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Abstract

Architectural security tactics (e.g., authorization, authentication) are used to achieve
stakeholders’ security requirements. Security tactics allow the system to react, resist,
detect and recover from attacks. Flaws in the adoption of these tactics into the system’s
architecture, an incorrect implementation of security tactics, or deterioration of tactic
implementations over time can introduce severe vulnerabilities that are exploitable by
attackers. Therefore, in this work, we present the Common Architectural Weakness
Enumeration (CAWE), a catalog of known weaknesses rooted in the design or imple-
mentation of security tactics which can result in tactical vulnerabilities. We categorized
all known software weaknesses as tactic-related and non-tactic related. This way, our
CAWE catalog enumerates common weaknesses in a security architecture that can lead
to tactical vulnerabilities. From our CAWE catalog, we found 223 different types of
tactical vulnerabilities. In this work, we also used this catalog to study tactical vulner-
abilities in three large-scale open source projects: Chromium, PHP, and Thunderbird.
In a detailed analysis, we identified the most occurring vulnerability types on these
projects. From this study we observed that (i) Improper Input Validation and Improper
Access Control were the most occurring vulnerability types in Chromium, PHP and
Thunderbird and (ii) “Validate Inputs” and “Authorize Actors” were the security tac-
tics mostly affected by these tactical vulnerabilities. Moreover, in a qualitative analysis

of 632 tactical vulnerabilities and their fixes in these systems, we characterized their
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root causes and investigated the way the original developers of each system fixed these
vulnerabilities. From this qualitative analysis, we found 44 distinct root causes that
lead to these tactical vulnerabilities. The results of this study not only show how ar-
chitectural weaknesses in systems have created severe vulnerabilities, but also provide
recommendations driven by empirical data for addressing such security problems.
Keywords: software security architecture, security tactics, tactical vulnerabilities,

architectural weaknesses

1. Introduction

Software engineers face an increasing pressure to deliver software applications that
are secure by design [1], i.e., software applications that are designed from the ground
up in a way that prevents or at least minimizes the impacts of vulnerabilities (here, a
vulnerability is a possibility of a system being attacked or harmed). To achieve this,
software architects work with stakeholders to identify security concerns and adopt ap-
propriate architectural solutions to address them, forming the software’s security ar-
chitecture [2, 3]. These architectural solutions are often based on security tactics [4],
which are reusable design solutions for achieving security quality attributes. Bass et
al. [3] provide a comprehensive list of such tactics and classify them into tactics for
resisting attacks (e.g., tactic “Authenticate Actors”), detecting attacks (e.g., tactic “De-
tect Intrusion”), reacting to attacks (e.g., tactic “Revoke Access”), and recovering from
attacks (e.g., tactic “Audit”).

Security tactics are the building blocks of a security architecture. A flaw in the
adoption of these tactics into the architecture of a system, incorrect implementation of
these tactics in the source code [3], or their deterioration during maintenance activi-
ties [6] can lead to severe vulnerabilities. In this paper, we define and refer to these
vulnerabilities as tactical vulnerabilities. An example of a tactical vulnerability is the
Use of Client-Side Authentication. In this example, the “Authenticate Actors” tactic [3]]
is adopted at the client side, therefore, the authenticity verification is performed by the
code on the client rather than by the code on the server. This will enable attackers to

reverse engineer the client code and develop a modified client that omits the authen-
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tication check, bypassing the authentication mechanism. While this example shows a
weakness that can occur during the software design process, in a previous work [[7] we
found that even when the architecture is appropriately designed to satisfy its quality
requirements, developers may implement the architectural tactics incorrectly, compro-
mising architectural quality.

As an example, consider that architects mitigate the issue in the “Authenticate Ac-
tors” tactic by changing the security architecture to place the authentication check on
the server side. Even though the system is now more resilient against attacks, develop-
ers still may fail to correctly implement the tactic by relying on cookies to implement
the authentication logic. Listing [I|shows such incorrect implementation. In this code
snippet, a PHP Web application is storing a value equal to “1”” in an HTTP cookie (line
5) whenever a new user successfully authenticates. This cookie is later utilized to check
whether the user has already logged in (line 2) and to grant access to the system (line
11). In this case, developers of this application assumed the immutability of HTTP
cookies when, in reality, attackers can change the “authenticate” cookie to “1”
and send an HTTP request to the application with this modified cookie. This would

result in an authentication-bypass.

Listing 1 An example of an incorrect implementation of the tactic “Authenticate Actors” in a
Web application written in PHP resulting in an authentication-bypass.

1  $auth = $_COOKIES[ 'authenticated '];

2 if (!$auth) {

3 if (authenticate ($_.POST[ 'username '], $_POST[ 'password'])) {
4 /! save the cookie to be sent out in future responses
5 setcookie ( 'authenticated ', 'l"', time()+60x60%2);

6 } else {

7 showLoginScreen(); // request user to login

8 die('\n'); // kill the process

9 }

10 }

11 performPrivilegedAction () ;

Despite the importance of the software architecture in achieving security [8]], recent
empirical studies of software vulnerabilities have not fully explored the architectural
context, including design decisions such as tactics and patterns [9} 10, [11]. They typi-

cally focus on studying and understanding security issues related to the management of
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data structures and variables (e.g., buffer overflow/over-read). Others have developed
architecture analysis techniques to correlate design violations with software vulnerabil-
ities [1]]. While such studies have investigated software vulnerabilities from structural
perspectives, we currently lack an in-depth understanding of the nature and root causes
of tactical vulnerabilities, which would help teach software developers and architects
to avoid and mitigate these problems in their systems.

A recent effort towards shifting the focus from mitigating coding mistakes to find-
ing and promoting the awareness of common weaknesses in a security architecture was
made by the IEEE Center for Secure Design [12]. This center released a list of the top
10 most common architectural weaknesses. However, only a few examples of such se-
curity architecture weaknesses have so far been obtained or published to help architects
and developers to learn and avoid such security issues.

Therefore, in this work, we first present the Common Architectural Weakness Enu-
meration (CAWE), a catalog of known weaknesses rooted in the design or implemen-
tation of security tactics which can result in tactical vulnerabilities. The CAWE catalog
was built from an existing catalog of known types of software vulnerabilitieﬂ Since
this existing catalog did not distinguish between pure coding issues and weaknesses
in security tactics, we categorized all known software weaknesses as tactic-related and
non-tactic related. This way, our CAWE catalog enumerates common weaknesses in a
security architecture that can lead to tactical vulnerabilities. In this work, we also use
this catalog to study tactical vulnerabilities in three large-scale open source projects.
The results of this study not only show how tactical weaknesses in systems have cre-
ated severe vulnerabilities, but also demonstrate the importance of architecture-based
approaches to avoid software vulnerabilities, and how the CAWE catalog can facilitate

this process.

1.1. Research Questions and Outcomes of this Study

In this paper, we investigate the following research questions.

'http://cwe.mitre.org/
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RQ1: What types of tactical vulnerabilities exist?

Our goal in answering this question is to identify weaknesses in a security archi-
tecture that are the result of a flawed design and/or implementation of security tactics
(i.e. types of tactical vulnerabilities). We found 223 different known types of tactical

vulnerabilities, summarized in the CAWE catalog.

RQ2: Which security tactics are more likely to have associated vulnerabilities?

For each security tactic, we investigated the potential types of vulnerabilities (i.e.,
weaknesses) that are rooted in their design and/or implementation. This was to verify
which tactics are at a higher risk of being improperly adopted. We observed that the
“Authorize Actors”, “Validate Inputs” and “Encrypt Data” tactics are subject to a higher
number of weaknesses if not correctly adopted. Therefore, these security tactics need
to be implemented and tested more carefully.

We also used the CAWE catalog to conduct an in-depth case study of tactical vul-
nerabilities across three large-scale open-source systems: Chromium, PHP, and Thun-
derbird. In this study, we retrieved and reviewed software artifacts of each system, such
as their source code, version control data, and their disclosed vulnerabilities in the Na-
tional Vulnerability Database (NVDﬂ We also identified security tactics adopted in
these systems and traced them to the source code. After analyzing these artifacts, we
mapped their vulnerabilities to security tactics to identify “tactical” and “non-tactical”
vulnerabilities. This led to answering the following research questions about under-

standing tactical vulnerabilities in real software systems:

RQ3: What are the most common tactical vulnerability types in Chromium, PHP,
and Thunderbird?

Using the data we collected, we scrutinized the types of tactical vulnerabilities

Zhttps://nvd.nist.gov/
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across the three systems, and we found that “Improper Input Validation™ is by far the

most common vulnerability type.

RQ4:  What security tactics are most affected by tactical vulnerabilities in

Chromium, PHP, and Thunderbird?

While the answer to RQ2 indicates the security tactics that are more likely to be in-
correctly designed/implemented (i.e. that have the highest amount of associated types
of tactical vulnerabilities in the CAWE catalog), in this question, we propose to ob-
serve to what extent such trend occurs in the three case studies. Thus, we studied
which security tactics were most affected by tactical vulnerabilities in these projects.
We found that “Validate Inputs”, “Authorize Actors” and “Limit Exposure” were the

security tactics most impacted by vulnerabilities in Chromium, PHP and Thunderbird.

RQS: What are the root causes of the most frequently occurring types of tactical

vulnerabilities in Chromium, PHP and Thunderbird?

The tactical vulnerability types found in answering RQ3 indicate (at a high-level
of abstraction) classes of vulnerabilities that affected security tactics. Although these
tactical vulnerability types provide clues about the nature of the problem, they are not
concrete enough for developers and architects to act upon. In this respect, for RQS,
we conducted a qualitative analysis of tactical vulnerabilities in the case studies and
investigated the underlying root causes (i.e., the specific violations of tactics) of the
most reoccurring types of tactical vulnerabilities that we found in answering RQ3.
The goal of this question is to use empirical data to demonstrate the root causes of the
tactical issues in the case studies along with their implications and potential fixes. All
the findings of this part of this research are grounded in empirical data collected from

case studies.

1.2. Originality and Extension
This work extends our previous publications [13} [14] in different ways. In our

previous works, we established the CAWE catalog [[13]], and studied tactical vulnera-
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bilities in Chromium, PHP and Thunderbird to investigate their types, complexity to
fix and frequency of occurrence over time [14]. In this work, we extend the previous
publications by conducting a detailed qualitative analysis of the tactical vulnerabilities
across Chromium, PHP and Thunderbird to identify their root causes (Section E]) Fur-
thermore, based on the study of vulnerability fixes by the original developers of these
systems, we create actionable recommendations for software architects and developers
for mitigating and preventing tactical vulnerabilities. This qualitative study was con-
ducted over a period of 6 months. The results are empirically grounded and are driven
by an in-depth and manual analysis of 632 tactical vulnerabilities and their fixes.

Thus, the contributions of this paper are:

¢ A description of the catalog of common types of tactic-related vulnerabilities

(CAWE). The proposed CAWE catalog documents the known type of vulnera-

bilities for each security tactic;

An in-depth analysis of the relationship between software vulnerabilities and ar-
chitectural security tactics. This allows us to understand the architectural context
of vulnerabilities instead of solely focusing on coding issues related to the man-
agement of data structures and variables (e.g., buffer overflow/overread). Fur-
thermore, it makes it possible to get insights about how tactical vulnerabilities
differ from other types of vulnerabilities (non-tactical), in terms of root causes,

complexity to fix and how frequently they occur over the time;

A detailed discussion of the root causes for tactical vulnerabilities. The benefit
of fine-grained root causes is twofold (i) it gives insights to developers and ar-
chitects about how they can identify and mitigate these problems; (ii) it can help
during software testing, as the expected behavior and misbehavior are clearly

specified.

1.3. Organization of the Paper
Section 2] briefly introduces vulnerability-related concepts and terms to ensure that
the essence of the paper can be understood by a broader audience, along with related

work. Section [3| describes our CAWE catalog in details. Section @] discusses how
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we used the CAWE catalog to study tactical vulnerabilities in Chromium, PHP, and
Thunderbird. Section[5|presents the qualitative analysis of tactical vulnerability reports
in order to identify their root causes. Section [6]elaborates on threats to the validity of

this work, and Section [7]concludes this paper.

