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Abstract— Network densification is a natural way to support
dense mobile applications under stringent requirements, such as
ultra-low latency, ultra-high data rate, and massive connecting
devices. Severe interference in ultra-dense networks poses a key
bottleneck. Sharing channel state information (CSI) and messages
across transmitters can potentially alleviate the interferences and
improve the system performance. Most existing works on inter-
ference coordination require significant CSI signaling overhead
and are impractical in the ultra-dense networks. This paper
investigates the topological cooperation to manage interferences
in message sharing based only on the network connectivity
information. In particular, we propose a generalized low-rank
optimization approach in a complex field to maximize the
achievable degrees of freedom (DoFs) by establishing interference
alignment conditions for the topological cooperation. To tackle
the challenges of poor structure and non-convex rank function,
we develop the Riemannian optimization algorithms to solve a
sequence of complex fixed-rank subproblems through a rank
growth strategy. By exploiting the non-compact Stiefel manifold
formed by the set of complex full column rank matrices,
we develop the Riemannian optimization algorithms to solve the
complex fixed-rank optimization problem by applying the semi-
definite lifting technique and the Burer–Monteiro factorization
approach. The numerical results demonstrate the computational
efficiency and higher DoFs achieved by the proposed algorithms.

Index Terms— Low-rank models, topological interference
alignment, transmitter cooperation, degrees-of-freedom, Rie-
mannian optimization in complex field.

I. INTRODUCTION

THE upsurge of wireless applications, including Internet-
of-Things (IoT), Tactile Internet, tele-medicine and

Manuscript received March 3, 2018; revised August 3, 2018 and
December 7, 2018; accepted March 3, 2019. Date of publication March 26,
2019; date of current version May 8, 2019. This work was supported in part
by the National Nature Science Foundation of China under Grant 61601290,
in part by the Shanghai Sailing Program under Grant 16YF1407700, and
in part by the National Science Foundation under Grant CNS-1702752 and
Grant ECCS1711823. The associate editor coordinating the review of this
paper and approving it for publication was W. Zhang. (Corresponding author:
Yuanming Shi.)

K. Yang is with the School of Information Science and Technology, Shang-
haiTech University, Shanghai 201210, China, also with the Shanghai Institute
of Microsystem and Information Technology, Chinese Academy of Sciences,
Shanghai 200050, China, and also with the University of Chinese Academy
of Sciences, Beijing 100049, China (e-mail: yangkai@shanghaitech.edu.cn).

Y. Shi is with the School of Information Science and Technol-
ogy, ShanghaiTech University, Shanghai 201210, China (e-mail: shiym@
shanghaitech.edu.cn).

Z. Ding is with the Department of Electrical and Computer Engineering,
University of California at Davis, Davis, CA 95616 USA (e-mail: zding@
ucdavis.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2019.2904570

mobile edge artificial intelligence, is driving the paradigm shift
of wireless networks from content delivery to skillset-delivery
networks [1]. Network densification [2] has emerged as a
promising approach to support innovative mobile applications
with stringent requirements such as ultra-low latency, ultra-
high data rate and massive devices connectivity. Unfortu-
nately, interference in dense wireless network deployment
becomes a key capacity limiting factor given large numbers
of transmitters and receivers. Network cooperation through
sharing channel state information (CSI) and messages among
transmitting nodes is a viable technology to improve the
spectral efficiency and energy efficiency in ultra-dense wireless
networks.

Under shared CSI among transmitters, interference align-
ment [3] is shown to mitigate interferences base on linear
coding schemes, capable of achieving half the cake for each
user in K-user interference channel. Cooperative transmission
[4] with message sharing has shown to be able to further
improve system throughput. In particular, through centralized
signal processing and interference management with full mes-
sage sharing via the cloud data center, cloud radio access
network (Cloud-RAN) [5] can harness the advantages of
network densification. By pushing the storage resources to the
network edge [6], cache-aided wireless network [7] provides
a cost effective way to enable transmission cooperation.

Unfortunately, most existing works on network cooperation
lead to significant channel signaling overhead. This is prac-
tically challenging in ultra-dense networks. A growing body
of recent works has hence been focusing on CSI acquisition
overhead reduction for interference coordination in wireless
networks. Among them, delay effect in CSI acquisition has
been considered in [8]. Both [9] and [10] have studied trans-
ceiver design using partial CSI, requiring instantaneous CSI
for strong links and only distribution CSI of the remaining
weak links. In addition, finite precision CSI feedback [11] and
the compressed channel estimation [12] can further reduce CSI
acquisition overhead.

However, the applicability of the aforementioned results in
practical systems remains unclear, which motivates a recent
proposal on topological interference management (TIM) [13].
The main idea of TIM is to manage the interference based only
on the network connectivity information, which can signifi-
cantly reduce the CSI acquisition overhead. By requiring only
network topologies, TIM becomes one of the most promising
and powerful schemes for interference management in ultra-
dense wireless networks. By further enabling message sharing,
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the work of [14] shows that transmitter cooperation based
only on network topology information can strictly improve
the degrees-of-freedom (DoFs). However, their results are only
applicable to some specific network connectivity patterns.

In this paper, we propose a generalized low-rank optimiza-
tion approach for investigating the benefits of topological
cooperation for any network topology. We begin by first
establishing the generalized interference alignment conditions
based only on the network connectivity information with mes-
sage sharing among transmitters. A low-rank model is further
developed to maximize the achievable DoFs by exploiting the
relationship between the model matrix rank and the achievable
DoFs. The developed low-rank matrix optimization model
thus generalizes the low-rank matrix completion model [15]
without message sharing among transmitters. Unfortunately,
the resulting generalized low-rank optimization problem in
complex field is non-convex and highly intractable due to poor
structure, for which novel and efficient algorithms need to be
developed.

Low-rank matrix optimization models have wide range of
applications in machine learning, high-dimensional statistics,
signal processing and wireless networks [15]–[18]. A wealth
of recent works focus on both convex approximation and
non-convex algorithms to solve the non-convex and highly
intractable low-rank optimization problems. Nuclear norm is a
well-known convex proxy for non-convex rank function with
optimality guarantees under statistical models [19]. To further
reduce the storage and computation overhead for low-rank
optimization, non-convex approach based on matrix factor-
ization shows good promises [20]. With suitable statistical
models, the non-convex methods can also find globally optimal
solution for some structured optimization problems such as
matrix completion [21]. In particular, the work of [22] adopted
an alternating minimization algorithm to exploit topological
transmitter cooperation gains. This algorithm stores the itera-
tive results in the factored form and optimizes over one factor
while fixing the other.

Nevertheless, the nuclear norm based convex relaxation
approach in fact fails to solve the formulation of general-
ized low-rank matrix optimization problem because of the
poor structures. Actually, the nuclear norm minimization
approach always yields a full-rank matrix solution. Alternat-
ing minimization [20] algorithm by factorizing the fixed-rank
matrix is particularly useful when the resulting problem is
biconvex with respect to the two factors in matrix factor-
ization. However, the convergence of the alternating mini-
mization algorithm heavily depends on the initial points with
slow convergence rates. It may also yield poor performance
in achievable DoFs, as it only guarantees convergence to
the first-order stationary points [15], [22]. In contrast, Rie-
mannian optimization [23] approach has shown to be effective
in improving the achievable DoFs by solving the low-rank
matrix optimization problems, as the Riemannian trust-region
algorithm guarantees convergence to the second-order sta-
tionary points with high precision solutions [15]. Further-
more, the Riemannian optimization algorithms are robust to
initial points in ensuring convergence [24] with fast conver-
gence rates. However, no available Riemannian optimization

algorithms have been developed for the general non-square
low-rank problems in the complex field. In this work, we
develop Riemannian optimization algorithms for solving the
presented generalized low-rank optimization problem in the
complex field.

