(5,3,2) A(5,4,2) A(5,1,2) A(5,2,2) A(5,5,2)

A(3,3,1) A(3,4,1) A(3,1,1) A(3,2,1) A(3,5,1)

A(4,3,1) A(4,4,1) A(4,1,1) A(4,2,1) A(4,5,1)

A(1,3,1) A(1,4,1) A(1,1,1) A(1,2,1) A(1,5,1)

A(2,3,1) A(2,4,1) A(2,1,1) A(2,2,1) A(2,5,1)

A(5,3,1) A(5,4,1) A(5,1,1) A(5,2,1) A(5,5,1)

Adjacency tensor Aπ†,π† where π†(1, 2, 3, 4, 5) = (3, 4, 1, 2, 5)

(elementwise): the top-left 3× 3× 2 subtensor is passed to f
⇀(3)

.

1

2

3

4

5

An example five-node graph encoded by A. We select a
3-node induced subgraph, corresponding to the top-left of
Aπ†,π† indicated by shaded nodes and thickened edges.

Figure 2: Illustration of a k-ary (k = 3) RP on a 5-node graph with one-dimensional edge attributes (de=1) and no vertex

attributes. The graph is encoded as a 5×5×2 tensor A. k-ary RP selects the top-left k×k corner of a permuted tensor Aπ,π .

Further computational savings. The number of k-node

induced subgraphs can be very large for even moderate-

sized graphs. The following yield additional savings.

Ignoring some subgraphs: We can encode task- and model-

specific knowledge by ignoring certain k-sized induced

subgraphs, which amounts to fixing f
⇀

to 0 for these graphs.

For example, in most applications the graph structure – and

not the node features alone – is important so we may ignore

subgraphs of k isolated vertices. Such decisions can yield

substantial computational savings in sparse graphs.

Use of π-SGD: We can combine the k-ary approximation

with other strategies like π-SGD and poly-canonical orien-

tations. For instance, a forward pass can consist of sam-

pling a random starting vertex and running a BFS until a

k-node induced subgraph is selected. Combining π-SGD

and k-ary RP can speed up GNNs but will not provide un-

biased estimates of the loss calculated with the entire graph.

Future work could explore using the MCMC finite-sample

unbiased estimator of Teixeira et al. (2018) with RP.

3. Related Work

Our Relational Pooling framework leverages insights from

Janossy Pooling (Murphy et al., 2019), which learns ex-

pressive permutation-invariant functions over sequences by

approximating an average over permutation-sensitive func-

tions with tractability strategies. The present work raises

novel applications – like RP-GNN – that arise when pool-

ing over permutation-sensitive functions of graphs.

Graph Neural Networks (GNNs) and Graph Convolutional

Networks (GCNs) form an increasingly popular class of

methods (Scarselli et al., 2009; Bruna et al., 2014; Duve-

naud et al., 2015; Niepert et al., 2016; Atwood & Towsley,

2016; Kipf & Welling, 2017; Gilmer et al., 2017; Monti

et al., 2017; Defferrard et al., 2016; Hamilton et al., 2017a;

Velickovic et al., 2018; Lee et al., 2018; Xu et al., 2019).

Applications include chemistry, where molecules are rep-

resented as graphs and we seek to predict chemical prop-

erties like toxicity (Duvenaud et al., 2015; Gilmer et al.,

2017; Lee et al., 2018; Wu et al., 2018; Sanchez-Lengeling

& Aspuru-Guzik, 2018) and document classification on a

citations network (Hamilton et al., 2017b); and many oth-

ers (cf. Battaglia et al. (2018)).

Recently, Xu et al. (2019) and Morris et al. (2019) show

that such GNNs are at most as powerful as the standard

Weisfeiler-Lehman algorithm (also known as color refine-

ment or naive vertex classification (Weisfeiler & Lehman,

1968; Arvind et al., 2017; Fürer, 2017)) for graph isomor-

phism testing, and can fail to distinguish between certain

classes of graphs (Cai et al., 1992; Arvind et al., 2017;

Fürer, 2017). In Section 4, we demonstrate this phe-

nomenon and provide empirical evidence that RP can cor-

rect some of these shortcomings. Higher-order (k-th order)

versions of the WL test (WL[k]) exist and operate on tuples

of size k from V rather than on one vertex at a time (Fürer,

2017). Increasing k increases the capacity of WL[k] to dis-

tinguish nonisomorphic graphs, which can be exploited to

build more powerful GNNs (Morris et al., 2019). Meng

et al. (2018), introduce a WL[k]-type representation to pre-

dict high-order dynamics in temporal graphs. Using GNNs

based on WL[k] may be able to give better f
⇀

functions for

RP but we focused on providing a representation for more

expressive than WL[1] procedures.

