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Abstract

Genomic data are often produced in batches due to practical restrictions, which
may lead to unwanted variation in data caused by discrepancies across processing
batches. Such "batch effects" often have negative impact on downstream biologi-
cal analysis and need careful consideration. In practice, batch effects are usually
addressed by specifically designed software, which merge the data from differ-
ent batches, then estimate batch effects and remove them from the data. Here
we focus on classification and prediction problems, and propose a different strat-
egy based on ensemble learning. We first develop prediction models within each
batch, then integrate them through ensemble weighting methods. In contrast to
the typical approach of removing batch effects from the merged data, our method
integrates predictions rather than data. We provide a systematic comparison be-
tween these two strategies, using studies targeting diverse populations infected
with tuberculosis. In one study, we simulated increasing levels of heterogeneity
across random subsets of the study, which we treat as simulated batches. We then
use the two methods to develop a genomic classifier for the binary indicator of dis-
ease status. We evaluate the accuracy of prediction in another independent study
targeting a different population cohort. We observed a turning point in the level
of heterogeneity, after which our strategy of integrating predictions yields better
discrimination in independent validation than the traditional method of integrat-
ing the data. These observations provide practical guidelines for handling batch
effects in the development and evaluation of genomic classifiers.

Keywords: Genomics, Batch Effect Adjustment, Ensemble Learning, Binary
Classification

Introduction

Statistical learning models based on genomic information have been widely used
for prognostication and prediction across a range of precision medicine applica-
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tions, including cancer (Golub et al. (1999); Riester et al. (2014); Silvestri et al.

(2015); Papaemmanuil et al. (2016)) and infectious diseases (Seib et al. (2009);
Leong et al. (2018)), and have shown great potential in facilitating clinical and
preventative decision making (Badani et al. (2015)). To fully achieve such po-
tential, it is critical to develop prediction algorithms with generalizable predic-
tion performance on independent data, which are transferable to clinical use (Si-
mon et al. (2003)). However, the presence of "study effects", or heterogeneity
across genomic studies, makes it challenging to develop generalizable prediction
models. In particular, it has been established that cross-study validation perfor-
mance of genomic classifiers is often inferior to internal cross-validation (Ma et al.

(2014); Chang and Geman (2015); Bernau et al. (2014)), and that this gap cannot
be entirely explained by the most easily identifiable sources of study heterogeneity
(Zhang et al. (2018)). Further research is needed to better understand and address
the impact of heterogeneity on predictor performances.

In this study, we focus on a particular component of study effects, known
as batch effects (Leek et al. (2010)), and aim to address its unwanted impact in
binary classification problems. Batch effects are variation across batches of data
due to differences in technical factors. Existence of batch effects threatens the
reproducibility of genomic findings (Kupfer et al. (2012)). And therefore, it is
necessary to develop efficient methods to remove the unfavorable influence of
batch effects.

Many batch effect adjustment methods have been proposed for gene expres-
sion microarray (Leek and Storey (2007); Johnson et al. (2007); Gagnon-Bartsch
and Speed (2012); Gagnon-Bartsch et al. (2013); Benito et al. (2004)) and se-
quencing data (Leek (2014); Risso et al. (2014)). These methods share the gen-
eral idea to first merge all batches, estimate parameters representing differences
in batch distributions, and then remove them from the data, resulting in a single
adjusted dataset for downstream analysis. Here we adopt a different perspective,
and propose to address batch effects with ensemble learning. Contrary to the tra-
ditional batch effect adjustment methods, our proposed framework is based on
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the integration of predictions rather than that of data. This is a simpler task for
prediction, as it operates in one dimension rather than many. Also, it is possible
to reward predictors that show good performance across batches and thus alto-
gether ignore, rather than trying to repair, features that are preferentially affected
by batch effects.

