Checkpointing and Migration of IoT Edge Functions

Pekka Karhula*
VTT Technical Research Centre of
Finland Ltd
Oulu, Finland
pekka.karhula@vtt.fi

Abstract

The serverless and functions as a service (FaaS) paradigms are cur-
rently trending among cloud providers and are now increasingly
being applied to the network edge, and to the Internet of Things
(IoT) devices. The benefits include reduced latency for communica-
tion, less network traffic and increased privacy for data processing.
However, there are challenges as IoT devices have limited resources
for running multiple simultaneous containerized functions, and
also FaaS$ does not typically support long-running functions. Our
implementation utilizes Docker and CRIU for checkpointing and
suspending long-running blocking functions. The results show that
checkpointing is slightly slower than regular Docker pause, but it
saves memory and allows for more long-running functions to be
run on an IoT device. Furthermore, the resulting checkpoint files
are small, hence they are suitable for live migration and backing up
stateful functions, therefore improving availability and reliability
of the system.

Keywords Internet of Things, checkpointing, serverless, function
as a service, light-weight virtualization

ACM Reference Format:

Pekka Karhula, Jan Janak, and Henning Schulzrinne. 2019. Checkpointing
and Migration of IoT Edge Functions. In EdgeSys ’19: International Workshop
on Edge Systems, Analytics and Networking, March 25, 2019, Dresden, Ger-
many. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3301418.
3313947

1 Introduction

The serverless paradigm is currently an emerging trend among
cloud service providers. The key idea is that clients do not have
to worry about the provisioning, maintenance or scaling of their
service as all that is done by the serverless providers. Instead, more
focus and time can be put into developing code that is run in the
serverless platform. Another big trend in the serverless paradigm
is the Function as a Service (FaaS) execution model. It further re-
fines the microservice structure into functions that are triggered
by events such as HTTP requests or video streams.

In addition to the cloud, the FaaS execution model is attractive for
event-driven tasks at the network edge. The benefits include lower
latency, privacy, reduced network traffic and energy efficiency. IoT
devices that can run Linux containers, could naturally be used to
provide FaaS within an IoT network. IoT applications are likely to

“The work was performed during a research visit at Columbia University

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
EdgeSys '19, March 25, 2019, Dresden, Germany

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6275-7/19/03...$15.00

https://doi.org/10.1145/3301418.3313947

Jan Janak
Columbia University
New York City, NY
janakj@cs.columbia.edu

60

Henning Schulzrinne
Columbia University
New York City, NY
hgs@cs.columbia.edu

benefit from a more flexible execution model that supports long-
running (stateful) functions.

The FaaS model has one crucial drawback: it does not typically
support long computations. Furthermore, the functions are state-
less, meaning that the computation cannot be paused and contin-
ued later. Directly applying this approach to IoT devices would be
meaningless, as we do not want to abandon a long computation
and waste resources due to a time limit. However, running multi-
ple long-running function instances may be difficult on memory-
constrained IoT due to the memory requirements of Docker. A
novel way of managing inactive function containers is needed to
make long-running functions feasible on IoT devices.

To tackle this issue, we use Checkpoint/Restore In Userspace
(CRIU) [8] together with Docker for preserving the function states
through checkpointing. With this method, we were able to check-
point and restore TCP/IP sockets and sleeping functions, which is
essential for enabling long-running functions. Also, our tests show
that this method can be used for live migrating container states
from one device to another. Possible use cases include fault-tolerant
IoT systems and resource offloading.

The rest of the paper is organized as follows. In Section 2, back-
ground and related work are presented. Section 3 discusses FaaS
and its applicability to IoT and edge computing. Section 4 provides
an overview of the early implementation and performance results.
The paper is concluded in Section 5.

2 Background

The idea behind FaaS is fairly straightforward: let the user write
and run an event-driven program without the need to provision
infrastructure for it. As of January 2019, the major Faa$S platforms
include Amazon AWS Lambda [3], Google Cloud Functions [11] and
Microsoft Azure Functions [16]. In addition, Apache OpenWhisk [5]
and OpenLambda [13] are two well-known open source serverless
implementations.

