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Abstract: Analyzing multiple studies allows leveraging data from a range
of sources and populations, but until recently, there have been limited
methodologies to approach the joint unsupervised analysis of multiple high-
dimensional studies. A recent method, Bayesian Multi-Study Factor Anal-
ysis (BMSFA), identifies latent factors common to all studies, as well as
latent factors specific to individual studies. However, BMSFA does not al-
low for partially shared factors, i.e. latent factors shared by more than one
but less than all studies. We extend BMSFA by introducing a new method,
Tetris, for Bayesian combinatorial multi-study factor analysis, which iden-
tifies latent factors that can be shared by any combination of studies. We
model the subsets of studies that share latent factors with an Indian Buffet
Process. We test our method with an extensive range of simulations, and
showcase its utility not only in dimension reduction but also in covariance
estimation. Finally, we apply Tetris to high-dimensional gene expression
datasets to identify patterns in breast cancer gene expression, both within
and across known classes defined by germline mutations.

Keywords and phrases: Multi-study Analysis, Unsupervised Learning,
Gibbs Sampling, Factor Analysis, Dimension Reduction.

1. Introduction

Using multiple studies in a single statistical analysis is a powerful way to lever-
age data from a variety of sources and populations. This is particularly relevant
with high-throughput biological data, where analyses are often carried out using
systematic collections of genomic data. These data are generated over time in
different laboratories, with different techniques and/or under different experi-
mental conditions, and it has been well-established that such data contain both
biological and technological sources of variation (Irizarry et al., 2003). Methods
that jointly analyze multiple studies offer the opportunity to distinguish biolog-
ical signals from artifacts by identifying what signal is shared by some or all of
the studies, and what signal is specific to an individual study. These types of
analyses and the resulting challenges are not unique to high-throughput biol-
ogy. Methods producing replicable features and patterns across heterogeneous
settings are valuable to many disciplines.

Many of the datasets studied in these contexts, especially in high-throughput
biology, are high-dimensional, which creates an extra challenge for their joint
1
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analysis. The unsupervised identification of latent factors can be particularly
useful for uncovering signal in the high-dimensional setting, but there has been
limited work on formal statistical approaches to unsupervised learning for mul-
tiple studies. De Vito et al. presented the first extension of factor analysis to
the multi-study context (De Vito et al., 2019), and more recently developed
a Bayesian multi-study factor analysis methodology (BMSFA) that is better
suited for high-dimensional data (De Vito et al., 2018).

However, these approaches can only identify latent factors if they are common
to all studies or unique to a single study. In several applications, it is important
to also identify biological factors only shared by subsets of studies. For example,
in genomics, we might expect the subset of studies using the same experimental
techniques and/or generated from the same laboratory to share common latent
factors.

In this work, we introduce a Bayesian combinatorial multi-study factor anal-
ysis method, which extends the Bayesian multi-study factor analysis method
(De Vito et al., 2018) to learn latent factors shared by any subset of stud-
ies. We do so by using the Indian Buffet Process (Ghahramani and Griffiths,
2006) to model the shared ownership of factors across multiple studies, which
encourages sparsity. We thus refer to our method as Tetris, since the matrix
indicating factor ownership resembles patterns from the Tetris video game. We
estimate parameters using a Gibbs sampling algorithm tuned to ensure feasi-
bility in p > n settings. We test Tetris through a broad range of simulations,
and we highlight Tetris’s utility not only in dimension reduction but also in
covariance estimation.

While we present our methods and simulations in the framework of multi-
study analysis, our model is equally relevant for a single study which examines
multiple subgroups or conditions that may or may not share a common struc-
ture. We will illustrate this case in our breast cancer application, where we apply
Tetris to four high-dimensional RNA-sequencing datasets to identify patterns
in lympoblastoid cell gene expression, both within and across genotypes related
to breast cancer risk.

2. Methods
2.1. Model and Estimation

We consider S studies with the same P variables. Each study s has ng subjects
and P-dimensional centered data vector x;s with i = 1,...,n,. If K is the total
number of factors (including common, study-specific, and partially shared), then
our model is

Xis — AAslis + €;s (21)

where A is a P x K factor loadings matrix and l;s are K x 1 latent factors.
The K x K study-level factor indicator matrix Ay is our key element to

estimate the pattern of partial sharing of factors. This matrix consists of all Os,

except for the diagonal entries, which are either 1 or 0. The kth diagonal entry
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of Ay is 1 whenever the kth factor is present in study s, so the product AAl;,
will include the corresponding elements. Hence, A controls which factors are
included and which are not into the model for study s.

We denote by A the overall S x K factor indicator matrix whose sth row
consists of the K diagonal entries of A,. If the kth column of A consists of all
1s, the kth factor is a common factor; if it consists of exactly a single 1, this
is a study-specific factor; and if it consists of at least one 1 and one 0, this is
a partially shared factor. In this model, we enforce a minimum of one study-
specific factor per study by having each of the first S columns correspond to a
study-specific factor for each. In other words, the first S columns of A form the
S x S identity matrix. This decision is motivated by considering each study to
have some batch effect that it uniquely expresses, and allows the other factors
discovered to be interpreted conditional on separating out these batch effects.

Our prior model builds on BMSFA (De Vito et al., 2018). Namely, the latent
factors are ;5 ~ Ng (0, I), and the error terms are e;s ~ Np(0, ®,) for ¥, =
diag(2y,...,¢2p). In turn, the elements of this matrix are ¢, ~ T'(ay,by).
For the loading matrix A we use the multiplicative gamma process shrinkage
prior (Bhattacharya and Dunson, 2011), to encourage the definition of factors
with decreasing norm, i.e., for each loading matrix element A,y ~ N(0, w;le,; 1)

with 7 = [T, 0, wpr ~ T (%, %), 61 ~ (a1, 1), and & ~ T(ag, 1) for [ > 2.

