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Abstract
The term ‘radio map’ in general refers to the 

geographical signal power spectrum density, 
formed by the superposition of concurrent wireless 
transmissions, as a function of location, frequency 
and time. It contains rich and useful information 
regarding the spectral activities and propagation 
channels in wireless networks. Such information 
can be leveraged to not only improve the perfor-
mance of existing wireless services (e.g., via pro-
active resource provisioning) but also enable new 
applications, such as wireless spectrum surveil-
lance. However, practical implementation of radio 
maps in wireless communication is often difficult 
due to the heterogeneity of modern wireless net-
works and the sheer amount of wireless data to 
be collected, stored, and processed. In this arti-
cle, we provide an overview of the state-of-the-art 
techniques for constructing radio maps as well 
as applying them to achieve efficient and secure 
resource management in wireless networks. Some 
key research challenges are highlighted to motivate 
future investigation.

Introduction
Modern wireless communication infrastructure 
consists of densely deployed and heterogeneous 
wireless networks. Their radio frequency radia-
tions superimpose and cause irregular variations 
of signal power spectrum density (PSD) over dif-
ferent locations, frequencies and time. One sys-
tematic characterization of such variation of PSD 
over different dimensions is by using a radio map, 
which contains rich and useful information of the 
spectral activities and propagation channels of 
wireless networks in a given geographic area. To 
distinguish from the well known spectrum map in 
cognitive radio networks, in Fig. 1 we compare 
a snapshot of a radio map at a given frequency 
band with a TV spectrum map [1]. Specifically, 
the TV spectrum map depicts the regional utiliza-
tion of different licensed TV bands averaged over 
time and space. A radio map, on the other hand, 
provides much higher spatial and temporal reso-
lution of spectrum utilization, which allows one 
to zoom in to examine the detailed PSD distribu-
tion at any particular time and location. A radio 
map also differs from the spectrum database [2], 
which records relatively static information about 
the radio environment (e.g., registered transmit-
ters’ positions, PSD, on-off schedule, and channel 

prorogation models) and measurement data. In 
comparison, a radio map is dynamically construct-
ed from real-time measurements and constantly 
updated, thus being able to provide an accurate 
characterization of PSD distribution at different 
dimensions and scales.

Another research topic closely related to radio 
maps is spectrum sensing in cognitive radio net-
works [3]. Specifically, spectrum sensing aims to 
detect the occupancy of licensed spectrum in the 
vicinity of unlicensed transmitters for opportunis-
tic channel access. To maximize the transmission 
opportunity, unlicensed devices often need to 
exploit channel short-term fading, and thus per-
form PSD estimation in a small timescale compa-
rable to the channel coherence time. Radio maps, 
on the other hand, estimate the PSD over a large 
and continuous geographical area, rather than 
that of spectrum sensing at several discrete loca-
tions of unlicensed devices. It is mainly interested 
in long-term spectral activity, while the short-term 
fading effect is averaged out during estimation. In 
this case, a radio map is updated only when there 
is sufficient change in the radio source location 
(say, moving beyond the decorrelation distance 
of log-normal shadowing) or transmit PSD (e.g., 
switching on/off or hopping to another channel).

As shown in Fig. 2, the use of a radio map in 
wireless networks consists of three major steps: 
measurement collection and processing; radio map 
construction and update; and radio map-assisted 
resource management. Specifically, the system 
operator first collects and filters the distributed 
measurements, which are then used by the esti-
mator to compute the radio map. The constructed 
radio map is then used to derive useful knowledge 
about the spectrum usage pattern and essential 
parameters in the network, for example, wireless 
device location, interference level, and channel 
models. Such information can be leveraged to 
improve the performance of existing wireless ser-
vices and enable new wireless applications. The 
main challenges in constructing radio maps and uti-
lizing them for efficient wireless resource allocation 
are discussed next.

The foremost challenge of engineering a radio 
map in wireless networks is to construct an accu-
rate PSD map from distributed measurements. As 
a radio map is formed as a continuous function 
over location coordinates, radio map construction 
needs to estimate the unknown PSD from a lim-
ited number of PSD measurements taken at dis-
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tributed locations. By exploiting signal correlation 
in different dimensions, efficient estimation, inter-
polation and learning techniques can be devised 
to derive the unknown PSD. Nonetheless, achiev-
ing high estimation accuracy is a challenging task 
especially when the number of sensors is limited, 
whereas their measurements are inaccurate and 
noisy in practice. The PSD is time-varying due to 
the unexpected change of network topology and 
on/off state of transmitters, such that a radio map 
needs to be timely updated. Due to the sheer size 
of radio map data, this requires efficient data pro-
cessing methods to maintain a scalable radio map 
database.