In another direction, WL is used to construct graph ker-

nels (Shervashidze et al., 2009; 2011). CNNs have also

been used with graph kernels (Nikolentzos et al., 2018)

and some GCNs can be seen as CNNs applied to single

canonical orderings (Niepert et al., 2016; Defferrard et al.,

2016). RP provides a framework for stochastic optimiza-

tion over all or poly-canonical orderings. Another line of

work derives bases for permutation-invariant functions of

graphs and propose learning the coefficients of basis ele-

ments from data (Maron et al., 2018; Hartford et al., 2018).

In parallel, Bloem-Reddy & Teh (2019) generalized

permutation-invariant functions to group-action invariant

functions and discuss connections to exchangeable prob-

Relational Pooling for Graph Representations

ability distributions (De Finetti, 1937; Diaconis & Jan-

son, 2008; Aldous, 1981).Their theory uses a checkerboard

function (Orbanz & Roy, 2015) and the left-order canon-

ical orientation of Ghahramani & Griffiths (2006) to ori-

ent graphs but it will fail in some cases unless graph iso-

morphism can be solved in polynomial time. Also, as dis-

cussed, there is no guarantee that a hand-picked canonical

orientation will perform well on all tasks. On the tractabil-

ity side, Niepert & Van den Broeck (2014) shows that ex-

changeabilty assumptions in probabilistic graphical models

provide a form of k-ary tractability and Cohen & Welling

(2016); Ravanbakhsh et al. (2017) use symmetries to re-

duce sample complexity and save on computation. An-

other development explores the universality properties of

invariance-preserving neural networks and concludes some

architectures are computationally intractable (Maron et al.,

2019). Closer to RP, Montavon et al. (2012) discusses ran-

dom permutations but RP provides a more comprehensive

framework with theoretical analysis.

4. Experiments

Our first experiment shows that RP-GNN is more expres-

sive than WL-GNN. The second evaluates RP and its ap-

proximations on molecular data. Our code is on GitHub2.

4.1. Testing RP-GNN vs WL-GNN

Here we perform experiments over the CSL graphs from

Figure 1. We demonstrate empirically that WL-GNNs are

limited in their power to represent them and that RP can be

used to overcome this limitation. Our experiments compare

the RP-GNN of Equation 5 using the Graph Isomorphism

Network (GIN) architecture (Xu et al., 2019) as f
⇀

against

the original GIN architecture. We choose GIN as it is ar-

guably the most powerful WL-GNN architecture.

For the CSL graphs, the “skip length” R effectively defines

an isomorphism class in the sense that predicting R is tan-

tamount to classifying a graph into its isomorphism class

for a fixed number of vertices M . We are interested in pre-

dicting R as an assessment of RP’s ability to exploit graph

structure. We do not claim to tackle the graph isomorphism

problem as we use approximate learning (π-SGD for RP).

RP-GIN. GIN follows the recursion of Equation 4, re-

placing JP with summation and defining φ(l) as a function

that sums its arguments and feeds them through an MLP:

h
(l)
u = MLP(l)

(

(1 + ǫ(l))h(l−1)
u +

∑

v∈N (u)

h
(l−1)
v

)

,

for l = 1, . . . , L, where {ǫ(l)}Ll=1 can be treated as hyper-

parameters or learned parameters (we train ǫ). This recur-

2
https://github.com/PurdueMINDS/RelationalPooling

Table 1: RP-GNN outperforms WL-GNN in 10-class clas-

sification task. Summary of validation-set accuracy (%).

model mean median max min sd

RP-GIN 37.6 43.3 53.3 10.0 12.9
GIN 10.0 10.0 10.0 10.0 0.0

sion yields vertex-level representations that can be mapped

to a graph-level representation by summing across h
(l)
u at

each given l, then concatenating the results, as proposed by

Xu et al. (2019). When applying GIN directly on our CSL

graphs, we assign a constant vertex attribute to all vertices

in keeping with the traditional WL algorithm, as the graph

is unattributed. Recall that RP-GIN assigns one-hot node

IDs and passes the augmented graph to GIN (f
⇀

) (Equa-

tion 5). We cannot assign IDs with standard GIN as doing

so renders it permutation-sensitive. Further implementa-

tion and training details are in the Supplementary Material.