Although ensemble learning is a well established method, it has only recently
been discussed in the context of training replicable predictors. Patil and Parmi-
giani (2018) found that ensembles of learners trained on multiple studies gener-
ate predictions with more replicable accuracy. In their framework, a cross-study
learner (CSL) is specified by three choices: a) a data subsetting strategy; b) a list
of one or more single-study learners (SSLs), which can be any machine learning
algorithm producing a prediction model using a single study; and c) a combina-
tion approach utilizing multiple prediction models to deliver a single prediction
rule. In our case, we subset the data by batch, and use the same CSL with batches
in place of studies. Guan et al. (2019) provide theoretical insights in the compar-
ison between merging and ensembling in training learners from multiple studies,
and conclude that although merging studies is better than ensembling when the
studies are relatively homogeneous, ensembling yields better performing models
when the level of study heterogeneity is higher.

In this paper, we explore using ensemble learning in the context of batch effect
adjustment for the first time. We provide both realistic simulations and real data
examples to demonstrate the utility of our ensembling framework, and compare it
with traditional merging strategies for addressing batch effects.

Materials and methods

Addressing batch effects via ensemble learning

We structure the problem as follows: in a binary classification problem on ge-
nomic data, we have a training set for learning prediction models (Strn), and an-
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other independent test set (Stst) where predictions are to be made. Subjects in
the training set are associated with a binary label indicating their phenotype. Ex-
amples of the phenotype could be disease status (e.g. cancer versus normal) or
response to a treatment. In addition, expressions of genes for all individuals are
profiled for use as predictors. Individuals in the test set also have measured gene
expressions, and the goal is to train a model that can accurately predict the disease
label for them based on their gene expression profiles. We assume that the training
set is generated in B batches S1

trn, S
2
trn, ..., S

B
trn, possibly due to practical or tech-

nical restrictions. Each batch contains a sufficient number of samples to train a
prediction model. We assume both additive and multiplicative batch effects (John-
son et al. (2007)), which cause differences in the mean and the variance of gene
expressions across batches.

Consider a collection of L learning algorithms to use for training. Multi-study
learning begins by training each of the algorithms within each of the batches. This
results in the collection Ŷ l

b (x) , l = 1, . . . , L and b = 1, . . . B, where Ŷ l
b (x) is the

prediction function trained on batch b with learning algorithm l. In the binary
classification setting, Ŷ are the probabilities of samples belonging to the positive
class. The final cross-study learner’s (CSL) prediction is calculated by a weighted
average of predictions from each model, that is:

Ŷ (x) =
L∑
l=1

B∑
b=1

wlbŶ
l
b (x) (1)

The performance of a CSL relies critically on the weights wlb, as these have the
function of rewarding elements of the ensemble which show stable predictive per-
formance across batches. We explore five weighting strategies, which fall into
three categories, as described in Patil and Parmigiani (2018). The first is sam-
ple size weights, which uses scaled batch sizes as weights for models trained in
the corresponding batches, and makes not effort to reward robustness to batches
via weights. The second is cross-study weights, for which we evaluate how well
each learned model performs when applied to the other batches within the training
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set, and assign higher weights to models that have better prediction performances.
The last category is stacking regression weights (Breiman (1996)), for which we
use each model to make predictions of the training data, and estimate the weights
as regression coefficients between stacked predictions of the training samples and
their labels. The association coefficients are estimated using non-negative least
squares. A more detailed description of the weighting strategies is available in the
Supplementary Materials.

Data

We use a collection of RNA-Seq and microarray studies targeting subjects infected
with tuberculosis (TB) to apply and evaluate our ensemble learning method, and
make comparisons with the traditional strategy of batch adjustment followed by
merging (for short "merging"). Subjects involved in this collection of studies can
be divided in three phenotypes based on their disease progression status: 1) la-
tent infection / non-progressing, 2) in “progression”, or those that will progress
to disease in the near future, and 3) active TB disease. For simplicity and sam-
ple size considerations, we use two types of patients in each analysis to form a
binary classification problem, and focus on different phenotypes for simulation
and application of our methods. In simulations, we focus on predicting progres-
sors against non-progressors using publically available studies, as this separation
yields the largest sample size in the training set. In real data, since there are no
known batch effects within any single study, we aim to separate subjects with
latent infection from those with active disease instead, so we have at least three
studies in the collection. We merge two studies for training while treating the dif-
ferences between studies as "batch effects". Table 1 summarizes information on
the samples used in simulation studies and real data analysis.
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Data Platform #Subjects #Pos (Prevalence) Max(Age) References

