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Abstract
Financial benchmarks estimate market values or
reference rates used in a wide variety of contexts,
but are often calculated from data generated by
parties who have incentives to manipulate these
benchmarks. Since the the London Interbank Of-
fered Rate (LIBOR) scandal in 2011, market par-
ticipants, scholars, and regulators have scrutinized
financial benchmarks and the ability of traders to
manipulate them. We study the impact on mar-
ket quality and microstructure of manipulating
transaction-based benchmarks in a simulated mar-
ket environment. Our market consists of a single
benchmark manipulator with external holdings
dependent on the benchmark, and numerous back-
ground traders unaffected by the benchmark. All
market participants use zero-intelligence trading
strategies. When these agents trade under equilib-
rium settings in our market environment with and
without benchmark manipulation, we find that the
total surplus of all market participants who are
trading increases with manipulation. However,
the aggregated market surplus decreases for all
trading agents, and the market surplus of the ma-
nipulator decreases, so the manipulator’s surplus
from the benchmark significantly increases. This
entails under natural assumptions that the mar-
ket and any third parties invested in the opposite
side of the benchmark from the manipulator are
negatively impacted by this manipulation.

1. Introduction
Financial benchmarks play a pervasive role in modern com-
merce and finance. A benchmark is a numerical estimate
of some market value, such as the price of an asset. Bench-
marks are employed by market participants for various pur-
poses, including as reference measures for asset values (e.g.,
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the S&P 500), interest rates (LIBOR), and market volatility
(VIX); to define derivative instruments; or as price terms
in contracts (Gellasch & Nagy, 2019). Benchmarks in the
form of reference measures can provide a concise reflection
of market realities, thereby assisting decision-making in the
real economy. As such, accurate benchmark prices repre-
sent a positive externality from functional financial markets
(Bond et al., 2012). Their use in financial instruments and
contracts also provide a valuable function in commerce and
risk management.

Given their role in market decisions and contracts, some
entities may have strong incentives to manipulate bench-
marks. For instance, since 2012, multiple parties have been
convicted of manipulating the London Interbank Offered
Rate (LIBOR), an estimate of the rate at which banks can
borrow from each other (McBride, 2016). LIBOR supports
more than $300 trillion worth of loans around the world.
More recently, in February 2018, there were accusations
of manipulation in the Chicago Board Options Exchange
(CBOE) Volatility Index (VIX), a measure of U.S. stock
market volatility based on the cost of buying certain options
(Banerji, 2018). LIBOR was particularly vulnerable to ma-
nipulation because it is calculated using self-reported data
provided by parties with conflicts of interest regarding the
benchmark’s value (Duffie & Dworczak, 2018; Gellasch
& Nagy, 2019). In the wake of the LIBOR scandal, reg-
ulators, academics, and market participants lobbied for a
transaction-based replacement for LIBOR, such as the Se-
cured Overnight Finance Rate (SOFR) or the U.S. Dollar In-
tercontinental Exchange (ICE) Bank Yield Index (Duffie &
Dworczak, 2018; ICE Benchmark Administration Limited,
2019). Whereas it may be harder to manipulate transaction-
based benchmarks, it is still possible, as in the alleged manip-
ulation of the VIX in 2018 and the World Markets/Reuters
Closing Spot Rates (WM/R FX rates) in 2014 (Boyle, 2014).
Finding accurate and robust transaction-based benchmarks
is a daunting but necessary task.

We introduce an agent-based model to shed light on how
benchmark manipulation can operate, with the ultimate goal
of supporting the design of manipulation-resistant bench-
marks. Our model simulates a financial market, showing
how a party with vested interest in a transaction-based
benchmark can manipulate this benchmark through trad-
ing. The benchmark manipulator extends the behavior of
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a zero intelligence trader (Gode & Sunder, 1993; Farmer
et al., 2005), adjusting its offers systematically in order to
influence the benchmark in a certain direction. For exam-
ple, if the manipulator wants to lower the benchmark, the
manipulator offers to sell shares at a lower price to shift the
benchmark down. The manipulator might take a loss in the
market through resulting sales, but may still earn a net profit
if it successfully shifts the benchmark enough to impact its
external holdings linked to the benchmark.