Classifying skip lengths. We create a dataset

of graphs from
{

Gskip(41, R)
}

R
where R ∈

{2, 3, 4, 5, 6, 9, 11, 12, 13, 16} and predict R as a dis-

crete response. Note M=41 is the smallest such that 10

nonisomorphic Gskip(M,R) can be formed; ∃R1 6= R2

such that Gskip(M,R1) and Gskip(M,R2) are isomorphic.

For all 10 classes, we form 15 adjacency matrices by first

constructing A(R) according to Definition 2.1 and then 14

more as A
(R)
π,π for 14 distinct permutations π. This gives a

dataset of 150 graphs. We evaluate GIN and RP-GIN with

five-fold cross validation – with balanced classes on both

training and validation – on this task.

The validation-set accuracies for both models are shown in

Table 1 and Figure 3 in the Supplementary Material. Since

GIN learns the same representation for all graphs, it pre-

dicts the same class for all graphs in the validation fold,

and therefore achieves random-guessing performance of

10% accuracy. In comparison, RP-GIN yields substantially

stronger performance on all folds, demonstrating that RP-

GNNs are more powerful than their WL-GNN and serving

as empirical validation of Theorem 2.2.

4.2. Predicting Molecular Properties

Deep learning for chemical applications learns functions

on graph representations of molecules and has a rich liter-

ature (Duvenaud et al., 2015; Kearnes et al., 2016; Gilmer

et al., 2017). This domain provides challenging tasks on

which to evaluate RP, while in other applications, differ-

ent GNN models of varying sophistication often achieve

similar performance (Shchur et al., 2018; Murphy et al.,

2019; Xu et al., 2019). We chose datasets from the Molecu-

leNet project (Wu et al., 2018) – which collects chemi-

cal datasets and collates the performance of various mod-

els – that yield classification tasks and on which graph-

Relational Pooling for Graph Representations

based methods achieved superior performance3. In partic-

ular, we chose MUV (Rohrer & Baumann, 2009), HIV, and

Tox21 (Mayr et al., 2016; Huang et al., 2016), which con-

tain measurements on a molecule’s biological activity, abil-

ity to inhibit HIV, and qualitative toxicity, respectively.

We processed datasets with DeepChem (Ramsundar et al.,

2019) and evaluated models with ROC-AUC per the

MoleculeNet project. Molecules are encoded as graphs

with 75- and 14-dimensional node and edge features. Ta-

ble 3 (in Supplementary) provides more detail.

We use the best-performing graph model reported by

MoleculeNet as f
⇀

to evaluate k-ary RP and to explore

whether RP-GNN can make it more powerful. This is a

model inspired by the GNN in Duvenaud et al. (2015),

implemented in DeepChem by Altae-Tran et al. (2017),

which we refer to as the ‘Duvenaud et al.’ model. This

model is specialized for molecules; it trains a distinct

weight matrix for each possible vertex degree at each layer,

which would be infeasible in other domains. One might ask

whether RP-GNN can add any power to this state-of-the-art

model, which we will explore here. We evaluated GIN (Xu

et al., 2019) but it was unable to outperform ‘Duvenaud

et al’. Model architectures, hyperparameters, and training

procedures are detailed in the Supplementary Material.

RP-GNN We compare the performance of the ‘Duve-

naud et al.’ baseline to RP-Duvenaud, wherein the ‘Duve-

naud et al.’ GNN is used as f
⇀

in Equation 5. We evaluate

f
⇀

on the entire graph but make RP-Duvenaud tractable by

training with π-SGD. At inference time, we sample 20 per-

mutations (see Remark 2.1). Additionally, we assign just

enough one-hot IDs to make atoms of the same type have

unique IDs (as discussed in Section 2.2). To quantify vari-

ability, we train over 20 random data splits.