All major FaaS platforms support program activation by HTTP
requests. Upon receiving an HTTP request, the framework allocates
resources for the program and runs the program, giving it access
to the HTTP request that triggered it. After the program has sent a
response, the process is terminated. Most frameworks support ad-
ditional triggers from cloud-specific subsystems (e.g., a database or
publish/subscribe framework). Typically, the program is developed
in a high-level programming language (JavaScript or Python) on
top of a framework provided by the cloud service provider.

When the same FaaS program is invoked multiple times, there is
no guarantee that it will be invoked on the same machine. For that
reason, the typical FaaS program is stateless. If the program needs
to keep state from one invocation to the next, the state needs to be
either supplied by the client, or stored in an external database.

Before a FaaS program can be invoked on a machine for the first
time, its container must be created and started from the beginning.

https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1145/3301418.3313947

EdgeSys '19, March 25, 2019, Dresden, Germany

This is called a cold start. Warm start, on the other hand, has the
container already loaded in the memory and ready to serve requests.
While cold starts make auto-scaling possible, at the same time they
make stateful FaaS programs difficult to implement. In terms of
response times, a warm start is preferable over a cold start. However,
maintaining large numbers of inactive pre-loaded containers for
warm starts tends to be resource-intensive.

When deploying a FaaS program on a device at the network
edge, the need to conserve memory arises quickly due to the con-
strained nature of edge devices. Thus, deploying FaaS programs at
the network edge requires a careful trade-off between efficiency
and resource usage. Process pausing and checkpointing are two
promising techniques that may help conserve memory on con-
strained edge devices running Faa$ containers. Rather than cold
starting a FaaS program on each invocation, the program’s memory
could be saved to disk when memory on the device runs low and
re-loaded on the next invocation. Apart from conserving memory,
the checkpointing technique also enables stateful FaaS programs
useful in IoT applications.

2.1 Related Work

In [22], Wang et al. conducted a measurement study of Amazon
AWS Lambda, Microsoft Azure and Google Cloud Functions. Their
study provided more insight on how these three major FaaS providers
handle resource scheduling, utilization and isolation. The popular
FaaS and Platform-as-a-Service (PaaS) models have also been ap-
plied to the IoT edge network. Mehta et al. [15] implemented an
IoT framework based on a serverless architecture and FaaS, which
they refer to as actor-as-a-service. The actors work much the same
way as functions in FaaS, but in the IoT scenario they may also
represent sensors and actuators. There are some limitations in Faa$S
as noted in [12, 22]. The functions are non-addressable and short
lived, which make it impossible to call a specific function instance or
guarantee that repeated requests are delivered to the same function
instance.

Docker container technology performance in IoT devices has
been evaluated in several studies [6, 14, 20]. The results show that
running containers on Raspberry Pis is feasible in terms of resource
usage and speed. Bellavista et al. [6] conducted a feasibility study
of using Raspberry Pis and Docker in a fog computing scenario.
In their experiment, they ran up to thirty concurrent containers
and found out that the execution time is linearly dependent on the
number of containers.

To deal with the memory contention, one could suspend the
containers that are blocked waiting for network I/O. One way to
implement this is using docker pause [10] and the cgroup freezer
[1]. However, results in [13] showed no difference in memory usage
between a paused and a running container, which suggests that
other approaches would be needed in order to save system memory.

Checkpointing could be a solution to the memory contention,
as it will save the process state to disk. Chen [7] conducted an eval-
uation of checkpointing with CRIU utilizing Docker-based micro-
services on a desktop computer. The evaluation showed that check-
point and restore times scaled linearly with the application image
size. In [14], live migration using CRIU and Docker was examined.
Their result showed a 2.1x increase in processing time using live mi-
gration compared to algorithm execution without migration. They
also experienced some transfer errors during the live migration.

61

Pekka Karhula, Jan Janak, and Henning Schulzrinne

However, they transferred whole containers during the live mi-
gration, which naturally produces a lot of overhead especially on
slower connections. Our idea is to maintain a set of base images in
each of the IoT devices, so that most of the time we would need to
transfer only the checkpoint files between the devices. Container
migration has also been explored in [21], where CRIU and Linux
Containers (LXC) were combined, and in [19], which presented
a framework for checkpointing long computations on low power
devices. In [2], Distributed MultiThreaded CheckPointing (DMTCP)
was used to improve efficiency of Raspberry Pi based IoT devices
in non-containerized applications.

