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A B S T R A C T

We present a phase-field model of thermally-induced phase separation in polymer solutions, calibrated for the polyvinylidene fluoride (PVDF)/diphenyl carbonate
(DPC) system. Large-scale three-dimensional computer simulations were performed for isotropic and anisotropic thermal quenches, and the evolution and structure
of the resulting two-phase morphology is analyzed. Isotropic quenches, in which the temperature is uniformly reduced below the binodal temperature, were
conducted to understand the initiation and coarsening of the polymer-rich and polymer-poor phases throughout time. Anisotropic quenches, in which the system is
cooled from one particular surface, were also conducted to understand how gradients in the characteristic domain size develop for varying conditions. In these
anisotropic quenches, we observe the formation of a dense skin layer adjacent to the cooling surface, the thickness of which depends on several parameters including
the polymer volume fraction, the assumed bath temperature that is maintained at the cooling surface, and the rate of thermal conduction through the polymer
solution. The model here can be adapted to other polymer/solvent systems by modifying the thermodynamic and kinetic parameters specific to the two species.

1. Introduction

Porous polymer membranes are typically fabricated from a polymer
solution that is made to undergo an internal phase separation process
[1–4]. This process is thermodynamically driven by either a change in
temperature (known as thermally-induced phase separation, TIPS) or
the introduction of a second solvent (known as solvent-induced phase
separation, SIPS) that creates a miscibility gap leading to the co-for-
mation of a polymer-rich phase and a polymer-poor phase. Subse-
quently, the polymer-poor phase is removed to form a dispersion of
internal porosity, and the polymer-rich phase is solidified to form a
membrane. Various geometries can be achieved with TIPS and/or SIPS
processing including flat sheets and hollow fibers. The critical char-
acteristic of the system is the morphology of the internal pores, which
can vary significantly depending on the composition of the solution as
well as the processing conditions. Predicting the size of the pores, the
uniformity of the pore size, and the continuity/discontinuity of the pore
structure is challenging, and requires consideration of both the ther-
modynamic and kinetic interactions between the constituent species
within the solution throughout the phase separation process.

Considering the large number of variables, the complexity of the
phase separation process, and the cost of parametric experimental
studies, computer simulations play an important role in the on-going
goal of engineering customizable membrane structures with specific
pore size distributions. Various simulation techniques have been

proposed and applied in the literature, falling into three broad cate-
gories based on their representative length scale: (i) molecular-scale
simulations, (ii) meso-scale simulations, and (iii) macro-scale simula-
tions.

Macro-scale simulations generally utilize continuum transport
models (i.e., Fickian diffusion of mass and heat) to predict temperature
and concentration profiles along entire membrane cross-sections [5,6].
Predictions of pore sizes can then be made using thermodynamic
models such as Flory-Huggins theory as well as kinetic theories to de-
scribe the phase coarsening rates at particular temperatures. This ap-
proach does not explicitly track the dynamics of the polymer and sol-
vent species, nor does it track the formation of the two-phase
morphology. However, it does provide approximations of porosity
variations on a membrane-wide scale.

On the other end of the spectrum, molecular-scale simulations such
as molecular dynamics (MD) can predict detailed information of in-
dividual polymer chains, such as their conformational changes through
time. Such details however are only possible for system sizes on the
order of 10's of nanometers (or, perhaps 1–20 polymer chains), as MD
simulations track every atomic trajectory. Coarse-grained models such
as dissipative particle dynamics (DPD) reduce this level of detail while
still capturing chain dynamics with a point-mass representation. The
work of Wang et al. [7], He et al. [8], and Tang et al. [9–12] demon-
strate the ability of DPD simulations to capture the formation and
evolution of polymer-rich and polymer-poor phase domains during
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TIPS and/or SIPS processing. Due to computational demands, DPD si-
mulations are limited to system sizes of approximately 10 nm, and
therefore can only capture pore size distributions on this scale.

Simulation methods at intermediate length scales are particularly
promising as they resolve features at the level of the pore network.
These techniques capture the evolution of the phase separation process
with variables stored on a computational grid that define the two dis-
tinct phases. Termonia [13–15] developed a Monte Carlo (MC) lattice
diffusion model to simulate the coagulation process during SIPS, re-
vealing various morphologies including fingerlike pores depending on
the coagulation rate. He et al. [16] employed a similar technique and
analyzed the pore structure as a function of polymer content. These
stochastic MC studies were performed on two-dimensional lattices.