Simulations Africa (Train) RNA-Seq 181 77 (42.5%) 18 Zak et al. (2016)
GC6 (Test) RNA-Seq 399 95 (23.8%) 60 Suliman et al. (2018)

Application Africa RNA-Seq 120 16 (13.3%) 18 Zak et al. (2016)
India RNA-Seq 44 25 (56.8%) 70 Leong et al. (2018)
US microarray 70 35 (50%) 85 Walter et al. (2016)

Table 1: Summary statistics of the TB datasets used in simulation studies
and real data applications. #Subjects: total number of individuals in each study.
#Pos: number of positive samples. They refer to progressors in simulation studies,
and active patients in real data application. The negative samples are subjects with
latent infections in both cases. Prevalence: percentage of positive samples in the
study. Max(Age): the maximum of age among all subjects enrolled in the studies.
Note that the Africa study targets only adolescents between ages of 12 and 18,
while the remaining studies have a wider range of age. The US study is generated
from Affymetrix Human Gene 1.1 ST Array, while the rest are RNA-Seq studies.

Simulation for comparing merging and ensembling

We consider the two datasets collected from the African population reported by
Zak et al. (2016) and Suliman et al. (2018), as described in Table 1. We use
one of the two studies for training, and the other for prediction. For the training
set only, we randomly assign individuals to disjoint subsets which will be simu-
lated to be processing batches, and simulate differences in the moments of gene
expression distributions across batches as described below. No batch effects are
added to the validation set. We train predictors using both merging and ensem-
bling on this dataset with simulated batch effects, then make predictions in the
other independent study. We evaluate the two approaches using discrimination in
the independent study. Details follow.

Simulation of batch effects

We transformed the sequencing data into logFPKMs, and selected the top 1000
genes with the highest variances for building the classifiers. Then, we randomly
took subsets of individuals from the training set to form 3 batches, each batch con-
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taining 10 non-progressors and 10 progressors. We then simulated batch effects
across the 3 batches.

Our data generating model for batch effects is the linear model assumed in the
ComBat batch adjustment method (Johnson et al. (2007)). Specifically, we esti-
mate two components from the original training data: 1) the expression of gene
g among the negative samples, and 2) the biological effect (i.e. the expression
changes due to biological perturbations or conditions of interest). We then specify
batch effect parameters affecting the mean (γgb) and the variance (δgb) of expres-
sion in gene g caused by batch b. Same as in Johnson et al. (2007), γgb and δgb are
randomly drawn from hyper-distributions

γgb ∼ N (ηb, τ
2
b ), δgb ∼ InvGamma(λb, θb) (2)

ComBat assumes an additive batch effect for the mean, and a multiplicative
batch effect for the variance. To set the hyper-parameters, we first specify a value
to represent the severity of batch effects, as reported in columns "Batch Effect
on Mean" (sevmean) and "Batch Effect on Variance" (sevvar) in Table 2. We se-
lected 3 severity levels (sevmean ∈ {0, 3, 5}) for batch effect on the mean, and
5 levels (sevvar ∈ {1, 2, 3, 4, 5}) for batch effect on variance. Given a severity
level for batch effects, we fixed values for τbs and θbs, so that the variance of
γgb and δgb over genes are 0.01. We varied the mean of these two parameters, so
that the hyper mean ηb is (−sevmean, 0,+sevmean), and the hyper variance λb is
(1/sevvar,

1/sevvar+sevvar
2

, sevvar) for the three batches. The parameters are then
added or multiplied to the expression mean and variance of the original study.
The characteristics of simulated batches are also summarized in Table 2. Figure 1
shows an example training set where we simulated 3 batches with both mean and
variance differences.
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Batch Effect on Mean (sevmean) Batch 1 mean Batch 2 mean Batch 3 mean