Given the radio map, it is also challenging to 
design new resource management tools to make 
full use of it to improve wireless network perfor-
mance. For instance, one can derive important 
information about the terrains and layout of signal 
blockages. Accordingly, the recent vehicular base 
station (VBS) technology, such as a BS mounted on 
unmanned arial vehicle (UAV) and ground automo-
biles, can perform maneuvers to avoid or escape 

from unfavorable signal dead zones. Further, the 
knowledge of PSD variations over space and time 
enables more efficient resource allocation meth-
ods to optimize the performance of specific wire-
less applications. Some commonly used methods 
include beamforming and power control, channel 
reservation, and interference-aware spectrum allo-
cation. Meanwhile, the long-term statistics obtained 
from radio maps can help to plan the deployment 
of wireless networks in different scales, from large 
cellular networks to small WiFi or femto-cell net-
works. Moreover, wireless security is becoming a 
rising concern nowadays for wireless networks. For 
instance, rogue BSs are more frequently observed 
to steal private information of unsuspecting users. 
In this case, a radio map can be used as a powerful 
enabler to detect abnormal spectral activities and 
implement corresponding countermeasures.

This article presents an overview of various 
state-of-the-art techniques to engineer radio maps 
for resource management in wireless communi-
cation systems. Specifically, we first introduce the 
methods to construct a radio map and maintain 

FIGURE 1. Comparison of a radio map (left) and the conventional TV spectrum map (right).
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FIGURE 2. The architecture of radio-map-assisted wireless network resource management.
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its database efficiently. We then discuss promising 
tools to extract useful features from a radio map 
and design radio map-assisted resource manage-
ment methods.

Radio Map Construction and Maintenance
Measurement Collection

A radio map is generally characterized by a func-
tion mapping from a 3-tuple variable (x, f, t) to the 
signal power, denoted by F(x, f, t), where x  R3 
denotes the location in a three-dimensional (3D) 
Cartesian coordinate system, and f and t denote 
frequency point and time instant, respectively. 
In general, other than some direct power mea-
surements taken by a few distributed sensors at 
known locations for specific time and frequency 
bands, the F function at all other variable values 
needs to be estimated based on them. As shown 
in Fig. 2, the first step of constructing a radio map 
is to collect measurement data from distributed 
sensors to a data fusion center. The sensors can 
be dedicated sensing devices deployed by the 
system operator, which are fully controllable in 
their sensing location, accuracy and time interval. 
Meanwhile, PSD data can also be collected from 
non-dedicated devices, such as mobile subscrib-
ers (MSs) through crowd sourcing, who report 
to the system operator from time to time volun-
tarily or in exchange for monetary rewards. This 
can effectively reduce the deployment cost of 
data acquisition. As the sensing measurements 
are spatially correlated, the locations where the 
measurements are taken have a large impact on 
estimation accuracy. For dedicated sensing devic-
es, it is important for the system operator to opti-
mize their deployment, for example, the locations 
(routes) of fixed (mobile) sensors, to minimize the 
cost and redundancy in the data measurement 
set. For non-dedicated devices, as the system 
operator has no control over them (e.g., device 
mobility), a large number of sensing devices are 
needed to ensure high estimation accuracy from 
the measurements at random locations.

Data reported by the sensing devices can be 
raw measurements (i.e., the time-domain signal), 
ensemble received power (i.e., total received 
power over the sensed band), or local PSD esti-
mations. While the former two methods require 
lower hardware complexity and processing delay, 
the last method saves the bandwidth for report-
ing to the fusion center and reduces its burden of 
computation and storage of large received data. 
The data is quantized before it is sent to the fusion 
center, where the number of quantization levels 
balances the estimation accuracy with feedback 
complexity. In particular, the authors in [4] propose 
a one-bit feedback method in which each sensor 
simply compares its received time-domain signal 
strength against a prescribed threshold before 
sending the one-bit result periodically to the fusion 
center, based on which the PSD can be estimated. 
Because of quantization noise and wireless channel 
distortion, the signal received by the fusion center 
is likely to be affected by random errors. Moreover, 
the data reported by non-dedicated sensors may 
be incompatible in format or even contain false 
reports. Accordingly, the fusion center needs to 
reject potentially bad data before feeding it to the 
map estimator. This can be achieved based on the 

correlation between the data collected or the devi-
ation from historical data statistics.