Deterministic meso-scale simulations have also been developed,
most notably phase-field models utilizing the Cahn-Hilliard (CH)
equation. The CH equation is essentially a diffusion equation for multi-
component mixtures that is informed by an assumed thermodynamic
model for the energy of mixing, which may induce phase separation.
Caneba and Soong [17] demonstrated the earliest application of the CH
equation to specifically simulate the polymer membrane formation
process. They conducted one-dimensional (1D) simulations of the TIPS
process in a polymer-solvent system at various locations relative to a
cooling surface, using the Flory-Huggins and free-volume theory
models for the thermodynamic and kinetic descriptions, respectively.
Their results estimated pore sizes as a function of membrane depth
away from the cooling surface, thus demonstrating the versatility of this
approach. However, although 1D simulations can provide predictions of
pore size, they do not offer information regarding the continuity/dis-
continuity of a porous network.

Soon after, two-dimensional (2D) simulations of TIPS in polymer-
solvent systems were reported [18,19] that assumed isotropic quenches
focusing in particular on the growth and coarsening rates of the
polymer-rich and polymer-poor phases. The effect of temperature gra-
dients (i.e. anisotropic quenches) were studied by Lee et al. [20,21] and
Kukadiya et al. [22] with 1D and then 2D simulations. Recently, Mino
et al. [23] conducted three-dimensional simulations of the TIPS process,
including the effects of a polymer concentration gradient that leads to
an anisotropic structure. The SIPS process has also been simulated with
phase-field models [24–27] to investigate the coagulation process. Due
to the significant hydrodynamic transport processes associated with
SIPS during the exchange of the two solvents, recents efforts to simu-
lation SIPS have employed fluid-based simulation methods, including
the lattice-Boltzmann method [28] and the multi-fluid model of Tree
et al. [29,30].

In this work, we have utilized a CH model to simulate the TIPS
process in three dimensions for both isotropic and anisotropic quen-
ches. We have chosen the PVDF/DPC polymer/solvent system which is
commonly used in TIPS membrane processing [31,32]. The size and
interconnectivity of the pore structures are analyzed for varying
polymer volume fractions and temperature quench rates. In our ani-
sotropic quench simulations, we observe the formation of a dense skin
layer, as observed in experiments [33], whose thickness is found to
depend on the bath temperature and the thermal conductivity of the
polymer solution.

2. Methods

The CH equation employed here evolves in space and time a con-
served field variable, ϕp, representing the local polymer volume fraction
in a solution. We assume a binary solution of polymer and solvent,
hence +ϕ ϕp s=1 at any location, and only ϕp is required to represent
the system. The equation is given by:
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where Mp is the temperature- and concentration-dependent polymer
mobility, Fmix is the free energy of mixing between polymer and solvent,
κ is a term that scales the interfacial energy between the polymer-rich
and polymer-poor phases, and ξ is a random number centered at zero
associated with thermal fluctuations. The CH equation is essentially a
diffusion equation which we are applying to investigate a liquid-liquid
phase separation process. We acknowledge that the model does not
account for convective mass transport. However, unlike the SIPS pro-
cess that involves long-range fluid transport of solvent species which
justifies a fluid model [28–30], the TIPS process is a more local redis-
tribution of polymer and solvent during quenching in a very viscous
system, thus diffusion is the dominant mode of transport.

The Flory-Huggins (FH) free energy of mixing of a polymer-solvent
system is used for Fmix :
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where the substitution ϕs=1 – ϕp is made, N is the degree of poly-
merization set to a value of N=150, and χ is the polymer-solvent
interaction term, which is temperature dependent and expressed by:

