
HANZO: Collaborative Network Defense for
Connected Things

Aman Singh ∗, Shashank Murali ∗, Lalka Rieger ‡, Ruoyu Li ‡

Stefan Hommes †, Radu State †, Gaston Ormazabal ‡ and Henning Schulzrinne ‡
∗ Palindrome Technologies

Email: {aman.singh, shashank.murali}@palindrometech.com
† Center for Security, Reliability and Trust (SnT), University of Luxembourg

Email: {stefan.hommes, radu.state}@uni.lu
‡ Department of Computer Science, Columbia University

Email: {ler2161, rl2929}@columbia.edu, {gso, hgs}@cs.columbia.edu

Abstract—The IoT devices are typically shipped with default
insecure configurations and vulnerable software stacks rendering
host networks exposed to attacks, especially small networks with
no administration. We present a network system model for device
configuration and operations management. Using this model,
we design and implement an autonomous network management
platform with device classification and traffic characterization
functions integrated in a network gateway. We evaluate the
system using a connected home testbed that combines IoT and
general-purpose devices.

I. INTRODUCTION

The Internet of Things (IoT) enable integration of the
physical with the digital world resulting in process automation
and optimizations. In general, an IoT system contains three
different phases - collection, transmission, and processing.
The collection phase captures system events, the transmission
phase communicates the events to a system controller, and the
processing phase generates system output actions based upon
system input events. While IoT devices have limited function-
ality, they still increase the attack surface as most of these
devices have vulnerable firmware, insecure default passwords,
and no security management functions. A compromised IoT
system can be used for DDoS attacks [1], digital crime proxies
[2], ransomware [3], cryptocurrency malwares and data theft
[4].

There are enterprise-centric technical solutions for securing
IoT networks that require proper network administration. A
significant challenge is to apply security controls effectively
in consumer-centric devices that are deployed in home or
small networks with no trained network administrators. Since
IoT devices are built to provide only limited functionalities,
their communication behavior is more restricted, and thus
the typical communication endpoints can be easily derived
from network traffic. Furthermore, the device manufacturers
know the external endpoint configuration a priori because
they control device functions, e.g., service endpoints such as
software updates and event notification. This information can
be derived deterministically by the manufacturer, or by any
third-party that can assess the device operational parameters.

Once these configuration parameters are derived for each
device they can be shared with other network installations
enabling a collaborative configuration sharing environment.

The Manufacturer Usage Descriptions (MUD) specification
[5] leverages the manufacturer’s knowledge of the device
operations to create a device profile using Yet Another Next
Generation (YANG) data modeling language [6]. The MUD
profile can provide signals to a network controller about
connectivity a device requires to properly function. The MUD
profile includes a network-acl-model [7] and some additional
metadata related to device operations. In this way, a network
can define device specific policies to prevent communication
attempts to endpoints that are outside of the scope of the
device’s functionality. Figure 1 shows a device with MUD
support in a network. The MUD-URL emitted from the device
identifies the profile location. Subsequently, a new network
element, the MUD manager, downloads the profile from the
manufacturer file server, and installs it locally. The MUD
proposal requires device manufacturer support along with
IoT device support and integration of MUD manager in the
network environment.

We present a network system model that provides device
configuration, security and operations management. Using this
model, we design and implement the Home Area Network
Zero Operations (HANZO) controller. The controller manages
IoT devices and generates dynamic device profiles, HANZO
profiles, that are similar to MUD profiles. We show that all
required MUD profile parameters can be derived from network
traffic observation. The HANZO profile includes communica-
tion endpoints and device identification fingerprint data. The
endpoints are derived using traffic observation time windows.
The device fingerprinting is derived using a combination
of protocol heuristics and traffic classification methods. The
HANZO profiles are converted into network-supported ACLs
that limit device communication endpoints. Subsequently, we
implement ACLs using an SDN infrastructure for better pro-
grammability by directly mapping ACLs into flow-table rules.
The proposed architecture is suitable for deployment in small
networks such as a home or small office buildings. We evaluate
the system using a model connected-home testbed containing978-1-5386-6205-2/18/$31.00 c© 2018 IEEE

Fig. 1: Manufacturer Usage Description (MUD) flow

both IoT and general-purpose devices.
The remainder of this paper is structured as follows: Section

II describes IoT device security management problem back-
ground. Section III describes a IoT network system model
including security trust model. Section IV describes the system
architecture along with a connected-home testbed description.
Section V describes implementation details. Section VI de-
scribes evaluation of the architecture against the connected-
home testbed. Section VII describes recent related work in
automated IoT device security methods. Finally, Section VIII
concludes along with future work plans.

