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ENGINEERING RADIO MAPS FOR
WIRELESS RESOURCE MANAGEMENT
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ABSTRACT

The term ‘radio map’ in general refers to the
geographical signal power spectrum density,
formed by the superposition of concurrent wireless
transmissions, as a function of location, frequency
and time. It contains rich and useful information
regarding the spectral activities and propagation
channels in wireless networks. Such information
can be leveraged to not only improve the perfor-
mance of existing wireless services (e.g., via pro-
active resource provisioning) but also enable new
applications, such as wireless spectrum surveil-
lance. However, practical implementation of radio
maps in wireless communication is often difficult
due to the heterogeneity of modern wireless net-
works and the sheer amount of wireless data to
be collected, stored, and processed. In this arti-
cle, we provide an overview of the state-of-the-art
techniques for constructing radio maps as well
as applying them to achieve efficient and secure
resource management in wireless networks. Some
key research challenges are highlighted to motivate
future investigation.

INTRODUCTION

Modern wireless communication infrastructure
consists of densely deployed and heterogeneous
wireless networks. Their radio frequency radia-
tions superimpose and cause irregular variations
of signal power spectrum density (PSD) over dif-
ferent locations, frequencies and time. One sys-
tematic characterization of such variation of PSD
over different dimensions is by using a radio map,
which contains rich and useful information of the
spectral activities and propagation channels of
wireless networks in a given geographic area. To
distinguish from the well known spectrum map in
cognitive radio networks, in Fig. 1 we compare
a snapshot of a radio map at a given frequency
band with a TV spectrum map [1]. Specifically,
the TV spectrum map depicts the regional utiliza-
tion of different licensed TV bands averaged over
time and space. A radio map, on the other hand,
provides much higher spatial and temporal reso-
lution of spectrum utilization, which allows one
to zoom in to examine the detailed PSD distribu-
tion at any particular time and location. A radio
map also differs from the spectrum database [2],
which records relatively static information about
the radio environment (e.g., registered transmit-
ters’ positions, PSD, on-off schedule, and channel

prorogation models) and measurement data. In
comparison, a radio map is dynamically construct-
ed from real-time measurements and constantly
updated, thus being able to provide an accurate
characterization of PSD distribution at different
dimensions and scales.

Another research topic closely related to radio
maps is spectrum sensing in cognitive radio net-
works [3]. Specifically, spectrum sensing aims to
detect the occupancy of licensed spectrum in the
vicinity of unlicensed transmitters for opportunis-
tic channel access. To maximize the transmission
opportunity, unlicensed devices often need to
exploit channel short-term fading, and thus per-
form PSD estimation in a small timescale compa-
rable to the channel coherence time. Radio maps,
on the other hand, estimate the PSD over a large
and continuous geographical area, rather than
that of spectrum sensing at several discrete loca-
tions of unlicensed devices. It is mainly interested
in long-term spectral activity, while the short-term
fading effect is averaged out during estimation. In
this case, a radio map is updated only when there
is sufficient change in the radio source location
(say, moving beyond the decorrelation distance
of log-normal shadowing) or transmit PSD (e.g.,
switching on/off or hopping to another channel).

As shown in Fig. 2, the use of a radio map in
wireless networks consists of three major steps:
measurement collection and processing; radio map
construction and update; and radio map-assisted
resource management. Specifically, the system
operator first collects and filters the distributed
measurements, which are then used by the esti-
mator to compute the radio map. The constructed
radio map is then used to derive useful knowledge
about the spectrum usage pattern and essential
parameters in the network, for example, wireless
device location, interference level, and channel
models. Such information can be leveraged to
improve the performance of existing wireless ser-
vices and enable new wireless applications. The
main challenges in constructing radio maps and uti-
lizing them for efficient wireless resource allocation
are discussed next.

The foremost challenge of engineering a radio
map in wireless networks is to construct an accu-
rate PSD map from distributed measurements. As
a radio map is formed as a continuous function
over location coordinates, radio map construction
needs to estimate the unknown PSD from a lim-
ited number of PSD measurements taken at dis-
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FIGURE 1. Comparison of a radio map (left) and the conventional TV spectrum map (right).
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FIGURE 2. The architecture of radio-map-assisted wireless network resource management.

tributed locations. By exploiting signal correlation
in different dimensions, efficient estimation, inter-
polation and learning techniques can be devised
to derive the unknown PSD. Nonetheless, achiev-
ing high estimation accuracy is a challenging task
especially when the number of sensors is limited,
whereas their measurements are inaccurate and
noisy in practice. The PSD is time-varying due to
the unexpected change of network topology and
on/off state of transmitters, such that a radio map
needs to be timely updated. Due to the sheer size
of radio map data, this requires efficient data pro-
cessing methods to maintain a scalable radio map
database.