= −χ
T
425 0.338, (3)

where T is assumed to be in Kelvin. The values used in this equation
have been shown previously to be appropriate for the PVDF/DPC
system [31,12]. The binary phase diagram of PVDF/DPC is depicted in
Fig. 1, and the FH energy curves are shown in the sub-plot. We have
also included images of small 2D simulations with our model, demon-
strating the variations in morphology with T and ϕp. As ϕp is increased,
the morphology transitions from discrete droplets of the polymer-rich
phase, to a bicontinuous morphology, to discrete droplets of the
polymer-poor phase. In the PVDF/DPC system, the critical temperature
calculated using Flory-Huggins with the above interaction parameter
and degree of polymerization is approximately 460 K and the crystal-
lization temperature is approximately 390 K [31]. Hence, we only
present the phase diagram in this temperature range, which is asso-
ciated with the liquid-liquid phase separation that occurs during TIPS.
In our simulations, we do not observe phase separation in regions above
the binodal line on the phase diagram, as expected. In Eq. (1), we assign
=κ 0.5 which is chosen to keep the diffuse interface widths at 5–7 grid

spacings (ideal for the CH model), and ξ is a random number chosen in

Fig. 1. Phase diagram for PVDF/DPC superimposed with simulation images of
isothermal quenches at different temperatures and ϕp. Various morphologies
appear including droplets of the polymer-rich phase, bicontinuous domains of
both phases, and droplets of the polymer-poor phase. The inset plot shows the
Flory-Huggins free energy of mixing, Eq. (2), for four different temperatures.
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the interval [− 0.1,0.1].
The polymer mobility Mp is closely related to the self-diffusivity of a

polymer chain in solution Dp according to the relationship [19]:
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The polymer self-diffusivity is highly dependent on temperature and the
local ϕp. An experimentally-validated model developed by Phillies
[34,35] is used here to describe the dependence of Dp on ϕp:

= −D D αcexp( )p
ν

0 (5)

where Do is the diffusivity of a single chain in an infinitely dilute so-
lution, and c is the polymer concentration in g/L calculated by =c ϕp

M
M
v
w

where Mv is the molar volume and Mw is the molar weight of the
monomer in the polymer chain. We use values of Mv =38.2mL/mol
and =M 64.03 g/molw , suitable for a monomer of PVDF [36]. The
parameters α and ν are system-dependent scaling coefficients which are
generally fit according to experimental data. Diffusion data specific to
PVDF/DPC was not found in the literature, so we choose values of
=α 0.2 and =ν 0.4, which fall in reasonable bounds for many other

polymer solutions [34,35]. The diffusivity of a single polymer chain in a
dilute solution is given by the Einstein equation:

=D k T
f
,b

0
(6)

where f is a friction factor. Eqs. (5) and (6) together account for the
temperature- and concentration-dependence of Dp.

The self-diffusivity of PVDF in DPC has not been reported, hence we
assume a value of × −1 10 cm /s7 2 at the critical temperature of 460 K.
Fig. 2 plots the diffusivity versus ϕp at three temperatures: T=460 K,
391 K and 389 K. The inset of Fig. 2 plots the polymer mobility Mp
versus ϕp. At T=460 K, the decrease in polymer diffusivity with in-
creasing ϕp is accounted for by Eq. (5). Diffusivities at temperatures
below 460 K can be obtained by linearly scaling the diffusivity at 460 K,
according to Eq. (6). However, at the crystallization temperature of
390 K, the diffusivity can be expected to abruptly drop due to the state
change. To account for this, at temperatures below 390 K, we reduce
the diffusivity by a factor of 103 (i.e., we divide the calculated Dp by
1000). Hence, in Fig. 2 we plot diffusivities at 391 K (just above the
crystallization temperature) and 389 K (just below the crystallization
temperature), showing the abrupt drop in values.

To execute our simulations, we solve Eq. (1) with a straightforward
explicit finite difference scheme on a rectilinear grid with uniform
spacing between nodes. To reduce round-off error, the equations are

solved with reduced units of length l(¯) and time t(¯), whereby the grid
spacing =x lΔ 1 ¯ and the time step size is =t tΔ 0.005 ¯, a value that
ensures numerical stability. The reduced diffusivity is set equal to unity
at T=460 K, and linearly scaled for temperatures below that, taking
into account the reduction below the crystallization temperature. In all
simulations herein, the maximum temperature is 460 K, assigned as the
initial temperature, followed by either an isotropic or anisotropic
quench in which the temperature is reduced through time. Following
the simulations, we convert all length and time scales back into physical
units by assuming =l̄ 35 nm (hence, each grid node represents a box
with side lengths of 35 nm) and = = ×− −t l¯ ¯ /10 cm /s 1.225 10 s2 7 2 4 . Our
choice of l̄ is somewhat arbitrary, however in order to satisfy the mean-
field representation of the polymer solution, it should be larger than the
chain radius of gyration, hence the physical length and time herein are
relevant for such a condition. Choosing a different l̄ will effectively re-
scale the physical time duration for the simulations.