2. Background and Related Work

This section discusses the fundamental concepts and terminology used in our work.
We first discuss software vulnerabilities data and vulnerability databases (Section [2.1))
and then we explain security tactics and tactical vulnerabilities in more detail (Sec-

tion 2.2)). Finally, we discuss related work (Section[2.3).

2.1. Software Vulnerabilities

Vulnerabilities in a software system are caused by defects that affect its intended
security properties, and are typically tracked in vulnerability databases. A well-known
example is the National Vulnerability Database (NVD) which currently contains over
91,000 vulnerabilities that exist in a variety of software products. Each vulnerability
recorded in the NVD is assigned a unique CVE ID (Common Vulnerabilities and Ex-
posure Identifier) and contains the details about the security problem. An example of a

vulnerability record in the NVD is shown below:

CVE ID: CVE-2011-3189

Overview: The crypt function in PHP 5.3.7, when the MD5 hash type is used, returns the value of the salt argument
instead of the hashed string, which might allow remote attackers to bypass authentication via an arbitrary password,
a different vulnerability than CVE-2011-2483.

References: https://bugs.php.net/bug.php?id=55439, [...]

Affected Versions: PHP 5.3.7

Vulnerability Type Cryptographic Issues (CWE-310)

[...]

As this excerpt shows, the NVD provides a short description of the problem and
references for the vulnerability, i.e. a list of links to other Web sites (such as is-
sue tracking systems) that may contain more details about the security issue. It also
specifies which software releases were affected by the vulnerability (in this case, it
was version 5.3.7 of PHP). Some of the CVE instances may also provide a CWE tag

that indicates the vulnerability type. This tag refers to an entry from the Common
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Weakness Enumeration (CWE) dictionary, which enumerates common weaknesses
in a software system that may lead to vulnerabilities. The vulnerability type denotes a
family of security defects that share one or more aspect in common, such as a similar
fault (root cause), failure (consequence), or fix (repair) [15]. Thus, the CWE tag is
used by the NVD as a way to classify vulnerabilities. It is important to highlight that a
weakness (or vulnerability type) is a class of problems in a software system that may
introduce a security defect, whereas a vulnerability is an instance of a weakness (an

actual occurrence of the weakness).

2.2. Security Tactics and Tactical Vulnerabilities

Architectural Security Tactics are means of achieving security properties through
a series of inter-related design decisions [[16]. They are the building blocks of a security
architecture and provide reusable solutions for satisfying security requirements, even
when the system is under attack [3]. A comprehensive list of security tactics has been

provided by Bass et al. [3]] classified into the four categories presented in Table

Table 1: Security tactics and their definitions

Category Tactic Description
Identify Actors Identifies the external agents that provide inputs into the systems
Validate Inputs Sanitizes, neutralizes and validates any externally provided inputs to minimize malformed data from entering the
system and preventing code injection in the input data
Manage User Sessions | Retains the information or status about each user and his/her access rights for the duration of multiple requests
Authenticate Actors Verifies the authenticity of actors (i.e. to check if the actor is indeed who it claims to be).
Resist Attacks Authorize Actors Enforces that agents have the required permissions before performing certain operations, such as modifying data
Limit Access Limits the amount of resources that are accessed by actors, such as memory, network connections, CPU, etc.
Limit Exposure Minimizes the attack surface through designing the system with the least needed amount of entry points
Encrypt Data Maintains data confidentiality through use of encryption libraries
Separate Entities Places processes, resources or data entities in separate boundaries to minimize the impacts attacks
Change Default Settings | Forces users to configure the system before use by changing the default (and potentially less secure) configuration.
Revoke Access In case of attacks, the system denies access to resources to everyone until the malicious behavior ends
React to Attacks Lock Computer Lockout mechanism that takes effect in case of multiple failed attempts to access a given resource
Inform Actors In case of malicious activities, the user inistrators or other entities that are in charge of the system are notified.
Detect Intrusion Monitors network traffic for detecting abnormal traffic patterns caused by intrusion attempts
Detect Attacks Detect Service Denial Monitors incoming traffic for detecting Denial Of Services (DoS) attacks.
Verify Message Integrity | Ensures integrity of data, such as messages, resource files, deployment files, and configuration files
Detect Message Delay Detects malicious behavior through observing the time spent on delivering messages. In case messages are taking
unexpected times to be received, the system may detect a potential data leakage.
Recover from Attacks | Audit Logs user activities in order to identify attackers and modifications to the system

While these security tactics provide a well-formed solution to address various se-
curity concerns, if they are not designed and implemented carefully, they can result in
weaknesses in the security architecture [[12]. We can classify these weaknesses into

omission, commission and realization weaknesses [13]:

¢ Omission weaknesses are caused by missing a security tactic when it is needed
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to satisfy a security requirement. An example of an omission weakness is to
exchange keyﬂ without authentication. In this example, the software architect
missed the need for authenticating entities before performing a key exchange to
ensure that the sensitive information is transferred to a trustworthy actor. The
lack of the “Authenticate Actors” tactic in this scenario allows attackers to per-
form man-in-the-middle attacks, which can compromise the system’s confiden-

tiality.

Commission weaknesses refer to an incorrect choice of tactics which could re-
sult in undesirable consequences. An example of this weakness is to rely on IP
addresses for authentication, in which there is a list of trusted IP addresses that
are used to verify the authenticity of messages. While architects have made a
design decision to satisfy the requirement of authentication of entities, the weak-
ness in this design will enable attackers to bypass the authentication by forging

a trusted IP address.

Realization weaknesses occur when appropriate security tactics are adopted but
are incorrectly implemented. For example, a developer does not invalidate prior
existing sessions before creating a new session while implementing the “Manage
User Sessions” tactic, resulting in a session fixation vulnerability. This enables

an intruder to steal user sessions.

Based on the above classification of weaknesses, we define tactical vulnerabilities
as: software vulnerabilities introduced in a system because of design and implemen-
tation issues related to architectural tactics. More specifically, these vulnerabilities
occur due to (i) a lack of security tactics (omission) in the application’s architecture;
or (ii) adoption of less suitable security tactics for a given design problem or context
(commission); or (iii) an incorrect implementation of security tactic principles which
results in an incorrect transition from design to code (realization weakness).

These weaknesses in a security architecture may lead to vulnerabilities that can

3These keys are used to encrypt messages exchanged between two entities so that a secure communication
can be established over an insecure channel [17].

10
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be successfully exploited by attackers. In this paper, we refer to these vulnerabilities
as tactical vulnerabilities, as they are rooted in the design and/or implementation of

security tactics.

2.3. Related Work

There are many books and publications towards the identification and categoriza-
tion of security tactics [3} 18, [19]. In our work and the CAWE catalog however, we
focused on documenting how these tactics could be compromised when incorrectly
adopted. This helps spreading awareness for security problems rooted in the design/im-
plementation of tactics.

The use of security knowledge bases as a resource to help developers and engineers
in their daily activities has been previously discussed in the research community. Se-
curity ontologies, which represent knowledge within the security domain, have been
created to support some activities, such as requirements engineering and quantitative
risk analysis, but they did not introduce architectural concepts [20]. Similar to a se-
curity ontology, Wu et al. [21] proposed semantic templates, which are a structured
description of generic patterns of relationships between software components, faults
and security consequences built on top of the CWE list and the vulnerabilities reported
in the NVD. However, these templates do not differentiate architectural concerns.

A similar effort towards understanding security problems from an architectural per-
spective was the IEEE Center For Secure Design, which recently released a list of the
top 10 design flaws [[12], based on experiences in industry, academia, and government.
However, to this day the descriptions for each flaw are generic, there are not many de-
tails for mitigating these flaws, and they come from experience rather than empirical
evidence. Thus, in this work, we extensively collected a list of software weaknesses to
identify the ones rooted in a security architecture and investigated their occurrences in
existing systems.

Existing research in software architecture for security has mainly proposed tech-
niques for facilitating the design of security architecture [22], the analysis and eval-
uation of the existing security architecture [23, 24] as well as identifying potential

threats/vulnerabilities from the architecture [25, 26l 27] . While these works can aid

11
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architects in identifying existing threats and to appropriately adopt security patterns/-
tactics into a system, such activities may not be enough to avoid vulnerabilities, as the
implementation of design decisions may be incorrect or erode over time.

To help avoid deterioration of security architecture during software maintenance,
Taspolatoglu and Heinrich [28] described an approach that extended architecture de-
scription languages to formally document security requirements. While this work rec-
ognized that the implementation of security decisions may erode over time and result
in vulnerabilities, unlike our work, it did not provide evidence on how frequently such
problems occur and how complex they are to fix.

Ryoo et al. [29] evaluated to what extent security tactics are being used in open-
source systems and whether there are discrepancies between the original design and
the actual implementation. Their findings suggested that developers are not strictly
implementing the original design envisioned by architects and that only a subset of
tactics are being implemented in systems (such as “Encrypt Data”). While in our work
we also analyzed the usage of security tactics in three software systems, our main goal
was to investigate how vulnerabilities are caused by incorrect adoption of these tactics
in the code.

Feng et al [1]] investigated the relationship between design rule violation and vul-
nerabilities. They observed that source files that contain a higher number of design
rule violations are highly correlated to the presence of vulnerabilities, as well as high
levels of code churn when fixing such vulnerabilities. However, unlike our work, they
investigated the files that contain modularity violations against vulnerabilities, whereas
we traced the vulnerabilities rooted in an improper implementation of security tactics
and inspected what their root causes were, how they occurred over time, and what was
the efforts to fix them.

In summary, despite the efforts from the research community to facilitate the design
decisions for developing more secure software and to study vulnerabilities from an
architectural perspective, there is a gap for an in-depth study that addresses the problem
of investigating how security tactics are being incorrectly implemented in the code.
Furthermore, to the best of our knowledge, there is no previous work that provides

evidence of what the common root causes of such incorrect implementations are and

12
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the corresponding efforts to fix them.

3. A Catalog of Tactical Vulnerability Types

We created the CAWE catalog through a systematic categorization of the CWE
listEl, an existing dictionary of common types of vulnerabilities. The CWE list contains
about 1,000 entries, but it does not clearly distinguish tactical vulnerability types (i.e.,
security issues rooted in the design and/or implementation of security tactics) from
purely programming issues (such as buffer overflows or null-pointer dereferences).
Thus, we systematically classified the entries in the CWE dictionary into coding bugs
(i.e., not related to security tactics) and tactic-related weaknesses. We also identified
how these factic-related weaknesses affect well-known security tactics. As a result, the
CAWE catalog is a view of the CWE dictionary, enumerating the subset of weaknesses

from the CWE list that corresponds to a weakness in a security architecture.

3.1. Creating the CAWE catalog

To establish the CAWE catalog we performed the following steps:

1. We compiled an extensive list of security tactics published in the literature [3}
30]. For each security tactic, we extracted its description and keywords that
summarize the security tactic. This first step resulted in a list of 18 security

tactics (see Table [I)).

2. We retrieved all entries from the CWE dictionary. An entry in the CWE dictio-
nary can be of four types: a View groups weaknesses from a given perspective
(e.g., types of errors); a Category aggregates entries based on a common at-
tribute (e.g., shared environment (J2EE, .NET), functional area (authentication,
cryptography), relevant resources); a Weakness corresponds to an actual type of
security problem; a Compound Element describes security problems due to the
occurrence of other weaknesses in a time sequence. Since View and Category

entries group other weaknesses rather than representing software weaknesses,

“http://cwe.mitre.org/
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they are not included in our analysis. This way, out of the 1,004 entries in ver-
sion 2.9 of the CWE dictionary, we retrieved the subset of 727 entries of type
Weakness or Compound Elements. For each Weakness and Compound Element
type, the CWE dictionary provides information such as a description, mitigation

techniques, common consequences, code examples, etcﬂ

. We searched the 727 CWE entries for the keywords related to the 18 security

tactics identified in the first step. This search resulted in a list of potential con-

nections between security tactics and CWE entries.