II. BACKGROUND

The IoT security and privacy threats have been well docu-
mented [8]. Any adversary can search for vulnerable devices
using security search engines such as shodan [9] and censys
[10]. The network worm frameworks such as BASHLITE
[11] and the more recent Mirai [1] search for vulnerable
devices ranging from home network devices such as DVRs,
IP cameras, routers and printers, to city network devices
such as traffic lights and environment sensors. These worms
install malware on vulnerable devices, converting them into
remote bots that are used as part of large-scale botnet attacks.
Furthermore, the public disclosure of the Mirai source code
has already generated more complex worm strains. On the
opposite side, white-hat worms such as Hajime [12] and
BrickerBot [13] are attempting to use the same attack patterns
to disable IoT devices after successful exploits.

Enterprise networks demand security baseline controls and
network operations administration. The enterprise IoT plat-
forms further provide granular device security controls and
vendor supply-chain management that further hardens the
oeprations. Lack of network administration knowledge and
cost can render these management platforms ineffective for
small network installations such as homes and buildings.

An IoT device usually follows - Registration, Configura-
tion, Operation, Maintenance and Decommission steps during
its life-cycle. For seamless user experience and secure IoT
ecosystem, automated device identification and authentication
are critical. The public key certificates provide secure device
identities. During registration step, a device can share identity

and perform authentication with a network - before, during
or after the IP address acquisition process. The Extensible
Authentication Protocol over LAN (EAPoL) [14] with a X.509
certificate enables layer 2 authentication before IP address
acquisition. The DHCP Auth header [15] enables authenti-
cation during IP address acquisition. An application layer
authentication service, e.g. IoT auth framework [16] enables
device authentication after IP address acquisition. The MUD
architecture proposes extensions to Link Layer Discovery
Protocol (LLDP), X.509 certificates and DHCP Options header
for device identification and profile download using MUD-
URL string [5]. In contrast, small networks typically have
limited or no authentication infrastructure setup besides base-
line network password authentication. As MUD architecture
requires device changes for MUD-URL string, for current
IoT devices, the HANZO controller applies the same MUD
principle of restricting IoT device communication endpoints
by observing device network traffic.

III. SYSTEM MODEL

An IoT network can be modeled as a network of net-
works with sensors, controllers and actuators. For example,
an electrical network can be monitored with smart meters
and controlled with smart switches. The networks can be
categorized as lights, temperature, water, gas, appliances,
presence, media/entertainment, waste management etc. Similar
to a graph, we can model an IoT network with the following
entities - Device, Profile, Edge . A device (D) can be a sensor
or an actuator. The device-to-device interaction creates an edge
(E). An edge has two endpoints, one for each device. A profile
(P) defines communication constraints for a device, i.e. set of
edges that are allowed. The composition of {D, P} forms a
network (N). The network is a composite entity in the system,
i.e., the network state is dependent on other entity values.

Fig. 2: System model

Once the device profiles are enforced, applications can
only communicate via allowed edges in the network. Figure
2 shows the layered composition of network with profiles
applied on devices and application contrained by profiles. Each
device has an associated device management application (M).
It is an essential entity that manages the life-cycle functions of

a device - identity certificates, configuration, firmware updates,
and data storage models. These functions can be managed
by the device manufacturer itself or by a different third-party
application management platform.

A. Trust Model

A device (Di) is managed by an application (Mi). Each
device is identified by a certificate issued by the manufacturer.
All Di trust the Mi. If a network (Ni) trusts a Mi then all the
Di issued by Mi are also trusted. The trust between Ni and
Mi can be established by leveraging current public Certificate
Authority (CA) based systems. For devices with no verifiable
identity, Ni marks the device as untrusted. For example, figure
3 shows manufacturers, M1 and M2, establish trust with the
CA in Step 1. Step 2 creates trust between the network
controller and the CA. Both manufacturers can issue devices
with valid identities that can be verified and trusted by the
network controller in Step 3. Furthermore, the device M’-D1
is untrusted because of no valid identity.

Fig. 3: System trust model

B. Device Model

The device is modeled with a network-centric view of
different life-cycle states.

Registration - In this state, the device has booted up
successfully and sends its identification, if configured, to the
network controller. The network controller can perform device
authentication. The authentication process involves device
identity verification and establishing trust between device and
network. The device is tagged as “Trusted” or “Untrusted”
after authentication step. The device acquires a network IP
address after successful registration.