Isotropic quenching was conducted by reducing the temperature
uniformly at a constant linear rate throughout the entire domain:
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where Ti is the initial temperature (always set to 460 K), Tf is the final
temperature, t is the current simulation time, and Ω is the total simu-
lation time. Different quench rates were achieved by varying Ω. In our
isotropic quenches, Tfinal was set to the crystallization temperature, and
periodic boundary conditions were applied in all three directions.

Anisotropic quenching was also performed to more accurately
capture the effects of temperature gradients on the phase separation
process, ultimately leading to anisotropic pore morphologies. For ani-
sotropic quenching, we assumed a uniform, initial temperature of
460 K. One surface of the domain (at x=0) was kept at a constant cool
temperature, and the temperature profile is obtained from the solution
to a 1D, semi-infinite heat equation:
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where Tbath is the temperature of the cool surface, assumed to be in
contact with a bath, and αT is the thermal diffusivity of the polymer
solution (in units of cm2/s), assumed to be uniform and equal in both
the polymer-rich and polymer-poor phases. To relate the thermal dif-
fusivity and the polymer diffusivity, and make the results more general,
we utilize the non-dimensional Lewis number defined as =Le α

D
T
0
[37].

We used several values of Le to determine its effect on pore mor-
phology, including Le =50, 100, and 150. In our anisotropic quenches,
periodic boundary conditions were applied in the y- and z-directions,
while no-flux boundaries (for ϕp) were applied in the x-direction. We
also used three different bath temperatures, =T 273 Kbath , 298 K, and
333 K, and analyzed its effect on pore morphology.

We implemented a variety of analysis tools to evaluate the nature of
the pore morphology. First, the average pore size was calculated by
conducting one-dimensional sweeps along columns of grid points in
each direction and calculating the average distance between interfaces
within the polymer-poor phase (with an interface being defined as a
location where =ϕ 0.25p ). The average distance between interfaces was
then averaged for all columns of grid points in the x-, y-, and −z di-
rections. Second, we evaluated the interconnectivity of the porosity
using a Hoshen-Kopelman (HK) cluster counting algorithm [38]. The
HK algorithm identifies and labels individual domains of a phase, in our
case the polymer-poor phase associated with the porosity. We then
compute a continuity parameter Γc that represents the continuity of the
pore network in space [39]. This parameter is calculated by dividing
the volume of the largest pore V( )L by the total volume of all the por-
osity V( )T :

Fig. 2. Polymer diffusivity versus ϕp calculated by Eq. (5) for three tempera-
tures - two above the crystallization temperature and one below. The inset plot
shows the polymer mobility versus ϕp for the same three temperature.
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The value of Γc quantifies the interconnectivity of the pore network,
whereby =Γ 1c represents the case where all the porosity is associated
with a single pore (complete interconnectivity). Otherwise, as Γc ap-
proaches zero, the largest pore is a small fraction of the total porosity,
which is thus discrete and discontinuous.

All simulations were executed on 16-core CPU nodes, parallelized
by domain decomposition along the x-direction. Each simulation typi-
cally required a few hours of wall time to complete.

3. Results

3.1. Isotropic quench

First, we performed isotropic quenches in which the temperature
throughout the simulation domain was decreased uniformly from an
initial value of 460 K to a final value of 390 K (i.e., the crystallization
temperature). We conducted three-dimensional simulations with grid
sizes of × ×256 256 256, corresponding to × ×9 9 9 μm. Fig. 3 depicts
the evolution of the two-phase morphology through time. The system is
initialized by assigning values of ϕp about an average polymer volume
fraction ϕ̄p with an initial random variability of ± 0.05. The images in
Fig. 3 correspond to =ϕ̄ 0.15p and a quench rate of 56 K/s. At the initial
temperature, the solution is fully soluble and there is no thermo-
dynamic driving force for phase separation. As temperature decreases, a
continuous change in Fmix leads to phase separation along with a con-
tinuous change in Mp that governs the rate of phase separation.
Polymer-rich and polymer-poor domains form, and the local polymer
content in these domains continuously changes during quenching ac-
cording to the binodal line of the phase diagram. At the end of the
simulation, the domain has a temperature of 390 K, and a two-phase
morphology exists in which the polymer-rich domains have ϕp values of
approximately 0.5 and the polymer-poor domains have ϕp values very
near zero.