Given the radio map, it is also challenging to
design new resource management tools to make
full use of it to improve wireless network perfor-
mance. For instance, one can derive important
information about the terrains and layout of signal
blockages. Accordingly, the recent vehicular base
station (VBS) technology, such as a BS mounted on
unmanned arial vehicle (UAV) and ground automo-
biles, can perform maneuvers to avoid or escape

from unfavorable signal dead zones. Further, the
knowledge of PSD variations over space and time
enables more efficient resource allocation meth-
ods to optimize the performance of specific wire-
less applications. Some commonly used methods
include beamforming and power control, channel
reservation, and interference-aware spectrum allo-
cation. Meanwhile, the long-term statistics obtained
from radio maps can help to plan the deployment
of wireless networks in different scales, from large
cellular networks to small WiFi or femto-cell net-
works. Moreover, wireless security is becoming a
rising concern nowadays for wireless networks. For
instance, rogue BSs are more frequently observed
to steal private information of unsuspecting users.
In this case, a radio map can be used as a powerful
enabler to detect abnormal spectral activities and
implement corresponding countermeasures.

This article presents an overview of various
state-of-the-art techniques to engineer radio maps
for resource management in wireless communi-
cation systems. Specifically, we first introduce the
methods to construct a radio map and maintain
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its database efficiently. We then discuss promising
tools to extract useful features from a radio map
and design radio map-assisted resource manage-
ment methods.

RADIO MAP CONSTRUCTION AND MAINTENANCE
MEASUREMENT COLLECTION

A radio map is generally characterized by a func-
tion mapping from a 3-tuple variable (x, f, t) to the
signal power, denoted by 0(x, f, t), where x € R3
denotes the location in a three-dimensional (3D)
Cartesian coordinate system, and f and t denote
frequency point and time instant, respectively.
In general, other than some direct power mea-
surements taken by a few distributed sensors at
known locations for specific time and frequency
bands, the ¢ function at all other variable values
needs to be estimated based on them. As shown
in Fig. 2, the first step of constructing a radio map
is to collect measurement data from distributed
sensors to a data fusion center. The sensors can
be dedicated sensing devices deployed by the
system operator, which are fully controllable in
their sensing location, accuracy and time interval.
Meanwhile, PSD data can also be collected from
non-dedicated devices, such as mobile subscrib-
ers (MSs) through crowd sourcing, who report
to the system operator from time to time volun-
tarily or in exchange for monetary rewards. This
can effectively reduce the deployment cost of
data acquisition. As the sensing measurements
are spatially correlated, the locations where the
measurements are taken have a large impact on
estimation accuracy. For dedicated sensing devic-
es, it is important for the system operator to opti-
mize their deployment, for example, the locations
(routes) of fixed (mobile) sensors, to minimize the
cost and redundancy in the data measurement
set. For non-dedicated devices, as the system
operator has no control over them (e.g., device
mobility), a large number of sensing devices are
needed to ensure high estimation accuracy from
the measurements at random locations.

Data reported by the sensing devices can be
raw measurements (i.e., the time-domain signal),
ensemble received power (i.e., total received
power over the sensed band), or local PSD esti-
mations. While the former two methods require
lower hardware complexity and processing delay,
the last method saves the bandwidth for report-
ing to the fusion center and reduces its burden of
computation and storage of large received data.
The data is quantized before it is sent to the fusion
center, where the number of quantization levels
balances the estimation accuracy with feedback
complexity. In particular, the authors in [4] propose
a one-bit feedback method in which each sensor
simply compares its received time-domain signal
strength against a prescribed threshold before
sending the one-bit result periodically to the fusion
center, based on which the PSD can be estimated.
Because of quantization noise and wireless channel
distortion, the signal received by the fusion center
is likely to be affected by random errors. Moreover,
the data reported by non-dedicated sensors may
be incompatible in format or even contain false
reports. Accordingly, the fusion center needs to
reject potentially bad data before feeding it to the
map estimator. This can be achieved based on the

correlation between the data collected or the devi-
ation from historical data statistics.