The results shown in Table 2 suggest that RP-Duvenaud is

more powerful than the baseline on the HIV task and sim-

ilar in performance on the others. While we bear in mind

the over-confidence in the variability estimates (Bengio &

Grandvalet, 2004), this provides support of our theory.

k-ary RP experiments Next we empirically assess the

tradeoffs involved in the k-ary dependency models – eval-

uating f
⇀

on k-node induced subgraphs – discussed in Sec-

tion 2.3.3. Propositions 2.3 and 2.2 show that expres-

sive power and computation decrease with k. Here, f
⇀

is a ‘Duvenaud et al. model’ that operates on induced

subgraphs of size k = 10, 20, 30, 40, 50 (the percentages

of molecules with more than k atoms in each dataset are

shown in the Supplementary Material). We train using π-

SGD (20 inference-time samples) and evaluate using five

random train/val/test splits.

3
moleculenet.ai/latest-results, (Dec. 2018)

Table 2: Evaluation of RP-GNN and k-ary RP where
⇀

f is

the ‘Duvenaud et al.’ GNN or a neural-network. We show

mean (standard deviation) ROC-AUC across multiple ran-

dom train/val/test splits. DFS indicates Depth-First Search

poly-canonical orientation.

model HIV MUV Tox21

RP-Duvenaud et al. 0.832 (0.013) 0.794 (0.025) 0.799 (0.006)
Duvenaud et al. 0.812 (0.014) 0.798 (0.025) 0.794 (0.010)
k=50 Duvenaud et al. 0.818 (0.022) 0.768 (0.014) 0.778 (0.007)
k=40 Duvenaud et al. 0.807 (0.025) 0.776 (0.032) 0.783 (0.007)
k=30 Duvenaud et al. 0.829 (0.024) 0.776 (0.030) 0.775 (0.011)
k=20 Duvenaud et al. 0.813 (0.017) 0.777 (0.041) 0.755 (0.003)
k=10 Duvenaud et al. 0.812 (0.035) 0.773 (0.045) 0.687 (0.005)
CNN-DFS 0.542 (0.004) 0.601 (0.042) 0.597 (0.006)
RNN-DFS 0.627 (0.007) 0.648 (0.014) 0.748 (0.055)

Results are shown in Table 2 and Figures 4, 5, and 6 in

the Supplementary Material. With the Tox21 dataset, we

see a steady increase in predictive performance and com-

putation as k increases. For instance, k-ary with k = 10 is

25% faster than the baseline with mean AUC 0.687 (0.005

sd) and with k = 20 being 10% faster with AUC 0.755

(0.003 sd), where (sd) indicates the standard deviation over

5 bootstrapped runs. Results level off around k = 30. For

the other datasets, neither predictive performance nor com-

putation vary significantly with k. Overall, the molecules

are quite small and we do not expect dramatic speed-ups

with smaller k, but this enables comparing between using

the entire graph and its k-sized induced subgraphs.

RP with CNNs and RNNs. RP permits using neural net-

works for f
⇀

. We explored RNNs and CNNs and report the

results in Table 2. Specific details are discussed in the Sup-

plementary Material. The RNN achieves reasonable perfor-

mance on Tox21 and underperforms on the other tasks. The

CNN underperforms on all tasks. Future work is needed to

determine tasks where these approaches are better suited.

5. Conclusions

In this work, we proposed the Relational Pooling (RP)

framework for graph classification and regression. RP

gives ideal most-powerful, though intractable, graph rep-

resentations. We proposed several approaches to tractably

approximate this ideal and showed theoretically and empir-

ically that RP can make WL-GNNs more expressive than

the WL test. RP permits neural networks like RNNs and

CNNs to be brought to such problems. Our experiments

evaluate RP on a number of datasets and show how our

framework can be used to improve properties of state-of-

the-art methods. Future directions for theoretical study

include improving our understanding of the tradeoff be-

tween representation power and computational cost of our

tractability strategies.