Configuration - After successful registration, the network
controller applies a device profile. The profile contains opera-
tional parameters such as communication endpoints for device
life-cycle management and service functions. The profile can
be generated by the manufacturer, network admin or generated
dynamically by observing initial device traffic.

Operation - After successful device configuration, the de-
vice becomes operational in the network. It is allowed to send
communication packets to other devices in the network.

Maintenance - In this state, the device performs firmware
updates, or any configuration changes. The device manage-
ment application triggers the transition to this state. After
a successful firmware update process, the device again goes
through registration and configuration states.

Quarantine - During operation state, if the network con-
troller detects the device is compromised, it is isolated from
other devices, by blacklisting the device profile and block-
ing all communication links. Furthermore, the controller can
notify any connected management applications. Based upon
management application input, the device can either go back
to operation state, or maintenance state, or be removed from
the network. If the device is infected, and an update process
may not fully recover it, it is advisable to discard it.

C. Edge Model

The device-to-device communications are modeled as graph
edges. The edges are directional and defined using the 5
parameter tuple [src-endpoint, src-port, dst-endpoint, dst-port,
transport-type]. For example, in a network (10.1.1.0/24),

~E1 = [D1(10.1.1.1), ∗, D2(10.1.1.2), 22, TCP]

Edge E1 allows device D1 to communicate with device D2 on
TCP port 22. The Edges also support URI as endpoints. For
example,

~E2 = [D3(10.1.1.3), ∗, D4(palindrome.io), 80, TCP]

Edge E2 allows device D3 to communicate with palindrome.io
domain endpoint on TCP port 80. The network controller re-
solves and maintains the mapping of domain and IP addresses.
An Edge can be private, when both endpoints are internal in a
network, or public when one endpoint is external, outside the
network.

MUD HANZO Description

mud-version No MUD specification version
mud-url No Identifies MUD file
last-update Yes Date-and-Time of the file
is-supported No Device supported ?
mfg-name Yes Manufacturer of device
model-name Yes Device Model
from-device-policy Yes Traffic "from" the device
to-device-policy Yes Traffic "to" the device

TABLE I: Device profile parameters

D. Profile Model

The HANZO profile model follows the standards-based
MUD profile model [5]. Table I shows the MUD profile
parameters that can be derived from traffic observation. The
profile uses YANG data modeling language to provide accurate
and adequate usage models for network devices. The HANZO
profile includes device system information metadata in ieft-
mud root container, and communication endpoints ACLs in
ietf-access-control-list container, as shown in Listing 1.

{
"ietf-mud:mud": {

"last-update": "2018-07-15",
"mfg-name": "XYZ",
"model-name": "Smart-Switch",
"from-device-policy": {

"access-lists": {
"access-list": [

{"name": "mud-01-fr"}
]

}},
"to-device-policy": {

"access-lists": {
"access-list": [

{"name": "mud-01-to"}
]

}}},
"ietf-access-control-list:acls": {

"acl": [
{"name": "mud-01-fr", ...},
{"name": "mud-01-to", ...}

]}
}

Listing 1: HANZO Profile with Root Containers

Network Manufacturer Type Quantity

Electric LoneyShow Plug 4
VOCOLinc Plug 2
UPSTONE Power Strip 1

Light TP-Link Bulb 2
Sengled Bulb 2
UPSTONE Bulb 1

Presence EZVIZ Camera 1
Wansview Camera 1
iHome Motion 1

HVAC iHome Temperature 1
Honeywell Fan 1

Data ASUS Access Point 1
Apple Phone 2
Samsung Phone 1
Google Streamer 1
Amazon Speaker 1
Apple Laptop 1
Lenovo Laptop 1
Lexmark Printer 1

TABLE II: Connected-home testbed devices

IV. SYSTEM ARCHITECTURE

The HANZO controller architecture described in figure 4
works in three stages - extraction, generation and delegation.
The decoupling allows the controller to be distributed with
each stage working as an independent system. The extraction
stage performs packet captures and preprocesses packet header
metadata, which is passed to the generation stage. The gener-
ation stage creates a dynamic HANZO profile for each device
using packet information. Finally, the delegation stage takes
the generated profile containing ACLs and converts them into
corresponding flow-table entries that can be installed on a SDN
controller.