. We manually analyzed all provided data for all 727 entries (i.e., their descrip-

tions, mitigation techniques, consequences, attack patterns and time of introduc-
tion) to confirm whether these potential connections indeed existed and verified
whether there were not any missing connections. During this manual analy-
sis, we decomposed each CWE into three dimensions: its root cause (identified
based on the entry’s description and time of introduction), its failure (observed
from the entry’s enumerated consequences), its fix (identified from the described
mitigation techniques). As defined in Section 2] the criteria to consider a CWE
entry to be a factic-related weakness is that the weakness is either caused by
(1) a lack of a design decision (omission); or (ii) an incorrect choice of security
tactics which results in “bypasses”, i.e., an attacker being able to bypass the se-
curity mechanism and breach into the system (commission) or (iii) an incorrect
transition from tactic design to implementation in the code (realization weak-
ness). If a CWE entry matched any of these conditions, it was considered to be
rooted in the design and/or implementation of a security tactic and classified as
a tactic-related weakness. We annotated each of these ractic-related weaknesses
with (i) the security tactic affected by the weakness and (ii) the type of impact

(commission, omission or realization weakness).

To illustrate this systematic process, consider CWE-354 (“Improper Validation of

SThe complete information provided in the CWE dictionary is documented on MITRE’s Website:
https://cwe.mitre.org/data/xsd/cwe_schema_v5.4.2.xsd

14
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Integrity Check Value”). It contains some of the keywords related to the security tactic
“Verify Message Integrity”. Thus, after performing the third step, (the keyword-based
search), this CWE was considered to be potentially related to the “Verify Message
Integrity” tactic because it contained keywords related to the tactic. When we subse-
quently manually inspected this CWE instance, we found that this type of problem is
caused by an incorrect verification of the checksums E] of messages. This leads to the
software system to potentially accept corrupted or intentionally modified messages.
From this inspection, we considered this CWE entry to be a “realization weakness”
affecting the “Verify Message Integrity” tactic because it occurs due to an incorrect
implementation of the tactic (as described in the mitigation section, it implies that the
system handles a message protocol that supports message integrity verification, but the
application failed to correctly implement such mechanism).

Since the keyword-based search may not show all the potential connections be-
tween CWE instances and tactics, it is important to highlight that we also carefully
inspected all entries which were not identified through the keyword-based search. In
particular, if a CWE was tagged with “Architecture and Design” as the time of when
this weakness is introduced in a system, we inspected if the CWE discussed that the is-
sue occurred because of a lack of a security tactic. For instance, the CWE-306 (“Miss-
ing Authentication for Critical Function™) is caused by the absence of adopting the
“Authenticate Actors” tactic (i.e., an “omission weakness”).

To minimize inherent biases in this manual analysis, four individuals worked in-
dependently over all these 727 entries to categorize them. Once they had completed
their analysis, results were double-checked. For the entries with disagreements (84
in total), they discussed their rationale and reached a consensus of what would be the

appropriate classification.

3.2. Overview of the CAWE Catalog

As shown in Figure [I(a)] the CAWE catalog is integrated intro MITRE’s list of

software weaknesses as a View. This view is named as “Architectural Concepts” and

6Checksums are extra data that is attached to messages to detect errors and modifications in the message.
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View by Architectural Concepts

Viewby / :
1 (Yew by Architectural Conceps + Relationships
Show betais:
Search CWE Expand All | Collapss Al
Easily find a specific software weakness by performing a search of the CWE List by keywords(s) or by CWE- 1008 - Architectural Concepts
1D Number. To search by multiple keywords, separate each by a space. - ~(1009)

Custom Search

See the full CWE List page for enhanced nformation, downlaad, and more, e w)
5

Total Software Weaknesses: Z14 = 8 Verty Message Integrity - (1020)

BACK T0 TOP

» Notes
» References

» View Metrics

» Content History

(@ (b)

Figure 1: (a) Home page of MITRE’s list of software weaknesses (b) The CAWE catalog integrated into
MITRE’s Website as a View

was assigned an ID equals to 1008. The CAWE view is publicly accessible through
the following link: http://cwe.mitre.org/.When users navigate directly to the
CAWE View’s URL or click on the “View by Architectural Concepts” button in Fig-
ure[I(a)} it takes them to the page shown in Figure[T(b)] This Web page shows the list
of affected security tactics (collapsed). When these tactics are expanded it shows the
associated tactical weaknesses.

Currently, our CAWE catalog has 223 tactic-related weaknesses categorized based
on 11 security tactics. The CAWE catalog also has a category called “Cross-Cutting”,
which encompasses weaknesses that can impact multiple security tactics (see category
#1012 in Figure [I(b)). An example of a tactic-related weakness is presented in Fig-
ure[2] This weakness leads to a bypass of the “Authenticate Actors” tactic caused by
leveraging IP addresses to verify the authenticity of actors (a commission weakness).

It is important to highlight that although MITRE’s Website had a view that encom-
passes “mistakes made during the design and/or architecture phase’ﬂ our definition and
purposes for the CAWE view are slightly broader. The goal of the CAWE view is to
promote the awareness of mistakes related to the security architecture itself (as an ar-
tifact). In other words, weaknesses are then either omission/commission (that occur

during the design process) or realization (that occur during the transition of a correct

7“CWE-701: Weaknesses Introduced During Design”: http://cwe.mitre.org/data/definitions/701.html
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CWE-291: Reliance on IP Address for Authentication

Weakness ID: 291 ‘Status: Incomplete
raction: Variant
Structure: Simpie

Presentation Fiter:  Compiets B
¥ Description
The software uses an IP address for authentication.
¥ Extended Description
IP addresses can be easily spoofed. Attackers can forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets,
the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the
same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In
summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication.
¥ Relationships
» Relevant to the view "Research Concepts" (CWE-1000)
¥ Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID  Name
MemberoOf 1010 _Authenticate Actors _ (Affected Security Tactic)

» Relevant to the view "Development Concepts” (CWE-699)
¥ Modes Of Introduction

Phase

Architecture and Design COMMISSION: This weakness refers to an incorrect design related to an architectural security tactic.
» Applicable Platforms

» Common Consequences

» Likelihood Of Exploit

» Demonstrative Examples

» Potential Mitigations

» Weakness Ordinalities

» Taxonomy Mappings

» Related Attack Patterns

» Content History

(Type of impact)

Figure 2: CWE-291 “Reliance on IP Address for Authentication” with the Added Metadata from our Work
(the Impact Type and affected Tactic)

architecture to source code).

3.3. Using the CAWE catalog to Answer RQ1 and RQ2
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PHP External Variable Modification
Deserialization of Untrusted Data
Missing Encryption of Sensitive Data

Predictable from Observable State
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Use of a One-Way Hash with a Predictable Salt Incorrectly Specified Destination in a Communication Channel

Figure 3: High-Level Overview of the CAWE Catalog

3.3.1. RQI: Types of Tactical Vulnerabilities

From the CAWE catalog, we observed that among the 727 software weaknesses
we inspected from the CWE dictionary, 223 are tactic-related weaknesses, i.e., corre-
sponding to different types of vulnerabilities rooted in the design/implementation of
security tactics. Figure [3]presents a high-level hierarchical view of these types of tac-
tical vulnerabilities from the CAWE catalog per tactic. Note that some tactic-related
weaknesses are children of other entries, but for simplicity reasons, this figure only

shows the higher-level entries.
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Key Finding for RQ1:

— There are 223 different types of tactical vulnerabilities.

3.3.2. RQ2: Security Tactics Likely to have Associated Vulnerabilities

To answer this question, we computed the total number of tactical weaknesses as-
sociated with each security tactic in the CAWE catalog. This allows us to understand
which security tactics are more likely to be incorrectly adopted (since it has more ways
to be flawed). Table [2 shows the number of tactical vulnerabilities types relevant to
each security tactic along with a breakdown by the impact type (omission, commission
and realization weaknesses). This table shows that the “Authorize Actors” tactic, which
is used to ensure that only legitimate users can access data and/or resources, is subject
to a higher number of known weaknesses if not implemented correctly (38 realization
weaknesses). Therefore, it needs to be implemented and tested more carefully. Simi-
larly, tactics “Validate Inputs” and “Encrypt Data” need to be implemented carefully to
avoid incorrect assumptions during their design and/or implementation. We also found

9 tactical weaknesses that are cross-cutting, i.e., that affect multiple security tactics.

Table 2: Total Number of Vulnerabilities per Security Tactics

Security Tactic # CAWEs | Realization | Omission | Commission
Audit 6 3 1 2
Authenticate Actors 29 12 2 15
Authorize Actors 60 38 16 6
Cross Cutting 9 3 3
Encrypt Data 38 18 13 7
Identify Actors 12 10 2 0
Limit Access 8 7 0 1
Limit Exposure 6 6 0 0
Lock Computer 1 0 0 1
Manage User Sessions 6 5 0 1
Validate Inputs 39 35 4 0
Verify Message Integrity 10 6 4 0
Key Finding for RQ2:
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— Tactics “Authorize Actors”, “Validate Inputs” and “Encrypt Data” are at a

higher risk of being incorrectly adopted in a software system.

4. Empirical Investigation of Tactical Vulnerabilities in Real Software Systems

After establishing the CAWE catalog, which enumerates common types of tac-
tical vulnerabilities, we investigated the occurrence of these weaknesses in real sys-
tems. We conducted an in-depth case study with three cases [31] based on guidelines
for industrially-based multiple-case studies [32] (where each of the three systems is
one case). The unit of analysis in our study was a software project. In each case
(Chromium, PHP, and Thunderbird), we investigated RQ3 and RQ4 (what are the most
common tactical vulnerability types on Chromium, PHP, and Thunderbird, and what
security tactics are mostly affected by vulnerabilities in Chromium, PHP, and Thunder-

bird).

4.1. Case Selection

The criteria we used for selecting cases for our study were that the systems should
be (i) widely adopted by a large number of users, (ii) among the top 50 software projects
with the highest number of vulnerabilities [33]], (iii) implementing a wide range of
security tactics, (iv) using an issue tracking system for managing and fixing defects,
and (v) from different software domains. Through these criteria, we ensured that the
selected projects provided a rich set of artifacts regarding the software development
activities conducted (to have access to all necessary data for our study), security tactics
used, reported vulnerabilities, and fixes to vulnerabilities. Based on these criteria, we
selected Chromium E] (a Web browser), Mozilla Thunderbird [t_;] (an email and news

feed client) and PHP []17] (the interpreter of the PHP programming language) as case

8http://www.chromium.org/
9http://mozilla.org/thunderbird/
1Ohttp://php.net/
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studies. These projects are diverse in size, age, and domain, but similar with respect

to their underlying programming language (they were mostly written in C/C++), as

shown in Table[3]

Table 3: Details about the studied systems (statistics collected as of January 2017).

Chromium PHP Thunderbird
Size (LOC) >14 MLOC >4 MLOC >1 MLOC
# of major releases 56 18 22
Total contributors 5,223 423 889
Core contributors 1904 114 83
Age 9 years - started in 2008 22 years - started in 1994 18 years - started in 1998
Release cycle 6 weeks Yearly 6 weeks

Domain ‘Web browser Script language for web apps | Email, calendar, chat client
Language(s) Mostly C++ Mostly C Mostly C++
Vulnerabilities 1,380 531 705

Number of users ~1 billion ~244 millions ~9 millions

Rank 4th 23rd 15th

4.2. Data Collection and Analysis

We performed the following steps: (i) identification of the security tactics adopted
in each project (Section [f.2.T); (ii) retrieval of each project’s disclosed vulnerabilities
in the NVD (Section [4.2.2); (iii) classification of vulnerabilities as tactical and non-
tactical (Section[#.2.3). To help the reader understand our analysis process, we show

the collected artifacts and their relationships in Figure {]

CVE « refers to » | Issue Tracking System
NVD « provides » f— " 0 >
-cveid " | -bugid
*|
! 0 | - description
- root cause « fixed in »
0.% 0.7 0.y
« tagged as » « affects »
Patch
0..1 .*
Security CWE Release 1
Tactic _ 1.5 « contains »
- name - cwe id - release number i 2
- summar "
- description summary Source File
*
t()..l 0.. - file path
« is associated with » Ll total I!nes added
— . ! - total lines removed
« is implemented in »

Figure 4: Data Extraction Information Model

20



a5 4.2.1. Identifying Security Tactics in each Project
The first step involved identifying the security tactics used in the three projects. To
ensure the accuracy of the identifications, we performed the following complementary

activities:

* We reviewed the available literature and technical documentation for each project
430 [34] to look for any references to specific security tactics and manually checked

if these tactics occurred in the code.