Relational Pooling for Graph Representations

Acknowledgments

This work was sponsored in part by the ARO, under

the U.S. Army Research Laboratory contract number

W911NF-09-2-0053, the Purdue Integrative Data Science

Initiative and the Purdue Research foundation, the DOD

through SERC under contract number HQ0034-13-D-0004

RT #206, and the National Science Foundation under con-

tract numbers IIS-1816499 and DMS-1812197.

References

Aldous, D. J. Representations for partially exchange-

able arrays of random variables. J. Multivar. Anal., 11

(4):581–598, 1981. ISSN 0047259X. doi: 10.1016/

0047-259X(81)90099-3.

Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande,

V. Low data drug discovery with one-shot learning. ACS

central science, 3(4):283–293, 2017.

Arvind, V., Köbler, J., Rattan, G., and Verbitsky, O. Graph

isomorphism, color refinement, and compactness. com-

putational complexity, 26(3):627–685, 2017.

Atwood, J. and Towsley, D. Diffusion-convolutional neural

networks. In Advances in Neural Information Processing

Systems, pp. 1993–2001, 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-

Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,

A., Raposo, D., Santoro, A., Faulkner, R., et al. Re-

lational inductive biases, deep learning, and graph net-

works. arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y. and Grandvalet, Y. No unbiased estimator of the

variance of k-fold cross-validation. Journal of machine

learning research, 5(Sep):1089–1105, 2004.

Bloem-Reddy, B. and Teh, Y. W. Probabilistic sym-

metry and invariant neural networks. arXiv preprint

arXiv:1901.06082, 2019.

Bottou, L. Stochastic gradient descent tricks. In Neural net-

works: Tricks of the trade, pp. 421–436. Springer, 2012.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and

Vandergheynst, P. Geometric Deep Learning: Going be-

yond Euclidean data. IEEE Signal Processing Magazine,

34(4):18–42, jul 2017. ISSN 1053-5888. doi: 10.1109/

MSP.2017.2693418. URL http://ieeexplore.

ieee.org/document/7974879/.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral

networks and locally connected networks on graphs. In

International Conference on Learning Representations,

2014.

Cai, J.-Y., Fürer, M., and Immerman, N. An optimal lower

bound on the number of variables for graph identifica-

tion. Combinatorica, 12(4):389–410, 1992.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,

D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-

ing phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of

the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pp. 1724–1734, Doha,

Qatar, October 2014. Association for Computational

Linguistics. doi: 10.3115/v1/D14-1179. URL https:

//www.aclweb.org/anthology/D14-1179.

Cohen, T. and Welling, M. Group equivariant convolutional

networks. In International conference on machine learn-

ing, pp. 2990–2999, 2016.

De Finetti, B. La prévision: ses lois logiques, ses sources

subjectives. In Annales de l’institut Henri Poincaré, vol-

ume 7, pp. 1–68, 1937. [Translated into Enlish: H. E.

Kyburg and H.E. Smokler, eds. Studies in Subjective

Probability. Krieger 53-118, 1980].

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-

volutional neural networks on graphs with fast localized

spectral filtering. In Advances in Neural Information

Processing Systems, pp. 3844–3852, 2016.

Diaconis, P. and Janson, S. Graph limits and exchange-

able random graphs. Rend. di Mat. e delle sue Appl. Ser.

VII, 28:33–61, 2008. ISSN 1542-7951. doi: 10.1080/

15427951.2008.10129166. URL http://arxiv.

org/abs/0712.2749.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient

methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12(Jul):2121–

2159, 2011.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-

barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams,

R. P. Convolutional networks on graphs for learning

molecular fingerprints. In Advances in neural informa-

tion processing systems, pp. 2224–2232, 2015.

Fürer, M. On the combinatorial power of the Weisfeiler-

Lehman algorithm. In International Conference on Al-

gorithms and Complexity, pp. 260–271. Springer, 2017.

Ghahramani, Z. and Griffiths, T. L. Infinite latent fea-

ture models and the Indian buffet process. In Advances

in neural information processing systems, pp. 475–482,

2006.

Relational Pooling for Graph Representations

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals,

O., and Dahl, G. E. Neural message passing for

quantum chemistry. In Precup, D. and Teh, Y. W.