RADIO MAP ESTIMATION

After the fusion center pre-processes the received
sensor data, we assume for simplicity that the
input to the radio map estimator is the PSD mea-
surements of N sensors located over a geograph-
ic area A with known coordinates x;, i = 1, -+, N,.
Specifically, the PSD measurement of the i-th sen-
sor is denoted by ¢(f, t), where f € Fand T e T
denote the ranges of measurement in frequency
and time of our interest. The objective is to esti-
mate the entire function 0(x, f, t) over all other x
€ A fe Fand T € 7. For the purpose of expo-
sition, we first neglect the variable t and focus
on estimating ®(x, f) within a specific time inter-
val, and discuss the update of the radio map over
time in the next subsection.” According to their
different fundamental approaches, the existing
works on radio map estimation can be roughly
divided into two categories, namely model-based
and model-free methods.

Model-Based Methods: Methods that fall in
this category often assume certain signal propaga-
tion models and express the received signal PSD
as a combination of the transmit PSD of all active
wireless transmitters. Specifically, the radio map
function is modeled as

Nl
DX, 1)= D 8 (X )y (f), .
w=1 1

where N, denotes the number of transmitters, g,
denotes the channel power gain function from
the transmitter w to location x, and 1, denotes
the transmit PSD of the transmitter w. The prior
knowledge of g,, and 1, depends on specif-
ic application scenarios, which also determines
the use of either a parametric or non-parametric
method for characterizing correlations in the spa-
tial and frequency domains, as discussed next.

Parametric methods assume the knowledge
of explicit function type of g,, and/or 1, with
a fixed number of unknown parameters 6 to be
determined. Hence, radio map estimation is natu-
rally formulated as a regression problem to find the
best fit between the PSD predicted by Eq. 1T and
those measured at the N; locations. For instance,
[5] considers a single narrowband WiFi transmit-
ter and assumes that 1, is known in advance. It
applies a parametric path-loss model with 6 being
the unknown path-loss exponent and transmitter
location. The conventional least square (LS) meth-
od is applied to find the unknown parameters. The
single transmitter and narrowband model is limited
in practical applications, while the measurements
are often taken with multiple transmitters operat-
ing on an overlapped wideband channel. In this
case, depending on the availability of prior infor-
mation about transmitter locations and/or transmit
PSDs, the overall radio map in Eq. 1 needs to be
estimated with joint considerations for the spatial
and frequency correlations in the collected data.
For example, one active transmitter may transmit in
adjacent bands with high probability.

Alternatively, non-parametric methods do not
assume the knowledge of the explicit functional
form of channel model g,,. Instead, g, is expressed
in terms of sensor parameters, such that the num-

The PSD is time-vary-
ing due to the unex-
pected change of
network topology and
on/off state of transmit-
ters, such that a radio
map needs to be time-
ly updated. Due to the
sheer size of radio map
data, this requires effi-
cient data processing
methods to maintain

a scalable radio map
database.

1 Interested readers may
refer to [2] for a review on
joint frequency-time radio
map estimation methods.
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Although many com-
mon candidate kernel
functions are available,
the search for a proper
kernel function for a
specific problem is
more often a work of
art, where common-
ly used approaches
include cross valida-
tion, historical data or
multi-kernel
approaches.

2 Here, we consider a nar-
rowband flat fading channel
for simplicity of illustration.
A wideband channel can be
similarly modeled as multi-
ple narrowband channels.

ber of parameters to be estimated grows with
the number of measurements. In this case, ker-
nel-based regressions are widely used to model the
wireless channel gain g,,(x) as a kernel expansion
around the sensor locations.? Specifically, the vec-
tor of wireless channel gains is denoted by g(x)
= 35K, x))c;, where g(x) = (g1(x), -, gn, )7, X;
denotes the location of the i-th sensor, K(x, x;)
denotes the chosen kernel (matrix) and ¢; denotes
the unknown expansion coefficient (vector). Given
the form of the kernel function, the problem reduc-
es to a regression problem for finding the optimal
coefficients ¢/s. Evidently, the number of unknown
parameters ¢/’s is proportional to the number of
sensors. The key challenge of non-parametric
methods lies in the choice of a proper kernel func-
tion that approximates the true variation of g, over
space. For instance, [6] uses a thin-plate splines
radial kernel to model the channel gains. In particu-
lar, it assumes that the PSD of each transmitter can
be decomposed in frequency into a set of known
overlapping PSD basis functions, for example,
raised-cosine PSD centered at predetermined fre-
quencies. Then, it characterizes the impact of each
basis to the PSD at any location, which is contrib-
uted jointly by multiple transmitters owning such a
PSD basis. It then applies a variational LS method,
which exploits sparsity in the number of PSD basis
functions in the solution and the smoothness of the
predicted PSD at neighboring locations.

