
Iterated Deep Reinforcement Learning in Games:
History-Aware Training for Improved Stability

MASON WRIGHT, University of Michigan, USA
YONGZHAO WANG, University of Michigan, USA
MICHAEL P. WELLMAN, University of Michigan, USA

Deep reinforcement learning (RL) is a powerful method for generating policies in complex environments, and
recent breakthroughs in game-playing have leveraged deep RL as part of an iterative multiagent search process.
We build on such developments and present an approach that learns progressively better mixed strategies in
complex dynamic games of imperfect information, through iterated use of empirical game-theoretic analysis
(EGTA) with deep RL policies. We apply the approach to a challenging cybersecurity game defined over attack
graphs. Iterating deep RL with EGTA to convergence over dozens of rounds, we generate mixed strategies far
stronger than earlier published heuristic strategies for this game. We further refine the strategy-exploration
process, by fine-tuning in a training environment that includes out-of-equilibrium but recently seen opponents.
Experiments suggest this history-aware approach yields strategies with lower regret at each stage of training.

CCS Concepts: • Theory of computation→ Exact and approximate computation of equilibria; Qual-
ity of equilibria; • Computing methodologies → Multi-agent reinforcement learning.

Additional Key Words and Phrases: deep reinforcement learning; double oracle; attack graphs; security games;
multi-agent reinforcement learning

ACM Reference Format:
Mason Wright, Yongzhao Wang, and Michael P. Wellman. 2019. Iterated Deep Reinforcement Learning
in Games: History-Aware Training for Improved Stability. In The 20th ACM conference on Economics and
Computation (EC ’19), June 24–28, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/
10.1145/3328526.3329634

EC ’19, June 24–28, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6792-9/19/06.
https://doi.org/10.1145/3328526.3329634

EC’19 Session 6a: Game Theory

617

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3328526.3329634
https://doi.org/10.1145/3328526.3329634
https://doi.org/10.1145/3328526.3329634
https://creativecommons.org/licenses/by/4.0/

1 INTRODUCTION
The past few years have seen striking advances in computer game-playing, marked by milestones
in computer defeat of the world Go champion [38] and reaching professional level performance
in poker [5, 28]. These milestones were enabled by fundamental progress in algorithms for deep
reinforcement learning (RL) and reasoning about games of imperfect information. The DeepMind
research group followed up their AlphaGo success with particularly impressive developments
of learning without data from human play, first in Go [40] and then—in amazingly short order—
reaching championship levels in chess and shogi with AlphaZero [39].
Demonstrations in artificial games are invaluable for driving research, but the true promise of

these developments lies in applying them to strategic decision-making domains of real intrinsic
interest. Technically, translating the approaches to games of practical relevance requires nontrivial
extensions and generalizations. For example, whereas chess and go are two-player, essentially
symmetric, alternating-move zero-sum gameswith complete information, games of interest typically
exhibit many players, non-symmetry, imperfect information (stochastic environments, partial
observability, private information), and non-zero-sum utilities.
We seek to exploit the power of deep RL applied to simulated play, à la AlphaZero, in domains

exhibiting the complexities mentioned above. The way has been paved by some prior work. The
approach of empirical game-theoretic analysis (EGTA) [47] builds and reasons about game models
induced from simulated play data. Schvartzman & Wellman [36] combine EGTA with RL (but
not deep RL) in an iterative manner to learn strategies for a complex market game. The iterative
technique of augmenting an enumerated strategy set by the best response to equilibrium is called
(for the two-player case) the double-oracle (DO) method [24]. Lanctot et al. [21] generalized DO
for combination with deep RL in a procedure called policy space response oracle (PSRO). Wang et
al. [46] employ a version of PSRO to learn effective strategies in a class of green security games.

We build on this work, extending some elements of technique and demonstrating performance
for a complex game in the domain of cybersecurity. The setting is a non-zero-sum interaction
between attacker and defender over states defined by an attack graph [19, 33]. An attack-graph
game models a computer system’s attack surface as a directed acyclic graph, where each node is a
capability that an attacker could have, and each edge is an exploit an attacker can attempt to achieve
a new capability [6, 25, 29, 30]. Such games may exhibit significant complexities including imperfect
information (stochastic action effects, partial observation of attack graph) and combinatorial action
spaces. We specifically tackle the game defined in prior work by Nguyen et al. [30], which employed
EGTA over hand-crafted heuristic strategies that use sophisticated optimization methods.

We start with a combination of double-oracle and EGTA (DO-EGTA), an instance of PSRO that
uses deep RL as an (approximate) best-response oracle to iteratively extend the set of candidate
strategies. Because the game has a combinatorial action space, we need to modify the standard
encoding of deep neural network (DNN) policies for deep RL. We introduce a novel trick, called
greedy action set building, which scales well to large action spaces. It also accounts for value
dependencies among component actions, by learning the incremental value adding each candidate
to the action set, given the set’s current members.

DO-EGTA alternates between (a) solving for a Nash equilibrium over the strategies developed so
far, and (b) using deep RL as a best-response oracle to add a beneficial deviation to each agent’s
strategy set, until no better deviation can be found. On convergence, DO-EGTA returns the equilibria
computed from the game over the final strategy sets. Our results show that deep RL can successfully
deviate from the best strategies identified by the prior work for this game [30].
In our explorations of DO-EGTA, we found successive training rounds sometimes appeared

unstable, in that a strategy would appear with high weight in one round’s mixed equilibrium, then

EC’19 Session 6a: Game Theory

618

disappear from subsequent equilibria, only to reappear later. This instability represents a form of
thrashing, which suggests inefficiency in the training process. This and other issues of training
instability are known to occur in multiagent reinforcement learning (MARL) settings and DO in
particular, due to the non-stationary training objective for each agent, and the susceptibility to
vulnerabilities from strategies not considered.

One known way to address this issue in strategy exploration is to consider response to strategies
beyond the current equilibrium [17, 21]. Accordingly, we introduce a history-aware extension,
HADO-EGTA, which modifies the exploration process to produce more robust strategies. HADO-
EGTA’s RL stage starts by training against the current equilibrium opponent, then fine-tunes it
against a mix of previous equilibrium opponents. The resulting DNN is recorded periodically
during fine-tuning, and the best version is selected, based on mean performance against current
and previous opponents, subject to being a beneficial deviation against the current one. We find
HADO-EGTA tends to produce more consistent strategy improvements per iteration, with stronger
final mixed strategies than DO-EGTA. Our (HA)DO-EGTA framework is illustrated in Figure 1.

Fig. 1. Flowchart describing the DO-EGTA and HADO-EGTA process.

The key contributions of this work are:
• demonstration of the efficacy of iterated deep RL with game-theoretic analysis, in a realistic
and strategically complex imperfect-information game, compared to sophisticated hand-
designed strategies from prior literature on attack-graph games;
• greedy action set building: a trick for RL in combinatorial action spaces, which both scales to
large action spaces and accounts for dependencies among sub-actions;
• a novel history-aware strategy exploration method that explicitly balances performance with
respect to current and previously encountered equilibrium opponents;
• experimental evaluation of methods in this approach, including several innovations in mea-
surement and visualization.