Radio Map Estimation
After the fusion center pre-processes the received 
sensor data, we assume for simplicity that the 
input to the radio map estimator is the PSD mea-
surements of Ns sensors located over a geograph-
ic area A with known coordinates xi, i = 1, …, Ns. 
Specifically, the PSD measurement of the i-th sen-
sor is denoted by fi(f, t), where f  F and T  T 
denote the ranges of measurement in frequency 
and time of our interest. The objective is to esti-
mate the entire function F(x, f, t) over all other x 
 A, f  F and T  T. For the purpose of expo-
sition, we first neglect the variable t and focus 
on estimating F(x, f) within a specific time inter-
val, and discuss the update of the radio map over 
time in the next subsection.1 According to their 
different fundamental approaches, the existing 
works on radio map estimation can be roughly 
divided into two categories, namely model-based 
and model-free methods.

Model-Based Methods: Methods that fall in 
this category often assume certain signal propaga-
tion models and express the received signal PSD 
as a combination of the transmit PSD of all active 
wireless transmitters. Specifically, the radio map 
function is modeled as

Φ(x, f ) = gw
w=1

Nt

∑ (x, f )ψw( f ),
 		  (1)

where Nt denotes the number of transmitters, gw 
denotes the channel power gain function from 
the transmitter w to location x, and ψw denotes 
the transmit PSD of the transmitter w. The prior 
knowledge of gw and ψw depends on specif-
ic application scenarios, which also determines 
the use of either a parametric or non-parametric 
method for characterizing correlations in the spa-
tial and frequency domains, as discussed next.

Parametric methods assume the knowledge 
of explicit function type of gw and/or ψw with 
a fixed number of unknown parameters q to be 
determined. Hence, radio map estimation is natu-
rally formulated as a regression problem to find the 
best fit between the PSD predicted by Eq. 1 and 
those measured at the Ns locations. For instance, 
[5] considers a single narrowband WiFi transmit-
ter and assumes that ψw is known in advance. It 
applies a parametric path-loss model with q being 
the unknown path-loss exponent and transmitter 
location. The conventional least square (LS) meth-
od is applied to find the unknown parameters. The 
single transmitter and narrowband model is limited 
in practical applications, while the measurements 
are often taken with multiple transmitters operat-
ing on an overlapped wideband channel. In this 
case, depending on the availability of prior infor-
mation about transmitter locations and/or transmit 
PSDs, the overall radio map in Eq. 1 needs to be 
estimated with joint considerations for the spatial 
and frequency correlations in the collected data. 
For example, one active transmitter may transmit in 
adjacent bands with high probability.

Alternatively, non-parametric methods do not 
assume the knowledge of the explicit functional 
form of channel model gw. Instead, gw is expressed 
in terms of sensor parameters, such that the num-

1 Interested readers may 
refer to [2] for a review on 
joint frequency-time radio 
map estimation methods.
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ber of parameters to be estimated grows with 
the number of measurements. In this case, ker-
nel-based regressions are widely used to model the 
wireless channel gain gw(x) as a kernel expansion 
around the sensor locations.2 Specifically, the vec-
tor of wireless channel gains is denoted by g(x) 
= SNs 

i=1K(x, xi)ci, where g(x) = (g1(x), …, gNt(x))T, xi 
denotes the location of the i-th sensor, K(x, xi) 
denotes the chosen kernel (matrix) and ci denotes 
the unknown expansion coefficient (vector). Given 
the form of the kernel function, the problem reduc-
es to a regression problem for finding the optimal 
coefficients ci’s. Evidently, the number of unknown 
parameters ci’s is proportional to the number of 
sensors. The key challenge of non-parametric 
methods lies in the choice of a proper kernel func-
tion that approximates the true variation of gw over 
space. For instance, [6] uses a thin-plate splines 
radial kernel to model the channel gains. In particu-
lar, it assumes that the PSD of each transmitter can 
be decomposed in frequency into a set of known 
overlapping PSD basis functions, for example, 
raised-cosine PSD centered at predetermined fre-
quencies. Then, it characterizes the impact of each 
basis to the PSD at any location, which is contrib-
uted jointly by multiple transmitters owning such a 
PSD basis. It then applies a variational LS method, 
which exploits sparsity in the number of PSD basis 
functions in the solution and the smoothness of the 
predicted PSD at neighboring locations.

Although many common candidate kernel func-
tions are available, the search for a proper kernel 
function for a specific problem is more often a 
work of art, where commonly used approaches 
include cross validation, historical data or multi-ker-
nel approaches. Another interesting work [7] uses 
the measurements by multi-antenna sensors to 
construct a three-way tensor. It then applies the 
parallel factor analysis (PARAFAC) technique to 
decompose the tensor as the multiplication of 
three matrices, representing respectively the trans-
mit PSD, channel gains, and directions of the trans-
mitters with respect to the sensors. Subsequently, 
the corresponding transmitter location and spectral 
information can be derived.