A. Contributions

In this paper, we develop a generalized interference align-
ment condition to enable transmitter cooperation based only
on the network topology information. We present a general-
ized low-rank model to maximize the achievable DoFs. To
address the special challenges in the resulting generalized
low-rank optimization problem, we develop Riemannian opti-
mization algorithms by exploiting the non-compact Stiefel
manifold of fixed-rank matrices in complex field. Specifically,
we propose to solve the generalized low-rank optimization
problem by solving a sequence of fixed rank subproblems
with rank increase. By applying semidefinite lifting technique
[25], the fixed rank subproblem is reformulated as a posi-
tive semidefinite matrix problem in complex field with rank
constraint. By applying the Burer-Monteiro [26] parameteri-
zation approach to factorize the positive semidefinite matrix,
the resulting problem turns out to be a Riemannian opti-
mization problem on complex non-compact Stiefel manifold.
Therefore, the generalized low-rank optimization problem can
be successfully solved by developing Riemannian optimiza-
tion algorithms on the complex-valued non-compact Stiefel
manifold.

We summarize the main contributions of this work as
follows:

1) We establish a generalized interference alignment con-
dition to enable transmitter cooperation with message
sharing based only on network connectivity information.
We develop a generalized low-rank model to maximize
the achievable DoFs.

2) We develop first-order and second-order Riemannian
optimization algorithms for solving the generalized low-
rank optimization problem in complex field. We exploit
the complex compact Stiefel manifold of complex fixed-
rank matrices using the semidefinite lifting and Burer-
Monteiro factorization techniques.

3) Numerical results demonstrate that the proposed second-
order Riemannian trust-region algorithm is able to
achieve the highest DoFs with high precision second-
order stationary point solutions. Furthermore, its com-
puting time is comparable to the first-order Riemannian
conjugate gradient algorithm in medium network sizes.
Overall, the Riemannian algorithms show much bet-
ter performance than the alternating minimization
algorithm.

B. Organization and Notation

The remainder of this paper is organized as follows.
In Section II, we first introduce the system model, before
establishing the generalized topological interference alignment
conditions. We develop the generalized low-rank model in
Section III, and derive a positive semidefinite reformulation
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with the Burer-Monteiro approach to address the low-rank
optimization problem in complex field. We derive Riemannian
algorithms on complex non-compact Stiefel manifold in
Section IV. Section V provides simulation results. Finally,
we conclude this work in Section VI,

We use [K] denote the set {1, 2, · · · , K}. S
N
+ denotes the

set of all N×N Hermitian positive semidefinite matrices. And
〈·, ·〉 denotes inner product, i.e., 〈A, X〉 = Tr(AHX).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we establish the generalized interference
alignment condition for partially connected K-user interfer-
ence channel with transmitter cooperation.

A. System Model

Consider a partially-connected interference channel with K
single-antenna transmitters and K single-antenna receivers.
Transmitters aim to deliver a set of independent messages
W1, W2, · · · , WK to receivers 1, 2, · · · , K , respectively.
Transmitter k has message Wk and is always connected with
receiver k. The channel coefficient hkl ∈ C between the l-th
transmitter and the k-th user is nonzero only for (k, l) ∈
E . Block fading channel model is considered in this paper,
i.e., hkl remains stationary in r consecutive channel uses,
during which the input-output relationship is given by

yk =
∑

(k,i)∈E
hkixi + zk, ∀k ∈ [K], (1)

where xi ∈ C
r is the transmitted signal at transmitter i,

yk ∈ C
r is the received signal at receiver k, and zk ∈ C

r is the
additive isotropic white Gaussian noise, i.e., zk ∼ CN (0,Σk)
with Σk ∈ C

r×r. Partial connectivity of the interference
channel provides opportunities to enable cooperative trans-
mission based only on the network connectivity information.
Specifically, transmitter cooperation is enabled with message
sharing, for which we denote the index set of messages
available at transmitter k as Sk ⊆ [K]. A 5-user example
of such system is shown in Fig. 1.

Let R(Wk) be the achievable data rate of message Wk , i.e.,
there exists a coding scheme such that the rate of message Wk

is R(Wk) and the decoding error probability can be arbitrarily
small. Let SNR denote the signal-to-noise-ratio. For each
message delivery, the degree-of-freedom (DoF) [13], the first
order characterization of channel capacity, is defined as

DoF(Wk) = lim
SNR→∞

R(Wk)
log(SNR)

, ∀k ∈ [K]. (2)

The set of achievable DoF allocation is denoted as
{DoF(W1), · · · , DoF(WK)}, whose closure is called the DoF
region. This paper adopts DoF as the performance metric and
designs a linear coding scheme.

B. Linear Coding Strategy

Linear coding scheme is attractive for interference man-
agement owing to its low complexity. Specifically, its opti-
mality in terms of DoF has been shown via interference
alignment [3]. Its effectiveness has been demonstrated in the

Fig. 1. The architecture of the partially-connected K-user interference
channel with transmitter cooperation. Si denotes the index set of messages
available at transmitter i.

problems of topological interference management (TIM) and
index coding [13]. We thus focus on linear coding scheme to
design low complexity and efficient approaches for maximiz-
ing achievable DoFs.

Suppose each message Wk is represented by a complex
vector sk ∈ C

dk with dk data streams. Let Vkj ∈ C
r×dj be

the precoding matrix at transmitter k for message Wj . Then
the transmitted signal is given by

xk =
∑

j∈Sk

Vkjsj . (3)

Consequently, the received signal at user k is

yk =
∑

j:(k,j)∈E,k∈Sj

hkjVjksk +
∑

i�=k

∑

j:(k,j)∈E,i∈Sj

hkjVjisi

+ zk. (4)

We let Uk ∈ C
r×dk be the decoding matrix at receiver k.

In densified wireless networks, interference is a key bot-
tleneck to support high data rate and low latency. To allevi-
ate interferences by aligning the intersection of interference
spaces, the following interference alignment conditions were
presented in [13] and [27]

∑

j:(k,j)∈E,k∈Sj

hkjU
H
k Vjk �= 0, ∀k ∈ [K], (5)

∑

j:(k,j)∈E,i∈Sj

hkjU
H
k Vji = 0, i �= k. (6)

Correspondingly, the message at receiver k is decoded via

ŝk = (
∑

j:(k,j)∈E,k∈Sj

hkjU
H
k Vjk)−1UH

k yk. (7)

If there exists Uk’s, Vji’s satisfying interference alignment
conditions (5) and (6), DoF tuple (d1r

−1, · · · , dKr−1) is then
achievable. We thus can achieve the highest DoF by finding
the minimal channel use number r.