The study-level factor indicator matrices A, which are jointly summarized
by the overall factor indicator matrix A, allow us to estimate factors shared by
any subset of studies. To avoid having to select the number of factors ahead
of time, and to avoid the explicit assessment of all combinatorial possibilities,
we place an Indian Buffet Process prior on A. To be precise, since the first S
columns are fixed as the S x S identity matrix as described above, the Indian
Buffet Process (IBP) prior is placed on A beginning from the S + 1th column.

The IBP (Ghahramani and Griffiths, 2006) is a probability distribution de-
fined over infinite binary matrices, specifically matrices that have a finite number
of rows and an infinite number of columns. In our case, each row represents a
study, and each column represents a factor; as described earlier, an entry of 1
indicates that a given factor is shared by the corresponding study. Although the
number of columns is infinite, the expected number of columns whose entries
are not all 0 is finite. This expectation increases with the number of rows (i.e.,
studies). Hence, using this prior on .4 implies that we will automatically be per-
forming dimension selection, without having to use heuristic post-hoc measures
to determine the number of factors. The resulting patterns of 1s and 0Os in this
matrix resemble the patterns of fallen Tetris blocks, giving our method its name.

We specifically choose to use the two-parameter generalization of the IBP
(Knowles and Ghahramani, 2007). In the regular one-parameter model, a single
parameter o governs both the expected number of nonzero columns and the
expected sparsity of each column. However, in the two-parameter version, «
governs the expected sparsity of the total matrix, whereas « and (§ together
govern the expected number of columns. The resulting effect is that for fixed «,
small values of 3 are more likely to result in factors shared by larger numbers of
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studies (i.e., more common factors, and factors shared by large subsets), whereas
large values of 8 are more likely to result in factors shared by small numbers of
studies (i.e., more study-specific factors, and factors shared by small subsets).
This is a desirable property in our setting because, depending on the application,
data may fall at one end of the spectrum or the other.

To sample from the posterior distributions using these priors and our model,
we present the following computationally efficient Gibbs sampler (based primar-
ily on the work in De Vito et al. (2018), Knowles and Ghahramani (2007), and
Doshi-Velez et al. (2009)):

1. We follow Knowles and Ghahramani (2007) to update each entry of A.
For s ranging from 1 to S, for k ranging from S + 1 to K, set Ag, = 1
with probability r/(r + 1), where

r—mxHeXp{

(xis — AAM )T (25, — AARL,) —

l\.')\»—t

(25 — AARLNTO T (@45 — AA’Eolis))} ;

andm =Pr(Ag =1]--)/Pr(Agp =0|---) =mp s/ (B+S—1—my,—s).
Here, my, _s denotes the sum of column k of A, subtracting the current
value of A,. Further, A¥! has the kth diagonal element of A, equal to 1
(i.e. Ag, = 1) and A*Y has the kth diagonal element of A, equal to 0 (i.e.
-Ask = O)

2. Again as in Knowles and Ghahramani (2007) and as discussed by Doshi-
Velez et al. (2009), we use a Metropolis-Hastings step to allow new factors
to be added. For s ranging from 1 to .S, to sample the number of new factors

knew for study s, sample kyey ~ Pois (ﬁ%é{l), and the corresponding new

elements Wnew, dnew; and ls new from their respective priors outlined in the
previous section. Then accept all these samples with probability min(1, ),
for r equal to

P
_1 —1,4
H|27TD:D7HCW‘ ?|2m(D p new T Vg 2As ;new ?newls,nCWAs,nCW) 1|2

p=1

1. _
X €xp {QAp,new( P, new 7/} 2A9 ,new ?newls,newAs,new)AZ;new} .

This is equivalent to the ratio of the likelihoods with and without the
proposed factors, with the new elements of A marginalized out. Here, we
define AT

p,new

( pnew+w 2148 new sTnewlSmeWAS,new) ’(/} 2AS HerZnew( gp)+lSASAg)

3. To update the loadings matrix elements and the associated parameters in
the next 4 steps, we follow the main ideas of Bhattacharya and Dunson
(2011) and the multi-study extension from De Vito et al. (2018). For p
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ranging from 1 to P, sample the transpose of the pth row of the factor
loadings matrix

s -1 /s
AT ~ N (ppl + Y v AL lSAS) (Z wsiAle:c(i”) ,
s=1

s=1
S —1
(D;1 + ws—p?AslsTlsAs> I
s=1

where I, is the ng x K matrix of latent factors across samples for study s,
:r,gp ) is the ng X 1 vector of values for feature p across samples for study s,
and D;l = diag(wplﬁ, C ,wpKTK).

4. For s ranging from 1 to S, ¢ ranging from 1 to ng, sample
Lis ~ N{(Ix + ALATT P AA) HANTT  ay),
(Ix + AATOTAA)
This samples a K x 1 vector regardless of how many factors are shared by
study s. If the kth factor is not shared by the study, then the kth diagonal
element of A, will be 0; as a result, this sampling step effectively draws
the corresponding element of I;5 from the prior, and that element of I;

will not affect the likelihood due to multiplication by Ag.
5. For p ranging from 1 to P, for k ranging from 1 to K, sample

1 v+ A2
kaNF<V+ , : pk)-

2 2

6. Sample §; ~ T’ (al + %, 14+ %Zszl T,il) 211;1 wpkAf)k), where T,El) rep-
resents E.

1
7. For [ ranging from 2 to K, sample

P 1 K 0) P
l 2
§ ~T <a2 + 5(K —l+1),14 3 /;—z Ty ElwpkApk> ,

l Tk
where T,S) represents —.

d;
8. For s ranging from 1 to S, for p ranging from 1 to P, sample

. 5N
Vo ~T (w +5bs 5> (@l - ApASlZ-S)2> :
i=1

2.2. Recovery of Factor Indicator Matrixz and Loading Matrix

In the sampler described in the previous section, the number of factors can
change dynamically from iteration to iteration in the chain. This means that
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the MCMC samples of the factor indicator matrix A and of the loading matrix
A can have varying dimensions across iterations. Recovering point estimates of
these quantities requires post-processing on the sampler output.