In general, parametric methods are more suit-
able when trustworthy prior knowledge of the 
channel model is available, for example, through 
repeated measurements and regression. However, 
they lack flexibility and are not suitable for com-
plex and heterogeneous propagation channels. In 
contrast, non-parametric methods can be used to 
approximate any channel function in a complex 
propagation environment with arbitrary accura-
cy. However, achieving high estimation accuracy 
requires a large number of measurements for, for 
example, validating the choice of kernel functions, 
which is often strongly subject to cost constraint. 
In practice, a semi-parametric method that incor-
porates prior knowledge into non-parametric esti-
mation can enjoy the benefits of both methods. 
For instance, when the locations of the transmitters 
are known, semi-parametric regression can be used 
to improve the selection of the kernel function 
to approximate the channel gain functions more 
accurately.

Model-free Methods: Not relying on the signal 
propagation model, model-free methods express 
the PSD at a particular location directly as a (func-
tional) combination of measurements from neigh-

boring sensors. These techniques are commonly 
referred to as interpolation or stochastic field esti-
mation. With model-free methods, the radio map 
is computed as

Φ(x, f ) = wi
i=1

Ns

∑ (x, f ) = qi ( f ),
 		

(2)

where qi denotes the nodal function at the i-th sen-
sor, representing the contribution of the measure-
ment fi(f) to location x, and wi denotes the weights 
of the i-th measurements. Hence, the estimation 
of the radio map is equivalent to determining the 
weights wi’s and the nodal functions qi’s.

One classic PSD interpolation method is the 
inverse distance weighted (IDW) interpolation [8], 
which is a linear interpolation that considers 
qi = fi(f). The value of wi is then set to be inversely 
proportional to the distance between the i-th sen-
sor and the desired location, that is, |x – xi|–d in 
which d is a known positive parameter. Evidently, 
the IDW method does not distinguish the contri-
butions of different measurements as long as they 
are of the same distance to the location of inter-
est. Intuitively, this is not true considering a simple 
example that the interpolation provided by sen-
sors evenly located in a circle around x is more 
accurate than those lying in a half circle of the 
same radius. Accordingly, a modified IDW meth-
od is proposed to account for the different angles 
between measurement locations to the interpola-
tion point [8]. There are also other linear interpola-
tion methods, such as the natural neighbor method 
that calculates wi’s based on the areas of overlap-
ping Voronoi cells before and after x is added to 
the measurement set. Nonetheless, the fundamen-
tal drawback of the aforementioned linear inter-
polation methods is lacking of model validation 
in practical applications. An effective alternative 
is radial basis function (RBF) based interpolation 
[9]. Here, the nodal function of the i-th sensor is 
expressed as a combination of RBF of neighboring 
measurements. There are several choices of RBF, 
such as Gaussian, multiquadrics, and spline func-
tions. Given the form of RBF, the values of RBF 
parameters are obtained through fitting the values 
of nearby measurement points in a weighted LS 
sense. Moreover, wi’s are set similarly as the IDW 
method with additional consideration of the radius 
of influence. Similar to kernel-based regression, the 
main difficulty lies in the choice of proper RBF to 
approximate the PSD field accurately.

In many cases, the covariance of PSD for any 
pair of locations is known or can be well estimated 
from measurements [10]. In this case, the ordinary 
Kriging method (or Gaussian process regression) 
can be used, which is the optimal unbiased linear 
interpolation achieving the smallest variance of esti-
mation error [10]. Specifically, the ordinary Krig-
ing method considers qi = fi(f) and obtains wi’s by 
minimizing the variance of estimation error sub-
ject to the unbiasedness condition. Notice that the 
ordinary Kriging method assumes that the mean 
of PSD is constant at each nearby sensor location. 
When the mean of PSD varies among the sensor 
locations, some variation of the ordinary Kriging 
method, such as the universal Kriging method, can 
be applied to improve the estimation accuracy. 
For complete treatments of different Kriging tech-
niques, interested readers may refer to [11].