C. Topology-Based Alignment Condition

Note that equations (5) and (6) are always feasible by
increasing r. However, the interference alignment condi-
tions (5) and (6) require the knowledge of channel coefficients
hijs at the transmitters. In practice, obtaining dense network
channel state information (CSI) at transmitters often requires
large signaling overhead, which presents a severe obstacle to



2542 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 5, MAY 2019

their application in densified wireless networks. One desirable
way to address the CSI acquisition overhead issue is to
establish new interference alignment conditions based only on
the network connectivity information, for which we present
the following generalized interference alignment conditions for
topological cooperation

det

⎛

⎝
∑

j:(k,j)∈E,k∈Sj

UH
k Vjk

⎞

⎠ �= 0, ∀k ∈ [K], (8)

UH
k Vji = 0, i ∈ Sj , i �= k, (k, j) ∈ E .

(9)

Here, “topological cooperation” refers to the fact that for
cooperation enabled transmitters, we design transceivers to
manage interferences based on network topology information
instead of instantaneous channel state information.

Proposition 1: For generic channel coefficients hij’s ran-
domly distributed according to some continuous probability
distribution [28], if (8) and (9) hold for some Uk, Vjis based
only on the network topology information, then they shall
satisfy the channel dependent interference alignment condi-
tions (5) and (6) with probability 1.

Proof: Let Z1, · · · , ZT ∈ C
d×d denote the set of

matrices {UH
k Vjk : (k, j) ∈ E , k ∈ Sj} given k. Our goal

is to prove that if det
( ∑T

t=1 Zt

)
�= 0, the probability of

det
( ∑T

t=1 htZt

)
�= 0 is 1 for generic h1, · · · , hT . Note

that
∑T

t=1 Zt =
[
Z1 · · · ZT

] [
I · · · I

]H
. Thus, the con-

dition det
( ∑T

t=1 Zt

)
�= 0 implies that

[
Z1 · · · ZT

]
has

full rank, i.e., the dimension of span{Zj} is r. Since the

solution to the determinant equation det
( ∑T

t=1 htZt

)
= 0

is an algebraic hypersurface [27], the probability of the linear
combination

∑T
t=1 htZt with generic coefficients h1, · · · , hT

lying on the algebraic hypersurface is hence zero. Therefore,
det

( ∑T
t=1 htZt

)
�= 0 holds with probability 1. �

By leveraging conditions (8) and (9), interferences can be
aligned based only on network topology CSI instead of full
CSI. This significantly reduces the overhead of CSI acqui-
sition. In particular, the topological interference alignment
condition without message sharing is given by [15]

det
(
UH

k Vk

)
�= 0, ∀k ∈ [K], (10)

UH
k Vj = 0, j �= k, (k, j) ∈ E , (11)

which is a special case of (8) and (9) with Sj = {j} and
Vj denoting as Vjj . Conditions (8) and (9) thus manifest
the benefits of transmitter cooperation, as solutions to (10)
and (11) are always solutions to (8) and (9), but not conversely.

Remark 1: This work assumes that there are equal num-
ber of transmitters and receivers. Nevertheless, the principle
applies for arbitrary number of transmitters and receivers.
This is because both Proposition 1 and the low-rank
matrix representation for precoding and decoding matrices in
Section 3 hold for any number of transmitters and receivers.
For simplicity of notation we consider a system with K
transmitters and receivers in this paper.

III. GENERALIZED LOW-RANK OPTIMIZATION FOR

TOPOLOGICAL COOPERATION

This section develops a generalized low-rank optimization
framework to maximize achievable DoFs under topological
cooperation. To address the challenges of the present gener-
alized low-rank optimization problem in complex field and to
exploit the algorithmic benefits of Riemannian optimization,
we propose to reformulate an optimization problem over the
complex non-compact Stiefel manifold by using the semidef-
inite lifting and Burer-Monteiro approaches.

A. Generalized Low-Rank Model for Topological
Cooperation

Without loss of generality, we restrict∑
j:(k,j)∈E,k∈Sj

UH
k Vjk = I in condition (8). By letting

m =
∑

k dk, n = K
∑

k dk and defining

U =
[
U1 · · · UK

]
∈ C

r×m

Vj = [Vj1, · · · , VjK ] ∈ C
r×m

V =
[
V1 · · · VK

]
∈ C

r×n

X = [Xi
kj ] = [UH

k Vji] = UHV ∈ C
m×n, (12)

the rank of matrix X is given as

rank(X) = r = dk/DoF(Wk). (13)

We thus can maximize the achievable DoF for interference-
free message delivery by solving the following generalized
low-rank optimization problem

P : minimize
X∈Cm×n

rank(X)

subject to A(X) = b, (14)

where the affine constraint A(X) = b captures
∑

j:(k,j)∈E,k∈Sj

Xk
kj = I, ∀k ∈ [K] (15)

Xi
kj = 0, i �= k, i ∈ Sj , (k, j) ∈ E (16)

and A : C
m×n 	→ C

l.
For the simpler case without message sharing, the topolog-

ical interference alignment problem can be formulated as the
following low-rank matrix completion problem [15], [29]

minimize
X∈Cm×m

rank(X)

subject to Xkk = I, ∀k ∈ [K]
Xkj = 0, j �= k, (k, j) ∈ E , (17)

which is a special case of problem P . The resulting low-rank
matrix completion model is demonstrated in Fig. 2.

B. Problem Analysis

Basically, methods for solving low-rank problems can be
divided into two categories. One uses convex relaxation
approach and the other one uses nonconvex approach based
on matrix factorization. In addition, penalty decomposition
method is proposed in [30] for low-rank optimization prob-
lems. The inner iterations adopt a block coordinated descent
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Fig. 2. Matrix completion model for the topological interference alignment
without message sharing for single data stream dk = 1: In this case, all
diagonal entries are set to 1 as Sk = {k}. As an example, the (2, 3)-th entry
is zero because the second receiver is connected to the interference from
the third transmitter. And the (3, 2)-th entry of the matrix can be arbitrary
since (3, 2) �∈ E . The solution to the low-rank optimization problem with
the proposed Riemannian trust-region method is a rank-2 matrix as shown in
(c) with complex entries. Therefore, 1/2 DoF is achievable for each message
delivery.

method, whereas the outer iterations update the weight of
rank function. However, each inner iteration requires the
computation of singular value decomposition, which leads to
large computation overhead (O(mnl+m2n+m3)). Therefore,
it is not suitable for our transceiver design problem in ultra-
dense networks.

1) Convex Relaxation Methods: Nuclear norm is a well-
known convex proxy [16] for rank function. The nuclear norm
relaxation approach for problem P is given by

minimize
X∈Cm×n

‖X‖∗
subject to A(X) = b. (18)

It can be solved by an equivalent semidefinite program-
ming (SDP) problem

minimize
X,W1,W2

Tr(W1) + Tr(W2)

subject to A(X) = b, (19)[
W1 X
XH W2

]
� 0.

Unfortunately, the SDP solution requires computing singular
value decomposition at each iteration, which is not scalable to
large problem sizes in ultra-dense networks. Specifically, with
high precision second-order interior point method, the con-
vergence rate is fast while the computational cost for each
iteration is O((mn + l)3) due to computing the Newton
step [31]. Using the first-order algorithm alternating direction

method of multipliers (ADMM) [32], the computational cost is
O(mnl+m2n+m3) at each iteration. Furthermore, the nuclear
norm relaxation approach always yields a full rank solution
due to the poor structure of the affine operator A.

Proposition 2: The nuclear norm relaxation approach (19)
for the generalized low-rank optimization problem P always
yields a full rank solution.