To recover A, we recommend the following approach, which we use in all
results presented in this work. First, we define a distance between two sampled
matrices A;, A; as the minimum number of 0 — 1 or 1 — 0 “flips” needed to
change all the entries of A; to those of A; (or, symmetrically, from A; to A;) over
all possible permutations of their columns. Intuitively, this counts the number
of differences between the two matrices under the best possible “alignment” of
their columns, since the ordering of the columns (which correspond to factors)
is not itself meaningful. We can express this formally as

min tr(LM R),
LR

where each Mj; is the number of flips between the kth column of A; and the
Ith column of A;, and L, R represent left and right permutation matrices re-
spectively. This can be efficiently computed using the Hungarian Algorithm, as
implemented in the library clue (Hornik, 2005).

We compute these distances between every pair of post-burn-in MCMC sam-
ples, and then select the MCMC sample that contains the largest number of
other MCMC samples within a radius r. We choose r as whichever is larger
between the 0.05th quantile of all distances and the number of studies S. The
motivation for this upper bound on the radius is to allow each study to change
one entry, but other options could be used instead. Overall, we can think of this
selection process as choosing the sampled .4 matrix that defines the highest den-
sity neighborhood when chosen as the center. Ties are broken first by selecting
the matrix with fewest factors, and if there are still ties, then by selecting the
matrix with highest probability under the IBP prior.

To summarize the uncertainty around this point estimate of A, we adapt the
idea of credible balls from the Bayesian clustering context (Wade et al., 2018).
Following their work, we define a credible ball of radius € as

B(A*) = {A: d(A A) < €}

for point estimate A*. Then we define a level 1 — « credible ball as Bex(A*)
with €* the smallest € > 0 such that

Pr(B.(A*)|X)>1-a

for data X. In practice, we can approximate this quantity using the MCMC
output as 45 Z%Zl 1(d(A™, A*) < €), if there are M iterations post-burn-in
and A™ represents the m-th such sampled matrix.

Next, to recover A, we first need sampler output where A is exactly the
same across all iterations; otherwise, it is not meaningful to construct a single
estimate of A, since there would not be a single set of factors for the columns of
A to correspond to. Hence, after recovering the point estimate A, we propose to
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rerun the MCMC with A fixed to this estimate, while updating all the remaining
parameters as previously.

In factor analysis, loading matrices are not unique since they are only iden-
tifiable up to rotations. Different draws of A from iteration to iteration could
correspond to a different rotation of the same parameter. Thus, to estimate
A, we cannot simply take, say, the posterior median of all A draws in this
new chain. We address this issue using a strategy that extends that of BMSFA
(De Vito et al., 2018). We first partition factors into “types” depending on their
sharing patterns in the estimate of A. For example, common factors would be
one type. Factors shared by studies 3 and 5 would be another. We then com-
pute the median loading matrix covariance corresponding to each type of factor.
For example, the common loading matrix covariance is computed as the covari-
ance when A is subsetted to only include columns corresponding to the common
factors, and similarly for all other types. Although there are potentially many
types of factors, their number growing exponentially in the number of studies,
in practice the estimation of A is parsimonious, so the number of unique types
of factors to be considered is gengrz}lly computationally feasible. For each re-

sulting loading matrix covariance AAT, where A represents the loading matrix
subsetted to the appropriate columns, we use the matrix spectral decomposition
to decompose

AAT = UNUT = (UN#)(N?U)T,

and we then take our estimate of A as A = UN3. All columns of A can be
estimated in this way.

3. Simulations
3.1. Simulation Design

We evaluated our method in three different simulated scenarios, with a range
of parameters encompassing similar dimensionality, sample size, and number
of studies as our real data application. In brief, the first scenario specifically
assesses Tetris’s ability to differentiate signal that is partially shared from the
signal that is common to all studies. The second scenario is designed to test
Tetris’s performance as the data dimensions, loading matrix sparsity, and num-
ber of partially shared factors are systematically varied. Finally, the third sce-
nario evaluates Tetris’s performance when the number of studies is greatly in-
creased. These scenarios are loosely based on those used to evaluate BMSFA
(De Vito et al., 2018), and modified to study partially shared factors. We use
“partially shared” to refer to factors belonging to multiple, but not all, stud-
ies. In all of the following scenarios, each specified combination of settings was
simulated ten times, and Tetris was run with a total of 10,000 iterations and a
burn-in of 8,000 iterations. These iterations were sufficient for convergence and
good mixing.

imsart-generic ver. 2014/10/16 file: main.tex date: July 27, 2020



I. N. Grabsk: et al./Bayesian Combinatorial MSFA 8
8.1.1. Scenario 1: Structurally Distinct Common and Partially Shared Signals

In the first scenario, we simulated four studies X, with n observations and p
variables from MVN(0,3;), with X, = AA AT + ¥,. We fixed three common
factors and three factors shared by the first two studies, as well as one study-
specific factor per study.

The non-zero elements of A were drawn from ¢(—1,1), but for the columns
corresponding to the common factors, their locations were chosen uniformly at
random among the first £ rows (i.e. these loadings only involved the first half of
the variables), and for the columns corresponding to the partially shared factors,
their locations were chosen uniformly at random among the last £ rows (i.e. these
loadings only involved the second half of the variables). This was designed to
create structural distinction between the common and partially shared factors.
The locations of the non-zero elements for columns corresponding to study-
specific factors were not restricted, and were selected uniformly at random over
all rows. The number of such locations varied with the sparsity of the non-
structurally-zero elements of the loading matrix, which was set to either 80% or
50%.

U, is a diagonal matrix where each element is drawn from #£(0,0.5). We set
the dimension of the data (n,p) to our p > n setting (10, 60).

8.1.2. Scenario 2: Inference on Dimension, Sparsity, and Number of Partially
Shared Factors

In the second scenario, we simulated four studies X, with n samples and p
variables each by drawing from MVAN(0,%,), where ¥, = AA,AT + U,. Each
non-zero element of A was drawn from U (—1, 1), and their locations in the matrix
were selected uniformly at random. Wy is a diagonal matrix where each element
is drawn from /(0,0.5). All simulations in this scenario have three common
factors and one study-specific factor per study.