Fig. 4: HANZO controller system architecture

The Device Manager (DM) provides life-cycle management
functions by maintaining device registration, configuration,
operation, maintenance and quarantine states. The DM main-
tains the network as a directed property graph based upon
the system model described in the section III. It uses device,
edge and profile as base objects. Each device is associated
with a profile object and a set of edge object. A new device
in the network triggers a new instance of device object and
an associated profile object. The profile object captures the
generation stage output. Each new device connection results in
a new edge object. The controller uses an asynchronous event
processing model with all components publishing network
events on a publish-subscribe event bus.

For system evaluation, the IoT testbed is modeled as a
connected-home, with all devices having Wi-Fi connectivity to
capture realistic general purpose daily activities. The various
network devices are shown in Table II.

A. Extraction

The extraction stage captures raw traffic. It uses libpcap [17]
packet capture library with pcap-filter support. Each packet is
mapped as a network event following the chain of capture,
parse and extract functions. The network event is represented
as, { timestamp, src-mac, dst-mac, src-net, dst-net, src-port,
dst-port, trans-protocol, app-protocol, metadata } object. The
extraction stage also allows raw packet access, if subscribed.

B. Generation

The generation stage has three major modules - scanner,
fingerprinter and composer. Each module maintains its own
device to network events mapping. The scanner module scans
for insecure device configurations such as default passwords,
open ports, protocol security configurations. The fingerprinter
module generates a unique device fingerprint for each device
in the network by using device metadata. The composer
module generates communication endpoints for each device.
We further explain each module in detail.

1) Scanner: The scanner module provides vulnerability
scanning function in the network. It scans a device for open
ports, insecure protocol configurations, and default password
interfaces by integrating the Nmap [18] security scanner. It
also leverages the Nmap Scripting Engine (NSE) to provide
scripts for security operations such as enumerating insecure
Telnet, File Transfer Protocol (FTP), Secure Shell (SSH),
Transport Layer Security (TLS) protocol configurations, de-
fault passwords, HTTP form fuzzer, and exploit kits.

2) Fingerprinter: The fingerprinter module derives device
information such as manufacturer, model, type, firmware
name, version, and communication pattern from extraction
stage packet data. The device information is essential for
correlating the manufacturer communication endpoints with
the device behavior in the network. The module is further
divided into two submodules - metadata and signature. The
metadata module derives the product-vendor, product-type
(printer, camera, sensor, speakers, etc.), firmware information
using traffic heuristics methods. The signature module derives
network communication patterns for each device using ma-
chine learning methods.

a) Metadata - The layer-2 MAC address can be used to
identify the device manufacturer. The first 3 bytes represent
Organizationally Unique Identifier (OUI) assigned by the IEEE
Registration Authority [19]. The metadata module uses a local
Wireshark OUI database [20] to derive device manufacturer
information. For instance, the first three bytes 00:30:65 /
00:26:bb / 00:26:b0 indicate the device vendor is Apple.
However, OUI lookup is not always reliable, as the network
card vendor can differ from the actual device manufacturer.

The device-specific information can also be derived from
application layer protocol such as DHCP [21]. The DHCP
Options - Option 55 (Parameter Request List), DHCP Option
60 (Vendor Class Identifier), and Option 43 (Vendor Specific
Information) provide vendor and device related information.
For example, the Fingerbank service [22] provides device fin-
gerprint information such as operating system, manufacturer,
OS type using a collaborative platform to share device DHCP
fingerprints. Furthermore, the vendor information can also be
derived from DNS requests as most devices communicate
with cloud setup services during initialization. The meta-
data module monitors DHCP and DNS requests for deriving
this information. It also performs a WHOIS lookup [23] of
observed device IP addresses, which can provide additional
manufacturer information.

A single method cannot derive all the device-specific in-
formation, therefore the module uses the combination of all
the above methods to derive device metadata. Table III shows
metadata module output for each device. For manufacturer
name, the WHOIS method takes preference than OUI method.

b) Signature - The signature module differentiates IoT
devices from general-purpose devices in the network using
network traffic classification. It further derives IoT device
types such as printer, camera, sensor, speakers, etc. using a
traffic behavior profile of each device.

The module extracts the traffic signature of each device by

Vendor OUI WHOIS OS Thing

EZVIZ AmpakTec Nexperian Linux Yes
WANSView Shenzen Null Linux Yes
iHome Azurewav Evrythng Java ME Yes
LoneyShow Espressi Hangzhou Null Yes
Tp-Link TP-LINK TP-LINK Null Yes
Sengled Expressi Sengled Null Yes
Apple Apple Apple iOS No
Samsung Samsung Samsung Android No

TABLE III: Device Metadata and Signature

analyzing protocol headers of each networking layer - link,
network, transport, and application. Each signature signals
different class of device in the network, and helps correlate
network traffic patterns of similar classes of devices. For
example, a printer with multiple large usage packets will have
a different signature from a light bulb, with relatively small
usage packets.