Although many common candidate kernel func-
tions are available, the search for a proper kernel
function for a specific problem is more often a
work of art, where commonly used approaches
include cross validation, historical data or multi-ker-
nel approaches. Another interesting work [7] uses
the measurements by multi-antenna sensors to
construct a three-way tensor. It then applies the
parallel factor analysis (PARAFAC) technique to
decompose the tensor as the multiplication of
three matrices, representing respectively the trans-
mit PSD, channel gains, and directions of the trans-
mitters with respect to the sensors. Subsequently,
the corresponding transmitter location and spectral
information can be derived.

In general, parametric methods are more suit-
able when trustworthy prior knowledge of the
channel model is available, for example, through
repeated measurements and regression. However,
they lack flexibility and are not suitable for com-
plex and heterogeneous propagation channels. In
contrast, non-parametric methods can be used to
approximate any channel function in a complex
propagation environment with arbitrary accura-
cy. However, achieving high estimation accuracy
requires a large number of measurements for, for
example, validating the choice of kernel functions,
which is often strongly subject to cost constraint.
In practice, a semi-parametric method that incor-
porates prior knowledge into non-parametric esti-
mation can enjoy the benefits of both methods.
For instance, when the locations of the transmitters
are known, semi-parametric regression can be used
to improve the selection of the kernel function
to approximate the channel gain functions more
accurately.

Model-free Methods: Not relying on the signal
propagation model, model-free methods express
the PSD at a particular location directly as a (func-
tional) combination of measurements from neigh-

boring sensors. These techniques are commonly
referred to as interpolation or stochastic field esti-
mation. With model-free methods, the radio map
is computed as

N.\
O(x, )= D wi(x.f)=q;(f),

i=1

(2)

where g; denotes the nodal function at the ith sen-
sor, representing the contribution of the measure-
ment ¢{(f) to location x, and w; denotes the weights
of the i-th measurements. Hence, the estimation
of the radio map is equivalent to determining the
weights w/'s and the nodal functions gj's.

One classic PSD interpolation method is the
inverse distance weighted (IDW) interpolation [8],
which is a linear interpolation that considers
g; = ¢i(f). The value of w; is then set to be inversely
proportional to the distance between the i-th sen-
sor and the desired location, that is, |x - x;| 9 in
which dis a known positive parameter. Evidently,
the IDW method does not distinguish the contri-
butions of different measurements as long as they
are of the same distance to the location of inter-
est. Intuitively, this is not true considering a simple
example that the interpolation provided by sen-
sors evenly located in a circle around x is more
accurate than those lying in a half circle of the
same radius. Accordingly, a modified IDW meth-
od is proposed to account for the different angles
between measurement locations to the interpola-
tion point [8]. There are also other linear interpola-
tion methods, such as the natural neighbor method
that calculates w/'s based on the areas of overlap-
ping Voronoi cells before and after x is added to
the measurement set. Nonetheless, the fundamen-
tal drawback of the aforementioned linear inter-
polation methods is lacking of model validation
in practical applications. An effective alternative
is radial basis function (RBF) based interpolation
[9]. Here, the nodal function of the i-th sensor is
expressed as a combination of RBF of neighboring
measurements. There are several choices of RBF,
such as Gaussian, multiquadrics, and spline func-
tions. Given the form of RBF, the values of RBF
parameters are obtained through fitting the values
of nearby measurement points in a weighted LS
sense. Moreover, w/'s are set similarly as the IDW
method with additional consideration of the radius
of influence. Similar to kernel-based regression, the
main difficulty lies in the choice of proper RBF to
approximate the PSD field accurately.

In many cases, the covariance of PSD for any
pair of locations is known or can be well estimated
from measurements [10]. In this case, the ordinary
Kriging method (or Gaussian process regression)
can be used, which is the optimal unbiased linear
interpolation achieving the smallest variance of esti-
mation error [10]. Specifically, the ordinary Krig-
ing method considers g; = ¢,(f) and obtains w/’s by
minimizing the variance of estimation error sub-
ject to the unbiasedness condition. Notice that the
ordinary Kriging method assumes that the mean
of PSD is constant at each nearby sensor location.
When the mean of PSD varies among the sensor
locations, some variation of the ordinary Kriging
method, such as the universal Kriging method, can
be applied to improve the estimation accuracy.
For complete treatments of different Kriging tech-
niques, interested readers may refer to [11].
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FIGURE 3. Comparisons of mode-based and model-free radio map estimation methods. Figures (a) and (b)
show the actual radio map and the sensor placement; Figs. (c) and (d) show the PSD map estimation
using model-based and model-free methods, respectively.