2 GAME-THEORETIC PRELIMINARIES
We model the strategic interaction between attacker and defender as a two-player normal-form
game G = (S,U), with S = (Sa , Sd) representing the finite sets of pure strategies available to the
attacker and defender, respectively. In our study, the attacker strategy set Sa and the defender
set Sd are initialized with heuristic strategies. When the players simultaneously select a strategy
profile (sa , sd) ∈ Sa × Sd , they receive expected payoffs given by utility functionU = (Ua ,Ud), with
Ud : Sa × Sd → R for defender reward, and similarly with Ua for attacker reward. There is no
explicit representation of U ; rather we have a game simulator which generates stochastic payoff
samples for a given profile.

EC’19 Session 6a: Game Theory

619

More generally, attacker and defender can play mixed strategies σa and σd which are probability
mass functions over the players’ finite strategy sets. A Nash equilibrium is a mixed strategy profile
σ = (σa ,σd) such that for any deviating strategy sa or sd , the player’s expected payoff when
deviating is no better than its expected payoff under σ . That is, σ is a Nash equilibrium if and only
ifUa(sa ,σd) ≤ Ua(σa ,σd), for all sa ∈ Sa (and similarly for the defender).
The regret of a mixed-strategy profile σ , or ρ(σ), is the maximum any agent i can gain in

expectation by unilaterally deviating from its mixed strategy in σ to an alternative strategy si . We
define the regret ρ(σi ,σ ∗) of a mixed strategy σi with respect to a Nash-equilibrium profile σ ∗ as
the expected payoff that agent i would lose by unilaterally deviating to σi :

ρ(σi ,σ
∗) ≡ Ui (σ

∗) −Ui (σi ,σ
∗
−i). (1)

3 RELATED WORK
3.1 Attack-graph games
Attack graphs were introduced by Philips & Swiler [33] as a means to model vulnerabilities of
computer systems. Graphical models of this form for cybersecurity have been widely studied,
and automated attack-graph generation software has been produced, both academic [13, 37] and
commercial [1, 14]. Examples of vulnerabilities that might be expressed by edges in the graph
include bugs in FTP servers, buffer overflow attacks, and password guessing [19, 34].

Recent works [6, 29] searched for optimal attacker and defender strategies in attack-graph games,
where agents compete for control of an attack graph. Miehling et al. introduce the attack graph
form we study here [25], and present methods to solve for the best defense policy, assuming the
attacker follows a fixed strategy. Nguyen et al. [30] extend the problem to a two-player game. The
authors propose heuristic strategies, including some sophisticated ones based on particle filtering,
for the attacker and defender. They employ the methods of EGTA [47] to estimate the payoffs over
strategies in a specified set and solve for equilibria.

3.2 Deep reinforcement learning
Deep RL has famously succeeded in learning superhuman strategies for extensive-form strategy
games like Go, chess, and shogi [39, 40]. It has also been applied with success to problems (like our
security game) that involve some or all of: imperfect information, multiple players with asymmetric
roles, and non-zero-sum payoffs. Examples include cooperative-competitive games [41], and video
games like Super Smash Bros. [7], Dota 2 [32], and Doom [20].
In the security domain, Kamra et al. [18] trained a DNN to learn policies for a green security

game (zero-sum between a ranger and poachers) with continuous actions. Wang et al. [46] used an
iterated deep RL procedure, like ours a version of PSRO, to develop new strategies in a dynamic
green security game. Venkatesan et al. [45] demonstrated a system using reinforcement learning
(without DNNs) to determine the placement of intrusion detectors to defend a computer network.

A DNN and associated learning algorithm for deep RL known as a deep Q-network (DQN) [27]
has been shown to learn strong policies for playing Atari games using only pixel input, based
on the Q-learning method. Since the original work on DQN, various new deep RL algorithms
have produced solid results, such as asynchronous advantage actor critic [26], trust region policy
optimization [35], and Rainbow [12]. In DQN, the max operator uses the same values to both
select and evaluate an action, which leads to overoptimistic value estimates [43]. van Hasselt et al.
introduced the double DQN [44] to mitigate this problem. We compared this version of DQN with
an actor-critic method and found it to be consistently competitive, and so adopt (double) DQN as
our oracle in this study.

EC’19 Session 6a: Game Theory

620

The issue of combinatorial action spaces in deep RL was previously addressed by He et al. [10],
for the problem of recommending a subset of K news articles from a large candidate set. That
work explored multiple methods, such as: (a) representing each news item as an embedding vector,
concatenating K vectors, and predicting the value of the set; and (b) estimating the value of each
news item independently (based on its embedding vector), and selecting the K highest-value items.
The approach of predicting the value of an entire action set is exponential in K , and so does not
scale well to large candidate sets. The approach of selecting the top K independently evaluated
items by definition fails to account for dependencies among the items.

3.3 Double-oracle and empirical game-theoretic methods
A double-oracle method solves a two-player game iteratively, by first solving the game where
only a finite set of strategies may be used, and then using an oracle for each player to derive the
best-response strategy against the current equilibrium opponent. The double-oracle method was
introduced by McMahan et al. [24], and was applied to security games by Jain et al. [15].

The general method of building game models from simulation payoffs has been termed empirical
game-theoretic analysis (EGTA) [47]. Schvartzman & Wellman [36] combined RL with EGTA, using
tabular Q-learning with tile coding to learn better-response policies in a dynamic trading game; a
similar approach using (non-deep) Q-learning was taken in our own recent work [48].
Lanctot et al. [21] presented PSRO as a general procedure combining deep RL with EGTA,

demonstrating the flexibility of their ideas on gridworld games. PSRO generalizes what we are
terming DO-EGTA primarily by introducing meta-strategy solvers (discussed further below), which
support a range of approaches for generating opponents to train against in strategy generation.
Recently, Wang et al. [46] applied DQN as the oracle for a zero-sum dynamic form of green security
game. They found that employing double oracle with DQN may take many rounds and substantial
computation to converge, even for modestly sized environments.

3.4 History-aware training in multiagent RL
When iterating deep RL in a game, each agent’s learning problem is non-stationary, which can
produce thrashing or even cycles in training [2, 8]. EGTA (including DO-EGTA) avoids cyclic
behavior by accumulating strategies and computing equilibria each round. However, as noted above
and also observed by Lanctot et al. [21], double-oracle methods can produce DNNs that are overfit
to the current opponent strategy and do not sufficiently exploit weaker opponents.

The idea of considering opponent history to avoid overfitting to the current opponent has been
investigated in prior work. Lanctot et al. [21] proposed particular approaches as meta-strategy
solvers within their PSRO framework. For example, their projected replicator dynamics method
requires that every strategy trained so far be included with at least some minimum probability,
ensuring that all opponent strategies are encountered during training. It also forces the mixed
strategy of each agent to change by only a small step size from one round to the next. The goal is
to inhibit thrashing, in which an agent trained in one round fails to learn what the previous agent
did, due to drastic changes in the training opponent’s mixed strategy.

Bansal et al. [4] propose opponent sampling, which trains a DNN against a randomly sampled old
opponent instead of the current opponent, and appears to speed up training of competitive agents
in simulated physics games (perhaps by providing a form of curriculum learning where neither
training opponent can improve too quickly), as well as improving the robustness of the trained
agents to unseen opponents. Wang et al. [46] promote generalization by training against a weighted
average of the current equilibrium opponent mixed strategy and the uniform distribution over
opponent pure strategies. Foerster et al. [8] introduce Learning with Opponent Learning Awareness
(LOLA), a deep RL learning rule intended to stabilize MARL training, that models the opponent’s

EC’19 Session 6a: Game Theory

621

policy, predicts the opponent’s policy update, and updates one’s own policy in anticipation of
the opponent’s update. Grnarova et al. [9] introduce a method for training the two competing
policies in a generative adversarial network (GAN), which is designed to improve training stability,
resulting in a mixed strategy over DNNs.
In earlier work on stabilizing EGTA, Jordan et al. [17] found augmenting the set of available

pure strategies with even arbitrary beneficial deviations from the current Nash equilibrium can
lead to faster convergence compared to adding best responses.