The module takes raw packets from the extraction stage as
inputs and creates a feature vector with transaction, session
and flow attributes [24]. The vector is passed to the device
classifier, which uses an ensemble learning classifier [25] with
Decision Tree [26], Support Vector Machines (SVM) [27] and
k-Nearest Neighbors (k-NN) [28] methods as base estimators.
The module works in two phases, in the first phase, it classifies
IoT and general-purpose devices. In the second phase, it
further classifies IoT devices into specific device types. The
second-phase classifier is currently trained for five device types
- printer, camera, light bulb, powerplug and speakers.

3) Composer: The composer module maps a set of valid
public communication endpoints for each device during traffic
observation window having 5-tuple as explained in section III.
On device network initialization, it generally communicates
with its manufacturer services, such as device management,
user setup, storage, and application cloud services specific to
its function. Typically, these endpoints are established in the
initial hours of device operation, and do not change when
compared to general-purpose devices. Using heuristics, the
composer module derives all public endpoints of a device by
traffic observation. Table IV shows that a observation time
window of 10 minutes is sufficient for almost all devices to
derive public communication endpoints.

Manufacturer/Device 1 M 5 M 10 M 20 M 30 M

EZVIZ/Camera 3 3 4 4 4
WANSView/Camera 3 4 10 10 10
iHome/Monitor 4 4 4 4 4
UPSTONE/Plug 4 4 4 4 4
TP-LINK/Bulb 2 2 2 2 2
Sengled/Bulb 2 2 2 2 2

TABLE IV: Public endpoints with observation window

The DM compiles a final HANZO profile using the gener-
ative stage modules output in MUD profile format. Listing 2
shows a generated endpoint rule.

C. Delegation

The delegation stage takes the generated profile ACLs and
converts them into SDN flow-table rules. It delegates the ACL
enforcement to a SDN controller that implements flow-table
rules on a SDN switch.

{
"name": "mud-01-fr",
"type": "ipv4-acl-type",
"matches": {

"ipv4": {
"ietf-acldns:src-dnsname":

"www.xyz-cloud.com"
},
"source-port-range": {

"lower-port": 80,
"upper-port": 80

},
"tcp": {

"ietf-mud:direction-initiated":
"from-device"

}
},
"actions": {

"forwarding": "accept"
}

}

Listing 2: Generated Device Rule Example

D. HANZO and MUD

As discussed in the previous section, the dynamically gen-
erated HANZO profile uses the MUD profile format. For any
future MUD-enabled IoT devices, the HANZO controller also
supports the device manufacturer’s statically generated MUD
profiles. The controller support for both profile types creates a
backward compatible unified network management platform.

The controller provides MUD support by using either of the
DHCP Options headers, OPTION_MUD_URL_V4 (161) for
IPv4 or OPTION_MUD_URL_V6 (112) [5] for IPv6 respec-
tively. For devices that support MUD-URLs, the extraction
stage captures the string and publishes a MUD network event.
The DM captures the event and downloads the MUD profile.
For devices that don’t support MUD-URLs, the controller
follows the regular HANZO profile generation process. As
both profiles share the same format, the resulting ACLs are
implemented similarily in the network.

Furthermore, for MUD-enabled devices, in addition to
downloading the MUD profile, the controller also generates
the HANZO profile for the same device. The DM compares
the static MUD profile endpoints with the dynamic HANZO
profile endpoints. If a difference is detected in the endpoints,
the DM publishes a security anomaly event for the compro-
mised device along with the observed device endpoints. The
DM generates and compares HANZO profiles periodically to
provide continous security monitoring.

V. IMPLEMENTATION

The HANZO controller prototype is implemented as a
network gateway with all components running on a single

Fig. 5: HANZO controller implementation

node. The node is running Ubuntu Linux 16.04 on an Intel
NUC hardware with 8 GB RAM, Gigabit Ethernet, Wi-Fi
802.11ac, 256 GB storage. The ethernet interface is configured
as external internet link, and Wi-Fi interface is configured as
an access point (AP) for local devices. The NUC is running
a local DHCP server on UDP port 67, and DNS server on
UDP port 53 listening on the AP interface. The Open vSwitch
(OvS) [29] is used as an OpenFlow switch. The data plane
enforcement is done via Open Network Operating System
(ONOS) SDN controller [30]. The OvS bridge interface (br0)
is configured with Wi-Fi interface port as shown in figure 5.