With the recent successful application of
machine learning techniques to various research
areas, it is also promising to devise learning-based
radio map construction methods. Instead of lever-
aging the signal propagation function in the pre-
vious model-based approach, or the interpolation
function in the above model-free approach, the
machine learning based approach intends to find
the direct mapping from an input location coordi-
nate to its output PSD measurement, while treating
the explicit functional relationship as a blackbox,
for example, modeling it by a deep neural network
(DNN). When a supervised learning method is
used, available coordinate-PSD data pairs can be
used to train a DNN for regression analysis, that
is, approximating the coordinates-to-PSD mapping.
After the training phase is completed, the trained
DNN is able to quickly respond to any input loca-
tion coordinate with its corresponding PSD level.
In practice, however, due to the large geographic
area to be covered by a radio map, an insufficient
number of available training samples (measure-
ments) may affect the training convergence and
the estimation accuracy of fully supervised learn-
ing techniques. A promising method to tackle the
problem is a semi-supervised deep reinforcement
learning approach. Specifically, one can randomly
sample a location coordinate and apply the DNN
to approximate the coordinate-PSD mapping.
Then, a learning agent can decide to accept or
reject the coordinate-PSD pair (a data sample)
based on the available sensor measurements. An

accepted sample will be subsequently used to train
the DNN in a supervised manner, for example,
using the mini-batch stochastic gradient descent
method for experience replay. By doing so, the
deep reinforcement learning approach can auton-
omously generate data samples for training the
DNN, and thus continuously improve the estima-
tion accuracy as the iterations proceed.

In Fig. 3, we present a case study to compare
the performance of the model-based and mod-
elfree radio map estimation methods. Without loss
of generality, we consider a 2D model of 10 x 10
square kilometers area, where three transmitters of
equal 1 Watt transmit power operate at 100 MHz
frequency. A number of obstacles are randomly
placed within the considered area. The radio map
in Fig. 3a is generated from a ray-tracing propaga-
tion model that considers signal loss due to both
free space prorogation and signal reflections/dif-
fractions at the obstacles. As shown in Fig. 3b, we
consider 200 sensors uniformly placed within the
considered area. The PSD map estimations using
model-based and model-free methods are shown
in Figs. 3c and 3d, respectively. In particular, the
the model-based method first roughly estimates the
locations of the transmitters based on the spatial
distribution of the measured signal strength, and
then partitions the sensors based on the Voronoi
cells of the transmitters. Subsequently, we pick one
of the transmitters and estimate its parameters (i.e.,
refined location coordinates, reference point signal
power and path-loss factor) using the method in

Instead of leveraging
the signal propagation
function in the previous
model-based approach,
or the interpolation
function in the above
model-free approach,
the machine learning
based approach intends
to find the direct map-
ping from an input
location coordinate

to its output PSD
measurement, while
treating the explicit
functional relationship
as a blackbox..
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VBS technology that
integrates radio access
points on moving vehi-
cles is commonly used
to provide temporary
high-speed communi-
cation coverage when
conventional cellular
coverage is unavailable
or inadequate, such as
in battlefields, disas-
ter-relief sites, and rural
radio hot spots.

[5] based only on the sensor measurements taken
in its own Voronoi cell. Similarly, we successive-
ly obtain the parameters of the second and third
transmitters after subtracting the impact of signal
power from the known transmitter(s), where the
details are omitted for brevity. For the model-free
method, the ordinary Kriging method in [11] is
used. We can clearly see that the model-based
method obtains a rather isotropic estimation of
signal attenuation around the transmitters. The
estimation accuracy is significantly affected by the
shadowing effect. For instance, the very weak mea-
surements taken by sensors located in some deep
shadowing regions could lead to an overestimation
of the path-loss factor, and thus a faster decrease
of signal power over distance. In contrast, given
sufficiently dense sensor placement like in Fig. 3b,
the model-free method can better characterize the
irregular shadowing effects caused by the obsta-
cles, which enjoys an overall higher estimation
accuracy in the considered setup.

In general, model-based methods build upon
transmission model assumptions, and hence are
typically less sensitive to sensor placement and
data errors. However, the chosen model in turn
limits its capability of reconstructing the true radio
map (e.g., the simple propagation model assumed
in Fig. 3¢ results in isotropic estimations). Model
selection and validation are challenging issues in
practice. In comparison, model-free methods inter-
polate directly from measurements, and thus are
able to reconstruct irregular radio maps. However,
to achieve high estimation accuracy, model-free
methods typically require a large amount of sen-
sor data. The performance of model-free methods
is also more sensitive to the sensor placement or
measurement error. From the above discussion, a
desirable radio map construction method should
be able to achieve high estimation accuracy from a
limited number of sensors, and it should be robust
to the sensor placement and possible measurement
errors. A promising radio map construction algo-
rithm could be the combination of model-based
and modelfree methods, which is still an important
research problem left for future investigations.