Proof: See Appendix A. �
Therefore, the nuclear norm relaxation based approach is

inapplicable for the poorly structured low-rank optimization
problem P . We thus call problem P as the generalized low-
rank optimization problem.

2) Nonconvex Approaches: A rank r matrix X can be fac-
torized as X = LRH, where L ∈ C

m×r and R ∈ C
n×r. Non-

convex approaches to low-rank optimization leverage matrix
factorizations and design various updating strategies for two
factors U and V . By solving a sequence of the fixed rank
least square subproblems based on matrix factorization

minimize
X∈Cm×n

f0(X) =
1
2
‖A(X)− b‖22

subject to rank(X) = r, (20)

and increasing r, we can find the minimal rank r for the
original problem P .

Specifically, for the rank constrained problem (20) with
convex objective function, the alternating minimization [20]
algorithm can function as follows:

Lk+1 = arg min
L

f0(LRH
k ), (21)

Rk+1 = arg min
R

f0(Lk+1R
H). (22)

It essentially optimizes the bi-convex objective function
f0(LRH) by freezing one of L and R alternatively. However,
the convergence of the alternating minimization algorithm
are sensitive to initial points and its convergence rate can
be slow. Furthermore, it may yield poor performance for
achievable DoFs maximization by only converging to first-
order stationary point.

In contrast, Riemannian optimization algorithms are capa-
ble of updating the two factors L and R simultaneously
by exploiting the quotient manifold geometry of fixed-rank
matrices based on matrix factorization. First-order Riemannian
conjugate gradient and second-order Riemannian trust-region
algorithm can help find first-order stationary points and
second-order stationary points, respectively. It has been shown
in [24] that Riemannian optimization algorithms converge to
first-order and second-order stationary points from arbitrary
initial points. Furthermore, Riemannian trust-region algorithm
can achieve high achievable DoFs with second-order stationary
points while also enjoys locally super-linear [23] convergence
rates.

Remark 2: The invariance of matrix factorization
(LMH, M−1R) for any full rank matrix M means that
the critical points of the objective function f0 parameterized
with L and R are not isolated in Euclidean space. This
indeterminacy also leads to an ill-conditioned Hessian [33] of
f0, which profoundly affects the convergence of second-order
optimization algorithms [34], [35]. To address this issue,
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we shall develop efficient algorithms on the quotient manifold
instead of Euclidean space.

Unfortunately, available Riemannian algorithms for non-
square fixed-rank matrix optimization problems only operate
in R field [23] and do not directly apply to solve problem (20)
in the complex filed. Inspired by the fact that the complex non-
compact Stiefel manifold is well defined [36], we propose to
reformulate complex matrix optimization problem (20) on the
complex non-compact Stiefel manifold by using the Burer-
Monteiro approach. Specifically, applying semidefinite lifting,
the original problem (20) is equivalently reformulated into
rank constrained positive semidefinite matrix optimization,
before factorizing the semidefinite matrices using the Burer-
Monteiro approach. The original complex matrix optimization
problem (20) is thus reformulated as the Riemannian opti-
mization problem over the well-defined non-compact Stiefel
manifold in complex field.

C. Semidefinite Lifting and the Burer-Monteiro Approach

Burer-Monteiro approach is a well-known nonconvex para-
meterization method for solving positive semidefinite (PSD)
matrices problems [26]. A rank r PSD matrix Z ∈ S

N can be
factorized as Z = Y Y H with Y ∈ C

N×r. The linear operator
A can be represented as a set of matrices Ai ∈ C

n×m, i.e.,

A(X) = [〈Ai, X〉], i = 1, · · · , l. (23)

Then the objective function in (20) can be rewritten as

f0(X) =
1
2

l∑

i=1

|〈Ai, X〉 − bi|2. (24)

By semidefinite lifting [25] X to

Z =
[
Z11 Z12

Z21 Z22

]
:=

[
LLH LRH

RLH RRH

]
, (25)

we can reformulate problem (20) as a complex PSD matrix
problem with rank constraint:

minimize
Z∈SN

+

1
2
‖B(Z)− b‖22

subject to rank(Z) = r, (26)

where N = m + n and

B(Z) = A(Z12) = A(LRH). (27)

Here we use B to denote a set of matrices Bi ∈ C
N×N

Bi =
[
0 Ai

0 0

]
, 〈Bi, Z〉 = 〈Ai, X〉. (28)

We define Y =
[
L
R

]
∈ C

N×r. The search space {Z : Z ∈
S

N
+ , rank(Z) = r} admits a well-defined manifold structure,

by factorizing Z = Y Y H based on the principles of Burer-
Monteiro approach. Problem (26) thus can be transformed as

minimize
Y ∈C

N×r
∗

f(Y ) =
1
2
‖B(Y Y H)− b‖22. (29)

This is a Riemannian optimization problem with a smooth
(C∞) objective function over the complex non-compact Stiefel

Algorithm 1 Optimization Framework for Transmitter
Cooperation Based on Network Topology Information

Input: {Sj}, E , K, {dk}, accuracy ε.
Construct B and b following (15) (16) (23) (28). Let
N = m + n = (K + 1)

∑
k dk.

for r = 1, · · · , N do
Solve (29) with Riemannian optimization algorithm.
if f(Y [r]) < ε then

return Y [r]

end
end
Output: Y [r] and rank r.

manifold C
N×r
∗ , i.e., the set of all N × r full column rank

matrices in complex field.
In summary, we propose to solve the generalized low-

rank optimization problem by solving a sequence of com-
plex fixed-rank optimization problem using the Riemannian
optimization technique. This is achieved by lifting the com-
plex fixed-rank optimization problem into the complex pos-
itive semidefinite matrix optimization problem, followed by
parameterizing it using the Burer-Monteior approach. This
yields the Riemannian optimization problem over complex
non-compact Stiefel manifold. After obtaining a solution Y
from (29), we can recover the solution X = LRH to the
original problem (20). The whole algorithm of addressing the
transmitter cooperation problem based only on the network
topology information is demonstrated in Algorithm 1.

Remark 3: We observe that the dense network connectivity
(i.e., |E| is large) leads to a high rank r through numerical
experiments in Section V-B, which results in high compu-
tational complexity if we apply the rank increase strategy
in the proposed Algorithm 1. Therefore, when the number
of connected links |E| is small, we can adopt the inflation
procedure by increasing r from 1 to N . If the network
connectivity is dense, we may adopt a deflation procedure by
decreasing r from N to 1 to lower the complexity. For general
network connectivity scenarios, a bi-section search procedure
is preferred for acceleration.

IV. MATRIX OPTIMIZATION ON COMPLEX NON-COMPACT

STIEFEL MANIFOLD

In this section, we shall develop Riemannian conjugate gra-
dient and Riemannian trust-region algorithms for solving prob-
lem (29). Riemannian optimization generalizes the concepts
of gradient and Hessian in Euclidean space to Riemannian
gradient and Hessian on manifolds. They are represented in the
tangent space, which is the linearization of the search space.

A. Quotient Geometry of Fixed-Rank Problem

For problem (29), the optima are not isolated because
of Y Y H remains invariant under the canonical projection
[23, Sec. 3.4.1]

π : Y 	→ Y Q (30)

for any unitary matrix Q ∈ U(r) where U(r) denotes the set
of r × r unitary matrices. To address this non-uniqueness we
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consider problem (29) over the equivalent class

[Y ] = {Y Q : Y ∈M = C
N×r
∗ , Q ∈ U(r)}, (31)

that is

minimize
[Y ]∈M

f([Y ]). (32)

Then the whole set of feasible solutions can be represented by
isolated points in the quotient manifold, i.e. M = M/ ∼:=
M/U(r) with canonical projection [23, Sec. 3.4] π. Here ∼
is the equivalence relation andM/ ∼:= {[Y ] : Y ∈ M}.M
is considered as an abstract manifold.