3.5 Evaluation of strategies and training methods
Evaluating strategy quality in games is inherently relative to choice of opponent strategies [3, 42].
We focus our comparisons between training procedures on the performance of the resulting
strategies at Nash equilibrium, an approach termed NE-response ranking [16] or Nash averaging [3].
We report results on tournaments between the final mixed strategies from distinct training

methods, as suggested for evaluating GANs by Olsson et al. [31]. The performance of a strategy
against unseen opponents is an indicator of generalizability, which can be poor even for strategies
learned from distinct runs of the same algorithm [21].

4 GAME DESCRIPTION
4.1 Attack-graph model
The game takes place on a Bayesian attack graph, of the type defined by Miehling et al. [25]. It is a
directed acyclic graph G = (V ,E), where vertices v ∈ V represent possible attacker capabilities,
and edges e ∈ E are exploits the attacker can use to activate nodes.

An attack-graph game is defined by a Bayesian attack graph endowed with additional specifica-
tions. The game evolves over a finite number of time steps T . At each time step τ , the state of the
graph is simply which nodes are active (i.e., attacker-controlled), indicated by sτ (v) ∈ {0, 1}. The
defender receives only a noisy observation Oτ (v) ∈ {0, 1} of whether each node is active, based on
publicly known probabilities Pv (o = 1 | s = 1) (detection probability) and Pv (o = 1 | s = 0) (false
alarm rate). Positive observations are known as alerts.

Attacker and defender act simultaneously at each time step τ . The defender’s action space is the
power set of nodes V , meaning the defender can choose to defend any subset of the nodes.
The attacker can attack any of the graph’s ∧-nodes (and nodes), if all the node’s parents are

active. The attacker can attack any edge to an ∨-node (or node), if the edge’s source is active. Nodes
without parents (root nodes) may be attacked in any state. The action space is the power set of
eligible ∧-nodes and edges to ∨-nodes.
Defender actions override attacker actions, such that any node v that is defended becomes

inactive. Otherwise, active nodes remain active; an ∧-node v that is attacked becomes active with
probability P(v), and any ∨-node becomes active with probability based on the success probabilities
P(e) of attacked edges.
Each goal node, v , has a value for attacker reward ra(v) and defender penalty rd (v). Any item

an agent can act on has a cost: cd (v) for nodes defended, ca(v) for ∧-nodes attacked, and ca(e) for
edges to ∨-nodes attacked. There is a discount factor η ∈ (0, 1] for future rewards.

The defender’s loss at a time step is the cost of its action (i.e., total cost of nodes defended), plus the
penalty for active goal nodes after that step. The defender’s total payoff is the negated, exponentially
discounted sum of losses over time. The attacker’s total payoff is likewise the discounted sum of
rewards, in this case the value for active goal nodes, minus cost of attacks pursued.

EC’19 Session 6a: Game Theory

622

4.2 Heuristic strategies
Prior work by Nguyen et al. [30] proposed sophisticated heuristic strategies for the attack-graph
game. Specifically, the random walk attacker strategy assigns a value to each node or edge by
sampling a random process moving from currently active nodes toward goal nodes; the strategy
uses a heuristic to select items to attack based on the resulting values. Defender heuristics use
a Bayesian belief about which nodes are currently active; the belief is updated using a particle
filter. The random walk defender strategy simulates a series of future attacker actions by sampling
a random process; the defender greedily adds nodes to a set to be defended, until adding another
node would not increase the expected payoff.

5 METHODS
5.1 Attack-graph game instances
We study attack-graph games with two kinds of graph topology: random graphs and separate-layers
graphs. Random graphs are Erdős-Rényi graphs, where edges have been added uniformly randomly.
Separate-layers graphs are built in layers, where edges are randomly added only from nodes of one
layer to the next. Our games are built on two randomly-generated graph instances, one of them
separate-layers with 29 nodes (s29), the other random with 30 nodes (r30). In game s29, there are 3
layers, 7 goal nodes with values in [15, 45], and 89 edges. In game r30, there are 6 goal nodes with
values in [10, 20], and 100 edges. We present the topology of the graph in game r30 in Figure 2. Each
game proceeds over T = 10 time steps, with payoff discount factor η = 0.99.

Fig. 2. Topology of random graph r30. Goal nodes have dashed red outlines, non-goal nodes solid green.

5.2 Deep Q-networks
We employ DQN and modify it to tune the number of episodes used to determine if the current DNN
is better than the previous best, and to implement (HA)DO-EGTA pre-training and fine-tuning.
The DNN takes as input a vector representing the agent’s current observation of the state of
the environment, filters this vector through multiple convolutional or fully-connected layers and
rectifier nonlinearities (ReLUs), and finally yields a regression estimate of the value of taking each
action in the current state. Each DNN represents a strategy, mapping from observations to action
values based on which actions can be chosen.

We experimented with various architectures for the DNN, before settling on a multilayer percep-
tron with two hidden, fully-connected layers of 256 neurons each. Pilot experiments also evaluated
two fully-connected layers of 128 neurons each; one hidden layer of 256 neurons; and a convolutional

EC’19 Session 6a: Game Theory

623

network with two layers, 32 or 64 filters per layer, convolved along one dimension corresponding
to the nodes of the attack graph. There were large differences in performance between different
network architectures. The structure selected, in the example of the attacker strategy for game
r30, is shown in Figure 3. Besides the network architecture, the only hyperparameters we tuned
experimentally were the learning rate and the number of training steps. For each of which we tried
3 options and then fixed; other hyperparameters were set based on values suggested in previous
works or by intuition, and are likely not highly sensitive.

r30 attacker
input

fully
connected

fully
connected

241 256 256 106

r30 attacker
output

Fig. 3. DNN architecture for r30 attacker.

5.3 Game representation for deep RL
The action space in the attack-graph game is huge for attacker and defender, because the defender
can choose to defend any subset of the nodes, leading to 230 possible actions in game r30, and the
attacker can choose to attack any subset of the ∧-nodes and edges to ∨-nodes for which the parents
are active, resulting in a tremendously high dimension for the output layer of the DNN.
Our key technique to make the exponential action space tractable is to let each deep RL agent

add items to be attacked or defended, one at a time, to an attack set or defense set. Taking the
defender DNN for example, initially in each time step the defense set is empty, and the defender
DNN can either add one node to the set or pass. Eventually, when the defender DNN passes, the
game proceeds with the defender acting on the nodes in the defense set. Thus, the DNN may be
called multiple times during one time step, to determine the set of items to be acted on, depending
on the DNN’s outputs. (Note that the heuristic attacker and defender, unlike the deep RL agents,
select sets to act on all at once, instead of one item at a time.)
To encourage deep RL agents’ DNNs to add appropriate items to their sets, we impose rules

that cause undesirable actions to be treated as a pass. The defender DNN’s action is counted as
a pass if it selects a node that is already present in the defense set. The attacker DNN’s action is
counted as a pass if it selects a node or edge already in the attack set, or whose preconditions are
not satisfied. And to encourage agents’ DNNs to add items to their sets greedily, beginning with
the most valuable, we randomly force the DNN to pass with probability 0.1 in each update where
at least one item is already in the action set. (The parameter value of 0.1 was selected based on
intuition, without experiments testing alternative values; it might be possible to achieve better
performance by tuning this value better, or by decaying it toward 0 during training.)
Algorithm 1 presents the procedure for generating the deep RL attacker’s action. The attacker

DNN ϕatt selects one choice at a time x based on the current attacker DNN input vector attObs.
This selection can represent pass , or an ∧-node or edge to ∨-node, to add to the attackSet. The
choice is legal only if it is to pass, or if any parent nodes sufficient for the attack, called pre(x), are
in the active node set A (i.e., the set of nodes controlled by attacker).