(eds.), Proceedings of the 34th International Confer-

ence on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pp. 1263–1272, Interna-

tional Convention Centre, Sydney, Australia, 06–11 Aug

2017. PMLR. URL http://proceedings.mlr.

press/v70/gilmer17a.html.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive rep-

resentation learning on large graphs. In Advances in

Neural Information Processing Systems, pp. 1024–1034,

2017a.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation

learning on graphs: Methods and applications. Bulletin

of the IEEE Computer Society Technical Committee on

Data Engineering, 40(3):52–74, 2017b.

Hartford, J., Graham, D. R., Leyton-Brown, K., and Ra-

vanbakhsh, S. Deep models of interactions across sets.

arXiv preprint arXiv:1803.02879, 2018.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-

ory. Neural computation, 9(8):1735–1780, 1997.

Hornik, K., Stinchcombe, M., and White, H. Multilayer

feedforward networks are universal approximators. Neu-

ral networks, 2(5):359–366, 1989.

Huang, R., Xia, M., Nguyen, D.-T., Zhao, T., Sakamuru,

S., Zhao, J., Shahane, S. A., Rossoshek, A., and Sime-

onov, A. Tox21challenge to build predictive models of

nuclear receptor and stress response pathways as medi-

ated by exposure to environmental chemicals and drugs.

Frontiers in Environmental Science, 3:85, 2016.

Ji, S., Xu, W., Yang, M., and Yu, K. 3D convolutional neu-

ral networks for human action recognition. IEEE trans-

actions on pattern analysis and machine intelligence, 35

(1):221–231, 2013.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Ri-

ley, P. Molecular graph convolutions: moving beyond

fingerprints. Journal of computer-aided molecular de-

sign, 30(8):595–608, 2016.

Kingma, D. P. and Ba, J. L. ADAM: A Method for Stochas-

tic Optimization. International Conference on Learning

Representations, ICLR, 2015.

Kipf, T. and Welling, M. Semi-supervised classification

with graph convolutional networks. In International

Conference on Learning Representations, 2017.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

In Advances in neural information processing systems,

pp. 1097–1105, 2012.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W., and Jackel, L. D. Back-

propagation applied to handwritten zip code recognition.

Neural computation, 1(4):541–551, 1989.

Lee, J. B., Rossi, R., and Kong, X. Graph classification

using structural attention. In Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 1666–1674. ACM, 2018.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. In-

variant and equivariant graph networks. arXiv preprint

arXiv:1812.09902, 2018.

Maron, H., Fetaya, E., Segol, N., and Lipman, Y. On

the universality of invariant networks. arXiv preprint

arXiv:1901.09342, 2019.

Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter,

S. Deeptox: toxicity prediction using deep learning.

Frontiers in Environmental Science, 3:80, 2016.

Meng, C., Mouli, S. C., Ribeiro, B., and Neville, J. Sub-

graph pattern neural networks for high-order graph evo-

lution prediction. In AAAI, 2018.

Montavon, G., Hansen, K., Fazli, S., Rupp, M., Biegler, F.,

Ziehe, A., Tkatchenko, A., Lilienfeld, A. V., and Müller,

K.-R. Learning invariant representations of molecules

for atomization energy prediction. In Advances in Neural

Information Processing Systems, pp. 440–448, 2012.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,

and Bronstein, M. M. Geometric deep learning on graphs

and manifolds using mixture model cnns. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 5115–5124, 2017.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,

J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman

Go Neural: Higher-order Graph Neural Networks. Pro-

ceedings of the 33rd AAAI Conference on Artificial In-

telligence, 2019.

Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro,

B. Janossy pooling: Learning deep permutation-

invariant functions for variable-size inputs. In In-

ternational Conference on Learning Representations,

2019. URL https://openreview.net/forum?

id=BJluy2RcFm.

Niepert, M. and Van den Broeck, G. Tractability through

exchangeability: A new perspective on efficient proba-

bilistic inference. In AAAI, pp. 2467–2475, 2014.

Relational Pooling for Graph Representations

Niepert, M., Ahmed, M., and Kutzkov, K. Learning con-

volutional neural networks for graphs. In International

conference on machine learning, pp. 2014–2023, 2016.

Nikolentzos, G., Meladianos, P., Tixier, A. J.-P., Skianis,

K., and Vazirgiannis, M. Kernel graph convolutional

neural networks. In International Conference on Arti-

ficial Neural Networks, pp. 22–32. Springer, 2018.