B. Riemannian Ingredients for Iterative Algorithms
on Riemannian Manifolds

By studying the unconstrained problem on the quotient man-
ifold instead of the constrained problem in Euclidean space,
Riemannian optimization can exploit the non-uniqueness of
matrix factorization with Burer-Monteiro approach. We now
develop conjugate gradient and trust-region algorithms on the
Riemannian manifold. To achieve this goal, we first linearize
the search space, by defining the concept of tangent space [23,
Sec. 3.5] and associated “inner product” on the tangent space.
Next, we will derive the expressions for Riemannian gradient
and Riemannian Hessian in this subsection.

Specifically, tangent space TYM is a vector space consist-
ing of all tangent vectors to M at Y .

Proposition 3: The tangent space of M = C
N×r
∗ at Y is

given by TYM = C
N×r.

Proof: M is an open submanifold [23, Sec. 3.5.2] of
C

N×r and hence, TYM = C
N×r for all Y ∈M. �

In order to eliminate the non-uniqueness along the equiv-
alent class [Y ], we will decompose the tangent space into
two orthogonal parts, i.e., vertical space and horizontal space.
Vertical space VY is the tangent space of equivalent class [Y ],
while horizontal space HY is the orthogonal complement of
vertical space in the tangent space. That is,

TYM = VY ⊕HY , (33)

where ⊕ denotes the direct sum of two subspace. In this way,
we can always find the unique “lifted” representation of the
tangent vectors of T[Y ]M in TYM at any element of [Y ],
i.e., for any ξ ∈ TYM we define a unique horizontal lift
ξ ∈ HY at Y such that

ξ := Πh
Y ξ, (34)

where horizontal projection Πh
Y (·) is the orthogonal projection

from TYM onto HY .
Proposition 4: The vertical space at Y is given by

VY � {Y Ω : ΩH = −Ω,Ω ∈ C
r×r}. (35)

Proof: See Appendix B. �
According to the definition, horizontal space should be

derived from

HY = {ξ ∈ TYM : gY (ξ, ζ) = 0, ∀ζ ∈ VY }, (36)

where g is Riemannian metric for the abstract manifold M.
Riemannian metric is the generalization of “inner product”

in Euclidean space to a manifold. It is a bilinear, symmetric
positive-definite operator

g : TYM×TYM 	→ R. (37)

In this paper, we can choose

gY (ξ, ζ) := Tr(�(ξ
H
ζ)) =

1
2

Tr(ξ
H
ζ + ζ

H
ξ) (38)

as a Riemannian metric for the abstract manifold M, where
Y ∈ M and ξ, ζ ∈ TYM. The manifold M is called a
Riemannian manifold when its tangent spaces are endowed
with a Riemannian metric. From another perspective, M can
also be viewed as a Kähler manifold whose Kähler form is a
real closed (1,1)-form [37].

Therefore, we can obtain the explicit expressions for the
horizontal space and horizontal projection.

Proposition 5: The horizontal space is

HY = {ξ ∈ C
N×r : ξHY = Y Hξ}, (39)

and the orthogonal projection onto the horizontal space is

Πh
Y ξY = ξY − Y Ω, (40)

where ΩH = −Ω ∈ C
r×r is the solution of Lyapunov equation

Y HY Ω + ΩY HY = Y HξY − ξH
Y Y . (41)

Proof: See Appendix C. �
Given the Riemannian metric for the abstract manifold,

quotient manifold is naturally endowed with a Riemannian
metric

g[Y ](ξ[Y ], ζ[Y ]) := gY (ξY , ζY ) (42)

such that the expression gY (ξY , ζY ) remains for any elements
in the equivalent class [Y ]. HenceM is a Riemannian quotient
manifold of the abstract manifold M with the Riemannian
metric g, and the canonical projection π : (M, g) 	→ (M, g)
is a Riemannian submersion [23, Sec. 3.6.2].

Riemannian optimization generalizes the gradient and
Hessian into Riemannian gradient and Riemannian Hessian.

1) Riemannian Gradient: Riemannian gradient is a neces-
sary ingredient to develop the Riemannian conjugate gradient
and Riemannian trust-region algorithm. For quotient manifold,
the horizontal representation of Riemannian gradient, denoted
by gradf(Y ), arises from

gradf(Y ) = Πh
Y gradf(Y ), (43)

in which gradf(Y ) is the Riemannian gradient in the abstract
manifold M at Y . Note that gradf(Y ) is given by

gY (gradf(Y ), ξ) = Df(Y )[ξ], ∀ξ ∈ TYM, (44)

where Df(Y )[ξ] := limt→0 t−1 [f(Y + tξ)− f(Y )] is the
directional derivative of f , whereas ξ is the horizontal lift of
ξ. Then we conclude that

gradf(Y ) = gradf(Y ) =
l∑

i=1

(CiBi + C∗
i BH

i )Y , (45)

in which Ci = 〈Bi, Y Y H〉 − bi. The derivation process is
described in detail in Appendix D.
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TABLE I

RIEMANNIAN INGREDIENTS

2) Riemannian Hessian: For the purpose of developing
a second-order algorithm, we need to think of the Rie-
mannian Hessian as an linear operator closely connected to the
directional derivative of the gradient. Riemannian connection
defines a “directional derivative” on the Riemannian manifold.
To be specific, Euclidean directional derivative is a Rie-
mannian connection on C

N×r. Since the quotient manifoldM
has a Riemannian metric that is invariant along the horizontal
space, the Riemannian connection [23, Proposition 5.3.4] can
be derived from

∇ηξ = Πh
Y (Dξ[η]), (46)

for any η ∈ VY , ξ ∈ X(M) and X(M) is the set of
smooth vector fields on M. The horizontal representation
of Riemannian Hessian operator [23, Definition 5.5.1] is
given as

Hessf(Y )[ξY ] := ∇ξY gradf. (47)

Then the Riemannian Hessian is given by

Hessf(Y )[ηY ] = Πh
Y

( l∑

i=1

(CηiBiY + CiBiηY

+ Cη
∗
i B

H
i Y + C∗

i BH
i ηY )

)
, (48)

where Cηi = 〈Bi, Y ηH
Y +ηY Y H〉. We relegate the derivation

details of this expression to Appendix D.

C. Riemannian Optimization for Fixed-Rank Problem

Riemannian optimization generalizes the optimization algo-
rithms in Euclidean space to a manifold. Similarly, we need to
compute search directions in the tangent space and appropriate
stepsizes. To ensure each iteration is always on the given
manifold, retraction [23, Sec. 4.1] is defined as a pull-back
from the tangent space onto the manifold. To be specific,
the updating formula in the i-th iteration is given by

Yk+1 = RYk
(αkηk), (49)

where αk > 0 is the step size, ηk ∈ TYk
M is the search direc-

tion, and R denotes retraction operation which maps an ele-
ment from the set of all tangent spaces TM = ∪Y ∈MTYM
to M. The retraction operation is shown in Fig. 3a.