Prior work has employed theoretical models and historical
data to study benchmark manipulation in financial markets
(Bariviera et al., 2016; Duffie & Dworczak, 2018; Duffie,
2018; Eisl et al., 2017; Rauch et al., 2013). Using a sim-
ulated market allows us to incorporate complex details of
market microstructure, representing the actual mechanics of
trade, interactions among market participants, and the struc-
ture of the market. By combining the agent-based model
with game-theoretic reasoning, we can also consider the
response of strategic agents to the presence of a benchmark
manipulator, and consider a wide range of market settings,
benchmark designs, and trading strategy options.

We employ a standard market mechanism organized around
a limit order book for a single security. We assume a bench-
mark defined by transaction prices on this security. Trading
agents may submit buy and sell orders, with orders executing
with zero delay when matched, or resting in the order book
pending execution against a subsequent order. The market is
populated by a single manipulator, along with background
agents who do have private reasons to trade the security but
no interests dependent on the benchmark. The manipulation
activity potentially impacts the background agents through
the market for this security, as well as (unmodeled) external
parties who do not participate in the market but do have
interests dependent on the benchmark.

We determine the impact of benchmark manipulation
by comparing strategic equilibria when the manipulator
chooses to manipulate and to not manipulate. We find in
particular settings that manipulation is profitable overall to
the manipulator. The manipulation activity itself is costly,
in that the manipulator must take trading losses to move the
benchmark. The background traders actually benefit from
the manipulation, as their aggregate gains from trading in-
crease. The external parties dependent on the opposite side
of the benchmark are the real losers from the manipulation,
with their losses captured in part by the manipulator and in
part by the background agents whose trading is effectively
subsidized.

This paper is organized as follows. Following a discussion
of related work in the next section, we describe the market
environment in Section 3. Section 4 discusses the bench-
mark manipulator and the trading strategy it employs in
this paper. Section 5 presents the results with and without

benchmark manipulation. Section 6 analyzes current and
possible policies around financial benchmarks. We conclude
in Section 7.

2. Related Work
Our market model is based on the models of Wah et al.
(2017) and Wang et al. (2018). We use a similar market
structure, as well as similar zero-intelligence (ZI) back-
ground agents (Gode & Sunder, 1993; Farmer et al., 2005).
However, these studies analyze questions that are unrelated
to benchmark manipulation.

The majority of prior work on benchmark manipulation is
either theoretical or utilizes historical market data. Duffie &
Dworczak (2018) construct a theoretical model to analyze
the robustness and bias of certain benchmark calculations,
and find that volume-weighted average price (VWAP) re-
sults in the most robust and unbiased benchmark estima-
tions. Another theoretical study constructs construct new
market models that prove to lead to more robust and un-
biased benchmark calculations, providing insight into the
quality of benchmark design and market structure (Duffie,
2018). Prior work which use historical market data de-
tects and investigates previous instances of manipulation on
LIBOR. Bariviera et al. (2016) and Eisl et al. (2017) use
historical data to find instances of manipulations and pro-
vide suggestions for more robust benchmarks and regulation.
Rauch et al. (2013) also use historical data to find instances
of benchmark manipulation in LIBOR and investigate which
banks were potentially involved in the 2011 scandal. There
is also an extensive policy discussion around reforms of LI-
BOR and other financial benchmarks (Duffie & Stein, 2015;
Gellasch & Nagy, 2019; IOSCO, 2013; Verstein, 2015).

To our knowledge, little to no prior work addresses bench-
mark manipulation in a simulated environment. Analyzing
benchmark manipulation in a simulated market, rather than
a theoretical model or historical data, has the benefit of con-
trolling traders’ intent to manipulate the benchmark. It also
adds additional realism to the investigation; prior theoretical
work features markets without any microstructure, that is,
without any details regarding the mechanics of trade. Our
approach allows us to study the impact of the manipulation
on the market, other agents, and the benchmark.