2 Here, we consider a nar-
rowband flat fading channel 
for simplicity of illustration. 
A wideband channel can be 
similarly modeled as multi-
ple narrowband channels.
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approaches.
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With the recent successful application of 
machine learning techniques to various research 
areas, it is also promising to devise learning-based 
radio map construction methods. Instead of lever-
aging the signal propagation function in the pre-
vious model-based approach, or the interpolation 
function in the above model-free approach, the 
machine learning based approach intends to find 
the direct mapping from an input location coordi-
nate to its output PSD measurement, while treating 
the explicit functional relationship as a blackbox, 
for example, modeling it by a deep neural network 
(DNN). When a supervised learning method is 
used, available coordinate–PSD data pairs can be 
used to train a DNN for regression analysis, that 
is, approximating the coordinates-to-PSD mapping. 
After the training phase is completed, the trained 
DNN is able to quickly respond to any input loca-
tion coordinate with its corresponding PSD level. 
In practice, however, due to the large geographic 
area to be covered by a radio map, an insufficient 
number of available training samples (measure-
ments) may affect the training convergence and 
the estimation accuracy of fully supervised learn-
ing techniques. A promising method to tackle the 
problem is a semi-supervised deep reinforcement 
learning approach. Specifically, one can randomly 
sample a location coordinate and apply the DNN 
to approximate the coordinate–PSD mapping. 
Then, a learning agent can decide to accept or 
reject the coordinate–PSD pair (a data sample) 
based on the available sensor measurements. An 

accepted sample will be subsequently used to train 
the DNN in a supervised manner, for example, 
using the mini-batch stochastic gradient descent 
method for experience replay. By doing so, the 
deep reinforcement learning approach can auton-
omously generate data samples for training the 
DNN, and thus continuously improve the estima-
tion accuracy as the iterations proceed.

In Fig. 3, we present a case study to compare 
the performance of the model-based and mod-
el-free radio map estimation methods. Without loss 
of generality, we consider a 2D model of 10  10 
square kilometers area, where three transmitters of 
equal 1 Watt transmit power operate at 100 MHz 
frequency. A number of obstacles are randomly 
placed within the considered area. The radio map 
in Fig. 3a is generated from a ray-tracing propaga-
tion model that considers signal loss due to both 
free space prorogation and signal reflections/dif-
fractions at the obstacles. As shown in Fig. 3b, we 
consider 200 sensors uniformly placed within the 
considered area. The PSD map estimations using 
model-based and model-free methods are shown 
in Figs. 3c and 3d, respectively. In particular, the 
the model-based method first roughly estimates the 
locations of the transmitters based on the spatial 
distribution of the measured signal strength, and 
then partitions the sensors based on the Voronoi 
cells of the transmitters. Subsequently, we pick one 
of the transmitters and estimate its parameters (i.e., 
refined location coordinates, reference point signal 
power and path-loss factor) using the method in 

FIGURE 3. Comparisons of mode-based and model-free radio map estimation methods. Figures (a) and (b) 
show the actual radio map and the sensor placement; Figs. (c) and (d) show the PSD map estimation 
using model-based and model-free methods, respectively. 
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[5] based only on the sensor measurements taken 
in its own Voronoi cell. Similarly, we successive-
ly obtain the parameters of the second and third 
transmitters after subtracting the impact of signal 
power from the known transmitter(s), where the 
details are omitted for brevity. For the model-free 
method, the ordinary Kriging method in [11] is 
used. We can clearly see that the model-based 
method obtains a rather isotropic estimation of 
signal attenuation around the transmitters. The 
estimation accuracy is significantly affected by the 
shadowing effect. For instance, the very weak mea-
surements taken by sensors located in some deep 
shadowing regions could lead to an overestimation 
of the path-loss factor, and thus a faster decrease 
of signal power over distance. In contrast, given 
sufficiently dense sensor placement like in Fig. 3b, 
the model-free method can better characterize the 
irregular shadowing effects caused by the obsta-
cles, which enjoys an overall higher estimation 
accuracy in the considered setup.

In general, model-based methods build upon 
transmission model assumptions, and hence are 
typically less sensitive to sensor placement and 
data errors. However, the chosen model in turn 
limits its capability of reconstructing the true radio 
map (e.g., the simple propagation model assumed 
in Fig. 3c results in isotropic estimations). Model 
selection and validation are challenging issues in 
practice. In comparison, model-free methods inter-
polate directly from measurements, and thus are 
able to reconstruct irregular radio maps. However, 
to achieve high estimation accuracy, model-free 
methods typically require a large amount of sen-
sor data. The performance of model-free methods 
is also more sensitive to the sensor placement or 
measurement error. From the above discussion, a 
desirable radio map construction method should 
be able to achieve high estimation accuracy from a 
limited number of sensors, and it should be robust 
to the sensor placement and possible measurement 
errors. A promising radio map construction algo-
rithm could be the combination of model-based 
and model-free methods, which is still an important 
research problem left for future investigations.