Orbanz, P. and Roy, D. M. Bayesian models of graphs, ar-

rays and other exchangeable random structures. IEEE

transactions on pattern analysis and machine intelli-

gence, 37(2):437–461, 2015.

Qi, C. R., Su, H., Nießner, M., Dai, A., Yan, M., and

Guibas, L. J. Volumetric and multi-view CNNs for ob-

ject classification on 3D data. In Proceedings of the

IEEE conference on computer vision and pattern recog-

nition, pp. 5648–5656, 2016.

Ramsundar, B., Eastman, P., Leswing, K., Walters, P., and

Pande, V. Deep Learning for the Life Sciences. O’Reilly

Media, 2019. https://www.amazon.com/

Deep-Learning-Life-Sciences-Microscopy/

dp/1492039837.

Ravanbakhsh, S., Schneider, J., and Poczos, B. Equiv-

ariance through parameter-sharing. In Proceedings of

the 34th International Conference on Machine Learning-

Volume 70, pp. 2892–2901. JMLR. org, 2017.

Robbins, H. and Monro, S. A stochastic approximation

method. The annals of mathematical statistics, pp. 400–

407, 1951.

Rohrer, S. G. and Baumann, K. Maximum unbiased valida-

tion (muv) data sets for virtual screening based on pub-

chem bioactivity data. Journal of chemical information

and modeling, 49(2):169–184, 2009.

Sanchez-Lengeling, B. and Aspuru-Guzik, A. Inverse

molecular design using machine learning: Generative

models for matter engineering. Science, 361(6400):360–

365, 2018.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and

Monfardini, G. The graph neural network model. IEEE

Transactions on Neural Networks, 20(1):61–80, 2009.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,

S. Pitfalls of graph neural network evaluation. Rela-

tional Representation Learning Workshop (R2L 2018),

NeurIPS, 2018.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn,

K., and Borgwardt, K. Efficient graphlet kernels for large

graph comparison. In Artificial Intelligence and Statis-

tics, pp. 488–495, 2009.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,

Mehlhorn, K., and Borgwardt, K. M. Wisfeiler-Lehman

graph kernels. Journal of Machine Learning Research,

12(Sep):2539–2561, 2011.

Teixeira, C. H., Cotta, L., Ribeiro, B., and Meira, W. Graph

pattern mining and learning through user-defined rela-

tions. In 2018 IEEE International Conference on Data

Mining (ICDM), pp. 1266–1271. IEEE, 2018.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,

Lio, P., and Bengio, Y. Graph attention networks. ICLR,

2018.

Vilfred, V. On circulant graphs. In Balakrishnan, R., Sethu-

raman, G., and Wilson, R. J. (eds.), Graph Theory and

its Applications, pp. 34–36. Narosa Publishing House,

2004.

Weisfeiler, B. and Lehman, A. A reduction of a graph to a

canonical form and an algebra arising during this reduc-

tion. Nauchno-Technicheskaya Informatsia, 2(9):12–16,

1968.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-

niesse, C., Pappu, A. S., Leswing, K., and Pande, V.

Moleculenet: a benchmark for molecular machine learn-

ing. Chemical science, 9(2):513–530, 2018.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,

and Jegelka, S. Representation Learning on Graphs with

Jumping Knowledge Networks. In ICML, 2018. URL

http://arxiv.org/abs/1806.03536.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful

are graph neural networks? In International Conference

on Learning Representations, 2019. URL https://

openreview.net/forum?id=ryGs6iA5Km.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and

Leskovec, J. Hierarchical graph representation learning

with differentiable pooling. In Advances in Neural In-

formation Processing Systems, pp. 4800–4810, 2018.

Younes, L. On the convergence of markovian stochas-

tic algorithms with rapidly decreasing ergodicity rates.

Stochastics: An International Journal of Probability and

Stochastic Processes, 65(3-4):177–228, 1999.

Yuille, A. L. The convergence of contrastive divergences.

In Advances in neural information processing systems,

pp. 1593–1600, 2005.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,

Salakhutdinov, R. R., and Smola, A. J. Deep sets. In

Advances in neural information processing systems, pp.

3391–3401, 2017.