EC’19 Session 6a: Game Theory

624

Algorithm 1 Deep RL attacker’s greedy action set building
Require: attObs
1: attackSet ← ∅
2: do
3: x ← ϕatt(attObs, attackSet)
4: isDup← x ∈ attackSet
5: isLegal ← x = pass ∨ pre(x) ⊆ A
6: if ¬isDup ∧ isLegal ∧ x , pass then
7: attackSet ← attackSet + {x}
8: while ¬isDup ∧ isLegal ∧ x , pass ∧ rand() > 0.1
9: return attackSet

The attacker DNN has one action output unit for each ∧-node and each edge to an ∨-node,
plus one representing pass. This sums to 103 action units in game s29 (which has 13 ∧-nodes and
89 edges to ∨-nodes) and 106 in game r30 (which has 5 ∧-nodes and 100 edges to ∨-nodes). The
defender DNN has one action output unit per attack-graph node, plus one to pass. This leads to 30
action units in game s29 and 31 in game r30.

In the attacker DNN’s input vector, we include only data from the attacker’s current observation,
because the attacker can see the true game state. For each node, an observation bit indicates
whether the node is active. For each ∧-node and edge to ∨-node, a bit indicates whether the item is
reasonable to attack, meaning its preconditions are active but the target is not. One bit indicates
whether that item is currently in the attack set. Finally, one vector element indicates how many
time steps are left. The attacker DNN input vector has 234 elements in game s29 and 241 in game
r30. We summarize the attacker DNN’s input vector in Table 1, where N is the node count, N∧ is
the ∧-node count, and E∨ is the edge to ∨-node count.

Attacker Defender

Feature Entry count Feature Entry count

isActive N hadAlert hN
canAttack N∧ + E∨ wasDefended hN
inAttackSet N∧ + E∨ inDefenseSet N
timeStepsLeft 1 timeStepsLeft N

Table 1. DNN input vectors, with entry counts.

The defender DNN’s input vector includes data from the defender’s previous 3 observations
to mitigate the problem that the defender has only noisy data on the game state; we fill in the
history with zeros if fewer than 3 past observations exist. (We chose to use a fixed input depth of
3 observations, based on pilot experiments showing that this was sufficient to consistently learn
beneficially deviating strategies. It is possible that a different observation depth might yield similar
or better performance, or that still better outcomes could be produced by a recurrent neural network
that represents the full history of the game.)

For each node and each time step, one bit shows if an alert was observed, and another bit shows
whether the node was defended. One bit indicates whether each node is in the defense set. Finally,
one vector element per node indicates how many time steps are left (repeating for symmetry, in

EC’19 Session 6a: Game Theory

625

case a convolutional layer is used). The input vector has length 232 in game s29, 240 in game r30.
Table 1 summarizes the defender DNN’s input, where h = 3 is the history length.

5.4 DO-EGTA
5.4.1 Definition of DO-EGTA. Let the set of initial heuristic strategies for attacker and defender be
SH = (SHa , S

H
d). In each round t of the iterative procedure, we have current strategy sets Sa,t and

Sd,t . Let σt = (σa,t ,σd,t) be any mixed-Nash equilibrium over these strategy sets under the game’s
utility function U = (Ua ,Ud). Let д() be any deep RL algorithm, such as DQN, that can optimize
over an objective function likeUa against an opponent mixed strategy like σd,t , returning a new
pure strategy δa,t . Let ν () be a Nash equilibrium solver, which returns any mixed-Nash equilibrium,
given a utility function and finite strategy sets. The DO-EGTA procedure is shown in Algorithm 2.

Algorithm 2 DO-EGTA iterated deep RL method

Require: U , SH ,д(),ν ()
1: t ← 0; Sa,t ← SHa ; Sd,t ← SHd
2: σt ← ν (U , Sa,t , Sd,t)
3: do
4: t ← t + 1
5: δa,t ← д(Ua ,σd,t−1); δd,t ← д(Ud ,σa,t−1)
6: if Ua(δa,t ,σd,t−1) > Ua(σa,t−1,σd,t−1) then
7: Sa,t ← Sa,t−1 + {δa,t }

8: if Ud (δd,t ,σa,t−1) > Ua(σd,t−1,σa,t−1) then
9: Sd,t ← Sd,t−1 + {δd,t }

10: σt ← ν (U , Sa,t , Sd,t)
11: while Sa,t , Sa,t−1 ∨ Sd,t , Sd,t−1
12: return σt , Sa,t , Sd,t

Note that our Algorithm 2 is a variation on PSROs [21] and the double-oracle method, which
begins with a set of heuristics and adds only beneficial deviations to the game.
We are aware that the final payoff achieved after deep RL training is sensitive to the choice

of random seeds [11]. One could reduce the likelihood of spurious convergence of DO-EGTA,
by requiring multiple trials of DQN to fail for attacker and defender in the same round, before
considering the method converged. In other words, instead of stopping after a training round in
which both attacker and defender training produce strategies that are not beneficial deviations, one
could repeat both attacker and defender training in such cases, up to some maximum count such as
3 attempts each, stopping only if these repeated attempts all fail to yield a beneficial deviation.

5.4.2 DO-EGTA implementation. We use the Gambit library [23] of game solvers to search for
Nash equilibria, specifically the linear complementarity method known as gambit-lcp. When more
than one Nash equilibrium is produced, we simply use the first.

We train our DNNs in DO-EGTA for 700,000 time steps (but 1,000,000 for the defender in game
r30), with a learning rate of 5 × 10−5 and an artificial discount factor on future rewards of 0.99.
During training, we anneal the exploration rate ϵ linearly from 1 to 0.03 over the first half of
DO-EGTA training steps, holding it constant at 0.03 afterward.

EC’19 Session 6a: Game Theory

626

5.5 HADO-EGTA
5.5.1 Definition of HADO-EGTA. History-aware double-oracle EGTA (HADO-EGTA) extends
DO-EGTA with a new strategy exploration procedure. Recall that DO-EGTA strategy exploration
simply seeks a best response for each agent i to the current equilibrium opponent mixed strategy
σ−i,t−1:

δi,t ≡ argmax
si

Ui (si ,σ−i,t−1). (2)

Instead, HADO-EGTA balances between deviating beneficially against the current equilibrium
opponent, and consideration of previous opponents.

+0 vs. cur

+2 vs. cur

+0 vs. old

+2 v
s.

old

Fig. 4. HADO-EGTA conceptual diagram. Solid contours show payoff vs. current opponent, dashed ones vs.
old opponents. Blue pentagons: pre-training, result in red square. Green diamonds: fine-tuning outputs, result
in red circle.