Radio Map Storage and Update
The storage of a radio map constitutes three major 
components: measurement data, radio map func-
tion, and the derived features. Due to practical 
considerations such as memory constraint, not all 
historical measurement data can be stored, but at 
least the data within a sliding time window should 
be kept to smooth the short-term randomness due 
to channel variation, device on/off state transitions, 
and transmit frequency hopping. The size of the 
sliding window should be selected to be larger 
than the wireless channel coherence time but small 
enough to capture the topology change of the 
wireless network, for example, due to significant 
movement of mobile transmitters. In practice, we 
can apply batch mode over sliding time window 
(e.g., with 10 minutes length) to incorporate the 
newly collected data with past data, where the sto-
chastic gradient descent method can be used to 
update the radio map estimation [12, 15]. Mean-
while, interpolation in the time domain can be used 
to predict the radio map between update time 
instances, where the weights can be set inversely 
proportional to the time difference.

A recently emerging interest is radio map visu-
alization, which visually animates the variation of 
PSD over space using graphical techniques such 
as in Fig. 1 and Fig. 3. The visual map helps human 
operators quickly comprehend the spectrum usage 
patterns. Nonetheless, the storage of a high-res-
olution radio map may occupy large memory 
space. For instance, consider a radio map for a 120 
MHz LTE band within a 20  20 square kilometers 
region and over 24 hours, with 3 MHz, 20 meters, 
and 10 minutes resolution, where each pixel (PSD 
strength) is represented by an 8-bit quantization. 
Storing such a radio map requires more than 46 
Gigabits of memory space. In practice, the radio 
map server can store a primitive visualized radio 
map with low or moderate resolution and allow 
users to zoom in at a specified position and scale 
to obtain a more refined visual effect via real-
time calculation from the radio map function. The 
update of a visual radio map can be performed 
incrementally, where only the regions with evident 
change of network parameters are updated.

Radio Map Assisted  
Wireless Resource Management

From the above discussion, a radio map contains 
rich information about the spectral activities and 
prorogation models of a wireless network, which 
can be leveraged to improve the performance of 
existing wireless services and enable new wire-
less applications. In this section, we discuss some 
promising wireless applications that directly bene-
fit from a radio map.

VBS Deployment and Maneuver Optimization
VBS technology that integrates radio access 
points on moving vehicles is commonly used to 
provide temporary high-speed communication 
coverage when conventional cellular coverage is 
unavailable or inadequate, such as in battlefields, 
disaster-relief sites, and rural radio hot spots. In 
particular, the recent advance of UAV commu-
nication technology has largely expedited the 
deployment speed, reduced the cost, and extend-
ed the coverage and application scenarios of VBS 
[13]. A major design challenge of VBS technolo-
gy is the deployment and maneuvers of mobile 
BSs in dynamic environments to improve the 
communication performance. Using a battlefield 
communication scenario for example, the battle 
units (e.g., infantry troops) are constantly moving 
in reaction to random war zone situations. The 
communications between the VBS and the battle 
units are therefore frequently interrupted by the 
unknown terrains and obstacles. In some extreme 
cases, a VBS may move into a communication 
dead zone where most of the communication 
links are completely blocked, causing potential-
ly fatal losses to the battle units. Such critical sit-
uations can be considerably reduced with the 
help of a radio map. Specifically, one can derive 
from a radio map the local terrain information 
and locations of strong obstacles. This, together 
with the knowledge of the locations of moving 
battle units, for example, from GPS feedback or 
location predictions, a VBS can accurately pre-
dict the large-scale channel variations and make 
corresponding maneuvers to avoid entering or to 
escape from communication dead zones.

VBS technology that 
integrates radio access 
points on moving vehi-
cles is commonly used 
to provide temporary 
high-speed communi-
cation coverage when 
conventional cellular 
coverage is unavailable 
or inadequate, such as 
in battlefields, disas-
ter-relief sites, and rural 
radio hot spots.
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On the other hand, a radio map also helps res-
cue the mobile devices that are currently trapped 
in communication dead zones, such as those sur-
rounded by large obstacles. This is particularly use-
ful for UAV communication, where the airborne BS 
has a much larger degree of freedom in planning 
its route than ground VBSs. By optimizing its tra-
jectory, a UAV can traverse between clusters of 
ground mobile users trapped in dead zones and 
help maintain their communications, for example, 
collect and relay their messages to the ground BSs. 
However, unlike ground automobiles often with 
sufficient energy supply, practical UAVs are usu-
ally constrained by their limited on-board battery. 
Therefore, a major design problem of the optimal 
UAV trajectory lies in the energy consumption on 
maneuvers, for example, the variations of speed 
and possible stopping points along the route. Gen-
erally, the route design should be jointly optimized 
with the communication resource allocations for 
the mobile users, where many factors may affect 
the design, such as the maximum allowable delay 
and the number of users in each cluster.