* We manually browsed through the source files in each project to identify tactic-

related files

We searched tactic-related keywords (e.g. “authenticate”) on the source code of

435 the projects.

* We used a previously developed technique that automatically reverse-engineers

architectural tactics from source code [35,30].

The results of these four activities were merged to document the set of tactics used in
each project. We then obtained feedback from developers involved in these projects if
w0 they agree with the identified tactics: For Chromium, we received feedback from the
lead of the security team, and for PHP and Thunderbird, we obtained feedback from
two developers who contributed to the implementation of the security tactics. The list

of identified security tactics for each project is shown in Table 4]

Table 4: Security Tactics in Chromium, PHP and Thunderbird
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a
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4.2.2. Extracting Disclosed Vulnerabilities for each Project
445 We retrieved all CVEs for the three systems from the NVD. As shown in Figure ]
these CVEs are the starting point to collect the required artifacts. Thus, to ensure the

accuracy and completeness of our data, we perform the following steps:

* Completeness check: Even though the NVD can provide a variety of infor-

mation for each vulnerability, not all CVE instances provide the data we need

450 to conduct our study (e.g., patches that were released to fix the vulnerability).

Hence, we manually analyzed each collected CVE instance to check whether the

corresponding entries in the issue tracking system of the three studied projects

were included in the NVD. In case NVD failed to provide this information, we

searched the CVE ID in the project issue tracking system to verify that each CVE

455 was indeed acknowledged by the developers, fixed and that the fix was released.

This manual analysis was conducted by three researchers over a time span of a

year. As aresult, we obtained a total of 2,386 CVEs spanning across the lifetimes

of these projects until January 2016. From these vulnerabilities, 1,252 were re-

lated to the Chromium project since 2008, 430 were associated with the PHP

460 project published since 1997, and 704 were in the Thunderbird project, reported
since 2002.

* Removal of invalid CVEs: While manually inspecting the CVEs in the previous
step, we discarded invalid vulnerabilities, i.e., those CVE instances which were
labeled as deprecated or as a duplicate of another CVE in the NVD, or CVEs

465 that were not related to Chromium, PHP or Thunderbird (including applications
written in PHP rather than in PHP itself). Furthermore, we discarded CVEs for
which we could not identify a corresponding entry in the issue tracking system
or when the issue was declared private in the issue tracking system, i.e., there
were internal restrictions that prevented issues from being shown to the general

470 public.

* Tracing CVEs to patches: For each CVE, we collected the corresponding de-

fect entry in the project’s Issue Tracking System. Based on this, we obtained the
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patch that was released to fix the vulnerability as well as the source files that

were modified to fix the vulnerability.

4.2.3. Identification of Tactical and Non-Tactical Vulnerabilities

Next, we used a bottom-up approach and a top-down approach to identify tactical
vulnerabilities in the three systems.

In the bottom-up approach, we manually reviewed all CVE reports of the studied
projects to classify them as tactical or non-tactical. To reduce effects of bias on this
classification, we performed a peer evaluation by two developers (one with eight years
of experience in software architecture and security and the other one with three years of
experience in this field). These subject matter experts inspected all the collected CVEs
and provided a rationale for how they classified CVE reports. To ensure consistency,
each expert was provided with instructions for classifying CVEs, as shown in Table [5]
The provided instructions ask these experts to read the CVE reports and its associated
artifacts in order to identify where the issue is located and its root causes and provide
a rationale and evidence for tactical vulnerabilities. It is important to highlight that
Table[3lmerely provide examples of low-level and tactical problems, but these examples
are not meant to be exhaustive. Both subject matter experts also conducted detailed
code reviews to classify the CVEs. We provided the tactical files (i.e., source files
that implement tactics) in these projects and a matrix indicating the overlap of CVEs
and tactical files. As described in Section we reverse-engineered security tactics
in the source code. Once each subject matter expert had finished their classification,
disagreements were discussed (based on each person’s rationale) and resolved.

In the top down approach, we used our CAWE catalog (Section |3)) as a gold stan-
dard to differentiate tactical and non-tactical vulnerabilities across the three systems.
As shown in Figure[d] each CVE may have a CWE tag that can provide clues whether
the problem is related to a security tactic or not. Thus, we use these tags to automat-
ically classify CVEs as tactical or non-tactical (i.e., if the vulnerability’s CWE tag is

in our CAWE catalog, the vulnerability is considered as tactical). However, for some
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Table 5: Instructions given to the experts to classify CVEs into tactical and non-tactical
Instructions
Steps: (i) Read the CVE description, (ii) Check the modified code: comments, changed function/method/class, (iii) Read
the bug tracking discussion (iv) Read the commit message.
Examples of low level issues:
- Solely coding mistake
- An integer overflow / underflow

- Use of a pointer after free

- Incorrect calculations of buffer sizes

Examples of tactical issues:

- Missing critical step in authentication tactic

- Improper handling of insufficient privileges in authorization tactic
- Errors in tactical code and principles of the tactic.

- CVE violates a design decision made by the developer.

- Missing the encryption of sensitive data.

Answer Sheet

Is the error very low level? O Yes ONo

Is the source code changed implementing any security mechanisms for Resisting, Detecting, Reacting | [J Yes [ No
to or Recovering from a potential attack?

Is CVE in a tactical file? (Yes: Investigate) O Yes ONo
Is CVE impacting the tactic? O Yes ONo
What is the name of impacted tactic?

Your decision: Tactical (Yes) / Non-tactical (No) [OYes [ONo

Describe your rationale and provide evidence:

vulnerabilities, the NVD did not provide a CWE tag El In this case, we have used
the links between Security Tactics, Source Files and CVEs and reviewed the content of
these artifacts to tag the CVE with the most appropriate entry in our gold standard (see
Figure ).

Finally, we consolidated the results of the bottom-up and top-down classifications
and peer-reviewed the cases for which we observed mismatches between the bottom-up
and top-down approach. There was a 93.3% agreement in the classification between
bottom-up and top-down for Thunderbird, 90.2% in PHP and 88.3% in Chromium.
These disagreements occurred mainly because the CWE tag provided to CVEs in the
NVD does not have a consistent meaning: it may indicate the specific root cause of
the vulnerability (e.g “CWE-798 Use of Hard-code Credentials”) or describe the con-
sequence of a vulnerability (e.g, “CWE-200 Information Leak / Disclosure™), or it is
at a higher level of abstraction (e.g., “CWE-17 Code” which describes vulnerabilities

introduced during coding), thereby it introduces mistakes in the second step of this top-

U There were 182 CVEs in Chromium, 160 in PHP and 187 in Thunderbird without CWE tags, which
corresponds to 14.5%, 37.2% and 26.6% of their CVEs, respectively.
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down approach. In a group review session, we resolved the disagreements and decided

which CVEs were tactical or non-tactical.

4.2.4. Overview of our Vulnerability Dataset

Table [6] shows an overview of our vulnerability dataset, indicating the total number
of collected vulnerabilities (# CVEs), the number of instances that were discarded
(as explained in Section[4.2.3), the remaining CVEs that we analyzed and how many
tactical and non-tactical CVEs we found in each system. From the vulnerabilities
we analyzed in our dataset, we observed that 42.5% (403 out of 949 CVEs), 38.7%
(63 out of 163 CVESs) and 38.2% (255 out of 668 CVEs) were tactical vulnerabilities
in Chromium, PHP, and Thunderbird, respectively. From this dataset, we can observe
that while these systems have implemented many security tactics to achieve security
by design, a considerable number of reported vulnerabilities in these systems were due

to incorrect implementations of these tactics.

Table 6: Overview of the Vulnerability Dataset

Project | #CVEs | #Discarded | #Analyzed | #Tactical | #Non-Tactical
Chromium | 1252 303 949 403 546
PHP| 430 267 163 63 100
Thunderbird | 704 36 668 255 413

4.3. Using the Dataset to Answer our Research Questions

From this analysis we obtained a dataset which contains, for each vulnerability,
its CVE ID, its Description, the Affected Releases, its type (i.e., CWE tag), associated
tactic (for tactical vulnerabilities) and the Patch that indicates the source files that were
changed to fix the vulnerability as well as the total number of lines that were added/re-

moved from these files. We used these collected artifacts as follows to answer RQ3

(Section[4.3.T)) and RQ4 (Section [£3.2).

4.3.1. RQ3: Most Common Types of Tactical Vulnerabilities in the Case Studies

To answer this question, we identified the most frequently occurring types of tacti-
cal CVEs in each project and their underlying security tactics. Table [/|lists the tactical
vulnerability types in each of the three studied systems, the related architecture tac-

tics, as well as the total number of CVEs caused by the given vulnerability type. The
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first result of note is that Improper Input Validation (CWE-20) was the most common
vulnerability type in both PHP and Chromium, while Improper Access Control (CWE-
284) was the most reoccurring vulnerability type in Thunderbird. Moreover, PHP’s
and Chromium’s second most common vulnerability type was the Inclusion of Func-

tionality from Untrusted Control Sphere (CWE-829), which is about reusing/importing

vulnerable third-party functionality.

Table 7: Most Common Tactical Vulnerability Types in the Studied Projects

Security Tactic ‘Vulnerability Type Chromium | PHP | Thund. | Total
Validate Inputs CWE-20 Improper Input Validation 131 23 46 200
Limit Exposure CWE-829 Inclusion of Functionality from Untrusted Control Sphere 106 8 7 121
Authorize Actors CWE-284 Improper Access Control 35 - 51 86
Validate Inputs CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 12 1 31 44
Identify Actors CWE-346 Origin Validation Error 21 - 17 38
Validate Inputs CWE-94 Improper Control of Generation of Code (’Code Injection’) 5 1 30 36
Authorize Actors CWE-274 Improper Handling of Insufficient Privileges 19 - - 19
Identify Actors CWE-295 Improper Certificate Validation 5 11 16
Authorize Actors | CWE-269 Improper Privilege Management 3 - 8 11
Authenticate Actors | CWE-287 Improper Authentication 7 - 3 10
Authorize Actors CWE-426 Untrusted Search Path 2 - 8 10
Authorize Actors CWE-280 Improper Handling of Insufficient Permissions or Privileges 2 6 - 8
Authorize Actors | CWE-266 Incorrect Privilege Assignment 1 - 7 3
Limit Access CWE-73 External Control of File Name or Path 3 4 - 7
Limit Access CWE-250 Execution with Unnecessary Privileges 4 1 - 5
Authorize Actors CWE-862 Missing Authorization 2 2 1 5
Validate Inputs CWE-59 Improper Link Resolution Before File Access (*Link Following’) - 2 1 3
Validate Inputs CWE-77 Improper Neutralization of Special Elements used in a Command (’Command Injection’) — 2 - 2
Validate Inputs CWE-89 Improper of Special Elements used in an SQL Command ("SQL Injection’) - 2 - 2
Validate Inputs CWE-74 Improp. Neutraliz. of Spec. Elements in Output Used by a Downstream Component - 1 - 1

Key findings for RQ3:

times, respectively.

— Improper Input Validation (CWE-20) and Improper Access Control (CWE-
284) are the most occurring vulnerability types in Chromium, PHP and

Thunderbird.

— Security of studied projects was compromised by reusing or importing vul-
nerable versions of third-party libraries. In the case of Chromium such vul-

nerabilities occurred 106 times, while in Thunderbird and PHP, 7 and 8

4.3.2. RQ4: Security Tactics Mostly Affected by Vulnerabilities in the Case Studies

To answer this question, we identified the tactics associated with the CWE tags

of the vulnerabilities across the three projects. This way, we computed how many
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times each security tactic was incorrectly adopted in the three systems. Figure [5|shows
the number of CVEs per tactic. Most of the tactical issues in the studied systems
are related to a failed mechanism that validates inputs consistently and correctly, i.e.,
the tactic “Validate Inputs” (CWE-20, CWE-59, CWE-74, CWE-77, CWE-79, CWE-
89, and CWE-94 in Table [7). Failing to validate user inputs can lead to a variety of
consequences, such as crashes (denial of service) and leakage of sensitive information.
We also observe that vulnerabilities related to the tactic “Authorize Actors” (CWE-266,
CWE-269, CWE-274, CWE-284, CWE-280, CWE-426, and CWE-862 in Table[/) are

common among the three systems.