0 3.7 3.7 3.7
3 0.7 3.7 6.7
5 -1.3 3.7 8.7

Batch Effect on Variance (sevvar) Batch 1 variance Batch 2 variance Batch 3 variance

1 1.12 1.50 1.29
2 0.56 1.55 2.81
3 0.52 2.21 3.19
4 0.39 2.49 4.81
5 0.31 3.17 5.98

Table 2: Levels of simulated batch effects in mean and variance of gene ex-
pression. We created mean shifts and fold changes (FC) in average variances of
genes across the three simulated batches. ComBat assumes additive batch effect
for the mean expression. For example, a batch effect on the mean of 3 means
that we subtract 3 on average from expressions in batch 1, and add 3 on average
to expression values in batch 3. Values in batch 2 are not altered. On the other
hand, batch effect on the variance is multiplicative. So a batch effect of 4 on the
variance means that in batch 1, the average gene variance is reduced to 1/4 of the
original variance in data, while in batch 3, the average variance is inflated 4 times.
Variance of batch 2 is changed to an intermediate level. The first column records
the parameters we used in simulations, and correspond to the titles in Figure 2.
The remaining three columns show the moments of distributions from example
simulated data.

Comparing ensemble learning with merging after batch correction

We then use the dataset with simulated batch effects to train classifiers for predict-
ing patient phenotypes. We perform the ensemble learning strategy as described
above. For the merging strategy, we pooled the three batches together, and ap-
plied ComBat to remove batch effects. We then used the whole adjusted data to
train a single model, and make one set of predictions on the independent test set.
We trained learners LASSO (Tibshirani (1996)), Random Forest (RF, Breiman
(2001)), and Support Vector Machines (SVM, Cortes and Vapnik (1995)), after
performing the two batch adjustment strategies. In ensemble learning, we evalu-
ated aggregating predictions both from a single learning algorithm (L = 1), and
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Figure 1: PCA of the original Africa study, and an example training set with
simulated batch effect. We generated the training set by first taking 3 random
subsets from the original data in the Africa study (Zak et al. (2016)), and treat
them as 3 different batches. We then simulate batch effects in both mean and
variance of gene expression across the three batches (see also Table 2). In this
example, we simulated a mean difference of 3, and a variance difference of 4 fold
across batches.

across all algorithms (L = 3). The accuracy of performance was measured by the
area under ROC curve (AUC). We repeated batch correction and predictions to
generate 100 discrimination scores, and compared them between the two strate-
gies.

Applying ensemble learning to address real data batch effects

To demonstrate a realistic application setting for our ensemble learning method,
we took three studies from our TB cohort: Africa, US, and India. We iteratively
treat each of these studies as the independent test set. The remaining two studies
are used as the two batches forming the training set.

The original data contains more than 15000 genes, resulting in too unfavorable
a situation so serve as a comparator for our methods. For example, LASSO was
not able to get a prediction AUC above 0.5 on the independent samples. We thus
prefiltered genes to select a subset of the 1000 most highly variable, and used the
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same subsets of genes for both ensembling and merging.
We trained 3 learning algorithms: LASSO, RF, and SVM, and integrated pre-

dictions from all three learning algorithms in the ensemble framework. The re-
maining methods for batch effect adjustment, predictions, and model evaluations
are the same as those for simulation studies. We performed 100 bootstrap repli-
cates on the test set, to obtain a confidence interval for model performance scores.

Results

Impact of mean and variance batch effects on discrimination of
predictions

Figure 2 summarizes results over 100 simulated datasets, representative of the
patterns we observe across simulation studies. The learner is Random Forests for
both merging and ensembling. On the original training study without simulated
batch effect, Random Forests achieve a 0.685 AUC on the test set. When adding
batch effects to the data, we observed drops in discrimination in the test set. Mean
and variance batch effects affect prediction performance in different ways. Model
discrimination is not strongly affected by batch if batch effect only affect the vari-
ance. A sufficient size of the mean differences across batches in the training set is
necessary to cause a drop in prediction accuracy. On the other hand, when batch
affects the means, an increase in variance differences across batches will lead to a
further drop in discrimination.