3. Market Environment
3.1. Market Mechanism

To determine the effects of benchmark manipulation, we
construct a simple continuous double auction (CDA) where
one security is traded. Our market model is similar to that
of Wah et al. (2017) and Wang et al. (2018). Prices are
discrete and integer multiples of the tick size. Time is also
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discrete with the finite time horizon T . We denote the
fundamental value of the underlying security at time t by
rt. This fundamental varies throughout the simulation by a
stochastic mean-reverting process, more formally:

rt = max{0, κ+ (1− κ)rt−1 + utr̄}, t ∈ [0, T ]; r0 = r̄,
(1)

where κ ∈ [0, 1] specifies the degree to which the time series
reverts back to the fundamental mean r̄, and u ∼ N (0, σ2

s)
is the random shock at time t.

Agents trade on the single security by submitting limit or-
ders, which are orders that specify a limit price at which they
are willing to transact. We only consider single-unit trades.
The market mechanism tracks the orders which have not
executed yet through a limit order book of the aggregated
resting orders.

3.2. Benchmark

After the termination of the market at time T , the benchmark
βT is calculated. This benchmark is an estimate of the
current value of the security, which can later be used in
decision-making, for example an interest rate for a contract.
There are numerous ways to calculate a benchmark. In this
study, we use volume-weighted average price (VWAP) of
all transactions executed during the trading horizon as the
benchmark. We use VWAP because prior work found this
to be a fairly robust and unbiased benchmark (Duffie &
Dworczak, 2018).

3.3. Agents in the Market

Our market is populated by numerous background agents
and one benchmark manipulator. The background traders
with private values depict investors with preferences on hold-
ing a long or short position in the underlying security. The
benchmark manipulator also holds private values, but rep-
resents an investor who tries to maximize combined profits
within the market and externally through the benchmark.

A private value vector Θi captures the position preference of
background trader i. The vector Θi has length 2qmax, where
qmax is the maximum number of units an agent can be long
or short at any time. Element θiq+1 represents the marginal
gain from buying an additional unit given the current net
position q. We produce Θi from a set of 2qmax values
independently drawn from N (0, σ2

PV ). Next, we sort the
elements in Θi in order of diminishing marginal utility, so
that θq

′
> θq , for all q′ < q. An agent’s valuation for a unit

of the security at time t is the sum of its private value at the
current position qt and the global fundamental at time T ,
more formally:

vi(t) =

{
r̂t + θq+1

i buying,
r̂t − θqi selling.

A background trader’s final surplus is the final valuation of
its holdings at time T . More formally, the final valuation of
background trader i with final holdings H:

Vi =

{
rTH +

∑k=H
k=1 θki long positions H > 0,

rTH −
∑k=0
k=H+1 θ

k
i short positions H < 0.

The background agents arrive to the market by a Poisson
process with rate λa. On each entry, the trader observes a
new, unique noisy fundamental observation ot = rt + nt
with the observation noise following nt ∼ N (0, σ2

n). This
noisy observation of the fundamental attempts to capture
varying viewpoints of different market participants on the
traded security. Since each agent has incomplete informa-
tion about the true fundamental, so agents may benefit from
considering market information from the aggregate observa-
tions of other traders. When an agent arrives at the market,
it will withdraw any previous orders which have not exe-
cuted in order to better react to its new observation of the
fundamental. An agent then submits a new single-unit limit
order to buy or sell with equal probability.

3.4. Background Trading Strategies

At the ending of a trading period, agents evaluate their
holdings of the security based on their estimate from noisy
observations of the final fundamental value. Given a new
noisy observation ot, an agent estimates the current fun-
damental by updating its Bayesian posterior mean r̃t and
variance σ̃2

t . We let t′ represent the agent’s preceding arrival
time. The previous posteriors, r̃t′ and σ̃2

t′ , are first updated
by taking account of mean reversion for the interval since
before the arrival (δ = t− t′):

r̃t′ ← (1− (1− κ)δ)r̄ + (1− κ)δ r̃t′ ;

σ̃2
t′ ← (1− κ)2δσ̃2

t′ +
1− (1− κ)2δ

1− (1− κ)2
σ2
s .

The estimates for t are given by:

r̃t =
σ2
n

σ2
n + σ̃2

t′
r̃t′ +

σ̃2
t′

σ2
n + σ̃2

t′
ot; σ̃

2
t =

σ2
nσ̃

2
t′

σ2
n + σ̃2

t′
.