160
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A Thunderbird
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\ 1
0 ._W W, B oz — —_
Manz Verifs
Validate Authorize Limit Identify Limit Encrypt  Authenticate anage ety
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B Chromium 155 82 106 26 17 7 7 0 2 1
EPHP 36 10 8 0 5 2 0 2 0 0
Z Thunderbird 112 89 7 32 4 4 4 1 1 1
Total 303 181 121 58 26 13 11 3 3 2

Figure 5: Total number of vulnerabilities (CVEs) per security tactic for each system

Key findings for RQ4:

— “Validate Inputs” and ”Authorize Actors” are common tactics affected by

tactical vulnerabilities in Chromium, PHP and Thunderbird.

5. Vulnerability Root Cause Analysis for Chromium, Thunderbird and PHP

To answer RQS, we performed a qualitative analysis of the vulnerability reports to
identify the root causes of vulnerabilities. We focused on the root causes of the top 20

most frequent types of tactical vulnerabilities (see Table[7). In the next subsections, we
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explain the qualitative data analysis we performed (Section [5.1)) and the root causes of

each tactical vulnerability type (Section[5.2).

5.1. Data Analysis to Identify Vulnerability Root Causes from Vulnerability Reports
We performed a qualitative analysis [36] of 632 vulnerability reports and their asso-
ciated artifacts to identify the root causes of the most reoccurring tactical vulnerability

types (listed in Table[7). This analysis comprised the following steps:

1. For each vulnerability, we studied the following artifacts: (i) vulnerability re-
port; (ii) each comment in the issue tracking system made by developers and/or
the reporter, (iii) the modified source code(s) in the patch released to fix the vul-
nerability, (iv) the patch’s commit message, and (v) design documents [34, 37|
38,139, 140, 41]]. Through analyzing these artifacts, we filled out a template for
each vulnerability. The template captured information regarding the context in
which the vulnerability occurred, a brief description of the problem, including
an explanation of the root cause and the consequences as well as the solution

implemented by developers to fix the problem.

2. Two of the authors coded [36] vulnerability reports. During this coding pro-
cess, they iteratively reviewed the context and problems of the vulnerabilities
as captured in the previous step and annotated each vulnerability with a code,
which indicates the root cause of the vulnerability. These coders also provided
their rationale behind the decision to label the vulnerability with a specific code.
As they performed the analysis, they either annotated the vulnerability reports
(CVEs) with existing codes or created new codes that emerged from the data
(if the existing codes were not suitable for the CVE being analyzed). For each
created code, the authors also added its meaning into a “codebook” [36]. This
codebook contained a summary of the root cause indicated by the code, asso-
ciated consequences which indicated how the vulnerability affected the security

mechanisms of these systems.

3. After coding all the CVEs, the last step was to refine the codebook. The goal of

this step was to merge or split codes when needed to ensure the same level of
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granularity of these codes.

As aresult of this rigorous analysis of CVEs, we obtained a “codebook” [36]] which

contains a list of codes per tactical vulnerability type and their corresponding meaning.

5.2. RQ5: Root Causes of the Most Common Tactical Vulnerability

Using the data from our qualitative analysis, we elaborate on the specific root
causes that lead to tactical vulnerabilities in order to answer RQ5. For each root cause,
we provide an example, the impact of the associated vulnerabilities on the system’s
security as well as a brief explanation of how these vulnerabilities were mitigated.
For tactical vulnerabilities classified as an “omission” or “‘commission”, our root cause
analysis indicates which aspects of the associated security tactics were not chosen
(omission) or incorrectly designed during the software design process (commission).

It is important to highlight that the majority of tactical vulnerability types are cases
of “realization” weaknesses (see Table[7). As such, most of our root causes occurred

during the implementation/maintenance of these tactics.

Vulnerability Types Root Causes

Rudimentary Verification of the Origin
CWE-346 Origin E

Validation Errors Not Invoking the Procedures that Performs the Security Check of Origins.

« Realization Weakness » . .

Incorrect Transfer of Origin Information
Security Tactic»
Identify Actors Incorrect Validation ofthe Certificate’s Hostname orIP Address
Accepting Certificates Signed with Weak Hash Algorithms
CWE-295 Improper
Certificate Validation Incorrect Certificate Parsing
« Realization Weakness »

Improperly Handling Certificate Encoding

Lack of Mitigation Procedures to Deal with Invalid Certificates

Figure 6: Root Cause Analysis of Tactical Vulnerabilities related to the “Identify Actors” Tactic

5.2.1. “Identify Actors” Tactic
This tactic was affected by Origin Validation Errors (CWE-346) and Improper
Certificate Validation (CWE-295) in Chromium and Thunderbird (Figure [6). These

tactical vulnerabilities occurred in these projects as follows:

* CWE-346 Origin Validation Errors: This tactical vulnerability type refers to

classes of problems in which the application fails to correctly verify the validity
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of the source of data or communication. In Chromium and Thunderbird, this
tactical vulnerability type occurred due to problems related with violations of
the Same-Origin Policy (SOP) [42] and the Content Security Policy (CSP) [43],
two complementary security policies commonly applied in Web applications to
implement the “Identify Actors” tactic. In both policies, an origin of a Web
resource is defined by the scheme, host and port of its URL [42]. On one hand,
the SOP is used to enforce that documents/scripts loaded from different sources
(i.e. origins) do not interact with each other. This means that scripts/documents
can only access data from another document or script if they are from the same
origin. On the other hand, the CSP is a complementary security control that
allows Web servers to specify a whitelist of origins, which indicates the only
sources of resources (e.g. scripts, HTML documents, etc) that should be trusted.
This way, resources from an origin that does not match the list of trusted origins
in the whitelist should be ignored by the client application. Violations of these

two policies occurred due to:

— Rudimentary Verification of the Origin: the application has an ad-hoc im-

plementation of the policy (SOP or CSP) which incorrectly checks the ori-
gin of a request.

Example: According to the CSP specification [43], if the policy’s hostname
starts with a wildcard (e.g., “*.example.com”), then the system should only
match subdomains (e.g., “a.example.com” or “b.example.com”) but not the
domain (i.e., “example.com). However, in Chromium’s CVE-2015-6785
when the host part of a content security policy started with a wildcard
(e.g., “*.domain.com”) the system was mistakenly matching this host to
resources originated from “domain.com”, violating the expected behavior
of the CSP.

Impact: Although both systems applied the CSP and SOP as a mechanism
to identify actors providing input to the system, the implementation of CSP
and SOP failed to guarantee the basic premise that the identification of

these actors is precise. It results in a bypass of the tactic’s protection mech-
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anism, which can be used by attackers to steal data (e.g. authentication
tokens) or inject code.

Recommendations: Developers should strictly follow existing specifica-
tions (e.g. [43L42]) when implementing the CSP/SOP as means of adopting
the “Identify Actors” tactic. In particular, having a centralized component
that performs such policy enforcements minimizes the risk of inconsistent
implementations. In fact, we observed multiple CVEs in which develop-
ers discussed deeper refactorings that involved moving the scattered origin
checks to a central point to consistently enforce these policies concerning

cross-origin requests.

Not Invoking the Procedures that Perform the Security Check of Origins: the

application does not invoke the necessary origin check procedures during a
cross-origin request to load, execute or access a resource.

Examples: In Thunderbird’s CVE-2012-4192, the SOP implementation
was not identifying the request origin before granting access to the proper-
ties of the 1ocat ion object, violating the Same-Origin Policy. This CVE
was due to a regression issue: developers removed the calls to the functions
that perform origin checks while fixing an unrelated defect. As another ex-
ample, in Chromium’s CVE-2015-1236 developers did not understand the
expected behavior in a cross-origin request to read off-line audio samples,
so they have not invoked the routines that would enforce the Same-Origin
Policy in this case. This Chromium vulnerability allowed attackers to read
an audio file (or a conversion of that file to an audio buffer) and to send the
read data to a remote location.

Impact: This flawed tactic implementation does not check the identity of
the actors performing a request, leading to a policy-bypass. Attackers can
therefore compromise the system’s confidentiality and integrity (being able
to read and/or modify data).

Recommendations: Developers should call the origin check functions in all

the components that handle cross-origin requests.
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— Incorrect Transfer of Origin Information: The application does not trans-

mit origin information from one process to the forked process or from one
object to another.

Example: In the case of Web page redirects, Thunderbird’s Same-Origin
Policy implementation did not expose the final URL to the component per-
forming the origin check (CVE-2008-5507). It allowed remote attackers to
bypass the policy using JavaScript to redirect the user to another domain
(target of the attack).

Impact: To apply both the SOP and CSP correctly when identifying actors,
an important assumption is that the information about the origin is always
available when the check needs to be performed. Otherwise, it results in
a policy bypass, in which unauthorized actors would access the system’s
resources.

Recommendations: The origin information needs to be passed (if needed)
to child processes and/or objects. This is particularly important in a chain
of redirects, in which the origin check should be based on the target URL
(final URL) and not the original URL.

* CWE-295 Improper Certificate Validation: A common security mechanism
across Web systems is to use digital certificates to check the identity of the ac-
tors that interact with the system. Each certificate contains multiple fields, such
as an expiration date, common name (CN) and the certification authority (CA)
that issued the certificate. One crucial aspect of using a certificate is to check
whether it is valid. However, both Chromium and Thunderbird had flaws in the

implementation of their certificate validation which were caused by:

— Incorrect Validation of the Certificate’s Hostname or IP Address: The sys-

tem’s implementation of the certificate validation only checked a portion
of the hostname or IP address of a certificate to verify whether the certifi-
cate was issued to the entity performing the request.

Example: In Thunderbird’s CVE-2010-3170, a certificate with a CN at-

tribute equals to “*.168.3.48” was accepted as a valid certificate when it

32



705

710

715

720

725

730

should have been treated as invalid because IP addresses in the CN attribute
should not have wildcards (*).

Impact: The hostname/IP address in a certificate corresponds to the identity
of the actor requesting for a connection. Implementing an incorrect host-
name/IP address matching allows remote attackers to spoof trusted certifi-
cates and bypass the security tactic.

Recommendations: The implementation of the certificate validation should
strictly follow existing guidelines [44] for matching the CN and subjec-
tAltNames attributes before accepting the connection associated with the

certificate.

Accepting Certificates Signed with Weak Hash Algorithms: Occurs when the

implemented certificate validation accepts certificates that were signed us-
ing less secure hashing algorithms.

Example: Chromium’s certificate validation routine accepted SSL connec-
tions to a Web site that provided an X.509 certificate signed with either
the MD2 or MD4 hashing algorithms, which are not strong enough (CVE-
2009-2973).

Impact: It exposes the application to man-in-the-middle attacks.
Recommendations: Developers should enforce and test that less secure
hash algorithms (i.e., those that are at a higher risk of collision attacks)
are not accepted by the certificate validation routine. This way, the appli-
cation rejects connections from an actor that provides a certificate signed

with a less secure algorithm.

Incorrect Certificate Parsing: Occurs when the implemented certificate val-

idation component incorrectly parses the attribute values within a certifi-
cate.

Example: Thunderbird did not properly handle extra data in a signature that
uses an RSA key with exponent 3, which allowed remote attackers to forge
signatures for SSL/TLS and email certificates (CVE-2006-5462).

Impact: An incorrect certificate parsing leads to wrong values in the cer-
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tificate’s attributes, affecting the certification validation routine. It results
in crashes or misleading the application to accept connections from actors
that provided malformed certificates.

Recommendations: Each certificate may be provided in different file for-
mats. Therefore, the tactic’s implementation should have dedicated parsers
implemented according to existing format specifications for each certificate

type supported by the application.

Improperly Handling Certificate Encoding: when certificates are used to iden-

tify actors, it is important to correctly recognize the encoding of the cer-
tificate, so that the actor information can be properly extracted from the
certificate. However, we found instances in which the software’s imple-
mentation does not correctly handle the certificate encoding.

Example: In CVE-2014-1559 (Thunderbird), the tactic’s implementation
assumed that incoming X.509 certificates were encoded using UTF-8 if
they were not in ASCIIL.