Proposition 6: Choices of R and R

RY (ξ) := Y + ξ, RY (ξ) := π(RY (ξ)) (50)

define retractions on M and M, respectively.

Fig. 3. Riemannian retraction and vector transport operation.

Proof: Since M = C
N×r
∗ is an embedded manifold and

also an open submanifold of E = C
N×r, following [23, Sec.

4.1.1] we can choose the identity mapping

φ(F ) = F (51)

as a diffeomorphism so that φ : M×N → E∗,N = ∅ and
dim(M) + dim(N ) = dim(E). Therefore, we conclude that

RY (ξ) := Y + ξ (52)

defines a retraction onM. Adding with that equivalent classes
are orbits of the Lie group Ur which acts linearly [23, Sec.
4.1.2] on the abstract manifold M,

RY (ξ) := π(RY (ξ)) (53)

defines a retraction on M. �
In this subsection, we will introduce Riemannian conjugate

gradient (RCG) method and Riemannian trust-region (RTR)
method.

1) Riemannian Conjugate Gradient Method: When the
search direction is chosen as the negative Riemannian gradient
and the step size is determined by backtracking line search
following the Armijo rule [23, Sec. 4.6.3], we have the
Riemannian gradient descent algorithm. Riemannian conjugate
gradient method can be expressed as

ηk+1 = −gradfk + βkTαkηk
(ηk), (54)

where TηY (ξY ) is the vector transport operator so that ξY is
transported from TYM to TRY (ηY )M for ξY ∈ TYM. This
is shown in Fig. 3b.

A vector transport is defined by

TηY (ξY ) := DRY (ηY )[ξY ] = ξY . (55)

Among many good choices for βk, we choose

βk =
gYk

(gradfk, gradfk − Tαk−1ηk−1(gradfk−1))
gYk

(ηk−1, gradfk − Tαk−1ηk−1(gradfk−1))
, (56)

which is a generalized version of Hestenes-Stiefel [38].
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Algorithm 2 Truncated Conjugate Gradient Algo-
rithm for (57)

Input: B, b, Yk, Δk. Parameters κ, θ > 0
Initialize: η0, r0 = gradfk, δ0 = −r0

while ‖rj+1‖g > ‖r0‖g min(‖r0‖θg, κ) do
if gYk

(δj , Hessfk[δj ]) ≤ 0 then
Compute τ = argminmk(ηk) where
ηk = ηj + τδj and ‖ηk‖g = Δk,
return η

end
Set ηj+1 = ηj + αjδj where
αj = ‖rj‖2g/gYk

(δj , Hessfk[δj ])
if ‖ηj+1‖g ≥ Δk then

Set τ as the solution to ‖ηk‖g = Δk where
ηk = ηj + τδj ,
return ηk

end
Set rj+1 = rj + αjHessfk[δj ],
Set βj+1 = ‖rj+1‖2g/‖rj‖2g,
Set δj+1 = −rj+1 + βj+1δj ,
j ← j + 1

end
Output: η = ηk.

2) Riemannian Trust-Region Algorithm: When the search
direction is chosen by solving the local second-order approx-
imation of f(Y ), it results in the Riemannian trust-region
algorithm. We will find the updating vector η by solving the
trust-region subproblem

minimize
η∈TYk

M
mk(η) = fk + gYk

(gradfk, η)

+
1
2
gYk

(Hessfk[η], η)

subject to ‖η‖g ≤ Δk, (57)

where Δk > 0 is the radius of the trust region and ‖η‖g =√
gYk

(η, η). Note that the solution η becomes a candidate for
updating. This is because we will select a proper Δk, find the
corresponding solution ηk of the trust-region subproblem and
then update Y through

Yk+1 = RYk
(ηk). (58)

The criterion for choosing Δk is based on evaluating

ρk =
fk − f(RYk

(ηk))
mk(0)−mk(ηk)

. (59)

When ρk is very small, the radius of trust region Δk should be
reduced because in this case the second-order approximation
is too inaccurate. If ρk is not very small, we shall accept Δk

and ηk and reduce the trust region. If ρk is close to 1, it m
means that the second-order approximation models original
objective function well. Hence, we can accept this step and
expand the trust region. Likewise, if ρk � 1, we should
also reject this step and increase Δk. The trust-region sub-
problem can be solved by the truncated conjugate gradient
[23, Sec. 7.3.2] algorithm (see Algorithm 2).

Riemannian trust-region algorithm harnesses the second-
order information of the problem. It admits a superlinear
[23, Th. 7.4.11] convergence rate locally and is robust to initial

points. Since the objective function f is exactly a quadratic
function which satisfies the Lipschitz gradient condition and
other assumptions in [24], we can always find an approximate
second-order critical points by the Riemannian trust-region
algorithm.

D. Computational Complexity Analysis

Riemannian conjugate gradient and Riemannian trust-region
algorithm involve computing optimization ingredients at each
iteration, for which we show their computational complexity.

• Evaluate the objective value f(Y ). Since B(·) involves
a series of sparse matrix multiplication, we can compute
it efficiently and the complexity of computing f(Y ) is
O(mnl).

• Compute the Riemannian gradient gradf (45). This
includes computing matrix multiplication in O(mnl)
and horizontal projection Πh

Y (40). Since complexity of
solving the Lyapunov equation (41) is O(r3+(m+n)r2),
the overall complexity is O(mnl + (m + n)r2 + r3).

• Compute the Riemannian Hessian Hessf (48). Its cost is
also O(mnl + (m + n)r2 + r3).

• Computing the Riemannian metric g (38). This com-
plexity is dominant by matrix multiplications, which is
O((m + n)r2).

• Computational complexity of retractionR (50) isO((m+
n)r) and vector transport T (55) is insignificant.

From the above results, we conclude that the computational
complexity of Riemannian conjugate gradient algorithm for
each iteration is O(mnl + (m + n)r2 + r3). And each iter-
ation of truncated conjugate gradient algorithm also involves
computation with complexity O(mnl + (m + n)r2 + r3).

V. SIMULATIONS

This section presents numerical experiments to demon-
strate the efficacy of the generalized low-rank optimization
approach for topological cooperation via the newly presented
Riemannian optimization algorithms. We will investigate the
performance of different algorithms from the perspective of
convergence rate and achievable DoF. We evaluate our model
in different settings and demonstrate that the generalized low-
rank approach can effectively enable transmitter cooperation
based only on network topology information.

Our simulations compare the following matrix-factorization-
based algorithms for solving the generalized low-rank opti-
mization problem P:

• “AltMin” [22]: Alternating minimization algorithm (21)
(22) is adopted in [22] for topological transmitter cooper-
ation problem by alternatively updating factors. For fixed
r, (21) (22) are solved with gradient descent followed by
backtracking line search.

• “RCG”: The Riemannian conjugate gradient method is
developed in Sec IV-C.1. We implement this algorithm
with Manopt [39] software package.

• “RTR”: The Riemannian trust-region method is devel-
oped in Sec IV-C.2 and also implemented with Manopt.

All algorithm are adopted with random initialization strategy
for each rank r, and we find the minimal r by increasing r



2548 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 5, MAY 2019

Fig. 4. Convergence rate and computing time of all algorithms with full
transmitter cooperation.

from 1 to N until m−0.5 ·‖A(X)−b‖ < 10−3. In our numer-
ical experiments, the network topology and shared messages
at each transmitter are generated uniformly at random with
probabilities

Prob((k, j) ∈ E) =

{
p, j �= k

1, j = k,
(60)

and

Prob(j ∈ Sk) =

{
q, j �= k

1, j = k,
(61)

respectively.