We then varied three parameters: the dimension of the data, where (n,p) is
set to one of (60, 10), (35,35), and (10,60) to correspond to p < n, p = n, and
p > n settings; the sparsity of the loading matrix, which is one of 20%, 50%,
and 80%; and the number of partially shared factors, which is either zero, one
(shared by the first two studies), or two (both shared by the first two studies). In
total, we considered all 27 combinations of these parameters under this scenario.

8.1.8. Scenario 3: Large Number of Studies

In the third scenario, we adapted the second scenario to consider the case where
the data consists of 16 studies. We used the p > n (i.e. (n,p) = (10,60)) and
80% sparsity setting, and varied the number of partially shared factors as 0 or
1. When there is one partially shared factor, that factor is shared by the first
eight studies.
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3.2. Ewvaluation Metrics

We used two primary metrics to evaluate the accuracy of our simulation results.

8.2.1. RV Coefficient of Full Loading Matriz Covariance

We quantified the similarity between the true and estimated full loading matrix
covariance AAT using the RV coefficient (Abdi, 2007). For two positive semi-
definite matrices S and T, the RV is defined as

Tr(STT)

RV(S,T) = VI (STS) e (I7T) 3.1)

and takes on a value between 0 and 1, where a value closer to 1 indicates
greater similarity between the two matrices. Note that the quantity AAT can
be interpreted as summarizing relationships among variables for a hypothetical
study containing all the factors found across any of the observed studies.

8.2.2. Reconstruction of Study Covariances

We reconstructed the study-specific covariance matrix of study s as 25,T5m‘5 =
AA,AT. We then computed the RV coefficient between this matrix and the
true covariance matrix used to generate the data. As a comparison, we applied
the same procedure to estimates obtained from BMSFA via the MSFA package
(De Vito et al., 2018), as well as standard, single-study factor analysis (FA) via
the psych package (Revelle, 2017).

BMSFA separately estimates a common loading matrix covariance and a
study-specific loading matrix for each study. When reconstructing the covari-
ance matrix with BMSFA, we evaluated the sum of this estimated common load-
ing matrix covariance and study-specific loading matrix covariance. We obtained
these estimates as the posterior medians of the common and study-specific load-
ing matrix covariances from each post-burn-in iteration of the MCMC chain,
subsetting the appropriate loading matrix in each iteration to BMSFA’s chosen
number of factors.

When using FA, which only supports the analysis of one study at a time, we
considered each study independently and estimated i)s’ FA = AAT, that is the
estimated loading matrix covariance. Since this method requires specifying the
number of factors, we used the ground truth number of factors, thus considering
the least favorable scenario for our method. Neither Tetris nor BMSFA require
specifying the number of factors.

3.3. Stmulation Results

We first examine the results of the Scenario 1 simulation to highlight Tetris’s
ability to clearly and consistently discriminate between common and partially
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Ground Truth Estimated
(A)

(B)

Fic 1. Comparison of heatmaps for the estimated (right) and true (left) partially shared load-
ing covariance (A) and common loading covariance (B). Results shown are based on a single
dataset generated using the 80% sparsity setting of the Scenario 1 simulation, where there
are structural differences between the common and partially shared factors. Blue indicates
negative values, and red indicates positive values.

shared signal, when there are important structural differences between the two.
We use “common” to refer to signal that is shared by all the studies under
consideration, and “partially shared” to refer to signal that is shared by more
than one but not all of the studies. In this particular simulation, the partially
shared factors are all shared by the first two (out of four) studies. The structural
differences between the common and partially shared factors are that the set of
features involved in the common factors and the set of features involved in the
partially shared factors are disjoint and exhaustive. Note that the study-specific
factors for each of the four studies may span the entire set of features.

Tetris was able to differentiate between the common and partially shared
signal by correctly identifying high loadings on the appropriate set of features in
both types of signal. As an illustration, this can be visually seen in the heatmaps
of the estimated common and partially shared loading matrix covariances, as
compared to the heatmaps of the true common and partially shared loading
matrix covariances (Figure 1). The common loading matrix covariance is the
covariance of the loading matrix when subsetted only to the common factors,
and analogously so for the partially shared loading matrix covariance. In the
interest of space, we are showcasing example results from one simulation in the
80% sparsity setting, which we consider the most challenging. Although data
was simulated ten times under each setting, we are displaying here the run with
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Fic 2. RV coefficients for the full loading matriz covariance and common loading matriz
covariance for the Scenario 1 simulation, in both sparsity settings. Colors identify the type
of covariance matriz being estimated.

sixth best performance out of ten (as measured by RV coefficient) in an effort to
be representative. Nevertheless, we obtained similar results across the settings
and runs. This demonstrates that Tetris can capture and differentiate common
and partially shared signals across multiple studies in a range of settings.

We can also quantify the accuracy of our parameter estimation by looking
at the RV coefficient for the full loading matrix covariance (Figure 2). The full
loading matrix covariance can be interpreted as the loading matrix covariance
corresponding to a hypothetical study containing all the factors found across all
studies. Intuitively, this quantity summarizes all relationships among variables,
across the studies. In this simulation scenario, Tetris’s ability to distinguish com-
mon and partially shared signal is of particular interest due to the structural
differences between the two. Hence, we evaluate this by additionally examining
the common loading matrix covariance, which is the covariance when the load-
ing matrix is restricted to the common factors. Analogously to the full loading
matrix covariance, this quantity can be thought of as summarizing the structure
common to all the studies. For both the full and common loading matrix co-
variance, we see that the RV coefficients are stable and high over both sparsity
settings, confirming that Tetris estimated these parameters well.