Impact: An implementation that assumes the underlying encoding of cer-
tificates without actually checking the encoding can lead to incorrect pars-
ing of the certificate. A malicious actor could leverage this vulnerability to
spoof their identity.

Recommendations: Certificate attributes may be encoded using different
character sets (charsets). Thus, the implemented certificate validation rou-
tines should never expect certificates to be provided using a specific en-
coding. Instead, the implemented routine(s) must always infer the actual

encoding used from the certificate attributes.

Lack of Mitigating Procedures to Deal with Invalid Certificates: the tactic’s

implementation correctly parses and validates certificates, but it fails to
properly handle invalid certificates.

Example: In CVE-2014-7948 (Chromium), the certificate validation imple-
mentation did not correctly handle the error scenario (i.e., when the actor

provides an invalid certificate). It resulted in Chromium caching resources
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from Websites with invalid certificates.

Impact: It exposes the application to successful man-in-the-middle attacks.
Recommendations: To avoid this problem, the certificate validation routine
can throw an exception in case of invalid certificates. This exception is later

captured in the code and prevents the attacker to bypass the security tactic.

5.2.2. “Authenticate Actors” Tactic

Vulnerability Type Root Causes
Incorrect Information about Entity Requesting Credentials in HTTP Authentication
Seourity Tact Incorrectly Handling Exceptional Scenarios
Security Tactic CWE-287 Improper
Authenticate Actors —»'  Authentication Incorrectly Performing Authenticity Checks for Multiple Actors

« Realization Weakness », L o . L
Incorrectly Verifying Identity of The Brokerin a Brokered Authentication

Incorrectly Authenticating Certain Actor Types

Figure 7: Root Cause Analysis of Tactical Vulnerabilities related to Authenticate Actors Tactic

Chromium and Thunderbird suffered from Improper Authentication (CWE-287)

issues, affecting their “Authenticate Actors” tactic.

* CWE-287 Improper Authentication: Systems interact with a multitude of ac-
tors during their operations. To ensure the security of a system, a commonly
implemented mechanism is properly authenticating all actors interacting with a
system. This is done to ensure that the system and other users know if an actor
is whom they claim to be. These types of tactical vulnerabilities were caused by

the following problems:

— Incorrect Information About Entity Requesting Credentials in HTTP Au-

thentication: The application does not display enough information about
the entity requesting the credentials in an HTTP authentication.

Example: When implementing HTTP Basic Authentication, Chromium
displayed to the user the message provided by the server in the “WWW-
Authenticate” HTTP header. The problem is that this message may be am-
biguously written to lead the user to believe that the server is trustworthy
(e.g. “The site “www.trusted-website.com” is requesting your e-mail pass-

word for security purposes”).
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Impact: One important aspect of the Authenticate Actor tactic’s imple-
mentation is that the system makes users aware of which entity they are
providing their credentials to. When users are unaware of which entity is
requesting their credentials, it allows user-assisted attacks. Users may be
tricked into trusting a fake entity with their credentials.

Recommendations: Developers should force the application’s UI imple-
mentation to display the entire entity’s origin (domain and scheme) along
with the entity’s provided message in an unambiguous fashion. As dis-
cussed by developers of the case studies, an approach to help solve ambi-
guity is to show the server’s origin and provided message separately and

with distinct labels to each of them.

Incorrectly Handling Exceptional Scenarios: A general authentication im-

plementation workflow is: (1) system requests actor’s credentials; (2) the
actor provides its credentials; (3) system checks whether credentials are
valid. However, the actor might also cancel the authentication request dur-
ing any of these steps. We found instances of vulnerabilities both in Thun-
derbird and Chromium in which the cancel request was not properly pro-
cessed by the tactic implementation.

Example: When a user canceled the sign-in request to synchronize data,
Chromium would still start the synchronization (CVE-2013-6643).
Impact: An attacker can exploit this flawed tactic implementation to bypass
the authentication mechanism and steal data (e.g. passwords) without the
victim’s awareness.

Recommendations: Developers should implement an error handling mech-
anism that captures such exceptional scenarios involving failures or a can-

cel request.

Incorrectly Performing Authenticity Checks For Multiple Actors: Occurs when

the tactic’s implementation concurrently receives multiple requests from
different actors, but it checks only the authenticity for one of the actors in

the request.
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Example: In Thunderbird’s CVE-2008-5022, an attacker could bypass the
authenticity check through registering multiple listeners to the same event.
Impact: Although the “Authenticate Actors” tactic has been adopted into
the system, its incorrect implementation results in an authentication bypass.
Recommendations: Developers should ensure that all requests are queued

and the authenticity check is performed for each of these requests.

Incorrectly Verifying the Identity of the Broker in a Brokered Authentication:

In a brokered authentication [45], there is an authentication broker in charge
of assigning security tokens to actors. This problem occurs when the bro-
kered authentication implementation incorrectly verifies whether the token
obtained by the actor was issued by a trustworthy authentication broker.
Example: The OAuth protocol allows redirecting to a Website after a suc-
cessful authentication. In CVE-2013-6634, Chromium used the wrong
URL (in a chain of redirects) when checking the identity of the broker that
issued the token in the authentication. It allowed attackers to hijack user
sessions.

Impact: Tt results in a bypass of the tactic.

Recommendations: Mitigating such a problem requires that the tactic’s im-
plementation verifies that tokens are signed by the issuing authentication
broker. This implementation needs to take into account redirect scenarios

in which the correct URL is the last one in a chain of redirects.

Incorrectly Authenticating Certain Actor Types: Typically, a system has mul-

tiple types of actors interacting with it, such as end users (i.e. humans),
machines, plug-ins, etc. We observed vulnerabilities in which the tactic’s
implementation did not authenticate a subset of these actors.

Example: In CVE-2013-0910, Chromium allowed plug-ins (an external ac-
tor) to be executed without checking their trustworthiness.

Impact: These actors would be granted access to the system, and be able to
access unauthorized data.

Recommendations: While some actors are obvious (such as users) others

37



might be more subtle and implicit (such as plug-ins or extensions). The fix
845 requires ensuring that all actors (users or external programs) that interact

with the software are identified, and authenticated.

5.2.3. “Limit Access” Tactic
This tactic is concerned with limiting access to resources such as memory, files,
and network connections. Both PHP and Chromium had weaknesses in their “Limit
g0 Access” tactic related to External control of File or Path (CWE-73) and Execution

with Unnecessary Privileges (CWE-250).

Vulnerability Types Root Causes
CWE-73 External Control Incorrect Parsing of the Provided File Path
fFile or Path <: o
ctic < R ° . ! ? orta - Incorrect Manipulation of NULL Characters
« Realization Weakness »

Security Ta
Limit Access

unnecessary privileges

CWE-250 Execution with <: Misconfiguration of Default Privileges
« Realization Weakness » Not Properly Isolating Processes with Different Privilege Levels

Figure 8: Root Cause Analysis of Tactical Vulnerabilities related to Limit Access Tactic

* CWE-73 External Control of File or Path: Both PHP and Chromium handle
requests in which a path to a file resource is provided in order to access the

file or perform a file-related operation (e.g., create a compressed archive of a

855 directory). These requests are intended to be contained in a “safe area”, meaning
that files/directories outside this area should not be accessed. However, there

were vulnerabilities in these systems that were resulting in an escape of this safe

area due to the following problems:

— Incorrect Parsing of the Provided File Path: The tactic’s implementation in-

[TARLl

860 correctly handled file paths that contained “.” or characters or that were
symbolic links.
Example: Chromium leveraged a user-provided filepath to open/create a
database. By design, the callee is allowed to access any file inside a ded-
icated database directory (isolated). However, in Chromium’s CVE-2014-
865 1715, the implementation of this design decision did not check that the

filepath was not a symbolic link, resulting in an attacker accessing files
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from the user.

Impact: These “dot-dot” (“.” or “..”) characters and symbolic links can
be used by attackers to access resources outside the safe area, thereby suc-
cessfully bypassing the “Limit Access” tactic.

Recommendations: To correctly enforce a safe area while implementing
the “Limit Access” tactic, developers need to ensure that any externally
provided path does not mistakenly escape this safe area. This involves
checking for the presence of “dot-dot” sequences on the filepath as well as

verifying whether the filepath points to an actual file and not a symbolic

link.

— Incorrect Manipulation of NULL Characters: The tactic implementation in-

correctly handles a provided path that contains NULL-related characters
(e.g. “\x00” or “%00” or “\0”) while implementing the “Limit Access”
tactic.

Example: PHP (in CVE-2015-4025) truncated a provided filepath that con-
tained a “\0” character.

Impact: It allows attackers to bypass the tactic and access restricted files/di-
rectories.

Recommendations: This problem is prominent in programming languages
that require NULL characters as a way to terminate strings. From our ob-
servations, the problem can be mitigated by leveraging existing frameworks

that handle invalid characters in a file path while implementing the tactic.

¢ CWE-250 Execution with Unnecessary Privileges: Chromium has a multi-
process architecture, meaning that different components run in different pro-
cesses. These processes communicate with each other through an Inter-Process
Communication layer (IPC). Each of these processes may also have different
privilege levels, based on their capabilities. Similarly, the PHP interpreter exe-
cutes PHP scripts with different privilege levels. We found cases in which pro-
cesses were executed with more privileges than intended, caused by the follow-

ing:
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— Misconfiguration of Default Privileges: Occurred when the system’s priv-

ileges default configuration is too loose, providing unnecessary privileges
to processes.

Example: The default permissions configuration of the PHP’s process man-
ager allowed any user to run arbitrary code with the same permission level
of the process manager (CVE-2014-0185).

Impact: An attacker can leverage this vulnerability to perform over-privileged
operations.

Recommendations: The tactic’s implementation should protect the system
by default following the least privilege secure design principle [46]. When
implementing software that will execute in a shared environment, an alter-
native is to specify the default permissions to only allow read/write access
to the file owners and other users in the group (e.g. 660 permission in

Unix-based systems).

Not Properly Isolating Processes with Different Privilege Levels: Processes

in a sandboxed environment must only interact with resources and/or pro-
cesses from within the sandbox. Thus, they should not be communicating
with higher-level processes and/or processes with different privilege levels.
However, we found cases in which the system failed to deny the communi-
cation between processes with different privilege levels.

Example: In CVE-2012-2846, Chromium allowed sandboxed processes to
use the Unix ptrace command to manipulate Chrome’s UI process in order
to execute arbitrary code.

Impact: This improper process isolation implementation results in a lower
privileged process leveraging a process outside the safe area to perform an
operation at a higher privilege level.

Recommendations: We observed two alternatives to mitigate this problem:
(1) starting the sandboxed process at low-integrity level (for performing re-
quired initialization tasks), then dropping these privileges to the minimum

after the initialization is complete; (2) adding a policy to the sandbox en-
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gine that the sandboxed process cannot invoke system calls that are used to

manipulate other processes (such as ptrace).

5.2.4. “Authorize Actors” Tactic

Vulnerability Types Root Causes
Not Explicitly Asking User for Permission to Execute an Action
CWE-862 Missing
Authorization
« Omission Weakness »

Elevation of Privileges without Revoke Mechanism
Runtime Configuration Without Authorization Check

Attempting to Load Nonexistent Library
CWE-426 Untrusted

Search Path

« Commission Weakness »

Loading Libraries from World-accessible Directories

Wrong Path to Library

Incorrect Transfer of Privilege Information

Security
Authorize Actors

actic

Application-Level Enforcement of OS-Level Permissions
CWE-266,CWE-269,

CWE-274, and CWE-280,
Privileges/Permissions

€S

NotEnforcing Resource Limits for a Sandboxed Process

Escaping Authorization Check Through Hardlinks/Symbolic Links/Junctions

Management Is

« Realization Weakness » NotLocking a Shared Resource

Sandboxed Object Inherits Privileges from Superclass
Sandboxed Component is Assigned Wrong Privilege Level
Incorrect Authorization of External APIs/Plugins/Extensions

CWE-284 Improper
Access Control
« Realization Weakness »

Incorrect Hostname Normalization

No Warnings about Permissions Changes

ANZINNAW

NotRevoking Access

Figure 9: Root Cause Analysis of Tactical Vulnerabilities related to Authorize Actors Tactic

930 The “Authorize Actors” tactic had instances of tactical vulnerability types Im-
proper Access Control (CWE-284), Privilege/Permission Management Issues (CWE-
266, CWE-269, CWE-274, and CWE-280), Untrusted Search Path (CWE-426) and
Missing Authorization (CWE-862).