An agent calculates an estimate r̂t at time t of the terminal
fundamental rT based on the posterior estimate of r̃t by
adjusting for mean reversion, more formally:

r̂t =
(
1− (1− κ)T−t

)
r̄ + (1− κ)T−tr̃t. (2)

We consider a version zero intelligence (ZI) for a strategy
of background traders (Gode & Sunder, 1993; Farmer et al.,
2005). A ZI agent decides a limit-order price by shading its
evaluation of the security with a random offset uniformly
drawn from [Rmin, Rmax]. More formally, a ZI trader i
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arriving at time t with position q generates a limit price
pZI
i (t) by:

pZI
i (t) ∼

{
U [vi(t)−Rmax, vi(t)−Rmin] buying,
U [vi(t) +Rmin, vi(t) +Rmax] selling.

A ZI trader utilizes a strategic surplus threshold parameter
η ∈ [0, 1] to consider the current visible quoted price. If
a ZI agent could gain a fraction η of its desired surplus by
accepting the most competitive visible order, then it will
take that quote by submitting a limit-order at the same price.

4. Benchmark Manipulation Strategies
We evaluate a benchmark manipulator who submits orders
to a CDA like the background traders, and attempts to maxi-
mize its total profit between its market transactions and the
benchmark. We assume that a benchmark manipulator has
some holdings ψi in the benchmark it attempts to manipu-
late. The total surplus of a benchmark manipulator at the
end of the time horizon T becomes:

V BMM
i = V ZI

i + ψiβT (3)

If ψi < 0, then the manipulator tries to lower the benchmark
to maximize its total surplus, and the manipulator likely
holds a short position at time T . While if ψi > 0, then
the manipulator attempts to raise the benchmark and likely
holds a long position at time T .

4.1. Manipulation with Zero-Intelligence

The first manipulation strategy we consider behaves simi-
larly to the ZI background trader. However, the benchmark
manipulator offsets the price determined by a ZI agent by
s(ψi)εi, where s(ψi) is the sign of the trader’s benchmark
holdings and ε is the amount the manipulator decides to
offset the price. More formally, a manipulator with zero-
intelligence i arriving at time t with position q generates a
limit price pi(t) by:

pBMM
i (t) = pZI

i (t) + s(ψi)ε (4)

This manipulator sometimes utilizes the strategic surplus
threshold parameter η ∈ [0, 1] to consider the current visi-
ble quoted price. A benchmark manipulator uses η in the
same manner as a ZI agent if pBMM

i (t) ≤ vi(t) when it
buys, and if pBMM

i (t) ≥ vi(t) when it sells. However,
if the pBMM

i (t) > vi(t) when the manipulator submits a
buy limit-order, then it transacts with the most competitive
visible order within [vi(t), p

BMM
i (t)]. Likewise, if the ma-

nipulator submits a sell limit-order and pBMM
i (t) < vi(t),

then it transacts with the most competitive visible order
within [pBMM

i (t), vi(t)].

5. Empirical Game-Theoretic Analysis
We propose a set of strategies for the background agents
and benchmark manipulator, then find the combination of
strategies that agents utilize in equilibria. To determine
the impact of benchmark manipulation under equilibrium
settings, we implement agent-based simulations and game-
theoretic analysis.

5.1. Market Environment Settings

We explore a variety of market environments to analyze the
robustness of our results. Following Wang et al. (2018),
these environments vary by market shock σ2

s and observa-
tion noise σ2

n. The variance of market shock dictates fluctu-
ations to the true value of the fundamental, so higher shock
variance leads to higher price volatility. The variance of ob-
servation noise controls the accuracy of agents’ information
on the fundamental. Thus, higher observation variance leads
to less accurate fundamental information for agents. We
consider three market environments, where the first has low
shock and high observation noise (LSHN) with σ2

s = 105

and σ2
n = 109. The second consists of medium shock and

medium observation noise (MSMN) with σ2
s = 5×105 and

σ2
n = 106. Lastly, the third contains high shock and low

observation noise (HSLN) with σ2
s = 106 and σ2

n = 103.