Figure 4 diagrams the intuition behind HADO-EGTA strategy exploration. In HADO-EGTA
pre-training, a DNN is trained to maximize payoff against the current equilibrium opponent,
shown as training the blue pentagon to find the optimum of the solid contour lines. Note that
it may be possible to increase payoffs against previous opponents (indicated by dashed contour
lines), while maintaining a beneficial deviation against the current opponent (i.e., staying in
the bold, solid contour). Fine-tuning maximizes payoff against old opponents (shown as green
diamonds), returning a strategy that deviates beneficially against the current opponent while also
considering performance against old ones (i.e., the highlighted diamond). This procedure improves
the robustness of the equilibrium strategies against both old and unexplored opponent’s strategies.
HADO-EGTA strategy exploration, h(), takes as input: an agent’s utility function; a count

κ ≥ 2 of DNNs to record; a decay factor γ ∈ (0, 1] for weighting old opponents; a weighting
α ∈ [0, 1] between current and old opponents; and a history of opponent equilibrium strategies
(σd,0, . . . ,σd,t−1). It requires a deep RL method for pre-training like the д() of Algorithm 2, and a
deep RL fine-tuning method, д′(), that proceeds for a limited step count from a pre-trained DNN.
HADO-EGTA exploration h() can replace д() as the strategy-exploration routine in DO-EGTA.
We present HADO-EGTA from the attacker’s perspective as Algorithm 3. For each agent i ,

HADO-EGTA strategy exploration seeks a beneficial deviation that also exploits old opponents:

δi,t ≡ argmax
si

αUi (si ,σ−i,t−1) + (1 − α)Ui (si ,σ−i), (3)

s.t.Ui (si ,σ−i,t−1) > Ui (σt−1). (4)

EC’19 Session 6a: Game Theory

627

where σ−i is the weighted sum of history of opponent equilibrium strategies. The defender’s
strategy exploration procedure is analogous to Algorithm 3. Note that if no interim DNN is a
beneficial deviation, the procedure returns null, and no new strategy will be added to the agent’s
strategy set in the current iteration.

Algorithm 3 HADO-EGTA attacker strategy exploration rule
Require: Ua ,κ,γ ,α ,д(),д

′(), (σd,0, . . . ,σd,t−1)

1: σd ←
(∑t−1

ψ=0 γ
t−1−ψ

)−1 ∑t−1
ψ=0 γ

t−1−ψσd,ψ

2: k ← 0
3: δka,t ← д(Ua ,σd,t−1)
4: while k < κ do
5: k ← k + 1
6: δka,t ← д′(Ua ,σd ,δ

k−1
a,t)

7: δ ∗a,t ← argmaxδ k′a,t αUa(δ
k ′
a,t ,σd,t−1) + (1 − α)Ua(δ

k ′
a,t ,σd),

8: s.t.Ua(δ
k ′
a,t ,σd,t−1) > Ua(σa,t−1,σd,t−1) [or ∅ if none].

9: return δ ∗a,t

Depending on its parameters, HADO-EGTA allows considerable choice of fine-tuning opponents.
HADO-EGTA can fine-tune against a uniform mixed strategy over previous opponent equilibrium
strategies, as in fictitious play, if γ = 1. Or HADO-EGTA can fine-tune against only the current
equilibrium opponent, as in double oracle, if γ ≈ 0. Adjusting α allows a user to make HADO-EGTA
favor beneficial deviations against the current opponent, or exploitation of previous opponents.
HADO-EGTA can select for maximal payoff against the current opponent if α = 1, still reaping the
benefits of multiple interim strategy options δka,t . Or HADO-EGTA can be focused on exploiting
previous opponents, subject to producing a beneficial deviation against the current one, if α = 0.

5.5.2 HADO-EGTA implementation. We pre-train DNNs for 700,000 steps against the current
equilibrium opponent (1,000,000 for the defender in r30), and fine-tune for 400,000, recording κ = 4
interim strategies to select from. More specifically, the interim strategies are recorded at the end of
pre-training, and after 1

3 ,
2
3 , and all fine-tuning training steps are complete. (Mean performance

is measured for the interim networks via independent sampling of payoffs.) We linearly anneal ϵ
from 1.0 to 0.03 over the first half of pre-training steps, then hold it at 0.03. Similarly, ϵ is annealed
from 0.3 to 0.03 over the first half of fine-tuning steps and then is held at 0.03.

6 RESULTS
6.1 Effectiveness of deep RL oracles
We find that DQN consistently learns beneficial deviations from the current Nash equilibrium over
many rounds of DO-EGTA, only at times failing to generate beneficial deviations after several
rounds of training have already been completed. In all, we conducted 2 runs of HADO-EGTA and 3
of DO-EGTA in each environment (s29 or r30). All of these runs have converged.

Figure 5 shows the expected payoffs for attacker and defender equilibrium strategies and learned
deviations, in an example run of DO-EGTA in game r30. The defender fails to deviate beneficially
in rounds (16, 19, 23), while the attacker fails in seven of the later rounds. The largest deviation
gains tend to occur in earlier training rounds. In this run, the process converges after round 23,
when neither training process learns a beneficial deviation.

EC’19 Session 6a: Game Theory

628

0 5 10 15 20
Training round

−100

−75

−50

−25

0

25

50

75

Ex
pe

ct
ed

 p
ay

of
f

Def. eq.
Def. dev.
Att. eq.
Att. dev.

Fig. 5. Expected payoff of attacker and defender, before and after learning a new DNN, in each training round.
Circles indicate rounds with no beneficial deviation. Results are for game r30, in a single example run of
DO-EGTA.

Trends in deviation gains are easier to see when we plot the difference in each round between
the equilibrium payoff and the payoff of the deviating strategy, as shown for game r30 in Figure 6(a).
(Note that where no beneficial deviation was learned, the gain is shown as zero.) As shown, deviation
gains tend to become smaller as more training rounds are completed, but with large variations from
one round to the next. One clear result in Figure 6(a) is that the trend in deviation gains from deep
RL is not smooth or monotonic. Deviation gains are modest in most rounds, but with occasional
very large gains, even (but infrequently) in later rounds of training.

Figure 6(b) shows the defender learning curves of an example run of DO-EGTA, over 21 rounds in
game r30. Note that most curves with large gains are from early rounds, which are mapped to purple
colors. Even in later training rounds (which are mapped to yellow), the learner steadily improves in
each curve, especially early in training, before leveling off at a payoff above the equilibrium payoff,
except in the final round.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Training round

0

20

40

60

80

M
ea

n
ga

in

Def. gain
Att. gain

(a)

0 10000 20000
Training episode

−125

−100

−75

−50

−25

0

25

Pa
yo

ff
ga

in

0

10

20
Ro

un
d

(b)

Fig. 6. (a) Payoff gain of new DNNs w.r.t. to current equilibrium. Results are means over all DO-EGTA runs
for r30, with standard error of the mean (SEM). (SEM equals zero for training rounds with only one run
remaining.) Green stars show when runs converged, red crosses when they were stopped early. (b) Defender’s
learning curve for each round of DO-EGTA training, in an example run for game r30. Curves are shown as
gain relative to previous equilibrium. Color map goes from purple in early rounds to yellow in later ones.