* CWE-862 Missing Authorization: This tactical vulnerability type is a conse-
935 quence of not adopting the “Authorize Actors” tactic such that the system per-
forms authorization checks before an operation takes place. We found instances

of this weakness in the three case studies caused by the following:

— Not Explicitly Asking the User for Permission to Execute an Action: The sys-

tem’s design does not adopt an authorization mechanism that explicitly asks

940 the user if the system is allowed to perform a certain task or grant access to
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a certain resource.

Example: Chromium executed JRE applets without explicitly asking per-
missions from the user (CVE-2011-3898).

Impact: Tt allows attackers to perform malicious activities without user
awareness.

Recommendations: The mitigation involves identifying the actions that re-
quire user mediation, in which case the system needs to adopt the Authorize

Actors tactic in order to request user consent.

Elevation of Privileges Without Revoke Mechanism: This occurs when the

system is designed to load extensions/plug-ins that are allowed to perform
privileged actions without any configuration that could restrict or drop priv-
ileges.

Example: PHP allowed the libxslt extension to create and write to files.
There was no configuration to allow end-users to revoke this privilege
(CVE-2012-0057).

Impact: The system remains unprotected from data tampering.
Recommendations: The mitigation procedure consists in adopting the “Au-
thorize Actors” tactic such that it has configuration parameters that en-
able/disable specific types of operations (reading files, accessing networks,

creating directories, etc).

Runtime Configuration Without Authorization Check: The system allows

the change of security-sensitive settings at runtime without any authoriza-
tion check.

Example: A vulnerability in PHP (CVE-2007-5900) occurred because at-
tackers were able to overwrite protected configurations using the function
“ini_set()” from the PHP language.

Impact: Attackers can leverage this vulnerability to overwrite configuration
parameters.

Recommendations: 1t requires defining the subset of security properties

that are read-only at runtime. This way, the application adopts the “Autho-
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rize Actors” tactic to check whether the entry is allowed to be modified at

runtime before modifying its value upon request.

¢ CWE-426 Untrusted Search Path: Both Chromium and Thunderbird load sys-
tem libraries at runtime to perform certain tasks. The main threat related to
loading libraries is that they cross trust boundaries (i.e. they are not under the
direct control of the system), so an attacker could leverage this to inject a mali-
cious copy of the desired library. In both systems, we found vulnerabilities that

allowed attackers to execute an arbitrary library caused by:

— Attempt to Load an Inexistent Library: The system’s design does not take

into account different operating system versions in which the system may
run. This way, the application attempts to dynamically load a library that
does not exist on the underlying operating system.

Example: There was a vulnerability in Thunderbird caused by attempting
to load the “dwmapi.dll” library on all Windows versions. However, this
DLL is only available on versions after Windows XP, which means that
intruders could place a malicious “dwmapi.dll” in the working directory of
a machine with a Windows XP and have their malicious code successfully
executed.

Impact: This allows attackers to create a malicious library placed in the
expected location, resulting in the system executing this fake library code.
Recommendations: To mitigate the problem, during the system’s design,
create a list of libraries per operating system version. In this case, the
application first verifies whether such library would exist in the underlying

OS even before attempting to load it to the memory.

— Loading Libraries from World-Accessible Directories: The application at-

tempts to search for the desired library dynamically, but the devised search
algorithm includes unsafe directories (i.e., directories which are world-
readable such as the current working directory).

Example: Thunderbird attempted to load the “wsock32.d1l” through using
the dynamic search algorithm provided by the Windows API (CVE-2012-
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1943). This Windows API attempts to find the library from many loca-
tions, including the directory from which the application was loaded and
the working directory of the parent process, which are potentially unsafe
(as they are not read/write protected).

Impact: Since these directories are not protected by default against modi-
fications, an attacker could place a malicious library in one of these unsafe
locations and execute it.

Recommendations: Fixing the problem can be performed in two ways. The
first approach is to design a library-loading mechanism that uses absolute
file paths to access the library. Another approach is to design the system
to load libraries only from the system directories, which are protected by

default against public reading and writing.

Wrong Path to Library: The system is designed to hardcode paths to a li-

brary, which can lead to the execution of the wrong library if the hardcode
path is incorrect.

Example: During an install on Windows machines, Thunderbird would ex-
ecute the code from an executable “program.exe” located at “C:\” instead
of the executable placed in its installation directory.

Impact: It allows local attackers to execute arbitrary code through a Trojan
horse executable file placed in the system’s root directory.
Recommendations: 1t requires designing the system such that the hard-

coded paths are according to the underlying operating system and version.

* CWE-266, CWE-269, CWE-274, and CWE-280 Privileges/Permissions Man-

agement Issues:

— Incorrect Transfer of Privilege Information: To perform authorization, a ba-

sic premise is that the permissions and privileges are available at all times
when the authorization check is to be performed. This means that the per-
missions and privileges information needs to be propagated (if needed) to
child process/objects/etc before the authorization takes place.

Example: In Chromium, users are allowed to select certain Websites that
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are authorized to load plug-ins into the browser. In CVE-2010-2108 the
list of blocked Websites is not transmitted to the component that performs
the authorization check, resulting in untrusted websites to execute arbitrary
plug-ins without user consent.

1035 Impact: It results in a bypass of the “Authorize Actors” tactic.
Recommendations: The tactic’s implementation should transmit any privi-

lege information to the component that performs the authorization check.

— Application-Level Enforcement of OS-level Permissions: Files within a com-

puter typically have a list of permissions that indicate the subjects allowed
1040 to access them. This type of enforcement is performed by the underlying
operating system. However, we found vulnerabilities in PHP which were
caused by attempting to perform this OS-level permissions enforcement at
the application level.
Example: PHP had the safe_mode configuration parameter in prior ver-
1045 sion 5.4.0 to enforce access control to files and directories on the Web
server running the PHP interpreter. The goal of this parameter is to avoid
scripts from different applications running on the same server accessing
files/directories from each other. However, attempting to enforce resources
permissions at the application level is inappropriate. Moreover, such en-
1050 forcement mechanisms needed to be implemented throughout the modules
of PHP that performed any file-related operations. However, there were
several cases that developers did not check whether the safe mode was
enabled and, then invoking the function that does the access control verifi-
cation, thereby bypassing the designed access control mechanism. Hence,
1085 applications that were relying on this safe mode mechanism would be ex-
posed to security breaches.
Impact: Attackers can bypass this application-level enforcement.
Recommendations: In shared execution environments, applications should
not attempt to protect their files from access. Instead, they should configure

1060 the access control lists of the underlying operating system.
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— Not Enforcing Resource Limits for a Sandboxed Process: The implementa-

tion of the sandboxing mechanism that enforces that processes run isolated
from each other, incorrectly enforces a threshold that dictates the maximum
amount of resources that a process can use (such as memory).
1065 Example: In CVE-2015-3335, Chrome’s Native Client implementation did
not enforce limits for data usage, allowing “row-hammer” attacks.
Impact: It affects the system’s performance. Such excessive resources us-
age can enable an attacker to implement sandbox escaping attacks through
memory manipulation or to attempt to access data files which are not nec-
1070 essary for the performance of the sandboxed process.
Recommendations: Developers should ensure that the tactic’s implementa-
tion enforces that sandboxed processes have a threshold value that limits
access to system resources, ranging from logical resources (such as user

data) to hardware ones (e.g. CPU).

1075 — Escaping Authorization Check Through Hardlinks/Symbolic Links/Junctions:

This problem occurs when the implemented sandboxing mechanism fol-
lows links that go outside the safe area, bypassing the protection mecha-
nism.
Example: In CVE-2013-1672, Thunderbird’s update service does not take
1080 into account the existence of junctions, which allow a local attacker to trig-
ger the execution of a malicious executable during an automatic update.
Impact: Such a mistake in the implementation of the “Authorize Actors”
tactic enables attackers to bypass the sandboxing solution.
Recommendations: The fix involves not following the links provided inside

1085 in a sandbox that are pointing to locations outside the defined safe area.

— Not Locking a Shared Resource: Developers do not lock read/write access

to a sensitive file while using it.
Example: Thunderbird did not lock write access to an archive file, allowing
local attackers to perform trojan attacks.

1090 Impact: Attackers could leverage race conditions to modify the file and get
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the process to use that corrupted file, rather than the original file.

Recommendations: Fixing the problem involves (i) locking the shared re-
source; (ii) checking its integrity/trustworthiness (verify whether it has not
been modified) and then using it (releasing the lock after the task is com-

pleted).

Sandboxed Object Inherits Privileges from Superclass: This occurs when de-

velopers create an object which is meant to run in a sandboxed area. How-
ever, this object’s class inherits methods from a superclass which is not
sandboxed, meaning that there are some methods that run without privi-
leges (bypassing the sandbox protection area).

Example: Thunderbird allowed attackers to create objects outside the sand-
box and then leverage calls to the valueOf () method to escape the sand-
box (CVE-2006-2787).

Impact: It leads to privilege escalation and remote code execution.
Recommendations: To prevent this problem, the implementation of the
“Authorize Actors” tactic needs to check that the pointer of the object being

manipulated (“this”) is within the right privilege level.

Sandboxed Component is Assigned Wrong Privilege Level: Occurs when the

tactic’s implementation allows a lower privileged component to be granted
more permissions than intended by the design.

Example: In CVE-2010-4041, Chromium executed worker processes out-
side the sandboxed environment.

Impact: A sandboxed component should have a defined level of privilege.
Different components in a sandbox may have different privilege levels, ac-
cording to the tasks they perform. This problem occurs when developers
fail to check the context and functionality of the component and therefore,
grant incorrect privilege levels. Such an error in the implementation of the
tactic can result in Cross-Site Request Forgery (CSRF), an attack that forces
the user to execute unwanted actions on a web application in which they’re

currently authenticated.
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Recommendations: The mitigation involves passing the code to the sand-

box environment before execution.
* CWE-284 Improper Access Control:

— Incorrect Authorization of External APIs/Plug-ins/Extensions: the applica-

1125 tion has a flawed authorization implementation for external programs (i.e.,
APIs, plug-ins, extensions, and libraries).
Example: In CVE-2013-1717, Thunderbird did not perform an authoriza-
tion check before granting access to local files to Java applets (a plug-in).
Impact: Unauthorized APIs/Plug-ins/Extensions gain access to the data or
1130 control of other extensions/plug-ins. It can also tamper with the internal
integrity of the system.
Recommendations: The fix involve adding an intermediary protection layer
between the application core’s functionalities and plug-ins/external libraries.

This intermediary layer is in charge of performing authorization checks.

1135 — No Warnings About Permissions Changes: When the system allows exten-

sions or plug-ins to change their permissions at runtime, the implementa-
tion of the “Authorize Actors” tactic does not warn the end user.
Example: Chromium did not display a warning indicating that a malicious
plug-in has access to the camera (CVE-2015-3334).

1140 Impact: Attackers can use plug-ins or extensions to collect users’ data with-
out their awareness (e.g. camera or microphone).
Recommendations: Any permission elevation requested by plug-ins/extensions

have to be mediated by the user through confirmation dialogs.

— Incorrect Hostname Normalization: The system’s tactic implementation lever-

1145 ages the hostname to check whether an actor is allowed to perform certain
tasks, but it incorrectly normalizes the hostname during the authorization
check.

Example: An extra dot (“.”) at the end of the hostname in the Chromium

project has misled the authorization mechanism, leading to a bypass vul-

1150 nerability (CVE-2015-1269).
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Impact: A mistake in the implementation of the hostname identification
and matching can result in a bypass of the authorization tactic.
Recommendations: Mitigation procedures include normalization of host-

names and rejecting hostnames with invalid characters.

— Not Revoking Access: The system’s tactic implementation does not revoke

access to the resource when it is not being used anymore.

Example: Chromium allowed remote attackers to obtain video camera data
through a session that remains active even though the user had navigated
away from the webpage (CVE-2014-1586).

Impact: It corresponds to a violation of the least privilege design princi-
ple [46]]. It allows attackers to steal sensitive data without user awareness.
Recommendations: Drop access to privileges as soon as the resource is not

being used anymore.