The Faa$ providers are also moving computation to the edge net-
work. Examples include Amazon Lambda@Edge [4] and Azure IoT
Edge [17]. Azure IoT Edge shares the same underlying idea with our
approach. When combined with Azure Durable functions extension
[18], they also have support for stateful functions, where the frame-
work manages state and restarts on behalf of the function. How-
ever, durable functions currently support only three programming
languages whereas our approach is agnostic of the programming
language or libraries.

3 Function as a Service on the IoT Edge

In this section, we discuss the applicability of the FaaS model to
programming IoT devices in the edge network. Consider an edge
network with one or more IoT devices that can be programmed (out-
of-band) to issue requests (HT TP or CoAP) upon the occurrence of
some event. Let’s assume we wish to invoke a function in response
to the request.

An obvious first solution would be to setup an HTTP server
in the edge network to start a container (e.g., Docker) with the
function to handle the request. Once the function has terminated,
the container is kept alive for a while and then it is terminated. The
mapping from HTTP URLs to Docker containers would be stored
in a configuration file. This kind of framework would be trivial to
build using existing software.

The previous paragraph describes the most rudimentary FaaS
framework implemented on a device in the edge network. Such a
framework would run into memory limits of the device quickly.
The maximum number of simultaneous containers the device could
run is likely to be severely limited. The framework would need
to employ aggressive container management and shutdown idle
containers quickly. Also, functions, which run on shared infras-
tructure in the cloud, have time limits to minimize the cost. Such
limits are unnecessary on an IoT device in the edge network that
the user owns. Without the limits, the functions are more likely
to be long-running. Long-running functions will exacerbate the
simultaneous container problem.

Often, a function is long-running because it needs to wait for
network I/O or a timer before it can terminate. Consider a function
invoked by device A that waits for a notification from device B
before it can send a response to device A. Such function might issue
an HTTP request to device B and go to sleep until it receives a re-
sponse from B. Running multiple long-running function containers
on a constrained device may result in memory contention.

3.1 Checkpointing

Clearly, the FaaS model that works for cloud, would not work
on constrained devices very well without some modifications. On

Checkpointing and Migration of loT Edge Functions

constrained devices, we would want to minimize resource usage
by avoiding cold starts, migrating computation to devices with low
load, and pausing containers that are idle. One way to accomplish
these objectives is to save the function and container state to disk,
and continue execution when there is work to do, preferably on a
device that is optimal for the task.

The large ecosystem of Docker and performance results from
prior research were factors that led us to choose the combination
of Docker and CRIU for checkpointing in the IoT edge. We can
use CRIU to save the state of the container to disk. The resulting
checkpoint is basically a set of image files that can then be loaded
by a local container or sent to a remote device.

3.2 Motivating Scenarios

In addition to lowering resource usage, checkpointing could enable
important IoT use cases that would be difficult to implement with
traditional serverless and FaaS frameworks. The first example in
this section is authorization, where checkpointing makes running
containers more efficient by pausing inactive containers. The other
two scenarios enabled by checkpointing are load balancing and
fault-tolerant IoT, which are very important concepts in critical IoT
systems.

3.2.1 Authorization

Consider the scenario illustrated in the Fig. 1, where a networked
light switch controls a networked light bulb. A third party must
approve all requests to turn the light bulb off as a safety measure.
The third party could be, e.g., an automated process that enforces a
delay, or it could be manually operated by a human. In either case,
it can take a long time to get a response back to the function.

Human
(authorization)

I

2 3
Sensor Function P Actuator
(switch) 1 (FaaS Device) * (bulb)

Figure 1. Example of a long-running function with blocking be-
havior

The scenario could be implemented using a function deployed
in the edge network. Instead of sending a request directly to the
light bulb, the switch is re-configured to send the request to the
function device. The function first obtains an authorization from
the human. Once authorized, the function forwards the request to
the light bulb.

Naturally, the scenario would be trivial to implement with a
permanently installed and constantly running application. Such
application would be, however, doing nothing and consuming mem-
ory for long periods of time. Also, this approach is not very scalable
and maintainable.