The market is populated with ten background agents and
one manipulator. The global fundamental time series of the
market is produced by equation 1, with fundamental mean
r̄ = 105 and mean reversion κ = 0.05. The finite time hori-
zon of the market lasts T = 10, 000 time steps. All agents
arrive to the market according to a Poisson distribution with
rate λa = 0.005. The maximum number of units all agents
can hold at any time is qmax = 10. Lastly, the private value
variance is σ2

PV = 5× 106.

Each agent in our market can employ multiple trading strate-
gies to maximize its profits. Table 1 specifies the strategies
of the background traders and benchmark manipulator. The
background agents can strategically choose values for pa-
rameters Rmin, Rmax, and η. The benchmark manipulator
can also strategically choose values for these parameters as
well as the price offset ε, which determines how much the
manipulator shifts its order price to impact the benchmark.
Our benchmark manipulator explores five strategies, but the
manipulator chooses strategy BMM4 in an equilibrium of
each market setting we explore in this paper.

The benchmark manipulator’s surplus depends on its bench-
mark holdings ψi ∈ {−40, 40}. We denote an environment
when the manipulator hopes to shift the benchmark down
(s(ψi) = −1) as having a downward impact (DI). Whereas
when the manipulator shifts the benchmark up (s(ψi) = 1),
we label the environment as possessing an upward impact
(UI).
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Table 1. Strategies employed by the background traders (ZI) and benchmark manipulator (BMM). Strategies ZI4 and BMM4 are the
same but are utilized by different roles.

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 BMM1 BMM2 BMM3 BMM4 BMM5

Rmin 0 0 0 0 0 0 0 0 0 0
Rmax 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
η 0.1 0.3 0.5 0.8 1.0 0.8 0.8 0.8 0.8 0.8
ε 0 0 0 0 0 0 500 1000 2500 5000

5.2. EGTA Process

Empirical game-theoretic analysis (EGTA) is a method for
finding equilibria in games by a heuristic strategy space
and simulated payoff data (Wellman, 2016). We use EGTA
to find equilibria under different market settings. EGTA
uses an iterative process to detect potential equilibria in sub-
games, incrementally add strategies and confirm or refute
these potential equilibria by examining deviations until qui-
escence. Various prior studies on multi-agent systems have
utilized EGTA, particularly when a market environment is
complex and applying standard analytic methods is hard
(Brinkman & Wellman, 2017; Wah et al., 2016).

We model our market as a role-symmetric game, which
consists of players divided into roles that each have a desig-
nated strategy set. Our market splits players into two roles:
background traders and a single benchmark manipulator.
Deviation-preserving reduction (DPR) approximates many-
player games as fewer player games through aggregation
(Wiedenbeck & Wellman, 2012). We utilize DPR because
game size grows exponentially in players and strategies.
DPR preserves payoffs from single-player deviations and
has been shown to generate good approximations in multiple
settings.

While using DPR, we select ten background traders and
one benchmark manipulator. Observing ten background
traders ensures that the required aggregations from DPR
come out as integers. Our reduced game becomes three
background traders and one benchmark manipulator. In this
setting one background agent deviates to a new strategy
while the other nine background agents are further reduced
to three. We sample at least 50,000 simulation runs for a
specified strategy profile of each game to reduce sampling
error resulting from stochastic market features.

5.3. Impact of Benchmark Manipulation

This paper focuses on how benchmark manipulation affects
market microstructure. We use EGTA to analyze this impact
on the different market environments we explore. Specifi-
cally, we calculate the market surplus and total surplus of
the benchmark manipulator where total surplus aggregates
the surplus from market trading (i.e., market surplus) and

surplus from the benchmark holdings. We also find the sur-
plus of the background traders. The total surplus and market
surplus are the same for the background traders because we
assume they are indifferent to the final benchmark calcu-
lation. Lastly, we study the market surplus, which is the
aggregate surplus of the background traders and the market
surplus of the benchmark manipulator, as well as the total
surplus of the system, which we define as the aggregate
surplus of the background traders and the total surplus of
the benchmark manipulator.