5.2.5. “Validate Inputs” Tactic

The following results were obtained for the Validate Inputs tactic:

Vulnerability Types Root Causes
CWE-59 Link
Following —— Not Checking Whether Filepath is Symlink

« Realization Weakness »

CWE-89 SQL < Broken Decoding of Query String

Injection
« Realization Weakness » Incorrect Escaping of Data
w‘_UA e Not Neutralizing Code Before Invoking a Dynamic Execution Function
Validate Inputs CWE-94 Code
Injection Flawed Neutralization Routine
« Realization Weakness »

Performing Reflection Actions from Inputs
Validation Using Blacklisting Rather Than Whitelisting

CWE-20 Improper Broken Parser
Input Validation
« Realization Weakness »

Not Handling an Unexpected Data Type

Incorrect Escaping of Data

Figure 10: Root Cause Analysis of Tactical Vulnerabilities related to Validate Input Tactic

* CWE-59 Link Following:

— Not Checking Whether Filepath is Symbolic Link: This occurs when the tac-

tic’s implementation receives a file path as input but it does not check

whether the symlink resolves to an unprotected file.
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Example: PHP’s configuration script uses a predictable filename in /tmp/
to store temporary installation files. A local attacker could replace that file
by a symlink and be able to overwrite/delete user files (CVE-2014-3981).
Impact: Tt allows local attackers to read/overwrite/delete user files.
Recommendations: The fix involves verifying the type of the file before
performing any file operations. In the case of symlinks, the implementa-

tion then checks what is the file/directory that the link resolves.
* CWE-89 SQL Injection:

— Incorrect Escaping of Data: Special characters (quotes, backslashes, etc)

are not escaped or removed in a SQL query enabling an attacker to im-
plement a SQL injection attack.

Example: PHP used to not escape characters of externally provided SQL
query string as input to the function mysqli_fetch_assoc (CVE-2010-4700).
Impact: It tampers with the integrity of data stored in relational databases.
Recommendations: Fixing involving escaping some characters that are part
of the SQL syntax, such as back/forward slashes, quotes (double and sin-

gle), percentages (%) etc.

* CWE-94 Code Injection: This is a tactical vulnerability type that occurs when
malicious code segments are created based on external inputs. In this case, at-
tackers can provide inputs in the form of code syntax, thereby injecting malicious
behavior to the software. Without implementing checks on the type of input, at-
tackers can inject their malicious codes into the application’s runtime behavior to
collect data or disrupt the application. In our analysis we have found that some

of the underlying causes of this type of vulnerability are the following:

— Not Neutralizing Code Before Invoking a Dynamic Execution Function: Oc-

curs when the application’s input validation implementation execute code
provided as a string input without neutralizing any code injected in the in-
put.

Example: Thunderbird’s built-in XML Binding Language (XBL) allowed
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intruders to execute arbitrary code due to incorrect input validation in the
1200 following XBL binding methods: valueOf.call and valueOf.apply (CVE-

2006-1733).

Impact: Tt allows attackers to execute arbitrary code.

Recommendations: In interpreted languages such as Java, we commonly

have a function/method that can execute code provided as a String input
1205 (e.g., eval () in JavaScript). In this case, to ensure that only safe com-

mands are passed to the function, the software needs to parse the provided

input in order to detect and remove unsafe commands from the input, be-

fore passing it to the execution engine.

— Flawed Neutralization Routine: Occurs when developers implemented a

1210 function/method to neutralize unsafe externally provided commands, but
the routine does not correctly cover all the possible types of unsafe com-
mands.

Example: Thunderbird’s CVE-2012-3980 allowed attackers to inject arbi-
trary JavaScript code with higher privileges through forwarding this code

1215 to an eval operation. The eval operation did not neutralize the unsafe com-
mands provided by the attacker.

Impact: The attackers can provide unsafe commands as input and cause
corrupted memories and other issues.
Recommendations: The observed examples required adding verifications

1220 about the context of the call (i.e., from a lower / higher privileged actor)

and performing the neutralization accordingly.

— Performing Reflection Actions from Inputs: Some interpreted languages like

Java support reflection. In this case, similar to “Not Neutralizing Code

Before Invoking a Dynamic Execution Function”, developers were not im-
1225 plementing a command neutralization routine before performing reflection

operations based on user-provided inputs.

Example: In Firefox’s CVE-2006-1735, the JavaScript engine allowed at-

tackers to retrieve a constructor from XBL compilation scope through lever-
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aging a reflection call.

Impact: It can be used to execute arbitrary code, tamper with the applica-
tion expected behavior or elevate privileges.

Recommendations: The mitigation procedures for this problem are (i) im-
plement code neutralization procedures for the user provided data before
adopting it in a reflection context; or (ii) hide reflection calls from external

actors.

¢ CWE-20 Improper Input Validation: Different segments of the software ex-
pects user input, which needs to be validated against different requirements re-
lated to its type, size, boundary values, etc. If these requirements are not satisfied
and the system receives unintended input, an altered control flow, arbitrary code
execution or control of a resource can occur. According to our analysis, this type

of tactical vulnerability occurred due to the following causes:

— Validation Using Blacklisting rather than Whitelisting: Occurs when the sys-

tem uses blacklists rather than a whitelist-based approach for input valida-
tion.

Example: Chrome’s CVE-2009-3931 used a blacklist of files to block the
download of certain dangerous file extensions, but the blacklist was incom-
plete: it did not cover potentially dangerous extensions such as “(1) .mht
and (2) .mhtml files, which are automatically executed by Internet Explorer
6, (3) .svg files, which are automatically executed by Safari; (4) .xml files;
(5) .htt files; (6) .xsl files; (7) .xslt files; and (8) image files that are forbid-
den by the victim’s site policy’m

Impact: Implementing the “Validate Input” tactic based on blacklists is
prone to implementation mistakes: the validation mechanism may not cover
all possible malicious input types. It allows attackers to craft special inputs
that are not covered by the blacklist.

Recommendations: In our data, we observed that the problem can be fixed

Zhttps:/mvd.nist.gov/vuln/detail/CVE-2009-3931
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through (i) adding the missing malicious data into the blacklist or convert-
ing the validation routine to a whitelist-based approach. Blacklists enumer-
ate the prohibited input types in the code, whereas whitelists enumerate the
accepted input types in the code. Generally, using whitelists is the safest
approach. Blacklists are prone to mistakes, as the likelihood of it contain-
ing all the potential ways the input can go wrong is low. This, in turn,
increases the chances that attackers can figure out a way in which the input

does not violate the blacklist, but is still harmful to the software.

Not Handling an Unexpected Data Type: This problem occurs when sys-

tems do not handle unexpected input data types properly. It can also be
referred to as a “Type Confusion”.

Example: PHP’s input validation implementation assumed that a provided
input was of an array type without actually checking this assumption (CVE-
2015-4148).

Impact: This rudimentary implementation of the tactic results in crashes.
Recommendations: Usually, input received from the user needs to be of a
certain type. Developers should implement checks to ensure that the in-
put’s data type is the correct one. Moreover, they need to also develop
routines that handle situations where unexpected data types are provided
as input. The system needs to be able to recognize that the incorrect input
type has been provided and proceed with the rest of the functionalities in

the aforementioned scenario.

Broken Parser: The system requires a data structure provided as input and
needs to parse it. However, the accuracy and the level of inclusiveness of
the parsing method used may be faulty and fail its initial purpose. If this
parsing method fails to parse the structure in such a way that it can extract
its values, a broken parser problem occurs.

Example: In CVE-2014-7899, Chromium did not correctly parse a URL
starting with “blob: ” followed by a URL and a long username. It allowed

attackers to spoof the URL bar.
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Impact: This rudimentary implementation of the tactic results in an applica-
tion crash or usage of wrong values, affecting the system’s logical behavior.
Recommendations: When implementing the input validation tactic, de-
velopers should check the data structure received as input against a data

schema.

Incorrect Escaping of Data: The system does not correctly neutralize “con-

trol” characters in an input.

Example: Chromium incorrectly escaped input, allowing that the content
in an href attribute to be rendered as regular HTML entities. It allowed
attackers to steal data or CSRF tokens (CVE-2015-6790).

Impact: The rudimentary implementation of a validation input tactic may
result in arbitrary code execution and memory corruption
Recommendations: Fixing this tactic implementation requires two things
(1) identifying the underlying context in which the data will be used and (ii)
adopting escaping procedures according to this context. For instance, in
HTML rendering context, a user input should be escaped to HTML entities

(e.g. “<html>" is escaped as “&It;html&gt;”) before rendering it to a Web

page.

6. Threats to Validity

This section discusses validity threats based on the validation scheme presented by
Runeson and Hoest [31] (construct, internal and external validity).

Construct validity is about how accurately the applied operational measures truly
represent the concepts that researchers are trying to study. In our study, these included
the measures used to identify tactical and non-tactical vulnerabilities, see (Section E])
To identify the types of vulnerabilities, we leveraged vulnerabilities tracked by the
NVD along with data from bug and issue tracking systems of Chromium, PHP, and
Thunderbird. Therefore, our analysis relies on the accuracy of the data reported in
these systems. Consequently, we may have missed vulnerabilities that were not tracked

by the NVD. Also, we had to discard vulnerabilities because we could not find the
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corresponding entry in the issue tracking system or the issue was still private at the
time of our study.

Internal validity reflects the extent to which a study minimizes systematic error
or bias so that a causal conclusion can be drawn. The primary threat in our study is
related to the manual analysis of CVE instances in order to observe the nature of secu-
rity design issues and to identify tactical and non-tactical vulnerabilities. To mitigate
this threat, we performed both top-down and bottom-up classification of the vulnera-
bilities (see Section ). Moreover, we conducted a peer review process in which two
individuals analyzed vulnerabilities and shared their rationale with each other to re-
solve disagreements. Parts of this peer review also included practitioners. We consider
that the peer evaluation minimized the impacts of biases and mistakes by the manual
inspection of CVEs.

External validity evaluates the generalizability of our findings. There are two

threats in this respect:

* We analyzed the historical vulnerability reports from three systems (PHP, Chromium,

and Thunderbird), which are Internet applications and mostly implemented in
C/C++. Here, we do not aim for statistical generalization, but analytical general-
ization: we carefully selected the three systems from different software domains
and with a high number of reported vulnerabilities. Therefore, we expect the
systems to be representative of a typical large-scale software engineering envi-
ronment. Also, when discussing our results, we highlighted which findings are

specific to a system and which findings apply to all systems.

* We identified the root causes of vulnerabilities based on a subset of types of vul-
nerabilities from the CWE catalog (Section [4.2.3). We acknowledge that it may
not be complete, i.e., that it does not include all possible ways that developers can
implement tactics incorrectly. However, this subset comes from a community-
established list of possible types of security issues that have been observed and

documented in the real world.
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7. Conclusions and Future Work

This paper presented the concept of CAWE (Common Architectural Weakness
Enumeration), a catalog of common types of architectural weaknesses. This catalog
constitutes an effort towards stimulating critical reflections about security-related is-
sues in developers to avoid fundamental design problems at both architectural design
and implementation time. Furthermore, the catalog helps researchers to develop novel
techniques to identify and mitigate such flaws. Currently, the catalog enumerates 223
architectural weaknesses, documenting how these weaknesses may affect security tac-
tics. As future work, we plan to evaluate our catalog with security experts, in order to
expand it.

Furthermore, this paper has presented a first-of-its-kind empirical study towards
understanding software vulnerabilities related to security tactics. We identified tactical
and non-tactical vulnerabilities in three software systems. While most vulnerabilities
are non-tactical, on all three systems more than 30% were tactical. We discovered that
the improper implementation of the “Authorize Actors”, ‘“Validate Inputs” and “En-
crypt Data” security tactics may cause the highest number of potential problems. In the
three systems, the tactics most impacted by vulnerabilities are “Validate Inputs”, “Au-
thorize Actors”, and “Limit Exposure”. Further, our analysis suggests that “Improper
Input Validation” is the most common type of vulnerability across all three systems.

Lastly, looking more in-depth the most common types of tactical vulnerabilities,
we analyzed and categorized their root causes. This helps architects and researches
aware of the most common mistakes they can make that can introduce vulnerabilities

in a system.
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