A better approach is to use the FaaS execution model and activate
the application upon receiving the request from the switch. This
would work well if the function were stateless and idempotent.
Unfortunately, that is not the case in our scenario. The framework

62

EdgeSys '19, March 25, 2019, Dresden, Germany

could run the function until completion, however, since there is
human involved, the time to completion may be long and hard to
predict. What happens if the device runs out of memory? What if
there are other short-term functions that need to be run while this
one is waiting? Also, relying on the function staying idle for long
periods of time is not good for reliability.

Yet another approach could be to extract the state out of the
conversation between the function and the user, save it in a data-
base, and periodically re-activate the function to poll the remote
authorization server. This solution is, unfortunately, only possible
if the protocol between the function and the remote server is well-
known and exposed to the application. This is often not the case,
e.g., when a third-party library is used.

Finally, the function could be written to use an external “sleep
proxy” service (discussed later) to monitor its file descriptors while
the function process is suspended. The sleep proxy would re-activate
the function upon activity on any of the file descriptors.

3.2.2 Load Balancing

IoT devices may choose to offload tasks to other devices for bet-
ter performance, lower energy usage, and reduced network traffic,
among other metrics. If an IoT device is running near its full ca-
pacity, some of the tasks could be checkpointed and migrated into
another device in the network. This naturally requires coordination
among the IoT devices. The result would be improved availability
and performance of the IoT system.

3.2.3 Fault-tolerant IoT Systems

Checkpointing functionality could be used to backup the config-
uration of functions running on IoT devices periodically. Check-
pointing is a common concept in traditional operating systems and
applications in order to achieve fault-tolerant systems. However,
it is not commonly used in IoT, which could also benefit from this
concept. In IoT scenarios, the checkpoint images could be stored
in the cloud or on an edge server and retrieved in case of device
failure. The checkpointed backup function could also be continued
on another device until it can be migrated back to the original
device.

Fault-tolerance and reliability of IoT systems has received little
attention from from the research community so far. The FaaS exe-
cution model together with process checkpointing might provide
some of the building blocks for fault-tolerant IoT systems.

3.3 Sleep Proxy

The checkpointing of functions brings some additional challenges.
For example, how do we put containers to sleep and still know
when to activate them? We would need to have some sort of exter-
nal process that monitors file descriptors and incoming network
connections. Before being checkpointed, the function submits a set
of resource to be monitored to the external process and asks to be
resumed when activity is detected on any of the resources. We call
the external process a sleep proxy.

There is a number of ways to implement the sleep proxy service,
depending on the architecture and characteristics of the function
and its run-time environment. For example, NodeJS maintains a set
of file descriptors to monitor for events using an external library
called libuv. Thus, in NodeJS-based functions, one could extract the
set of file descriptors to monitor from the library.

EdgeSys '19, March 25, 2019, Dresden, Germany

Regardless of the implementation details of the function being
checkpointed, the sleep proxy pattern provides a general mech-
anism for the FaaS framework to learn about when to activate a
particular function in case it needs to be checkpointed to alleviate
memory contention. In addition, the sleep proxy pattern allows
the function to modify the set of conditions under which it gets
activated.

There needs to be only one sleep proxy process shared by all
function containers. The implementation of sleep proxy will be
complicated by the fact that file descriptors may need to be trans-
ferred across container boundaries. With this kind of mechanism,
it would be possible to have a large number of long-running sus-
pended functions "laying around" on a constrained device like the
Raspberry Pi. Furthermore, the events that activate the function
would not be limited to the statically configured HTTP requests, but
the function could create its own activation conditions by waiting
on network I/O.

3.4 Limitations

The FaaS execution model, as implemented by major cloud providers,
has certain limitations. First of all, the activation condition, i.e., the
set of rules that determine whether to invoke the function, must be
static. Typically, activation conditions are configured by the user
when creating a new function. The function itself cannot modify
the activation condition, e.g., to install additional activation rules.

Before the program is run for the first time, the FaaS framework
must provision a temporary execution environment for the program.
That typically involves creating and initializing a container, setting
up libraries, and so on. This process, referred to as "cold start" can
take some time and may increase the latency of the first program
invocation. The FaaS framework typically attempts to re-use the
existing context for some time. It is unclear whether or not context
reuse guarantees that the OS process running the function will be
reused.