A. Convergence Rate

Consider a partially connected 20-user interference channel
with full transmitter cooperation. The network topology is gen-
erated randomly and each link is connected with probability
p = 0.3. Each message is split into 3 data streams. In this
simulation, K = 20, d1 = · · · = dK = 3, p = 0.3 and r = 12.
Fig. 4 shows the convergence behaviors of all 3 algorithms
in terms of iterations and time. The results indicate that the
proposed RTR algorithm exhibits a superlinear convergence
rate, and the computing rate is comparable with first order

Fig. 5. Convergence of interference leakage for all algorithms with full
transmitter cooperation.

RCG algorithm. In addition, the proposed RTR can yield a
more accurate solution with the second-order stationary point
when compared against first order algorithms that guarantee
convergence only to first-order stationary points. The overall
test results show that the proposed RTR and RCG algorithms
are much more efficient than other contemporary algorithms
in terms of convergence rates and solution performance.

To further show that the interferences are nulled, we choose
the interference leakage as the metric and plot it in Fig. 5 for
the same setting of Fig. 4. The interference leakage cost is
given by

IL =
∑

i�=k

∑

j:(k,j)∈E,i∈Sj

‖hkjU
H
k Vji

(
hkjU

H
k Vji

)H

‖2F , (62)

where the channel coefficients follow standard complex
Gaussian distribution. Fig. 5 demonstrates that there is a rapid
decline of interference leakage as the objective value decreases
with the proposed Riemannian optimization algorithms.

B. DoF Over Network Topologies

Consider a partially connected 20-user interference channel
without message splitting (dk = 1). The network topologies
are generated randomly with different p. Fig. 6 demonstrates
the DoF over p with full transmitter cooperation. Each DoF
result is averaged over 100 times. This result shows that,
among the 3 solutions, the proposed RTR algorithm achieves
the best performance with second-order stationary points. The
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Fig. 6. DoF over the number of connected links.

Riemannian algorithms RTR and RCG significantly outper-
form the alternating minimization algorithm owing to their
good convergence guarantee.

To further justify the effectiveness of the Riemannian opti-
mization framework, we check the recovered DoF returned
by the proposed RTR algorithm for all specific network
topologies E and specific message sharing pattern {Sk : k ∈
[K]} provided in [14]. Specifically, transmitter cooperation
improves the symmetric DoF from 1/3 to 2/5 for Example 1 in
Fig. 1(a), from 2/5 to 1/2 for Example 4 in Fig. 3(a), and
from 1/3 to 2/5 for Example 7 in Fig. 6(a), compared with the
cases without cooperation. And the optimal symmetric DoF is
1/2 for Example 6 in Fig. 5(a) with transmitter cooperation. All
these optimal symmetric DoF results can be achieved by the
proposed RTR algorithm numerically. However, theoretically
identifying the network topologies and the message sharing
patterns for which the Riemannian trust region algorithm can
provide optimal symmetric DoFs is still a challenging open
problem.

C. Transmitter Cooperation Gains

We investigate the achievable DoFs in partially connected
20-user interference channels. We randomly generate the
network topologies with p = 0.2 and simulate different
algorithms under different transmitter cooperation level q with
single data stream. For each cooperation level, we take average
over 500 channel realizations. Fig. 7a shows that the second-
order algorithm RTR can achieve the highest DoF among all
algorithms. Comparing the first-order algorithms, the proposed
RCG outperforms AltMin. With the high convergence rate
and second-order stationary points solutions of RTR, the gap
between RTR algorithm and other algorithms grows with q,
which indicates that the proposed RTR algorithm is capable
of fully leveraging the benefits of transmitter cooperation.

To further illustrate the transmitter cooperation benefit,
we evaluate the achievable sum-rate using the proposed RTR
algorithm in Fig. 7a. In this single data stream test setting,
Uk, Vji degenerates to vectors uk, vji. Assume that each
single data stream symbol si has unit power, i.e., E(|si|2) = 1.
Suppose the noise is i.i.d. Gaussian, i.e., Σk = σ2Ir,

Fig. 7. Benefits of transmitter cooperation: (a) DoF over different transmitters
cooperation levels q. (b) Sum-rate over the transmit power.

with σ2 at −120dB. The distance dij between each con-
nected transmitter-receiver pair (j, i) is uniformly distributed
in [0.1, 0.2] km. The fading channel model is given as

hij = 10−L(dij)/20cij , (i, j) ∈ E , (63)

where the pass loss is given by L(dij) = 128.1 +
37.6 log10 dij and the small scale fading coefficient is given by
cij ∼ CN (0, 1). Then the sum rate per channel use is given by

Csum =
1
r

K∑

k=1

Ck =
1
r

K∑

k=1

log(1 + SINRk), (64)

where

SINRk =
|
∑

(k,j)∈E,k∈Sj
hkju

H
k vjk|2

∑
i�=k |

∑
(k,j)∈E,i∈Sj

hkjuH
k vji|2 + ‖uk‖22σ2

.

Based on the singular value decomposition (SVD) X∗ =
UΣV H, the transmit beamformer is simply chosen as UΣ

1
2 ,

and receive beamformer is given by V Σ
1
2 with power normal-

ization. Fig. 7b shows the achievable sum-rate over different
transmit power P . Each point is averaged across 100 channel
realizations with random E (p = 0.2). The result also demon-
strates that the proposed RTR algorithm is capable of achiev-
ing high data rates by leveraging transmitter cooperation.
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In summary, our numerical experiments demonstrate that
the proposed Riemannian trust-region algorithm is capable
of obtaining high-precision solutions with second-order sta-
tionary points, leading to high achievable DoFs and data
rates. Furthermore, the computation time of RTR algorithm in
medium scale problems is comparable with first order algo-
rithms, which demonstrates that the proposed RTR algorithm
is a powerful algorithm capable of harnessing the benefit
of topological cooperation in problems involving medium
network sizes.

VI. CONCLUSIONS

This work investigates the opportunities of transmitter coop-
eration based only on topological information with mes-
sage sharing. Our contributions include the derivation of a
generalized topological interference alignment condition, fol-
lowed by the development of a low-rank matrix optimization
approach to maximize the achievable DoFs. To solve the
resulting generalized low-rank optimization problem which is
nonconvex in complex field, we developed Riemannian opti-
mization algorithms by exploiting the complex non-compact
Stiefel manifold for fixed-rank matrices in complex field.
In particular, we adopted the semidefinite lifting technique
and Burer-Monteiro factorization approach. Our experiments
demonstrated that the proposed Riemannian algorithms con-
siderably outperformed the alternating minimization algo-
rithm. Additionally, the proposed Riemannian trust-region
algorithm achieves high DoFs with high-precision second-
order stationary point solutions, with computation complexity
comparable with the first-order Riemannian conjugate gradient
algorithm.

APPENDIX A
PROOF OF PROPOSITION 2

For simplicity, we only give the proof of the single data
stream case, while it can be readily extended to general
multiple data stream cases. In this case, X is given by

X =

⎡

⎢⎣
uH

1 v11 · · · uH
1 vKK

...
. . .