Proactive Interference Management
Aside from the information of the propagation envi-
ronment, a radio map also provides useful informa-
tion about the interference level to be experienced 
at a specific location, time, and frequency. In partic-
ular, such knowledge can be used to provision wire-
less resources such as spectrum, frequency reuse 
factors, and the number of activated BSs proactive-
ly to cope with the interference [16]. This is very 
important nowadays in densified and heterogeneous 
wireless networks where the system performance is 
largely constrained by interference. Take the het-
erogenous network shown in Fig. 4a for example. 
The macro cell BS1’s transmission may cause strong 
interference to the small cell BS2. In practice, macro 
and small cells may be owned by different opera-
tors and do not actively cooperate, thus rendering 
interference management in heterogenous wireless 
network difficult. However, if BS1 is aware of the 
on/off schedule and the transmit power/frequency 

of the small cells in advance from the radio map, it 
can accordingly adjust its transmit power, frequency 
or direction (e.g., through beamforming) to reduce 
its interference to the small cell users. This, in return, 
would avoid the small cell users creating higher 
interference (because otherwise the small cell users 
would enhance transmit power in response to the 
higher interference) to itself, thus creating a win-win 
situation without the need of sophisticated coordi-
nation between different networks. In certain cases, 
there may exist a coordinator or system operator 
that can centrally manage the interference among 
different networks. For instance, given the interfer-
ence distribution obtained from the radio map, the 
system operator can assign different resource blocks 
to multiple networks to avoid strong interference. It 
can also increase transmit power or the frequency 
reuse factor in low-interference regions to improve 
the spectral efficiency (e.g., by increasing the trans-
mit power of BS3 and BS4), and vice versa.

As shown in Fig. 4b, an important complemen-
tary tool of a radio map is a channel gain map, 
which shows the estimated channel power from 
the BS to any location within its coverage. The 
channel gain map can be similarly estimated as a 
radio map from the channel gain measurements 
collected from the associated wireless devices. For 
both uplink and downlink communications, a chan-
nel gain map can be combined with a radio map 
(which shows the interference level) to predict the 
communication quality of mobile users. In particu-
lar, the BS can predict the data rate performance 
of a tagged mobile user by jointly considering the 
channel gain and interference power variations 
along its anticipated route. For instance, suppose 
that the MS1 in Fig. 4b requires a stable data rate 
performance. Then, when foreseeing MS1 is about 
to enter a low SINR (signal to interference plus 
noise ratio) region, the BS can reserve either a 
larger spectrum or higher transmit power to the 
user to maintain a reliable communication con-
nection. For a delay-insensitive user such as MS2, 
in contrast, the BS can pre-allocate the data rates 
for transmitting a large file based on the prediction 

FIGURE 4. Example proactive wireless resource allocation methods based on radio map (left) and channel gain map (right).
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of SINR variations over its route to minimize the 
energy consumption.

There are also other interesting applications of 
radio maps on proactive interference management. 
For instance, the future communication system is like-
ly to allow both cellular and D2D communications to 
coexist and share the same spectrum. With a radio 
map (and channel gain map), the BS can anticipate 
the communication quality of the users along their 
moving directions, and thus pre-assign the better 
communication mode (i.e., cellular or D2D) upon 
the initiation of a communication link. When only 
D2D communication is available, a radio map pro-
vides interference awareness for the users to select a 
proper frequency band and transmit power adaptive 
to the local interference level. The use of D2D also 
enables multi-hop relaying from a mobile user to its 
destination. In this case, an interference-aware rout-
ing is achievable with a radio map, where each user 
forwards data to the next hop based on not only the 
distance from the receiver but also the interference 
level from the radio map.

Resource Provisioning and Network Planning
In addition, a radio map provides important infor-
mation of the spectral activities in wireless net-
work. For instance, given the radio map function 
F(x, f, t), we can integrate F with respect to x, 
f, or t over a certain range of interest to estimate 
the corresponding average (aggregate) traffic 
load intensity in different dimensions. On the 
other hand, taking the derivative of F over x, f, or 
t, we can find the local maximum (minimum) of 
the traffic load intensity or interference level.