Ensemble learning achieves higher discrimination than merging
after a turning point on the severity of batch effects

Table 2 shows the levels of batch differences we created in simulation studies,
corresponding to the results in Figure 2. We considered ensembling both using a
single learning algorithm, and using all three learning algorithms together, and we
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Figure 2: Comparison between ensembling and merging when using Random
Forests. 3 out of our 5 choices of ensembling weights are displayed: batch size
weights, cross-study weights, and stacking regression weights (See the Methods
section for details). A full comparison using all 5 weighting methods, and a more
refined grid of mean and variance differences, is in Supplementary Figure S3.

observed similar results. At a low level of batch effects, with no mean difference
and a variance fold change smaller than 3, the merging method yields better dis-
crimination. However, we observed a turning point in the severity of batch effect,
after which ensemble learning starts to achieve higher discrimination.

The turning point in the magnitude of batch effects differs by the selected
learning algorithms. Supplementary Figures S2, S3 and S4 show the simulation
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results of training with all algorithms. When training with SVM, for example, we
see that discrimination from ensemble learning is already comparable with that
using the merging method at no mean batch effect and a variance fold change of
2, though at this level, merging still out-performs ensembling when training with
Random Forests. Also, at high level of batch discrepancies, stacking regression
weights yield better prediction results than the sample-size weights when building
ensemble with SVM alone, though they are more comparable when using Random
Forests.

We also observed that ensembling across different learning algorithms does
not necessarily improve the final prediction compared to ensembling with a sin-
gle algorithm. We see in Figure 2 that ensemble learning across learning algo-
rithms generates worse performance than using only Random Forests. The opti-
mal weighting approach also depends on the learners involved in the ensemble.
When using Random Forests only, the sample-size weights and the stacked re-
gression weights generate better accuracy than the cross-study weights. But the
latter is better in integrating across all algorithms. Note that despite the difference
in rankings of the three types of weights, all three ensemble weighting methods
out-perform merging and batch correction with ComBat at high level of batch
differences.

Finally, we repeated the simulations with a larger sample size, and larger num-
ber of batches. To increase batch size, we took 3 subsets as batches, each contain-
ing 20 non-progressors and 20 progressors, in contrast to our previous results
which use 10 individuals per condition per batch. For a larger number of batches,
we took 5 subsets of subjects as simulated batches. We observed consistent pat-
terns in both situations, as shown in Figure 3 and Supplementary Figure S5.

Application to predicting tuberculosis disease phenotype

We now present a classification case study using real data with batch effects.
Specifically, we selected three batches from the TB cohort, and iteratively treat
one as test set, and use the other two as two batches for training. We applied both
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Figure 3: Comparison of results between batch sizes N=20 and N=40. In both
cases, we have a completely balanced study design in each of the 3 batches. For
N=20, we randomly sample 10 positive and 10 negative samples. For N=40, we
sample 20 in each class. In both sample sizes, we observe that merging out-
performs ensembling with smaller batch effects. However, as those increase, en-
sembling gains better discrimination.

ensembling and merging to address batch effects, and trained 3 types of learning
algorithms. Ensemble prediction are aggregated from all algorithms. To obtain
a confidence interval of model performance, we generated 100 bootstrap samples
from the test set.