In our isotropic quench study, we varied two key parameters: ϕ̄p and
the quench rate. Throughout the simulations, we computed the average
pore size defined as the average distance between interfaces through
the polymer-poor phase. This data is shown in Fig. 4. The left plot
shows the average pore size versus temperature (which is analogous
with time for our isotropic quenches) with =ϕ̄ 0.15p for four different
quench rates: 56, 70, 93, and 140 K/s. The right plot shows the average
pore size at the end of the quench versus ϕ̄p for the same quench rates.
Overall, we see a trend in which a higher quench rate (i.e., a faster
quench) results in a smaller pore size. There are two factors accountable
for this relationship. First, lower quench rates allow more time for the
two-phase morphology to coarsen. A lower quench rate permits the
system to remain at higher temperatures (yet, below the binodal line)

where the polymer mobility is higher for longer times. Second, a higher
quench rate results in a delay in the onset of phase separation, due to a
delay in overcoming the nucleation barrier. We see evidence of this in
the left plot of Fig. 4, where the data points depart from the x-axis at
different temperatures (or, equivalently, different times). Lower quench
rates allow more time for nucleation to occur when the system first
crosses the binodal line. Due to these two effects, at the end of the
quench, the pore size is larger for lower quench rates.

In addition, when examining the right plot of Fig. 4, we see that the
pore size is highly sensitive to the average polymer fraction. This is to
be expected, given that the porosity is derived from the polymer-poor
phase, the quantity of which is determined from a tie line using the
lever rule with a fulcrum at ϕ̄p. There is also a secondary factor asso-
ciated with the polymer mobility. The average mobility in the system as
a whole is higher for smaller values of ϕ̄p, due to the fact that Dp de-
creases exponentially with ϕp. Hence, the coarsening rate will be higher
for lower values of ϕ̄p.

The continuity of the porosity for these systems was also computed
using the HK algorithm discussed above. Fig. 5 plots the continuity
parameter Γc versus ϕ̄p for three quench rates. For values of ϕ̄p below
0.175, the porosity is completely interconnected, as evident by values
of =Γ 1c . Within the plot, we added images of different structures at the
end of their quenches. The blue-white images on the left depict the
polymer volume fraction. The multi-colored images on the right depict
the porous regions in the domain (i.e. the polymer-poor phases). The
pores are shaded according to their respective volume, with a red
shading corresponding to a large pore volume and a blue shading
corresponding to a small pore volume. These images show the transi-
tion from an interconnected porosity to a discrete disconnected por-
osity, which abruptly occurs in the range < <ϕ0.175 ¯ 0.25p . The inter-
connectivity of the pore network is inherently important to the
separation performance of polymer membranes. The quench rate was
seen to influence the pore morphology only within a range of polymer
volume fractions = −ϕ( ¯ 0.17 0.25)p . Below this range the system is
within the spinodal region and the relatively equal quantities of
polymer-rich and polymer-poor phases strongly favor a bicontinuous
structure. Above this range, the polymer-poor phase is a minority phase
and forms discontinuous droplets regardless of quench rate.

3.2. Anisotropic quench

The temperature quenching that occurs in an actual TIPS processing
procedure occurs in an anisotropic manner. One of the surfaces of the
polymer-solution is brought into contact with a cooling bath, which
leads to a one-dimensional heat transfer process. Anisotropic quenching
can therefore lead to anisotropic pore structures, as the local change in
temperature versus time depends strongly on the distance from the
cooling surface within the polymer solution.

Fig. 3. Progressive snapshots in time of an isotropic quench simulation with an initial temperature of 460 K and a final temperature of 390 K. Here, the average
volume fraction is =ϕ̄ 0.15p , the quench rate is 56 K/s, and the domain size is × ×9 9 9 μm. The white regions correspond with the polymer-rich phase, and the blue
semi-transparent regions correspond with the polymer-poor phase. The final structure on the right depicts a bicontinuous morphology.

M.R. Cervellere, et al. Journal of Membrane Science 577 (2019) 266–273

269



To investigate an anisotropic quench process, we conducted simu-
lations in which the x=0 surface was held at a constant temperature
correlating with the temperature of the bath, Tbath. The rest of the do-
main was assigned the initial temperature, =T 460 Ki . Eq. (8) was then
solved within the domain to determine the local temperature at a
specific point in space and time. Our anisotropic quenches differ from
those of Mino et al. [23] by the fact that we utilize a non-uniform and
time-dependent temperature field, whereas Mino et al. assumed an in-
itial polymer concentration gradient (to represent a preliminary solvent
evaporation) followed by an isotropic temperature quench.