The FaaS program must be stateless and should be idempotent.
All persistent data must be saved to an external database. This is
needed to make it possible for the FaaS framework to run multiple
instances of the program, e.g., for auto-scaling purposes. There are
resource limits that constrain file system access, running time, and
the memory available to the program. Furthermore, the program
author has limited or no control over concurrency.

4 Implementation and Preliminary Results

The focus of this section is on the checkpointing functionality for
FaaS programs. We use Raspberry Pi’s for the experimental part
as they represent well the computational capabilities of many IoT
devices. These types of devices also have small form factor, which
makes them useful in home and industrial gateways, as well as
embeddable in vehicles and machinery.

We have implemented a set of small Node]S programs that are
run inside containers in order to test the feasibility of the checkpoint
functionality. In particular, we have set up a couple of tests that
need to pass successfully in order to implement the scenarios that
were introduced in Section 3.2. We would want the framework to
be able to enable the following functionality:

o Checkpointing sleeping functions
o Checkpointing TCP/IP sockets
e Migrating to another device

63

Pekka Karhula, Jan Janak, and Henning Schulzrinne

In addition, we have run some performance related tests, as it is
important for the feasibility of this approach that the tasks execute
in reasonable time without using too many system resources.

4.1 Setting up the Software

CRIU functionality on Docker can be enabled through Docker’s
experimental features. Thus, the two are not fully integrated and
the experimental status may cause some features to break in future
releases. In fact, the checkpointing functionality has been faulty
since Docker-ce 17.06 version.! There have been gradual fixes,
but the current version (18.09) is still missing the functionality
for dumping the checkpoint data to an arbitrary location in the
filesystem. This functionality is very useful when one needs to
migrate and continue the program in some other container or device.
Docker-ce version 17.03.2 was selected for this implementation, as
it is the last one where all the desired functionality exists.

The runtime environment was set up on a Raspberry Pi 2 Model B.
At the time of experimentation, version 3.11 was the latest version
of CRIU and it works well on the RPi as long as the Linux kernel
prerequisites are met. The Linux kernel shipped with Raspbian did
not have all the required kernel options enabled by default and so
the kernel needed to be recompiled with the options listed in [9].

4.2 Checkpointing a Long-running (sleeping) Function

For this scenario, a simple JavaScript function simulating blocking
behaviour of a long running function was created. The script was
built into a Docker image containing the NodeJS dependencies. The
steps for this experiment went as follows.

1. Run container

2. Let it run for 30 seconds

3. Checkpoint and suspend the container

4. Wait another 30 seconds

5. Continue from the checkpoint and check status from logs

The container is run only half of the specified 60 seconds of
the sleep time and then checkpointed and suspended. We want to
know if this method can be used to exhaust the sleep timer without
running the container in the background. After waiting another
30 seconds, the container is continued. The logs revealed that the
sleep function had finished and the code continued running. This
behavior is very useful, as our aim is to suspend functions that
are sleeping or blocking for more optimal utilization of system
resources. Naturally, utilizing this functionality in an IoT device
would require some external program to keep track of the sus-
pended containers, and to know when to wake them up.

4.3 TCP/IP Socket Checkpointing

The previous section discussed checkpointing a function that is
blocked by a timer with a predefined value. The blocking behavior
can also be caused by a request that needs to be accepted by another
IoT device or a person, like in the example in Section 3.2.1. In that
case, it might be useful to preserve also the TCP/IP connection
when checkpointing.

In this case, an IoT device sends an HTTP request to a remote de-
vice operated by a human. A TCP/IP connection is created between
the devices, but the response is delayed. We wanted to test the
checkpointing of a container blocked in network I/O and resuming
it again upon response arrival.