RADIO MAP STORAGE AND UPDATE

The storage of a radio map constitutes three major
components: measurement data, radio map func-
tion, and the derived features. Due to practical
considerations such as memory constraint, not all
historical measurement data can be stored, but at
least the data within a sliding time window should
be kept to smooth the shortterm randomness due
to channel variation, device on/off state transitions,
and transmit frequency hopping. The size of the
sliding window should be selected to be larger
than the wireless channel coherence time but small
enough to capture the topology change of the
wireless network, for example, due to significant
movement of mobile transmitters. In practice, we
can apply batch mode over sliding time window
(e.g., with 10 minutes length) to incorporate the
newly collected data with past data, where the sto-
chastic gradient descent method can be used to
update the radio map estimation [12, 15]. Mean-
while, interpolation in the time domain can be used
to predict the radio map between update time
instances, where the weights can be set inversely
proportional to the time difference.

A recently emerging interest is radio map visu-
alization, which visually animates the variation of
PSD over space using graphical techniques such
as in Fig. 1 and Fig. 3. The visual map helps human
operators quickly comprehend the spectrum usage
patterns. Nonetheless, the storage of a high-res-
olution radio map may occupy large memory
space. For instance, consider a radio map for a 120
MHz LTE band within a 20 x 20 square kilometers
region and over 24 hours, with 3 MHz, 20 meters,
and 10 minutes resolution, where each pixel (PSD
strength) is represented by an 8-bit quantization.
Storing such a radio map requires more than 46
Gigabits of memory space. In practice, the radio
map server can store a primitive visualized radio
map with low or moderate resolution and allow
users to zoom in at a specified position and scale
to obtain a more refined visual effect via real-
time calculation from the radio map function. The
update of a visual radio map can be performed
incrementally, where only the regions with evident
change of network parameters are updated.

RADIO MAP ASSISTED
WIRELESS RESOURCE MANAGEMENT

From the above discussion, a radio map contains
rich information about the spectral activities and
prorogation models of a wireless network, which
can be leveraged to improve the performance of
existing wireless services and enable new wire-
less applications. In this section, we discuss some
promising wireless applications that directly bene-
fit from a radio map.

\IBS DEPLOYMENT AND MANEUVER QPTIMIZATION

VBS technology that integrates radio access
points on moving vehicles is commonly used to
provide temporary high-speed communication
coverage when conventional cellular coverage is
unavailable or inadequate, such as in battlefields,
disaster-relief sites, and rural radio hot spots. In
particular, the recent advance of UAV commu-
nication technology has largely expedited the
deployment speed, reduced the cost, and extend-
ed the coverage and application scenarios of VBS
[13]. A major design challenge of VBS technolo-
gy is the deployment and maneuvers of mobile
BSs in dynamic environments to improve the
communication performance. Using a battlefield
communication scenario for example, the battle
units (e.g., infantry troops) are constantly moving
in reaction to random war zone situations. The
communications between the VBS and the battle
units are therefore frequently interrupted by the
unknown terrains and obstacles. In some extreme
cases, a VBS may move into a communication
dead zone where most of the communication
links are completely blocked, causing potential-
ly fatal losses to the battle units. Such critical sit-
uations can be considerably reduced with the
help of a radio map. Specifically, one can derive
from a radio map the local terrain information
and locations of strong obstacles. This, together
with the knowledge of the locations of moving
battle units, for example, from GPS feedback or
location predictions, a VBS can accurately pre-
dict the large-scale channel variations and make
corresponding maneuvers to avoid entering or to
escape from communication dead zones.
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FIGURE 4. Example proactive wireless resource allocation methods based on radio map (left) and channel gain map (right).

On the other hand, a radio map also helps res-
cue the mobile devices that are currently trapped
in communication dead zones, such as those sur-
rounded by large obstacles. This is particularly use-
ful for UAV communication, where the airborne BS
has a much larger degree of freedom in planning
its route than ground VBSs. By optimizing its tra-
jectory, a UAV can traverse between clusters of
ground mobile users trapped in dead zones and
help maintain their communications, for example,
collect and relay their messages to the ground BSs.
However, unlike ground automobiles often with
sufficient energy supply, practical UAVs are usu-
ally constrained by their limited on-board battery.
Therefore, a major design problem of the optimal
UAV trajectory lies in the energy consumption on
maneuvers, for example, the variations of speed
and possible stopping points along the route. Gen-
erally, the route design should be jointly optimized
with the communication resource allocations for
the mobile users, where many factors may affect
the design, such as the maximum allowable delay
and the number of users in each cluster.