Next, to understand how robust Tetris is under varied settings and without
such clear structural differences across factors, we examine the results from the
Scenario 2 simulation. The RV coefficients for the full loading matrix covariance
are shown (Figure 3), demonstrating Tetris’s ability to estimate the loading
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Fic 3. RV coefficients for the full loading matriz covariance across varying sparsity, data
dimension, and ground truth number of partially shared factors.

matrix covariance under a wide range of settings. In general, the RV coefficient
improves with decreasing sparsity of the loading matrix, as well as with decreas-
ing dimensionality of the data (i.e. p < n data results in better estimates than
p > n data). However, even in challenging scenarios, Tetris remains robust and
continues to have reasonable RV coefficients. It is also interesting to note that
the RV coeflicient does not appear to be affected by the number of partially
shared factors, which suggests that Tetris remains effective even when there are
more complicated relationships among the studies.

Thus far, we have shown that Tetris can accurately estimate the loading
matrix, which can be thought of as a multi-study parameter. However, we can
also demonstrate that Tetris’s approach to multi-study estimation has impor-
tant advantages even when the main quantities of interest are study-specific. In
particular, we examine Tetris’s ability to recover study-specific signal, by lever-
aging the common, individual, and applicable partially shared loadings for each
study to reconstruct their covariance matrices. We compute the RV coeflicients
between the reconstructed covariance matrices for each study with the true
data-generating covariance matrices in order to assess the accuracy of Tetris’s
estimates. We also obtain covariance estimates for each study using BMSFA,
which only considers common and individual factors, and single-study factor
analysis (FA).

Tetris recovers these study-specific covariance matrices well (Figure 4), with
the median RV coefficient for each study remaining above 0.75 in each of the
27 parameter combinations tested. In many cases, the median RV coefficient is
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Fic 4. (A) RV coefficients for study-specific covariances in the most challenging scenario
(p > n, 80% sparsity data with 2 partially shared factors), comparing Tetris to BMSFA and
FA. (B) RV coefficients for study-specific covariances in the p <K n, 80% sparsity setting with
2 partially shared factors. The p < n, 80% sparsity scenario is the only setting in which
Tetris did not outperform both of the other two methods.
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Fic 5. RV coefficients for the full loading covariance for the Scenario 3 simulation, which has
16 studies, across a range of sparsities (0.20, 0.50, and 0.80) and number of partially shared
factors (0 or 1), in the p > n setting.

much higher than 0.75. As we have seen before with the loading matrix covari-
ance, the RV coefficients for Tetris’s estimates improve with decreasing loading
matrix sparsity and decreasing data dimensionality. In general, Tetris substan-
tially outperforms BMSFA and FA across the parameter settings examined. The
fact that Tetris is able to outperform single-study FA shows that joint analysis
of multiple studies can improve inference of studies on the study-specific level.
The fact that Tetris outperforms BMSFA further shows that partially shared
signal can be critical to more accurate estimation. These findings both support
the premise of our multi-study, shared factor approach, and suggest that Tetris
has utility in covariance estimation.

The only exception occured in the p < n, 80% sparsity setting, where Tetris
was comparable to BMSFA and FA in two cases (0 partially factors, and 1
partially shared factor respectively) and performed worse than FA in one case
(2 partially shared factors). This is not entirely unexpected, since Tetris is de-
veloped especially for the challenging p > n setting. We further note that
we provided FA with the ground truth number of factors, whereas Tetris and
BMSFA both estimated this number on their own. Nevertheless, this observation
suggests that Tetris may not always be worthwhile for sparse low-dimensional
data, particularly if the number of factors is known a priori. In such cases, more
standard methods might be preferable. However, Tetris still yields a high RV
coefficient for this scenario, and outperforms both methods in the vast majority
of settings, including our setting of greatest interest, sparse p > n data.

The findings we have discussed so far focus on the case with four studies, but
in practice it is also interesting to consider a setting where a much larger number

imsart-generic ver. 2014/10/16 file: main.tex date: July 27, 2020



I. N. Grabsk: et al./Bayesian Combinatorial MSFA 15

of studies is available. In the Scenario 3 simulation, we examine 16 studies in
the p > n setting and assess the accuracy of both the full loading matrix
covariance and the study-specific covariances. As with the Scenario 2 simulation,
we find that the full loading matrix is estimated well across all sparsity settings
(Figure 5), with performance again improving as sparsity decreases. Even though
we have quadrupled the number of studies here, the RV coefficients remain
similar in magnitude as when we considered only 4 studies.

We additionally find strong performance for the study-specific covariances
(Figure 6), with Tetris achieving better results than both BMSFA and FA across
the board. The advantage from using Tetris is larger in the setting with a par-
tially shared factor (shared by 8 out of the 16 studies) than in the setting with
no partially shared factors, as might be expected. Nevertheless, Tetris still rep-
resents an improvement in all settings tested, which were restricted to the p > n
context in this simulation scenario. As an example, we display the results for
both the easiest case, i.e. 20% sparsity, no partially shared factors, and the most
challenging case, i.e. 80% sparsity, one partially shared factor (Figure 6). These
results demonstrate that even with a large number of studies, Tetris retains
the ability to accurately estimate the full loading matrix covariance, as well as
study-specific covariance matrices.

4. Application to RN A-seq Data
4.1. Data

We applied Tetris to RNA-sequencing gene expression data from the immortal-
ized lymphoblastoid cell lines of women at high risk for breast cancer, reported
by Pouliot et al. (2017). Their experiment produced a total of 121 samples:
37 from subjects with a germline BRCA1 mutation, 50 from subjects with a
germline BRCA2 mutation, and 34 from subjects with a strong family history of
breast cancer but no BRCA1 or BRCA2 mutation. We refer to these as BRCAT,
BRCA2, and BRCAX samples, respectively. Not all subjects in the study were
affected by breast cancer. There were 11 affected out of the BRCA1 samples, 18
affected out of the BRCA2 samples, and 17 affected out of the BRCAX samples.