Lhttps://github.com/moby/moby/issues/34601

Checkpointing and Migration of loT Edge Functions

‘ TCP/IP socket checkpointing ‘

:loT Device :Authorizer

Butlon press

HTTP Request

Checkpoint and
pause container

{n seconds},

o HTTP R
(Wake up the (oA esponsey ..

container and
resume function

L execution Command to actuator

Figure 2. Checkpointing and resuming a TCP/IP socket in an HT TP
request

Fig. 2 illustrates the stages in this test. First an IoT device re-
ceives a signal from a button or some other sensor device. The IoT
device then sends a request to an authorizing entity for permission
to use an actuator device. In this case, we assume that processing
this request might take a long time, and therefore, we can put the
container to sleep. It is essential to preserve the socket, which has
an active connection to the server, so that we are able to receive
the response message from the authorizing entity later. Once the
authorization message has been sent and received by the IoT device,
the IoT device wakes up the container and resumes the function
execution. For practical purposes, we manually acknowledge the re-
quests from the IoT devices, so the processing may take an arbitrary
amount of time.

Checkpointing the TCP/IP connection in this example works
without any modifications to CRIU or Docker. Although this sce-
nario is somewhat simplified, it might have some powerful uses
in saving system resources in a constrained IoT device. In some
applications, it might make more sense to use a publish-subscribe
message passing protocol, such as MQTT, due to its scalability
and asynchronous mode of operation. This approach would also
be compatible with MQTT, as MQTT also uses the TCP/IP pro-
tocol. The IoT device can implement long-running functions as
MQTT subscriber modules. The subscriber could be put to sleep
after registering to the broker and woken up by incoming events.

4.3.1 Waking up the Function

Linux Iptables can be used to trigger a wake-up call for a paused
long-running function. We tested this approach with a Python script
that listens for a packet arrival on a connection from a specific
device and source port to a specific destination port on our IoT
device. Upon the arrival of a matching packet, the script creates
a new container and resumes the checkpointed function into it.
The function receives the TCP/IP data and continues execution. We
have been able to create the scenario of Fig. 2 using this method.

64

EdgeSys '19, March 25, 2019, Dresden, Germany

4.4 Migrating Container to Another IoT Device

The goal of this experiment was to find out if it might be possible to
checkpoint a function on one IoT device and resume it on another
TIoT device. We checkpoint the container state, send the checkpoint
data to the target device, create a new container on the target device
and restore it from the checkpoint. We have set up two Raspberry Pi
devices with identical software packages and operating systems as
mentioned in Section 4.1. However, the Raspberry Pis differ slightly
in their hardware as the first device is version 3 Model B and the
second device is version 2 Model B.

We created a simple function in JavaScript/Node]S containing
a counter that was increased periodically. We were able to check-
point the Node]S function and container, migrate it to the second
Raspberry Pi and verify that the counter continued where it left
off. This result shows that it is possible to continue the function
execution on another IoT device, provided that the target device
has matching hardware and software architecture. Certainly more
experience is needed from different kinds of functions as the script
used in this test has very simple behaviour. The different hardware
versions of the two devices did not cause any problems in this test.

The results obtained from this experiment hint at possible usage
scenarios involving load balancing and fault-tolerant IoT devices as
introduced in Section 3.2.2 and Section 3.2.3, respectively. Another
interesting insight is that it would be possible to build systems that
resemble mobile agent functionality, but using containers instead of
agent frameworks that are often limited to a specific programming
language or set of libraries. Mobile agents, although being an old
concept, have been recently used in Wireless Sensor Networks and
IoT with the idea that they can enable code mobility with very small
memory footprint. However, mobile agents utilizing checkpointing
would take another approach and improve programmability at the
cost of memory footprint. Hence they would be targeting more
computationally capable devices — like the Raspberry Pis used in
this example.

4.5 Checkpointing Performance

In this section, we present some early results from the implementa-
tion showing the feasibility of our approach.

4.5.1 Image Sizes

The unoptimized container size in the TCP/IP scenario was 257 MB
including the NodeJS dependencies. The resulting checkpoint files
were 15 MB in total. The checkpoint file size is sufficiently small
for container live migration assuming that the target device has
already loaded the container base image. This is an encouraging
result for our approach of running FaaS-like functionality in the
IoT devices, but more investigation is still needed.

4.5.2 Container Latency Measurements

The latency measurements were collected using the ’time’ utility
that comes with many GNU/Linux distributions or as a built-in
keyword in the Bash shell. For our experiment, we used the Bash
version. The results are presented in Table 1.