PROACTIVE INTERFERENCE MANAGEMENT

Aside from the information of the propagation envi-
ronment, a radio map also provides useful informa-
tion about the interference level to be experienced
at a specific location, time, and frequency. In partic-
ular, such knowledge can be used to provision wire-
less resources such as spectrum, frequency reuse
factors, and the number of activated BSs proactive-
ly to cope with the interference [16]. This is very
important nowadays in densified and heterogeneous
wireless networks where the system performance is
largely constrained by interference. Take the het-
erogenous network shown in Fig. 4a for example.
The macro cell BS¢’s transmission may cause strong
interference to the small cell BS,. In practice, macro
and small cells may be owned by different opera-
tors and do not actively cooperate, thus rendering
interference management in heterogenous wireless
network difficult. However, if BS; is aware of the
on/off schedule and the transmit power/frequency

of the small cells in advance from the radio map, it
can accordingly adjust its transmit power, frequency
or direction (e.g., through beamforming) to reduce
its interference to the small cell users. This, in return,
would avoid the small cell users creating higher
interference (because otherwise the small cell users
would enhance transmit power in response to the
higher interference) to itself, thus creating a win-win
situation without the need of sophisticated coordi-
nation between different networks. In certain cases,
there may exist a coordinator or system operator
that can centrally manage the interference among
different networks. For instance, given the interfer-
ence distribution obtained from the radio map, the
system operator can assign different resource blocks
to multiple networks to avoid strong interference. It
can also increase transmit power or the frequency
reuse factor in low-interference regions to improve
the spectral efficiency (e.g., by increasing the trans-
mit power of BS; and BS,), and vice versa.

As shown in Fig. 4b, an important complemen-
tary tool of a radio map is a channel gain map,
which shows the estimated channel power from
the BS to any location within its coverage. The
channel gain map can be similarly estimated as a
radio map from the channel gain measurements
collected from the associated wireless devices. For
both uplink and downlink communications, a chan-
nel gain map can be combined with a radio map
(which shows the interference level) to predict the
communication quality of mobile users. In particu-
lar, the BS can predict the data rate performance
of a tagged mobile user by jointly considering the
channel gain and interference power variations
along its anticipated route. For instance, suppose
that the MS; in Fig. 4b requires a stable data rate
performance. Then, when foreseeing MS; is about
to enter a low SINR (signal to interference plus
noise ratio) region, the BS can reserve either a
larger spectrum or higher transmit power to the
user to maintain a reliable communication con-
nection. For a delay-insensitive user such as MS,,
in contrast, the BS can pre-allocate the data rates
for transmitting a large file based on the prediction
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Both commercial and
non-commercial fre-
quency bands have
strict regulations on the
device transmit power,
access method, and
spectrum selections.
Nowadays, however,
an increasing number
of unregulated and
illegal spectral activities
have been observed,
such as fake BSs and
unregistered radio sta-
tions, to either avoid
spectrum license fees
or evade regulations.

of SINR variations over its route to minimize the
energy consumption.

There are also other interesting applications of
radio maps on proactive interference management.
For instance, the future communication system is like-
ly to allow both cellular and D2D communications to
coexist and share the same spectrum. With a radio
map (and channel gain map), the BS can anticipate
the communication quality of the users along their
moving directions, and thus pre-assign the better
communication mode (i.e., cellular or D2D) upon
the initiation of a communication link. When only
D2D communication is available, a radio map pro-
vides interference awareness for the users to select a
proper frequency band and transmit power adaptive
to the local interference level. The use of D2D also
enables multi-hop relaying from a mobile user to its
destination. In this case, an interference-aware rout-
ing is achievable with a radio map, where each user
forwards data to the next hop based on not only the
distance from the receiver but also the interference
level from the radio map.

RESOURCE PROVISIONING AND NETWORK PLANNING

In addition, a radio map provides important infor-
mation of the spectral activities in wireless net-
work. For instance, given the radio map function
o(x, f, t), we can integrate ® with respect to x,
f, or t over a certain range of interest to estimate
the corresponding average (aggregate) traffic
load intensity in different dimensions. On the
other hand, taking the derivative of ¢ over x, f, or
t, we can find the local maximum (minimum) of
the traffic load intensity or interference level.