EC’19 Session 6a: Game Theory

629

6.2 HADO-EGTA improvement over DO-EGTA
We compare the performance of HADO-EGTA and DO-EGTA by evaluating the strategic stability
of each beneficially deviating DNN produced by a run of either method. Strategy quality is always
relative to other-agent strategy choices; we adopt the approach of evaluation with respect to play
against a Nash equilibrium [3, 16]. Specifically, we take the union over all beneficially deviating
DNNs produced by all runs of HADO-EGTA and DO-EGTA in an environment (e.g., r30 or s29),
along with all the heuristic strategies, which we term the combined game. We then measure the
quality of any strategy as its regret with respect to the Nash equilibria of this combined game. For
example, to evaluate an attacker DNN strategy ϕatt against equilibrium profile σ ∗, we compute
ρ(ϕatt ,σ

∗). The combined games contain many more strategies than the final games from individual
runs: in setting s29, 182 attacker and 348 defender strategies, vs. 30–50 and 82–122 in individual
runs’ final games; in setting r30, 109 attacker and 182 defender strategies, vs. 23–35 and 67–89.

As shown in Figure 7, HADO-EGTA produces DNNs with lower regret on average, with respect
to Nash equilibria of the combined game, compared to DO-EGTA. Figure 7 shows results from the
2 runs of HADO-EGTA and 3 of DO-EGTA carried out in each setting, r30 or s29. In the combined
games, we found 4 Nash equilibria in setting r30 and 1 in s29. Each HADO-EGTA column has 2
scatter plot points per equilibrium, each DO-EGTA column 3 per equilibrium, corresponding to
the distinct runs. Across all equilibria, almost all HADO-EGTA runs produced mean regret below
any corresponding DO-EGTA run. The magnitude of the HADO-EGTA improvement ranges from
roughly a factor of 0.25 to 0.5 for a given condition, taking the mean over results for attacker or
defender, in setting r30 or s29. Note that the combined games we analyze here for r30 and s29 contain
all DNN strategies. All runs included in this analysis have converged, over up to 109 rounds.

As shown in Figure 8, it appears that DNNs trained by both DO-EGTA and HADO-EGTA tend to
have lower regret, with respect to the combined game, in later training rounds. However, HADO-
EGTA produces DNNs whose regrets decrease more rapidly during the initial training rounds, and
remain lower late in training.

Def.
DO

Def.
HADO

Att.
DO

Att.
HADO

0

2

4

6

8

10

12

14

M
ea

n
re

gr
et

DO
HADO

Def.
DO

Def.
HADO

Att.
DO

Att.
HADO

0

10

20

30

40

50

60

M
ea

n
re

gr
et

DO
HADO

Fig. 7. Mean regret of DNNs trained, w.r.t. Nash equilibria of the combined game. Left: r30, right: s29. Each
marker is based on one run, taking regret w.r.t. to one Nash equilibrium. Bars show median result for each
condition.

A distinct approach we take to comparing HADO-EGTA and DO-EGTA performance is to
conduct a tournament between the final equilibrium mixed strategies from all converged runs. In
the tournament, for a given environment (e.g., r30 or s29), the final equilibrium mixed strategy of
each training run of HADO-EGTA (DO-EGTA) will meet the final equilibrium mixed strategy of
the opposing agent type from every run of DO-EGTA (HADO-EGTA). For any pair of converged
runs, where one is HADO-EGTA and the other DO-EGTA, a run is considered the clear winner if it

EC’19 Session 6a: Game Theory

630

0 4 8 12 16 20 24 28 32 36 40
Training round

0

5

10

15

20

25

30

M
ea

n
re

gr
et

HADO-EGTA
Def. regret
Att. regret

0 4 8 12 16 20 24 28 32 36 40
Training round

0

5

10

15

20

25

30
M

ea
n

re
gr

et
DO-EGTA

Def. regret
Att. regret

Fig. 8. Mean over training runs of DO-EGTA or HADO-EGTA, of the regret of each round’s DNNs, with
respect to a Nash equilibrium of the combined game for r30. Gaps appear where no beneficially deviating
network was produced. Error bars show standard error of the mean. (SEM equals zero for training rounds
with only one run producing a beneficial deviation.)

outperforms the other run in each of 8 payoff comparisons. Specifically, for some run A to win over
run B: both attacker and defender of each run must achieve lower payoff against A than against B;
and both attacker and defender from Amust get higher payoff than B against either opposing run.
For the tournament approach to analysis, we have six pairs of converged runs, comprising one

run each of DO-EGTA and HADO-EGTA in setting s29, as well as all three DO-EGTA and two
HADO-EGTA runs in setting r30. The HADO-EGTA run is the clear winner in setting s29 and in one
of the six pairs from setting r30, with all 8 payoff comparisons being in favor of the HADO-EGTA
mixed strategies. In the other three matched pairs from setting r30, HADO-EGTA is superior in only
(3, 5, 6, 7, 7) of 8 payoff comparisons respectively, meaning neither equilibrium is clearly stronger.
In all, the tournament results constitute modest evidence that HADO-EGTA produces stronger
mixed strategies upon convergence than DO-EGTA.

6.2.1 Analyzing causes of HADO-EGTA gains. Multiple methodological differences between HADO-
EGTA and DO-EGTA could potentially explain the gains of HADO-EGTA:
(1) Each round of HADO-EGTA in our study adds 400,000 training steps in the fine-tuning phase.
(2) Each round of HADO-EGTA in these experiments selects the best DNN among 4 intermediate

training outputs, while DO-EGTA must use the DNN from the end of training.
(3) HADO-EGTA fine-tunes each DNN against opponents from equilibria of previous rounds,

while DO-EGTA trains only against the current round’s equilibrium opponent.
It is important to consider all possible explanations to elucidate why HADO-EGTA is successful [22].
To evaluate Item (1), the effect of added training steps, we check if the expected payoff of the

DNN being trained increases substantially in the final steps of DO-EGTA training. We found that
during the last 0.1 fraction of training steps in DO-EGTA, only modest payoff gains of about 0.5 to
3.6 were produced on average, with only 0.57 to 0.64 fraction of changes being positive, depending
on the setting.
To investigate the impact of Item (2), selection among interim DNNs by HADO-EGTA, we

measure how much worse each DNN produced by DO-EGTA performs, relative to the best interim
payoff achieved during its training. We find that the mean difference between the final DNN payoff
of a DO-EGTA training run and the highest payoff during training tends to be small, between 3.4
and 8.7. We also check how often HADO-EGTA selects DNNs other than the final one produced

EC’19 Session 6a: Game Theory

631

during a training round. HADO-EGTA usually selects the final fine-tuned DNN, and when it does
not, the gain over the final DNN in payoff against the current equilibrium opponent is modest on
average, between 1.5 and 4.6.
These analyses provide some evidence that neither Item (1), the extended training period, nor

Item (2), the DNN selection component, can fully account for the improved performance of HADO-
EGTA relative to DO-EGTA. This leaves the remaining explanation, Item (3), that it is fine-tuning
against previous rounds’ equilibrium opponents that largely accounts for the improved performance
of HADO-EGTA relative to DO-EGTA.

6.3 Evolution of equilibrium mixed strategies
We can see a more detailed picture of how a player’s equilibrium behavior changes from round to
round in a heat map, plotting the weight of each round’s DNN in each equilibrium (which might be
0). In Figure 9, for each of 22 training rounds of an example run of DO-EGTA in game r30, we plot
the weight in our Nash equilibrium of each defender DNN strategy learned so far, as well as of all
heuristic strategies combined (shown as column 0). By definition, the full weight of 1 will be on
heuristic strategies in round 0. After a later round n, weight of 1 can be spread across any DNN up
to n.

0 3 6 9 12 15 18 21
Network weight

0

3

6

9

12

15

18

21

Tr
ai

ni
ng

 ro
un

d

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9. Heat map of defender mixed strategies by training round, for an example DO-EGTA run in game r30.