As can be seen from the results, starting a container from the
checkpoint takes about the same time as starting a fresh container.
Also, creating a checkpoint takes around the same amount of time.
These results are naturally different when the container is larger
and more complex, but the time delay of starting a checkpointed

EdgeSys ’19, March 25, 2019, Dresden, Germany

Table 1. Checkpointing performance

Task Time (s)
Starting a container 1.463
Pause 0.857
Unpause 0.850
Create a checkpoint and save it to disk ~ 1.716
Create a new container 0.438
Start container from the checkpoint 1.763

container vs starting a new container should both grow linearly
when increasing the container size.

Pausing and unpausing is a bit quicker way of saving the con-
tainer state and continuing function execution, but we cannot use it
for live migration or backing up the container state to disk. However,
it could be usable in situations when we know that the function
needs to run only on a specific device and nothing needs to be
stored in the disk.

4.6 Memory Usage

Fig. 3 shows the impact of active, paused and checkpointed Docker
containers on the system memory. The linear lines of paused and
running containers agree with the results obtained in [13]. However,
in this scenario we are more limited with the available memory, as
we run the tests on IoT devices. The checkpointed containers do
not cause notable increase in system memory consumption, which
was expected as the checkpoints are stored in the disk.

paused containers —+
running containers
checkpointed containers

System memory usage (MB)

] 5 10 15 20 25 30

#Containers

Figure 3. Memory footprint of running, paused and checkpointed
containers

5 Conclusion

In this paper, we have explored the function as a service concept
applied to the IoT edge devices. We have utilized the checkpoint-
ing mechanism to suspend long-running blocking functions in
order to save resources in constrained devices. We also successfully
demonstrated live migration of containers using the combination of
Docker and CRIU. The evaluation shows encouraging early results
for the checkpointing functionality in IoT devices. These building
blocks can be used to build fault-tolerant IoT systems, implement
resource offloading as well as improve efficiency and availability in
the IoT edge.

65

Pekka Karhula, Jan Janak, and Henning Schulzrinne

Acknowledgments

The research work is conducted in the Wireless Innovation between
Finland and the US (WiFiUS) Massive IoT project, and is supported
by the Academy of Finland and the National Science Foundation
(Grant No. 1702952).

References

[1] [n.d.]. Cgroup Freezer. https://www.kernel.org/doc/Documentation/cgroup-v1/
freezer-subsystem.txt. Accessed: November 2018.

2] Francois Aissaoui, Gene Cooperman, Thierry Monteil, and Said Tazi. 2016. Smart
Scene Management for IoT-based Constrained Devices Using Checkpointing.
Proceedings - 2016 IEEE 15th International Symposium on Network Computing
and Applications, NCA 2016 (2016), 170-174. https://doi.org/10.1109/NCA.2016.
7778613

3] Amazon. [n. d.]. Amazon Lambda. https://aws.amazon.com/lambda/resources/.
Accessed: November 2018.

[4] Amazon. [n.d.]. Amazon Lambda@Edge. https://aws.amazon.com/lambda/edge/.
Accessed: January 2019.

[5] Apache. [n. d.]. Apache OpenWhisk. https://openwhisk.apache.org/. Accessed:

February 2019.

[6] Paolo Bellavista and Alessandro Zanni. 2017. Feasibility of Fog Computing
Deployment Based on Docker Containerization over RaspberryPi. In Proceedings
of the 18th International Conference on Distributed Computing and Networking
(ICDCN °17). ACM, New York, NY, USA, Article 16, 10 pages. https://doi.org/10.
1145/3007748.3007777

[7] Yang Chen. 2015. Checkpoint and Restore of Micro-service in Docker Containers.
Proceedings of the 3rd International Conference on Mechatronics and Industrial
Informatics Icmii (2015), 915-918. https://doi.org/10.2991/icmii-15.2015.160

[8] CRIU. [n. d.]. CRIU Checkpoint/Restore Functionality. https://criu.org/Main_
Page. Accessed: November 2018.

[9] CRIU. [n. d.]. Kernel Options. https://criu.org/Linux_kernel. Accessed: November

2018.

Docker. [n. d.]. Docker Pause. https://docs.docker.com/engine/reference/

commandline/pause/#usage. Accessed: November 2018.