Figure 4 shows the average AUC across the 100 bootstrap replicates, obtained
from predictions in each of the three studies. The error bars in the figure dis-
play 95% confidence intervals. We observed that, except for the stacking weights
when the US is the test set, the average AUC of ensembling using any of the three
types of weights is better than that of merging in all studies. When using stack-
ing weights and US as the test set, we found that ensemble assigns most of the
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weights to the SVM model trained from the Africa study (Supplementary Figure
S6). This model achieves accurate discrimination in both Africa and India, the
two batches for training, while inferior preference in US compared to the other
models (Supplementary Table S1). As a result, stacking weights generate less
favorable predictions than cross-study weights, where weights are more evenly
spread across the single learners. Cross-study weights only consider prediction
performance across studies, while stacking weights, at least as implemented here,
consider both within and across study performance. With only two studies, the
importance given by stacking weights to cross-study performance is at its mini-
mum. As a result this method is more vulnerable to overfitting than cross-study
weighting.

Due to the relatively small sample size in the US and India studies, we also
observed a high variance in model performance, especially when Africa is used
as the test set. Therefore, we also compared ensembling against merging within
each bootstrap sample. The proportion of bootstrap samples where ensembling
generates strictly higher AUC than merging are summarized in Table 3, which
shows that in all three test sets, addressing batch effects via ensemble learn-
ing yields better-performing models with respect to discrimination. Batch-size
weights, while not explicitly trained to reward cross-study replicability, are more
consistently outperforming merging than other weights in this dataset, likely be-
cause of the challenges in learning weights with a small number of batches. These
results are broadly consistent with our observations in simulations that when there
are severe differences across batches, ensemble learning is the better strategy to
address the impact of batch effects on prediction.

Discussion and Conclusions

We proposed a novel perspective for addressing batch effects when developing ge-
nomic classifiers. Our proposal is to use multi-study ensemble learning, treating
batches as separate studies. We provided both realistic simulations and real data

15

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/703587doi: bioRxiv preprint first posted online Jul. 20, 2019; 

The Trial Version

http://dx.doi.org/10.1101/703587
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Application of ensemble learning to predicting active TB against
latent infection. We iteratively select one of the three studies in Table 1 as the
independent test study. The remaining two studies are viewed as two "batches" in
the training set. The two batches in this setting represent a strong level of batch ef-
fects. We trained LASSO, Random Forest, and SVM, then aggregated predictions
from all three algorithms to construct the ensemble. The figure shows average
prediction performance over 100 bootstrap samples of the test data, with error
bars showing 95% confidence intervals of performance measures. Except when
using stacking weights to predict on the US study, the average performance using
the three ensemble strategies are better than the merging strategy. Comparisons
within each bootstrap sample are summarized in Table 3.

Test set Batch size weights Cross-study weights Stacking regression weights

Africa 97% 91% 94%
India 84% 48% 76%
US 73% 85% 20%

Table 3: Percentages of bootstrap test samples where ensembling yields
strictly higher AUC than merging and batch adjustment. Rows indicate vali-
dation datasets (see caption to Figure 4) and columns indicate ensembling meth-
ods, each compared to merging.

application examples to compare the ensembling method with the traditional ap-
proach, which is to analyze all batched together to remove batch effects, and use
the adjusted data for prediction. We observed in both simulations and real data
that, though merging is able to generate better performing models when batch ef-
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fects are modest, ensemble learning achieves better discrimination in independent
validation after a certain level of severity of batch effects. We explored different
training algorithms, different batch sizes and number of batches, and observed
consistent patterns of such transition. The specific level of batch severity where
the transition happens differs by the algorithm. These observations are consistent
with those described in Guan et al. (2019), which provides theoretical insights into
the comparison between merging and ensembling in training cross-study learners.

The philosophy behind the standard approach of merging and batch adjust-
ment is to remove the undesired batch-associated variation from as many of the
genomic features as feasible, and then use the "cleaned" data in classification as
though the batch effects never existed. This has been the standard in the literature
and can be quite successful (Riester et al. (2014); Luo et al. (2010); Engchuan
et al. (2016)). Multi-study ensemble learning provides a different perspective:
ensemble weights reward prediction functions that, while trained in one batch,
continue to predict well in other batches. These are likely to avoid using features
affected by batch effect, in contrast to cleaning them.