If the agent consistently learned better strategies in each round, almost all weight would appear
along the main diagonal of the heat map, where the newest DQN strategies are shown. But if
learning plateaued, there would be little weight on the main diagonal beyond a certain vertical
line, after which the weight would remain on the most successful strategies from early rounds.
Figure 9 seems to show the defender in game r30 learned successfully before round 15, placing
much weight on the newest DNNs, although with some on heuristic strategies as well. After round
16, the defender began using the epoch 15 DNN heavily at equilibrium, and not placing as much
weight on new DNNs. This pattern is typical of DO-EGTA training runs.

6.4 Performance with uninformed initial strategies
Starting with effective heuristic strategies for a complex game, our method has demonstrated an
ability to learn significantly superior strategies. One natural question is whether the initialization
with those strategies was pivotal to the success. To answer this question, we re-ran HADO-EGTA

EC’19 Session 6a: Game Theory

632

on r30, initialized with attacker and defender strategies that select actions uniformly at random.
Preliminary results suggest that our method actually performs well even when started with random
strategies. Specifically, we found that after a handful of rounds, the quality of learned attacker
and defender reached a roughly comparable level with those learned in the same round of the
heuristic-driven HADO-EGTA runs. This result contrasts with the experience of Wang et al. [46],
who found iterative deep RL to be ineffective for their game when starting from random strategies,
but successful when seeded with hand-coded heuristics. This disparity could be due to differences
in the game setting, the methods, or a combination. We note that in our game, the random attacker
performs relevant actions, and while distinctly suboptimal the performance is not terrible. The
random defender, however, is quite inept.

6.5 Time requirements of DO-EGTA
We ran our experiments on Intel Xeon CPUs with 2.0–3.7 GHz clock speed. Our DNNs were trained
with CPU only, using TensorFlow version 1.5. We believe training on GPU might have sped up the
process only slightly, as the game simulator is CPU-bound.
Each round of DO-EGTA takes about 21–32 hours, and a run of 20–30 rounds requires about

25–40 days. HADO-EGTA requires more time per iteration than DO-EGTA, because it adds a
fine-tuning step, and another step for evaluating the payoff of several learned DNNs to select the
best. Each iteration of HADO-EGTA took from 21–51 hours. In addition, HADO-EGTA tends to
require more rounds before converging.

7 CONCLUSION
The primary contribution of this study is the demonstration that EGTA iterated with deep RL
can produce superior strategies for a complex dynamic game, compared to sophisticated heuristic
strategies carefully designed and tuned (also with EGTA) in prior work. The game, a two-player
non-zero-sum multi-stage interaction between attacker and defender on a Bayesian attack graph,
features imperfect information and combinatorial action spaces. To deal with combinatorial actions,
we introduced a greedy action-building approach that accounts for interdependencies among
actions without blowing up the size of the DNN representing agent strategies. In two reasonably
sized instances of the attack-graph game, we find out baseline method DO-EGTA consistently learns
DNNs for both attacker and defender with stronger performance than the initial heuristics, both
against equilibria of these heuristics and against the cumulative equilibria of generated strategies.
These results were achieved in a rather generic DNN architecture, not specially structured or highly
tuned to the action-graph domain.
To deal with learning instability due to DO’s tendency to overfit to current equilibrium, we

proposed a specific approach to balance responsiveness to current and historically encountered
strategies. Experimental evidence suggests that our history-aware variant, HADO-EGTA, tends to
produce better strategies earlier compared to DO-EGTA. Moreover, the DNNs ultimately returned
on convergence by the history-aware method have lower regret, with respect to the combined
game over all DNN and heuristic strategies generated by both methods. This, along with results
from a tournament among final mixed strategies of converged runs, supports a positive conclusion
about the benefits of this approach.

Our methods are computationally intensive, and as reported above the round count needed for
convergence is unpredictable and may have high variance. Fortunately, the anytime performance
of (HA)DO-EGTA appears reasonable after roughly the first half of the expected run count has
completed. Further work will refine our methods and tackle some computational bottlenecks to
improve the practicality of this iterated deep RL approach to complex game solving.

EC’19 Session 6a: Game Theory

633

ACKNOWLEDGMENTS
This work was supported by funding from the US Army Research Office (MURI grant W911NF-13-
1-0421) and from DARPA SI3-CMD.

REFERENCES
[1] Amenaza. 2018. SecurITree. http://www.amenaza.com/
[2] David Balduzzi, Sébastien Racanière, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel. 2018. The

mechanics of n-player differentiable games. In 35th International Conference on Machine Learning. 363–372.
[3] David Balduzzi, Karl Tuyls, Julien Pérolat, and Thore Graepel. 2018. Re-evaluating evaluation. In 32nd Conference on

Neural Information Processing Systems. 3272–3283.
[4] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. 2018. Emergent complexity via

multi-agent competition. In 6th International Conference on Learning Representations.
[5] NoamBrown and Tuomas Sandholm. 2018. SuperhumanAI for heads-up no-limit poker: Libratus beats top professionals.

Science 359 (2018), 418–424.
[6] Karel Durkota, Viliam Lisỳ, Branislav Bošanskỳ, and Christopher Kiekintveld. 2015. Approximate solutions for attack

graph games with imperfect information. 6th Int’l Conference on Decision and Game Theory for Security, 228–249.
[7] Vlad Firoiu, William F. Whitney, and Joshua B. Tenenbaum. 2017. Beating the world’s best at Super Smash Bros. with

deep reinforcement learning. arXiv:1702.06230 (2017).
[8] Jakob Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor Mordatch. 2018.

Learning with opponent-learning awareness. In 17th International Conference on Autonomous Agents and Multiagent
Systems. 122–130.

[9] Paulina Grnarova, Kfir Y. Levy, Aurelien Lucchi, Thomas Hofmann, and Andreas Krause. 2018. An online learning
approach to generative adversarial networks. In 6th International Conference on Learning Representations.

[10] Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, and Li Deng. 2016. Deep reinforcement
learning with a combinatorial action space for predicting popular Reddit threads. In Conference on Empirical Methods
in Natural Language Processing. 1838–1848.

[11] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. 2018. Deep reinforce-
ment learning that matters. 32nd AAAI Conference on Artificial Intelligence, 3207–3214.

[12] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot,
Mohammad Azar, and David Silver. 2018. Rainbow: Combining improvements in deep reinforcement learning. In 32nd
AAAI Conference on Artificial Intelligence. 3215–3222.

[13] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. 2006. Practical attack graph generation for network defense. In
Computer Security Applications Conference. IEEE, 121–130.

[14] Isograph. 2018. AttackTree+. http://www.isograph-software.com/atpover.htm
[15] Manish Jain, Dmytro Korzhyk, Ondřej Vaněk, Vincent Conitzer, Michal Pěchouček, and Milind Tambe. 2011. A double

oracle algorithm for zero-sum security games on graphs. 10th International Conference on Autonomous Agents and
Multiagent Systems, 327–334.

[16] Patrick R. Jordan, Christopher Kiekintveld, and Michael P. Wellman. 2007. Empirical game-theoretic analysis of the
TAC supply chain game. In 6th Int’l Joint Conference on Autonomous Agents and Multiagent Systems. 1188–1195.

[17] Patrick R. Jordan, L. Julian Schvartzman, and Michael P. Wellman. 2010. Strategy exploration in empirical games. In
9th International Conference on Autonomous Agents and Multiagent Systems. 1131–1138.