Google. [n. d.]. Google Cloud Functions. https://cloud.google.com/functions/

docs/. Accessed: November 2018.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,

Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Com-

puting: One Step Forward, Two Steps Back. arXiv preprint arXiv:1812.03651

(2018).

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-

mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. Serverless

computation with openlambda. In 8th {USENIX} Workshop on Hot Topics in Cloud

Computing (HotCloud 16).

Syed Rameez Ullah Kakakhel, Lauri Mukkala, Tomi Westerlund, and Juha Plosila.

2018. Virtualization at the Network Edge: A Technology Perspective. 2018 3rd

International Conference on Fog and Mobile Edge Computing, FMEC 2018 (2018),

87-92. https://doi.org/10.1109/FMEC.2018.8364049

Amardeep Mehta, Rami Baddour, Fredrik Svensson, Harald Gustafsson, and

Erik Elmroth. 2017. Calvin Constrained — A Framework for IoT Applications

in Heterogeneous Environments. In 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS). IEEE, 1063-1073. https://doi.org/10.

1109/1CDCS.2017.181

Microsoft. [n. d.]. Azure Functions. https://docs.microsoft.com/en-us/azure/

azure-functions. Accessed: November 2018.

Microsoft. [n. d.]. Azure IoT Edge. https://docs.microsoft.com/en-us/azure/

iot-edge/. Accessed: January 2019.

Microsoft. [n. d.]. Durable Functions Framework. https://docs.microsoft.com/

en-us/azure/azure-functions/durable-functions-overview#the-technology. Ac-

cessed: November 2018.

Azalia Mirhoseini, Bita Darvish Rouhani, Ebrahim Songhori, and Farinaz

Koushanfar. 2016. Chime: Checkpointing Long Computations on Intermittently

Energized IoT Devices. IEEE Transactions on Multi-Scale Computing Systems 2, 4

(2016), 277-290. https://doi.org/10.1109/TMSCS.2016.2550442

Roberto Morabito. 2017. Virtualization on Internet of Things Edge Devices With

Container Technologies: A Performance Evaluation. (2017), 8835-8850.

Yuging Qiu, Chung Horng Lung, Samuel Ajila, and Pradeep Srivastava. 2017.

LXC Container Migration in Cloudlets under Multipath TCP. Proceedings -

International Computer Software and Applications Conference 2 (2017), 31-36.

https://doi.org/10.1109/COMPSAC.2017.163

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael

Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX

Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,

133-146. https://www.usenix.org/conference/atc18/presentation/wang-liang

—

(13

(14]

(15]

[16

[17

(18

[19

[22

https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://doi.org/10.1109/NCA.2016.7778613
https://doi.org/10.1109/NCA.2016.7778613
https://aws.amazon.com/lambda/resources/
https://aws.amazon.com/lambda/edge/
https://openwhisk.apache.org/
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.2991/icmii-15.2015.160
https://criu.org/Main_Page
https://criu.org/Main_Page
https://criu.org/Linux_kernel
https://docs.docker.com/engine/reference/commandline/pause/#usage
https://docs.docker.com/engine/reference/commandline/pause/#usage
https://cloud.google.com/functions/docs/
https://cloud.google.com/functions/docs/
https://doi.org/10.1109/FMEC.2018.8364049
https://doi.org/10.1109/ICDCS.2017.181
https://doi.org/10.1109/ICDCS.2017.181
https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/iot-edge/
https://docs.microsoft.com/en-us/azure/iot-edge/
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview#the-technology
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview#the-technology
https://doi.org/10.1109/TMSCS.2016.2550442
https://doi.org/10.1109/COMPSAC.2017.163
https://www.usenix.org/conference/atc18/presentation/wang-liang

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work

	3 Function as a Service on the IoT Edge
	3.1 Checkpointing
	3.2 Motivating Scenarios
	3.3 Sleep Proxy
	3.4 Limitations

	4 Implementation and Preliminary Results
	4.1 Setting up the Software
	4.2 Checkpointing a Long-running (sleeping) Function
	4.3 TCP/IP Socket Checkpointing
	4.4 Migrating Container to Another IoT Device
	4.5 Checkpointing Performance
	4.6 Memory Usage

	5 Conclusion
	Acknowledgments
	References