As the PSD distribution is highly correlated in 
time, the data traffic demand can often be accu-
rately predicted from the day-ahead or historical 
radio map data. Accordingly, the system opera-
tor can provision spectrum and other resources 
ahead of time to improve the real-time commu-
nication quality. For instance, communication hot 
spots that are short of spectrum resources can be 
identified by comparing the predicted user traf-
fic with a maximum supportable traffic capacity 
under the current spectrum allocation. Accord-
ingly, one can pre-allocate more spectrum to 
the nearby fixed BSs or increase the regional fre-
quency reuse factor to overcome the temporary 
mismatch. Meanwhile, we can also dispatch the 
aforementioned VBSs ahead of time to designat-
ed locations to elevate the network capacity. Due 
to the fast deployment and low cost, VBSs can 
also be used to provision the unexpected surge of 
communication traffic demand identified during 
the radio map update. On another occasion, the 
system operator can effectively reduce the ener-
gy cost by turning off some BSs when foreseeing 
low traffic demand. Overall, the use of a radio 
map makes spectrum provisioning well-coordi-
nated among different entities, which significantly 
improves the user experience compared to mak-
ing hasty adjustments based on real-time mea-
surements.

Meanwhile, if a significant long-term mismatch 
between spectrum provisioning and user demand is 
observed at certain areas, the system operator should 
consider deploying some additional (or remove 
some existing) BSs to balance the provisioning and 
demand. In fact, in a heterogeneous network, one 
can choose from several radio access technologies 

for network planning, such as small cells and WiFi 
networks. Meanwhile, the information of terrain and 
locations of obstacles derived from a radio map is 
very useful when planning the site selections.

Spectrum Security and Surveillance
Due to the broadcast nature of wireless communi-
cation, radio spectral activities need to be regulat-
ed to avoid severe interference. Both commercial 
and non-commercial frequency bands have strict 
regulations on the device transmit power, access 
method, and spectrum selections. Nowadays, 
however, an increasing number of unregulated 
and illegal spectral activities have been observed, 
such as fake BSs and unregistered radio stations, 
to either avoid spectrum license fees or evade 
regulations. Random malfunctions of registered 
wireless devices can also generate detrimental 
interference. To protect the legitimate wireless 
transmissions, the spectral activities should be 
continuously monitored to quickly identify irregu-
lar activities. Several recent studies have proposed 
wireless communication surveillance techniques 
[14]. However, how to efficiently monitor spectral 
activities in large geographic areas is a non-trivial 
task, generally requiring highly complex sensing 
and computations, especially in today’s densely 
deployed and heterogenous wireless networks.

A radio map characterizes the long-term spec-
tral activity pattern, thus it can be effectively used 
to detect abnormalities, for example, significant 
deviation of the radio map from normalcy or a pre-
dicted pattern. The abnormality in a radio map can 
be caused by a number of factors, such as unex-
pected social events, licensed device malfunctions, 
and also rogue transmissions. Many data analytic 
tools can be used to identify an abnormality in the 
PSD distribution, such as hypothesis testing, clas-
sification and clustering learning algorithms. After 
precluding those abnormalities caused by legiti-
mate activities and events, it is crucial to devise 
and implement efficient countermeasures once 
the abnormality is identified as a device malfunc-
tion, rogue transmission, or other harmful activities 
(e.g., jamming) that may jeopardize the reliability 
of wireless networks. The radio map can help iden-
tify the location, transmit PSD, and other important 
parameters of rogue transmitters. On one hand, 
legitimate communication can be switched to safe 
frequency bands to avoid being affected by abnor-
mal transmissions. On the other hand, the system 
operator can dispatch personnel to physically 
repair malfunctioning devices/BSs or capture the 
illegitimate transmitters.

Conclusions
In this article, we provide an overview of the tech-
niques to efficiently construct and maintain a radio 
map and its applications to achieve efficient and 
secure resource management in wireless networks. 
Essentially, the knowledge of a radio map presents 
valuable opportunities to improve the wireless net-
work performance. A radio map enables system 
operators to predict the performance of future 
wireless communication that occurs at a specific 
time, frequency, and location, and to distinguish 
between normal and abnormal spectral activities. 
As a result, a radio map has extensive applications 
in wireless resource provisioning, interference 
management, and spectrum security/surveillance, 

Both commercial and 
non-commercial fre-
quency bands have 
strict regulations on the 
device transmit power, 
access method, and 
spectrum selections. 
Nowadays, however, 
an increasing number 
of unregulated and 
illegal spectral activities 
have been observed, 
such as fake BSs and 
unregistered radio sta-
tions, to either avoid 
spectrum license fees 
or evade regulations.
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among others. In practice, the major challenge of 
implementing a radio map lies in the high complex-
ity of collecting, storing, and processing the enor-
mous amount of sensing data. Efficient big-data 
processing and analytical methods are expected to 
make radio maps a truly valuable and indispens-
able tool for future wireless systems.
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