We elongated the domain in the x-direction, and the overall grid
sizes used in this section were 500 × 70 × 70, corresponding with

× ×17.5 2.45 2.45 μm. Fig. 6 shows snapshots of the anisotropic phase-
separation process at progressive instances in time for a polymer vo-
lume fraction of =ϕ̄ 0.15p . The initial temperature of the polymer

solution was =T 460 Ki , the bath temperature was =T 298 Kbath . To
relate the mass diffusivity of the polymer with the thermal diffusivity of
heat in the material, we utilize the dimensionless Lewis number defined
as =Le α

D
T
o
[37] (again, Do is the diffusivity of a polymer chain in a

dilute solution at 460 K). For the images in Fig. 6, =Le 50. In Fig. 6, the
final simulation time is 0.894 s, which is the required time to reduce the
temperature throughout the domain to a value below the crystallization
temperature, 390 K. This time span is perhaps shorter than that oc-
curring in laboratory TIPS processing, a result of the fact that the depth
of our simulation domain is less than the thickness of a typical polymer
membrane (e.g. 170 μm).

The anisotropic quenching clearly results in a gradient in pore size

Fig. 4. Data plots of: (left) average pore size versus temperature during isotropic quenches for ϕ̄p =0.15 and four different quench rates, (right) average pore size
versus ϕ̄p at the end of the quenches for four different quench rates. The average pore size decreases with increasing quench rate and polymer volume fraction.

Fig. 5. The calculated continuity parameter Γc versus ϕ̄p for three different
quench rates. Increasing ϕ̄p leads to a transition in morphology from a fully
continuous pore network =Γ( 1)c to a highly discontinuous pore network
⪡Γ( 1)c . The inset images show simulation snapshots of the polymer fraction on

the left and the pore regions on the right colored according to pore size (red =
large pores and violet = small pores). Individual pore domains are identified by
the HK algorithm.

Fig. 6. Progressive snapshots of an anisotropic quench simulation which is
cooled from the top surface that is held at a constant temperatureTbath =298 K.
The one-dimensional heat flux leads to a non-uniform decrease in temperature
according to Eq. (8), and a resulting non-uniform pore network. The images
were taken at times of 0 s, 0.179 s, 0.358 s, and 0.894 s (the final time). The
domain size is × ×17.5 2.45 2.45 μm, the polymer volume fraction is =ϕ̄ 0.15p ,
and the Lewis number is =Le 50.
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in the x-direction. Most notably, at the top of the domain near the
cooling surface, there exists a region where complete phase separation
has not fully occurred. Within this region, the temperature dropped
quickly below the crystallization temperature, and very little time was
available for the phase-separation process. This region, however, does
not have a completely uniform polymer concentration. Fig. 7 shows a
close-up view of the structure, with an isosurface drawn to depict ϕp
=0.15, which is the average polymer fraction. Clearly, variations in
the polymer fraction exist in this region, corresponding therefore to a
distribution of very small pores. Polymer-rich and polymer-poor do-
mains have begun to develop in this region, but have not fully evolved
to their preferred values of ϕp. This dense layer near the cooling surface

represents a skin layer which is commonly observed in polymer mem-
branes [40]. A recent experimental work [41] reveals very similar pore
structures resulting from the TIPS process, including a dense skin layer
and a gradient in pore size in the direction perpendicular to the skin
surface.

To quantify these anisotropic pore structures, we have computed the

Fig. 7. A close-up image of the dense skin layer near the cooling surface. An
isosurface (drawn at =ϕ 0.15p ) is included to better visualize the structure.
Within the skin layer, a small degree of phase separation has occurred, which
was essentially halted early in the simulation due to the local temperature
dropping below the crystallization temperature.

Fig. 8. The computed values of pore size versus depth below the cooling surface (in the x-direction) for all of the conditions tested in the anisotropic quench study.
The left column of plots corresponds to ϕ̄p =0.08, the middle column to =ϕ̄ 0.15p , and the right column to =ϕ̄ 0.225p . The top row of plots corresponds to =Le 50,
the middle row to =Le 100, and the bottom row to Le =150. Within each plot, there are three data lines corresponding with three bath temperatures, as indicated.