Our multi-study method can also be used effectively as a multi-condition
method. We considered two main ways to define a “condition” in the context of
these data. Firstly, we defined BRCA1, BRCA2, and BRCAX carrier status as
the three conditions. Secondly, we defined six conditions by further stratifying
each of these mutational categories (BRCA1, BRCA2, and BRCAX) into those
who are affected (cases) and unaffected (controls). We refer to these as the
unstratified and stratified analyses, respectively. In both, we preprocessed the
data in the same way. Namely, we computed transcripts per million (TPM) from
raw counts. To control computational time, we focus on the 200 transcripts with
the highest total TPM summed counts across all samples in the dataset. This
is a relatively narrow set of genes, which only captures processes with very
high transcriptional levels. These are cell lines derived from lympocytes, so in

imsart-generic ver. 2014/10/16 file: main.tex date: July 27, 2020



I. N. Grabski et al./Bayesian Combinatorial MSFA

(A)

1.00

—a
—EE-
o ee

0.75

& 0.50

0.25

0.00

1 2 3 4 5 6 7

(B)

8 9
Study

10 11

12 13 14 15 16

1.00
0.75

& 050 '

0.25

0.00

8 9
Study

10 11

12 13 14 15 16

16

E3 Tetris
E3 BMSFA
B FA

E3 Tetris
£ BMSFA
E3 FA

Fic 6. (A) RV coefficients for study-specific covariances in the most challenging case with
16 studies (p > n, 80% sparsity data with 1 partially shared factors), comparing Tetris to
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addition to general cell maintenance and proliferation (e.g. ribosomal proteins),
it includes production of immunoglobuline and major glycoproteins found on
the surface of immune cells. This is a rather narrow view of the transcriptome,
but serves the purpose of illustrating our methodology in a more manageable
setting.

We then transformed the data as log(TPM + 1) to approximate normality,
an assumption that is met reasonably well in this subset of highly expressed
transcripts. We did not perform any additional preprocessing of the data, such
as batch adjustment (Zhang et al., 2020). The data may thus retain some batch
structure. Batch effects that are confounded with the conditions investigated
will likely result in condition-specific factors. Finally, when applying Tetris, we
used the same hyperparameters as described for the simulations.

4.2. Unstratified analysis

In the unstratified analysis (Figure 7), the point estimate for the factor indicator
matrix had 20 factors in total: two unique factors for each condition, six common
factors, five factors shared only by BRCA1 and BRCA2, and three factors shared
only by BRCA2 and BRCAX. The larger number of factors shared by BRCA1
and BRCAZ2 is consistent with what we might expect, since we might anticipate
similarities among women in those risk groups. It is interesting to note that there
were factors common to all three groups, and factors shared by BRCA2 and BR-
CAX, but no factors shared by just BRCA1 and BRCAX. Within the credible
ball for this point estimate, only approximately 7% of the factor indicator ma-
trices contain factors shared by just BRCA1 and BRCAX. This suggests some
similarities between BRCA2 and BRCAX that are not present in BRCA1. This
is aligned with epidemiological evidence indicating that BRCA2 carriers are at
high risk of other cancers, such as pancreatic cancer, which are not strongly as-
sociated with BRCA1, and also have independent, though largely undiscovered,
sources of familial risk (Shi et al., 2009).

The factor loadings are visualized in Figure 7. Several factors, such as the first
three common factors, appear to have relatively high loadings across a broad
range of transcripts, while others appear to have more concentrated signal in a
smaller set of transcripts. For example, the 7th factor, which is shared by BRCA1
and BRCAZ2, has very large loadings on a set of ten transcripts. Most of these are
related to the production of Immunoglobulin (IG). Two specifically (IGHA1 and
IGLC2) have been previously identified as biomarkers for improved prognosis
in triple-negative breast cancer (Hsu et al., 2019), a subtype of breast cancer
most strongly associated with these inherited mutations. Our finding suggests
that signal involving these genes may be specific to those with germline BRCA1
and BRCA2 mutations.

To further interpret these factors, we tested for gene set enrichment (Subra-
manian et al., 2005) of the factor loadings in the recovered loading matrix. This
analysis checks if gene sets representing known biological classes and pathways
are enriched in any given factor’s loadings above what would be expected at
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Fi1c 7. Visual summary of sharing patterns (top), factor loadings (middle) and pathway anal-
ysis (bottom) for the wunstratified analysis. Each column corresponds to the same factors
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have been corrected with the Benjamini-Hochberg method.
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random. We used gene sets from reactome.org, and assessed enrichment with
the R package RTopper (Marchionni, 2013). We found three factors with signifi-
cant (p < 0.05 after Benjamini-Hochberg correction) gene set enrichment. These
pathways are shown in Figure 7. All of these are common factors. It is notable
that two of them are significantly enriched in the same set of pathways, which
largely relate to transcriptional and translational processes. They two factors
are not highly correlated with one another (r = 0.22), suggesting that the fac-
tor decomposition is able to detect a higher level of resolution compared to the
gene set enrichment alone in this case. These processes are known to play an
important and broad role in all cellular activities, so it is consistent with prior
knowledge that these are enriched in common factors, i.e. relevant to all three
groups. The third factor is significantly enriched in pathways related to car-
bohydrate metabolism and glucose processing. This is particularly interesting,
because there have been many investigations into the relationships between car-
bohydrates, glycemic index, and glycemic load with breast cancer (Schlesinger
et al., 2017; Mullie et al., 2016). Hence, this result suggests that there may be in-
deed be an important relationship with such processes and cancer predisposition
present in all three groups.

When repeating this analysis with BMSFA, which only finds common and
study-specific factors, we find six common factors, four specific to BRCA1, three
specific to BRCA2, and three specific to BRCAX. Many of these factors appear
to have broad signals across the transcripts (Figure 8), and some of these factors
have fairly strong correlations with the factors found by Tetris. Three of the
BMSFA’s common factors (1, 4, and 6) are correlated with three of Tetris’s
common factors (2, 6, and 4 respectively) with |r| > 0.7. This includes the factor
in Tetris that was significantly enriched in pathways related to carbohydrate
metabolism. This suggests a fair amount of overlap in common signal between
the two methods. There is also strong correlation (r = 0.81) between the 11th
factor from BMSFA and the 17th factor from Tetris, which are both factors
specific to BRCA2. This is another instance of concordance between the two
methods.