[18] Nitin Kamra, Umang Gupta, Fei Fang, Yan Liu, and Milind Tambe. 2018. Policy learning for continuous space security
games using neural networks. In 32nd AAAI Conference on Artificial Intelligence. 1103–1112.

[19] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. 2014. DAG-based attack and defense modeling:
Don’t miss the forest for the attack trees. Computer Science Review 13 (2014), 1–38.

[20] Guillaume Lample and Devendra Singh Chaplot. 2017. Playing FPS games with deep reinforcement learning. In 31st
AAAI Conference on Artificial Intelligence. 2140–2146.

[21] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Julien Perolat, David Silver, Thore Graepel,
et al. 2017. A unified game-theoretic approach to multiagent reinforcement learning. Advances in Neural Information
Processing Systems, 4190–4203.

[22] Zachary C. Lipton and Jacob Steinhardt. 2018. Troubling trends in machine learning scholarship. arXiv:1807.03341
(2018).

[23] Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. 2006. Gambit: Software tools for game theory.
[24] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. 2003. Planning in the presence of cost functions controlled

by an adversary. In 20th International Conference on Machine Learning. 536–543.

EC’19 Session 6a: Game Theory

634

http://www.amenaza.com/
http://www.isograph-software.com/atpover.htm

[25] Erik Miehling, Mohammad Rasouli, and Demosthenis Teneketzis. 2015. Optimal defense policies for partially observable
spreading processes on Bayesian attack graphs. In Second ACM Workshop on Moving Target Defense. 67–76.

[26] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. In 33rd International Conference
on Machine Learning. 1928–1937.

[27] VolodymyrMnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin
Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nature 518 (2015), 529–533.

[28] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh,
Michael Johanson, and Michael Bowling. 2017. DeepStack: Expert-level artificial intelligence in heads-up no-limit
poker. Science 356, 6337 (2017), 508–513.

[29] Apurba K. Nandi, Hugh R. Medal, and Satish Vadlamani. 2016. Interdicting attack graphs to protect organizations
from cyber attacks: A bi-level defender–attacker model. Computers & Operations Research 75 (2016), 118–131.

[30] Thanh H. Nguyen, Mason Wright, Michael P. Wellman, and Satinder Singh. 2018. Multi-stage attack graph security
games: Heuristic strategies, with empirical game-theoretic analysis. Security and Communication Networks Article ID
2864873 (2018).

[31] Catherine Olsson, Surya Bhupatiraju, Tom Brown, Augustus Odena, and Ian Goodfellow. 2018. Skill rating for
generative models. arXiv:1808.04888 (2018).

[32] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/
[33] Cynthia Phillips and Laura Painton Swiler. 1998. A graph-based system for network-vulnerability analysis. Workshop

on New Security Paradigms, 71–79.
[34] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. 2012. Dynamic security risk management using Bayesian attack

graphs. IEEE Transactions on Dependable and Secure Computing 9, 1 (2012), 61–74.
[35] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and PhilippMoritz. 2015. Trust region policy optimization.

In 32nd International Conference on Machine Learning. 1889–1897.
[36] L. Julian Schvartzman and Michael P. Wellman. 2009. Stronger CDA strategies through empirical game-theoretic

analysis and reinforcement learning. In 8th Int’l Conference on Autonomous Agents and Multiagent Systems. 249–256.
[37] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M Wing. 2002. Automated generation

and analysis of attack graphs. In IEEE Symposium on Security and Privacy. IEEE, 273.
[38] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser,

Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
2016. Mastering the game of Go with deep neural networks and tree search. Nature 529 (2016), 484–489.

[39] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. 2018. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[40] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, Adrian Bolton, et al. 2017. Mastering the game of Go without human knowledge. Nature
550, 7676 (2017), 354–359.

[41] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan Aru, and Raul Vicente.
2017. Multiagent cooperation and competition with deep reinforcement learning. PLOS One 12, 4 (2017).

[42] Anderson Tavares, Hector Azpurua, Amanda Santos, and Luiz Chaimowicz. 2016. Rock, paper, StarCraft: Strategy
selection in real-time strategy games. In 12th AAAI Conf. Artificial Intelligence and Interactive Digital Entertainment.

[43] Hado van Hasselt. 2010. Double Q-learning. In Advances in Neural Information Processing Systems. 2613–2621.
[44] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learning with double Q-learning. In 30th

AAAI Conference on Artificial Intelligence. 2094–2100.
[45] Sridhar Venkatesan, Massimiliano Albanese, Ankit Shah, Rajesh Ganesan, and Sushil Jajodia. 2017. Detecting stealthy

botnets in a resource-constrained environment using reinforcement learning. In Fourth ACM Workshop on Moving
Target Defense. 75–85.

[46] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, and Fei Fang. 2019. Deep reinforcement
learning for green security games with real-time information. In 33rd AAAI Conference on Artificial Intelligence.

[47] Michael P. Wellman. 2016. Putting the agent in agent-based modeling. Autonomous Agents and Multi-Agent Systems 30
(2016), 1175–1189.

[48] Mason Wright and Michael P. Wellman. 2018. Evaluating the stability of non-adaptive trading in continuous double
auctions. In 17th International Conference on Autonomous Agents and Multiagent Systems. 614–622.

EC’19 Session 6a: Game Theory

635

https://blog.openai.com/openai-five/

A DEEP RL HYPERPARAMETERS

r30 attacker inputs 241
r30 defender inputs 240
s29 attacker inputs 234
s29 defender inputs 232

hidden layers 2 FC layers, size 256
activations ReLU per hidden layer

r30 attacker outputs 106
r30 defender outputs 31
s29 attacker outputs 103
s29 defender outputs 30

learning rate 5 × 10−5
training discount factor 0.99

batch size 32

ϵ in DO-EGTA linear 1.0 to 0.03
in first half, then 0.03

ϵ in HADO-EGTA pre. linear 1.0 to 0.03
in first half, then 0.03

ϵ in HADO-EGTA fine. linear 0.3 to 0.03
in first half, then 0.03

train steps in DO-EGTA 700k (1m for r30 defender)
train steps in HADO-EGTA pre. 700k (1m for r30 defender)
train steps in HADO-EGTA fine. 400k

κ in HADO-EGTA 4
γ in HADO-EGTA 0.7
α in HADO-EGTA 2

7

DDQN options no prioritized replay;
no param noise

Table 2. Deep RL hyperparameters

EC’19 Session 6a: Game Theory

636

	Abstract
	1 Introduction
	2 Game-theoretic preliminaries
	3 Related work
	3.1 Attack-graph games
	3.2 Deep reinforcement learning
	3.3 Double-oracle and empirical game-theoretic methods
	3.4 History-aware training in multiagent RL
	3.5 Evaluation of strategies and training methods

	4 Game Description
	4.1 Attack-graph model
	4.2 Heuristic strategies

	5 Methods
	5.1 Attack-graph game instances
	5.2 Deep Q-networks
	5.3 Game representation for deep RL
	5.4 DO-EGTA
	5.5 HADO-EGTA

	6 Results
	6.1 Effectiveness of deep RL oracles
	6.2 HADO-EGTA improvement over DO-EGTA
	6.3 Evolution of equilibrium mixed strategies
	6.4 Performance with uninformed initial strategies
	6.5 Time requirements of DO-EGTA

	7 Conclusion
	Acknowledgments
	References
	A Deep RL hyperparameters