Figure 1 depicts the total surplus and market surplus of the
benchmark manipulator, respectively. The total surplus of
the benchmark manipulator increases when it manipulates
the benchmark. Of course, this agent would not manipulate
the benchmark in an equilibrium setting if it did not increase
its total payoff. The benchmark manipulator’s market sur-
plus actually decreases when it manipulates the benchmark.
This happens because in order to manipulate the benchmark,
this agent must trade at prices it does not believe reflect
the fundamental. However, it is worthwhile to the agent to
endure the decrease in market surplus because its profits
from the benchmark more than cover the loss.

Figure 2 shows the surplus of the background agents with
and without benchmark manipulation. The background
agents profit from benchmark manipulation, which intu-
itively makes sense because the benchmark manipulator
trades at worse prices to shift the benchmark. Therefore,
background traders profit from transacting with the manip-
ulator. Background traders, as an aggregate set, have no
incentives to mitigate this manipulation by avoiding trans-
actions with this manipulator, because they actually profit
from manipulation.

Figure 3 shows the aggregate total surplus and aggregate
market surplus, respectively. The aggregated total surplus,
which we find by summing the total surplus of the bench-
mark manipulator and background traders, increases with
benchmark manipulation. The aggregated market surplus
we find by summing the market surplus of the benchmark
manipulator and background traders, and this value de-
creases with market manipulation. To understand why the
aggregate total surplus increases, but the aggregate market
surplus decreases, recall that in equilibrium, the manipu-
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(a) Total (market plus benchmark) surplus of the benchmark manip-
ulator with and without manipulation. The primary y-axis shows
total surplus when the benchmark manipulator tries to shift the
benchmark down (DI), while secondary y-axis shows the surplus
when the manipulator tries to shift the benchmark up (UI).

(b) Market surplus of the benchmark manipulator with and without
manipulation.

Figure 1. With both figures, the x-axis represents different mar-
ket environments with varying fundamental shock, observation
variance, and benchmark impact.

lator only manipulates when gains from the manipulator’s
benchmark holdings exceed market losses. To further ex-
plore the consequences of benchmark manipulation, we
consider a simplified example where the manipulator is in-
volved in a benchmark contract, or a contract dependent
on the benchmark, with one other party. We assume that
both the benchmark contract and the market are zero-sum
games, which are games where the total surplus is zero. In
this toy example, the counterparty to the manipulator in
the benchmark contract loses precisely what the benchmark
manipulator gains from the benchmark contract. Though
to achieve the gain in surplus from the benchmark contract,
the manipulator loses by trading in the market to move the
benchmark down, and the background traders gain from this
loss. However, the manipulator subsidizes the background
traders to take positions that are not in their own interest
absent the subsidy. In other words, the allocation in the

Figure 2. The aggregate total surplus of the ten background agents
with and without manipulation. The total and market surplus is
the same for background agents. The x-axis represents different
market environments with varying fundamental shock, observation
variance, and benchmark impact.

manipulated market is less efficient than in the manipulated
one, which is why the aggregated market surplus decreases.
Also, in equilibrium, this manipulation necessarily impacts
the benchmark enough that the manipulator’s gain from the
benchmark exceeds its losses from trading in the market.
The background traders gain the manipulator’s loss from
the market, so the manipulator’s resulting gain from the
manipulation exceeds that of the background traders.

Our toy example only considers how benchmark manipula-
tion affects a few parties directly involved in the manipula-
tion, benchmark contract, and calculation of the benchmark.
This reduced problem does not take into account the broader
equilibrium effects of benchmark manipulation and poten-
tially the ultimate harm of this manipulation. Manipulation
reduces the usefulness of the benchmark in refining finan-
cial exposures. There also exists potential negative effects
of mispricing assets in the real and financial economy. For
example, a mispriced LIBOR rate could result in banks lend-
ing to customers at rates that do not appropriately reflect
their risk.