There are also some ways in which Tetris appears to capture similar but more
nuanced information than BMSFA. For example, the 12th factor from Tetris,
which is shared by both BRCA2 and BRCAX, is correlated (r = —0.75) with the
14th factor from BMSFA, which is specific to BRCAX. While it seems that both
methods agree this signal belongs to BRCAX, Tetris is able to identify that this
signal is also shared by BRCA2. Similarly, the 11th factor from Tetris, which is
shared by BRCA1 and BRCA2, is somewhat weakly correlated (r = —0.57 and
—0.54 respectively) with BMSFA’s 7th (specific to BRCA1) and 12th (specific to
BRCAZ2) factors. Just examining BMSFA’s factor loadings may have led to the
hypothesis that these two factors could be the same signal shared by BRCA1
and BRCA2, but Tetris’s results lead to this conclusion in a more principled
way.

There are also differences between the results from Tetris and BMSFA. For
both of these methods, there are multiple factors that do not appear correlated
with any factors in the other. For example, the 7th factor from Tetris, which
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had particularly high loadings on some transcripts, does not seem to have been
present in BMSFA’s results.

4.8. Stratified analysis

Next, we examine the results from running Tetris in the stratified setting, which
further refines the ideas from the unstratified analysis (Figure 9). The point
estimate for the factor indicator matrix had 24 factors in all: two study-specific
factors for each condition, two common factors, and ten partially shared factors.
Of the partially shared factors, two were shared by all except the BRCA1 cases,
two were shared by all cases plus BRCAX controls, two were shared by all
BRCA1 and BRCA2 groups, one was shared by all except the BRCAX cases,
one was shared by BRCA1 and BRCA2 cases, one was shared by all except
BRCAX controls and BRCA1 cases, and one was shared by BRCA2 affected
and BRCAX unaffected. As with the unstratified analysis, there were no factors
shared only by BRCA1 and BRCAX subgroups. Within the credible ball, only
7% of factor indicator matrices contained such factors. Hence, again, there seems
to be strong evidence against signal shared only by these two groups. In addition,
it is notable that there were more partially shared factors and fewer common
factors here than in the unstratified analysis. This can likely be attributed to the
fact that the stratification led to greater resolution in distinguishing partially
shared signal from common signal.

When comparing the factors found in the stratified setting to those found in
the unstratified setting, it can be seen that many of the stratified factors are
consistent with the unstratified factors. For example, the 2nd stratified factor
and 1st unstratified factor were highly correlated (r = —0.89), and both are
common factors. Similarly, the 6th stratified factor (shared by both BRCA1
subgroups and both BRCA2 subgroups) was correlated (r = —0.72) with the
9th unstratified factor (shared by BRCA1 and BRCA2). Both of these illustrate
agreement even in the stratified setting’s higher resolution.

There are also several cases in which the stratified factors offer a refinement
of the unstratified factors. For example, there is very high correlation (r =
0.97) between the 21st stratified factor (specific to BRCA2 cases) and the 17th
unstratified factor (specific to BRCA2). In this case, the stratified analysis is
demonstrating that this signal particularly is present in the cases within BRCA2
samples, but not the controls, whereas the unstratified analysis might suggest
the signal is present in both. Another example is the strong correlation between
the 8th unstratified factor (shared by BRCA1 and BRCA2) and both the 12th
stratified factor (shared by both BRCA1 and BRCA2 cases, r = 0.99) and
the 15th stratified factor (specific to BRCA2 controls, » = 0.92). One of the
transcripts with high loadings on these factors corresponds to the gene EEF1A1,
which has been previously implicated in epigenetic regulation of breast cancer
cells (Liet al., 2019). Hence, the unstratified analysis suggests that this gene and
those whose regulations it controls may play an important role among those with
BRCA1 or BRCA2 germline mutations. However, the stratified analysis refines
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this idea in two ways. First, it suggests that BRCA1 controls are not sharing this
signal, since both the 12th and 15th factors do not belong to BRCA1 controls.
Second, by identifying these two separate factors, it points to a subtle difference
in the way the signal manifests in BRCA1 and BRCAZ2 cases versus in BRCA2
controls.

We further interpreted the set of stratified factors by assessing gene set en-
richment, implemented as earlier. In this setting, four factors had significant
(p < 0.05 after Benjamini-Hochberg correction) gene set enrichment, with the
pathways shown in Figure 9. Of these factors, one is study-specific to BRCA2
controls, one is a common factor, one is the partially shared factor belonging to
all except the BRCAX cases, and one is the partially shared factor belonging to
all except the BRCAX cases and BRCA1 controls.

The common factor was significantly enriched for the same set of pathways
related to transcription and translation as two of the common factors in the
unstratified analysis. This is expected, since, as we previously noted, there is
a strong correlation between this common factor and the first common factor
in the unstratified setting. The study-specific factor was significantly enriched
for a large subset of these pathways as well. This again supports the idea that
transcriptional and translational processes play a broad role across all the groups
under consideration.

The two partially shared factors were both significantly enriched for the same
set of glucose- and carbohydrate-related processes as the 6th common factor in
the unstratified analysis. However, it should be noted that only one of these (the
3rd stratified factor, which is shared by all but BRCAX cases) is correlated with
this unstratified factor (r = 0.85). Whereas these processes previously appeared
to be relevant for all groups in the unstratified setting, the significant enrichment
in this 3rd stratified factor refines this idea to suggest that these processes do
not play the same role within BRCAX cases. Since the other stratified factor
is not especially correlated, this may indicate an entirely different signal from
what the unstratified analysis detected, even though the same set of pathways
are enriched.