...
uH

Kv11 · · · uH
KvKK

⎤

⎥⎦ ∈ C
K×K2

. (65)

Let xi denote the transpose of the i-th row of matrix X .
Problem (19) can be rewritten as

minimize
X∈Cm×n

‖X‖∗

subject to 1HxDk

k = 1, ∀k ∈ [K]

xGk

k = 0, ∀k ∈ [K], (66)

in which xDk

k , xGk

k are vectors whose elements are sampled
from xk, and Dk,Gk are the index sets of sampling. Dk and
Gk are given by

Dk = {(j − 1) ∗K + k : (k, j) ∈ E , k ∈ Sj} (67)

and

Gk = {(j − 1) ∗K + i : i �= k, (k, j) ∈ E , i ∈ Sj}, (68)

respectively.

Lemma 1: The optimal solution of (66), denoted by X�,
is given by

x�Dk

k =
1
|Dk|

1, (69)

where 1 denotes the vector of all ones. The remaining entries
of X� are all zeros.

Proof: Let g(X) = ‖X‖∗ = Tr(
√

XXH). To proof
Lemma 1, it is equivalent to prove that t = 0 is a minimum
of the convex function

h(t) = ‖X� + tX‖∗, A(X� + tX) = b, t ∈ R. (70)

This can be deduced from the fact that any feasible point can
be expressed as X� + tX , and if t = 0 is a minimum of h(t),
then g(X�) ≤ g(X) always holds.

Based on the structure of Dk and Gk, we have

X�X�H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
|D1|

0 · · · 0

0
1
|D2|

· · · 0

...
...

. . .
...

0 0 · · · 1
|DK |

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (71)

Then X� is a full rank matrix, and we can find |t| ≤ � such
that X� + tX is invertible. Therefore, the derivative of h is
given by

h′(t) =
1
2
〈 (

(X� + tX)(X� + tX)H
)− 1

2 ,

XX�H + X�XH + 2tXXH
〉
. (72)

Then we have

h′(0) =
1
2
〈 (

X�X�H
)− 1

2
, XX�H + X�XH

〉
. (73)

Since A(X� + tX) = b, i.e.,

1H(x�Dk

k + txDk

k ) = 1 (74)

then we have 〈x�Dk

k , xDk

k 〉 = 0. Therefore,

diag(XX�H) = diag(X�XH) = 0. (75)

From (75) (71), we can deduce that h′(0) = 0, and thus t = 0
is a minimum of h(t). �

From Lemma 1 we know that the optimal solution X�

of (19) is full rank. So nuclear norm relaxation approach
always fails.

APPENDIX B
PROOF OF PROPOSITION 4

The elements in the vertical space VY must be tangential
to the equivalent class [Y ] = {Y Q : QHQ = I}. Let Y (t) =
Y0Q(t) be a curve in [Y0] through Y0 at t = 0, i.e., Q(0) = I.
Then we have

Y (t)Y (t)H = Y0Q(t)Q(t)HY H
0 = Y0Y

H
0 . (76)

By differentiating (76) we get

Ẏ (t)Y (t)H + Y (t)Ẏ (t)H = 0. (77)
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So we deduce that Ẏ (0) belongs to

{Z ∈ C
N×r : ZY H

0 + Y0Z
H = 0}, (78)

of which TYM is a subset. On the other side, let F : Y 	→
Y Y H, then (78) is ker(DF (Y0)) and F−1(Y0Y

H
0 ) = [Y0].

Therefore, from [23, Sec. 3.5.7] we know

TYM = {Z ∈ C
N×r : ZY H

0 + Y0Z
H = 0}. (79)

Without loss of generality, we can set

Ẏ (t) = Y (t)Ω(t), Ω(t) ∈ C
r×r, (80)

since Y (t) ∈ C
N×r
∗ is full rank. Then we can replace equation

(80) in (77) and obtain

Y (t)(Ω(t) + Ω(t)H)Y (t)H = 0. (81)

Therefore, the vertical space is given by

VY = {Y0Ω : ΩH = −Ω}. (82)

APPENDIX C
PROOF OF PROPOSITION 5

The horizontal space is given by

HY = {ξ ∈ TYM : gY (ξ, ζ) = 0, ∀ζ ∈ VY }, (83)

that is

gY (ξ, Y Ω) = 0, ∀ΩH = −Ω. (84)

Since

gY (ξ, Y Ω) = Tr(ξ
H
Y Ω + ΩHY Hξ)

= Tr(ξ
H
Y Ω−ΩY Hξ)

= Tr((ξ
H
Y − Y Hξ)Ω), (85)

we know the horizontal space consists of all the elements ξ

that satisfies Tr((ξ
H
Y − Y Hξ)Ω) = 0 for all ΩH = −Ω.

Therefore, the horizontal space is

HY = {ξ ∈ C
N×r : ξHY = Y Hξ}. (86)

Suppose for a vector ξ ∈ TYM its projection onto the vertical
space is given by ξv = Y Ωξ, then the horizontal projection
is given by ξh = ξ − Y Ωξ, and

ξhH
Y = Y Hξh. (87)

So we can find the Ωξ from

(ξ − Y Ωξ)HY = Y H(ξ − Y Ωξ)
⇒ Y HY Ωξ + ΩξY

HY = Y Hξ − ξHY . (88)

Then we conclude that the horizontal projection of ξ is
given by

Πh
Y ξ = ξ − Y Ω, (89)

where Ω is the solution to the Lyapunov equation

Y HY Ω + ΩY HY = Y Hξ − ξHY . (90)

APPENDIX D
COMPUTING THE RIEMANNIAN GRADIENT AND HESSIAN

We first rewrite the objective function of (29) as

f(Y ) =
1
2

l∑

i=1

|〈Bi, Y Y H〉 − bi|2. (91)

The complex gradient of f(Y ) is given by

f ′(Y ) =
l∑

i=1

(〈Bi, Y Y H〉 − bi)BiY

+ (〈BH
i , Y Y H〉 − b∗i )B

H
i Y

=
l∑

i=1

(CiBi + C∗
i BH

i )Y , (92)

in which Ci = 〈Bi, Y Y H〉 − bi. The Riemannian gradient
gradf(Y ) is derived from (44), and we find that

Df(Y )[ξ] =
1
2

l∑

i=1

〈Bi, ξY H + Y ξH〉∗(〈Bi, Y Y H〉 − bi)

+ (〈Bi, Y Y H〉 − bi)∗〈Bi, ξY H + Y ξH〉
= gY ((CiBi + C∗

i BH
i )Y , ξ). (93)

Therefore, gradf(Y ) = f ′(Y ). Then we observe that
gradf(Y )HY = Y Hgradf(Y ), i.e., gradf(Y ) is already in
the horizontal space VY . So the horizontal representation of
Riemannian gradient is given by

gradf(Y ) =
l∑

i=1

(CiBi + C∗
i BH

i )Y . (94)

To derive the Riemannian Hessian (47), we compute

Dgradf(Y )[ηY ] =
l∑

i=1

(CηiBiY + CiBiηY

+ Cη
∗
i B

H
i Y + C∗

i BH
i ηY ), (95)

where Cηi = 〈Bi, Y ηH
Y + ηY Y H〉. We conclude that

Hessf(Y )[ηY ] = Πh
Y

( l∑

i=1

(CηiBiY + CiBiηY

+ Cη
∗
i B

H
i Y + C∗

i BH
i ηY )

)
. (96)
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