6. Policy Analysis
Following the LIBOR scandal, regulators investigated other
benchmarks that had allegedly been manipulated and im-
posed some of the largest penalties ever paid by financial
institutions. For instance, US and UK regulators fined six
banks over $5 billion for manipulation of foreign exchange
rates (Chon, 2015). Given the important role of benchmarks
as financial infrastructure, regulators also turned to potential
policy measures to deter manipulation. The International
Organization of Securities Commissions published its Prin-
ciples for Financial Benchmarks (IOSCO, 2013) and the
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(a) Aggregate total surplus of all agents with and without manipula-
tion. The primary y-axis shows total surplus when the benchmark
manipulator tries to shift the benchmark down (DI); the secondary
y-axis shows the surplus when the manipulator tries to shift the
benchmark up (UI).

(b) Aggregate market surplus of all agents with and without manip-
ulation.

Figure 3. With both figures, the x-axis represents different mar-
ket environments with varying fundamental shock, observation
variance, and benchmark impact.

European Union adopted its Benchmarks Regulation. Both
documents stress the governance obligations of benchmark
administrators, the quality of benchmark data, and most
relevantly, robust methodological design of benchmarks.
Nonetheless, regulators have neither suggested, nor man-
dated benchmark design features at a microstructure level
of granularity. International regulators’ interest in devel-
oping best practices for benchmark methodology means
there should be substantial interest in results along the lines
developed here.

The role of regulation is also important because we should
expect markets to fail to produce optimal benchmarks them-
selves. In general, index providers do not operate in fully
competitive markets or internalize anything like the full
costs and benefits of the indices they produce. There are
several reasons for this: First, indices are subject to familiar
network effects that can cause suboptimal indices to gain

a significant degree of lock-in and thus render the index
provider a quasi-monopolist. Second, many widely used
benchmarks are produced as a side-effect of other economic
activity and thus do not provide their administrators with a
robust revenue stream, notwithstanding that the benchmark
can have significant effects on the welfare of counterpar-
ties (Rauterberg & Verstein, 2013). To illustrate, LIBOR
originally arose to serve as a reference rate for banks’ own
lending activities, but came to play a pivotal role in the enor-
mous interest rate derivatives market, without generating
any direct revenue for the LIBOR panel banks. As a result
of these forces, administrators’ private incentives to ensure
optimal benchmark design are frequently weaker than what
would be socially desirable.

7. Conclusion
We analyze agents in a simulated CDA market where one
security is traded to determine the impact of financial bench-
mark manipulation on market microstructure and welfare.
The financial benchmark is calculated at the conclusion
of a market by taking the volume weighted average price
of all transactions executed during the market period. We
simulated one benchmark manipulator who wishes to shift
the benchmark calculation to increase its surplus from the
benchmark, and multiple background traders who are indif-
ferent to the benchmark. We find that the surplus of both the
benchmark manipulator and background traders increases.
Thus, background traders have no incentives to help mitigate
this type of manipulation. Though the aggregate surplus of
the market participants increases, the aggregate total surplus
generated from the market decreases when the benchmark
is manipulated, so the general welfare of the market de-
creases. Given that the surplus of all market participants
increases, third parties invested in the opposite direction of
the manipulator bear a large portion of the manipulation
costs.

One limitation of this study is that we explore only one
strategy type for the manipulator. The single strategy type
is also based on a ZI trading strategy, so it is not necessarily
the most informed or effective manipulation strategy. It
would be interesting to develop and analyzing a more so-
phisticated benchmark manipulator that took market state
into account when submitting orders to maximize the impact
of its manipulation.

Another limitation of this study is that we consider only one
simple benchmark calculation. Many financial benchmarks
used to estimate asset values in real financial markets are
derived from far more complex calculations. It is possible
that these benchmarks are more (or less) difficult to manipu-
late than VWAP, so it would be worthwhile to explore the
possibilities of manipulating benchmarks similar to them.
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Lastly, some others limitations might affect the outcome of
our equilibrium analysis. We try to mitigate the effects of
sampling error by running a large number of simulations
on the equilibria strategies we found. The game reduction
method, DPR, we use to find equilibria has been shown to
find good approximations of reduced games, but these are
still only an estimation. It could be beneficial to run analysis
on the entire strategy space, though this greatly increases
the run-time to find equilibria. Even with these limitations,
this study provides several insights into how financial bench-
mark manipulation can impact market microstructure.
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