Fig. 9. Images from anisotropic quench simulations for three different polymer
volume fractions: (left) ϕ̄p =0.08, (middle) =ϕ̄ 0.15p , and (right) =ϕ̄ 0.225p .
These images show the variation of skin layer depth versus ϕ̄p, as well as the
difference in the interconnectivity of the pore structures with ϕ̄p. =T 298 Kbath

and =Le 50.
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average pore size versus depth from the cooling surface along the x-
direction. This was performed using the same procedure as described
above, however only columns of data along the y and z directions were
probed, and the average pore size for each x plane was computed. This
data is plotted in Fig. 8 versus depth away from the cooling surface.
Here, we have varied three critical parameters: ϕ̄p, Le, and Tbath. Fig. 8
contains a 3 × 3 array of plots in which each column represents a
particular value of ϕ̄p, each row represents a particular value of Le, and
each line within the plots represents a particular value of Tbath. The
three bath temperatures chosen correspond to ice water =T K( 273 )bath ,
room temperature =T K( 298 )bath , and a hotter temperature

=T K( 333 )bath .
The plots in Fig. 8 show several important relationships. First, the

skin layer can be recognized by the small values of pore size at small
depths. The pore size increases rather abruptly at the bottom of the skin
layer. Below the skin layer, the pore size increases somewhat gradually
along the depth of the system. Overall, an observed trend is that the
pore size is larger for smaller values of ϕ̄p, smaller values of Le, and
higher values of Tbath. Higher bath temperatures and smaller values of
Le result in lower temperature drop rates, hence longer periods of phase
separation and therefore larger pore sizes. Smaller values of ϕ̄p corre-
spond with less polymer content and larger pore sizes, as observed for
the isotropic quenches. In Fig. 8, cases where the pore size apparently
drops at the largest depths (around 15 μm) is actually due to insufficient
time to initiate phase separation in those regions. Longer simulations
would be required to capture phase separation in those regions. Fig. 9
shows the final states of the three different ϕ̄p values used, illustrating
the difference in the size and interconnectivity of porosity. The
=ϕ̄ 0.08p sample has the largest pore sizes and a very interconnected

pore network. Conversely, the =ϕ̄ 0.225p sample has smaller pores
which appear to be discrete and non-interconnected.

We measured the skin layer thickness, and plotted these values
versus Tbath for the three ϕ̄p values and the three Le values, as shown in
Fig. 10. These values of skin layer thickness were arbitrarily defined as
the depths at which the average pore size increased by 50% in Fig. 8.
We observe that skin thickness increases with decreasing Tbath, in-
creasing Le, and increasing ϕ̄p. These results are generally in agreement
with experiments [33]. The skin layer thickness is also highly depen-
dent on the crystallization temperature, which we kept at a constant
value of 390 K, corresponding with the PVDF/DPC system [31]. This
anisotropic quench process illustrates the intricate relationships be-
tween many thermodynamic, kinetic, and processing conditions that
ultimately govern the resultant pore structure that forms.

4. Conclusion

To fully capitalize on the power of computer simulations in pre-
dicting membrane morphology for a particular material system and

processing conditions, three-dimensional simulations and analysis must
be performed. With current computer power, and with appropriate
mesoscale models, simulations are now able to predict the complex
networks of porosity that form within polymer membranes during
fabrication. In this paper, we present a phase-field model to investigate
the TIPS process through time for the PVDF/DPC material system. We
conducted both isotropic and anisotropic quenches, and analyzed the
pore networks for both average pore size and pore interconnectivity. In
our anisotropic quenches, the domain size in the direction of heat flux
was 17.5 μm, which is an order of magnitude smaller than typical
polymer sheet membranes. Hence, a current simulation cannot predict
pore structure throughout an entire membrane cross-section.
Nevertheless, important insights can be made from this simulation
model, which we contend is fast becoming a valuable tool for mem-
brane manufacturers.

The current model does not capture convective transport of the
polymer species within the solution during phase separation. A diffu-
sion-based model is likely more suited to the TIPS process than the SIPS
process, whereby the exchange of two solvent species occurs on longer
length scales. A next step will therefore be to investigate the SIPS
process, likely with an expanded model that captures flow due to in-
terfacial forces in the system.
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