Our results emphasize the importance of understanding the heterogeneity in-
troduced by batches before developing a classifier. Since the approach which
results in better prediction accuracy changes by the level of heterogeneity, we
suggest careful diagnostics of the level of heterogeneity in the dataset, before
choosing the learning approach. There are established methods to detect the de-
gree of batch effects in data. For example, BatchQC (Manimaran et al. (2016))
offers sample and gene-wise statistical tests to explore mean, variance, as well
as higher-order moments in batch distributions, and provides useful visualization
tools to describe the severity of batch effects in data.

In simulations, we compared ensembles based on a single learning algorithm,
to one based on multiple algorithms. Though the latter represents the common
perspective of ensemble in practice, we found that integrating across multiple
learning algorithms does not necessarily improve prediction performances than
using a single algorithm. We also compared five kinds of weighting strategies to
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integrate the predictions. The ranking of performance using different weighting
strategies also depends on the specific dataset and algorithm. Additionally, there
could be ways to further improve the ensemble performance by developing other
weighting methods that are not considered in this study. All ensembles considered
are very small, because the number of batches B and the number or learners L are
both small. Recently Ramchandran et al. (2019) compared an ensemble strategy
based on RF to one based on cross-study weighting of the component trees in the
RF, showing improvements from direct reweighting of trees. This method may
also prove effective in our context, as individual trees are more parsimonious than
the whole forest, and may more effectively avoid features affected by batches.

Our study has several limitations. First, the ensemble learning approach re-
quires that each batch contains sufficient samples to train a prediction function.
This assumption may limit our approach to sufficiently large datasets. However,
most if not all batch effect adjustment strategies require a reasonable number of
samples in each batch to accurately and robustly estimate batch effects. Having
limited number of samples in a batch will negatively affect not only our proposed
methods, but also the traditional methods based on merging. We speculate that
methods like ComBat might, however, be able to effectively operate with smaller
batches than ensembling.

We focused on using ComBat for batch effect adjustment after merging. Com-
Bat is not the only option, but remains one of the most popular batch effect ad-
justment methods, especially in the case with known sources of batch effect. Our
simulations of batch effects are all based on the generative model of ComBat,
which, while plausible, is one among many possible models. Using the same
batch effect model for data generation and analysis provides a lower bound to the
effectiveness of our proposal, as any other data generating approach would be less
favorable to ComBat than the one we used. In data from other generating mecha-
nisms, the advantages of ensembling should be more pronounced, and may set in
at lower levels of batch effects.

We provided a realistic application example using the tuberculosis studies. Re-
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stricted by the study design of this collection of studies, we showed an example
with 2 batches, and relatively small batch sizes in two batches. It would be inter-
esting to further explore our approach on data with larger batch sizes, or a larger
number of batches. Ours are somewhat extreme conditions for this type of analy-
sis. Larger batches facilitate both the estimation of batch effects and the training
of batch-specific predictors. A larger number of batches facilitates learning about
the higher level distributions in ComBat, and would afford ensemling a better op-
portunity to find stable signal across a larger number of batches, a strength of the
method that is not highlighted here.

Related, treating two studies as batches mimics a high level of batch differ-
ences, for the discrepancy between the two "batches" in this setting includes both
biological and technical differences. Thus we include more sources of hetero-
geneity than normally considered as batch effect. Specifically, a batch effect is
usually defined as variations originated from technical differences across repeated
experiments performed on the same platform, such as differences in lab environ-
ment, protocols or reagents. In our application example, however, each batch
targets a different population, which means there likely exists additional genetic
variations across the groups. Also, the three studies are generated on different
platforms. The African cohort was sequenced on Illumina HiSeq 2000, the Indian
study was produced on Illumina NextSeq 500, and the US study used microarray
(Affymetrix Human Gene 1.1 ST Array). Differences across these technologies
are also beyond what is typically considered as batch effects. Despite that, we
believe this example is still helpful to illustrate our methodology, and our obser-
vations offer valuable practical guidelines in addressing batch effects in genomic
classifier development.

Reproducibility

Code to reproduce the results in this paper is available at https://github.
com/zhangyuqing/bea_ensemble.
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