As the PSD distribution is highly correlated in
time, the data traffic demand can often be accu-
rately predicted from the day-ahead or historical
radio map data. Accordingly, the system opera-
tor can provision spectrum and other resources
ahead of time to improve the real-time commu-
nication quality. For instance, communication hot
spots that are short of spectrum resources can be
identified by comparing the predicted user traf-
fic with a maximum supportable traffic capacity
under the current spectrum allocation. Accord-
ingly, one can pre-allocate more spectrum to
the nearby fixed BSs or increase the regional fre-
quency reuse factor to overcome the temporary
mismatch. Meanwhile, we can also dispatch the
aforementioned VBSs ahead of time to designat-
ed locations to elevate the network capacity. Due
to the fast deployment and low cost, VBSs can
also be used to provision the unexpected surge of
communication traffic demand identified during
the radio map update. On another occasion, the
system operator can effectively reduce the ener-
gy cost by turning off some BSs when foreseeing
low traffic demand. Overall, the use of a radio
map makes spectrum provisioning well-coordi-
nated among different entities, which significantly
improves the user experience compared to mak-
ing hasty adjustments based on real-time mea-
surements.

Meanwhile, if a significant long-term mismatch
between spectrum provisioning and user demand is
observed at certain areas, the system operator should
consider deploying some additional (or remove
some existing) BSs to balance the provisioning and
demand. In fact, in a heterogeneous network, one
can choose from several radio access technologies

for network planning, such as small cells and WiFi
networks. Meanwhile, the information of terrain and
locations of obstacles derived from a radio map is
very useful when planning the site selections.

SPECTRUM SECURITY AND SURVEILLANCE

Due to the broadcast nature of wireless communi-
cation, radio spectral activities need to be regulat-
ed to avoid severe interference. Both commercial
and non-commercial frequency bands have strict
regulations on the device transmit power, access
method, and spectrum selections. Nowadays,
however, an increasing number of unregulated
and illegal spectral activities have been observed,
such as fake BSs and unregistered radio stations,
to either avoid spectrum license fees or evade
regulations. Random malfunctions of registered
wireless devices can also generate detrimental
interference. To protect the legitimate wireless
transmissions, the spectral activities should be
continuously monitored to quickly identify irregu-
lar activities. Several recent studies have proposed
wireless communication surveillance techniques
[14]. However, how to efficiently monitor spectral
activities in large geographic areas is a non-trivial
task, generally requiring highly complex sensing
and computations, especially in today’s densely
deployed and heterogenous wireless networks.

A radio map characterizes the long-term spec-
tral activity pattern, thus it can be effectively used
to detect abnormalities, for example, significant
deviation of the radio map from normalcy or a pre-
dicted pattern. The abnormality in a radio map can
be caused by a number of factors, such as unex-
pected social events, licensed device malfunctions,
and also rogue transmissions. Many data analytic
tools can be used to identify an abnormality in the
PSD distribution, such as hypothesis testing, clas-
sification and clustering learning algorithms. After
precluding those abnormalities caused by legiti-
mate activities and events, it is crucial to devise
and implement efficient countermeasures once
the abnormality is identified as a device malfunc-
tion, rogue transmission, or other harmful activities
(e.g., jamming) that may jeopardize the reliability
of wireless networks. The radio map can help iden-
tify the location, transmit PSD, and other important
parameters of rogue transmitters. On one hand,
legitimate communication can be switched to safe
frequency bands to avoid being affected by abnor-
mal transmissions. On the other hand, the system
operator can dispatch personnel to physically
repair malfunctioning devices/BSs or capture the
illegitimate transmitters.

CONCLUSIONS

In this article, we provide an overview of the tech-
niques to efficiently construct and maintain a radio
map and its applications to achieve efficient and
secure resource management in wireless networks.
Essentially, the knowledge of a radio map presents
valuable opportunities to improve the wireless net-
work performance. A radio map enables system
operators to predict the performance of future
wireless communication that occurs at a specific
time, frequency, and location, and to distinguish
between normal and abnormal spectral activities.
As a result, a radio map has extensive applications
in wireless resource provisioning, interference
management, and spectrum security/surveillance,
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among others. In practice, the major challenge of
implementing a radio map lies in the high complex-
ity of collecting, storing, and processing the enor-
mous amount of sensing data. Efficient big-data
processing and analytical methods are expected to
make radio maps a truly valuable and indispens-
able tool for future wireless systems.
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The major challenge of
implementing a radio
map lies in the high
complexity of collect-
ing, storing, and pro-
cessing the enormous
amount of sensing dara.
Efficient big-data pro-
cessing and analytical
methods are expected
to make radio maps

a truly valuable and
indispensable tool for
future wireless systems.

IEEE Wireless Communications * April 2019

14