When comparing Tetris’s results in the stratified setting to those of BMSFA
(Figure 8), there are fewer correspondences than in the unstratified setting. The
9th factor from Tetris (shared by all but BRCA1 controls and BRCA2 controls)
is correlated with the 2nd common factor from BMSFA (r = 0.77), which can
be interpreted as a refinement of BMSFA’s finding. Similarly, the 21st factor
for Tetris and the 15th factor for BMSFA are strongly correlated (r = 0.83),
which makes sense since both of these are specific to BRCA2 cases. Otherwise,
there aren’t any other pairs of factors with correlations over 0.70. This might be
because the larger number of conditions results in a larger number of possibilities
for partial sharing, and hence we might expect less simple agreement than in
the unstratified setting.
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5. Discussion

We have presented the first multi-study factor analysis method that permits
factors to be shared by any subset of studies. Tetris can be applied not only to
datasets from multiple studies, but also data from multiple conditions within a
study. We tested Tetris on a range of simulations and demonstrated its accuracy
in estimating model parameters and distinguishing common, study-specific, and
partially shared signal. This decomposition of signal offers a precise way to quan-
tify wholly or partially shared information across studies, avoiding the otherwise
common practice of running separate analyses on each study and subjectively
integrating the results. Tetris instead offers a more principled form of joint di-
mension reduction that directly estimates each factor and its membership across
studies. Moreover, our use of the Indian Buffet Process prior results in automatic
dimension selection, without necessitating ad-hoc post-processing steps.

We further highlighted how this flexible approach to joint estimation allows
Tetris to borrow strength across studies and recover study-specific covariance
matrices more accurately than standard single-study factor analysis. Thus, our
approach offers an opportunity to leverage multiple studies to improve analysis
even for research questions pertaining to a single study. Since Tetris also outper-
formed BMSFA on study-specific covariance estimation, we have demonstrated
that permitting partial sharing of factors can result in substantial improvements
over just the consideration of common and study-specific factors.

Our approach is similarly effective in jointly analyzing multivariate data col-
lected in multiple conditions. We applied Tetris to gene expression datasets to
jointly identify signal among women with known breast cancer mutations and
high familial risk. The identification of partially shared factors provided a more
detailed understanding of how signal is partitioned across the multiple condi-
tions, which would have been lost if only common and condition-specific factors
were estimated. In particular, we recovered numerous instances of signal shar-
ing between those with BRCA1 and BRCA2 germline mutations that were not
present in those without the mutations, even though there were other factors
common to all. When we further stratified these groups into those who are af-
fected and unaffected by breast cancer, the result was an even higher-resolution
understanding of whether this signal was associated with anyone having these
mutations, or e.g. only after onset of cancer. This analysis recapitulated known
biology by identifying signal related to genes previously associated with breast
cancer. By specifically implicating these genes in factors shared by a subset of
conditions, our analysis then suggests novel hypotheses about whether these ge-
netic mechanisms of action may be particularly relevant for certain subgroups.
Hence, we have shown how Tetris can be successfully employed in the unsuper-
vised analysis of complex, multi-study or multi-condition data. This is useful for
a wide range of applications beyond genomics, such as epidemiology, nutrition,
and sociology.

One of the key goals of our inference is the factor indicator matrix A. We sug-
gest to consider point estimates based on defining a distance and identifying the
point defining the neighborhood with highest density. To do so, we developed
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a notion of distance for comparing binary matrices of this nature, and drew a
connection with the Hungarian Algorithm to compute it efficiently. There are
many possible alternative options to summarize the MCMC samples of A with
a single point estimate. For example, the maximum a posteriori value could be
selected, where the posterior density f(A|X) for data X is approximated using
importance sampling or variational inference. There is also a wider literature of
Bayesian model averaging (Hoeting et al., 1998) and Bayesian model selection
(Chipman et al., 2001) that could be considered and adapted to this prob-
lem, including approaches based on Bayes factors (Berger and Pericchi, 1996),
Bayesian information criteria (Chen and Chen, 2008), and techniques from re-
versible jump MCMC (Lopes and West, 2004). For our purposes, we found our
chosen approach was simple and achieved strong results. We also adapted the
idea of credible balls (Wade et al., 2018) from Bayesian clustering to express
regions of uncertainty for our point estimate. This offers an important sum-
mary of uncertainty that is useful not only in our specific context, but in any
model considering infinite binary matrices such as those under the Indian Buffet
Process.

Simultaneous factorization of multiple matrices sharing common structure is
an area of active research. For example, Roy et al. (2019) present Perturbed Fac-
tor Analysis (PFA), in which multiple groups or studies are modeled as arising
from perturbations to a common factor loading matrix. It is useful to contrast
their approach to ours. While their method addresses a related question, we
could consider PFA, BMSFA, and our Tetris as belonging to a continuum in
some sense. PFA might be most useful in contexts where multiple studies are
believed to have very strong common structure, without interest in explicitly
estimating study-specific factor loadings. For example, this could be the case in
an application where the goal is to remove numerous and small batch effects,
which are not of direct interest, from common signal. BMSFA might instead be
most applicable when both the common and study-specific structure are of par-
ticular interest, when the batch effects are strong and highly confounded with
study, and when partially shared structure is not likely to exist. An example
might be when each study is based in a different subpopulation, and it is impor-
tant to understand the unique contributions from each subpopulation. Finally,
through Tetris, we contribute an approach that is most useful when partially
shared structure is plausible, and when explicit estimates of each type of signal
are desired. This might be the case if we expect subsets of our studies to share
commonalities without being identical. For example, in our gene expression case
study, we expect some similarities between BRCA1 and BRCA2 samples. We
might then be interested in answering questions about what all groups share,
what is unique to each group, and what BRCA1 and BRCA2 samples might
share that does not belong to BRCAX samples. Hence, these three approaches
(PFA, BMSFA, and Tetris) can be understood as existing along a continuum
for complementary but not identical contexts.

In summary, Tetris demonstrates that it is viable to perform flexible joint
analyses of multiple high-dimensional studies, identifying common, study-specific,
and partially shared structure. Multi-study unsupervised analyses are underuti-
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lized, despite the fact that the multi-study setting offers a unique foundation for
validation of the signal identified. We hope that this work will support a broader
application of multi-study methods in unsupervised learning applications.
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