The network monitoring and management is performed via
a web application GUI service. The web application pro-
vides network topology visualisation and basic management
functions including Create/Read/Update/Delete (CRUD) for
devices and configuration debugging. All controller stages are
implemented using Python. The extraction stage is using the
Scapy [31] framework. The generation stage is using python-
nmap, scikit-learn [32] frameworks. The delegation stage
is using python-json and python-http modules with ONOS
controller API [33]. All data is stored in a local MongoDB
[34] database.

Device IoT Profile Endpoints

LoneyShow/Plug Yes Yes 2
VOCOLinc/Plug Yes Yes 2
UPSTONE/Power Strip Yes Yes 4
TP-Link/Bulb Yes Yes 2
Sengled/Bulb Yes Yes 2
UPSTONE/Bulb Yes Yes 6
EZVIZ/Camera Yes Yes 6
Wansview/Camera Yes Yes 10
iHome/Motion Yes Yes 4
iHome/Temperature Yes Yes 4
Honeywell/Fan Yes Yes 4
ASUS/AP No No -
Apple/Phone No No -
Samsung/Phone No No -
Google/Streamer No No -
Amazon/Speaker Yes Yes 18
Apple/Laptop No No -
Lenovo/Laptop No No -
Lexmark/Printer Yes Yes 4

TABLE V: HANZO device evaluation

VI. EVALUATION

The HANZO controller was evaluated against the connected
home testbed with both IoT and general-purpose devices
described in section IV. Table V shows the controller correctly
differentiates between IoT and general-purpose devices with
100% accuracy. The controller generates device profile with
communication endpoints after the ideal 10 mins window de-
rived from previous observations. The monitoring experiment
was repeated 20 times for each device with similar results
observed everytime.

The device metadata module that derives manufacturer
name, device type, device model using heuristics was not con-
sistent in capturing all the required information. For devices,
in most instances, the network interface card, e.g., Espressi,
was found to be different from device manufacturer showing
diverse vendor supply-chain. The DHCP device information
methods were useful for only general-purpose devices. Except
Lexmark printer, all evaluated device manufacturers do not use
DHCP headers for sharing device information with the net-
work. Although, the first contact DNS request was consistent
everytime for each device, some devices contacted public NTP
servers first before contacting device management servers.

VII. RELATED WORK

In Mirai worm architecture analysis, the authors [1] discuss
the need for baseline security hardening, automatic updates,
attack notification mechanisms, facilitating device identifica-
tion, and proper device life-cycle management. The HANZO
architecture tries to address these concerns with a systematic
approach to IoT security.

The IoT Sentinel architecture [35] describes a device-type
(make, model, software version) identification method using
machine learning classification that triggers automatic security
policy enforcement levels - strict, restricted and trusted, for
vulnerable devices. The project proposes a hybrid deployment
model of two major components - a local security gateway
and a cloud security service to augment local functions of
device identification and vulnerability assessment. In contrast,
HANZO architecture does not include any cloud-based pro-
cessing component. All system stages are processed locally
with only exception of external device metadata API access
such as fingerbank and WHOIS records. Furthermore, the
Sentinel architecture does not differentiate between IoT and
general-purpose devices, and the generated profile format is
not standards based.

The DIoT project [36] improves the Sentinel architecture
by also learning device communication behavior patterns
to generate access control policies. The Kalis [37] project
presents a similar self-adapting learning Intrusion Detection
System for IoT networks. Both these frameworks employ
device operational behavior for anomaly detection that is used
for device isolation. In contrast, our architecture supports
anomaly detection using continous device profile comparison
method.

The IoT Inspector [38] project monitors device traffic in a
real smart home network setup for privacy and security issues.

This includes identifying communication endpoints the home
devices talk to with an emphasis on the type of data collected.
The IoTSec proposal [39] highlights the need for a network-
first approach where the local network plays a critical role in
securing its boundaries. The authors argue rethinking network
security in three key dimensions: security policies abstraction,
dynamic access-control policies, and context-aware enforce-
ment capabilities. Our proposed network-centric architecture
tries to address the points higlighted by this proposal.

VIII. CONCLUSION AND FUTURE WORK

We present a network management architecture to secure
IoT devices by limiting the communication endpoints. We
model a network with device, edge and profile entities for
configuration and operations management. We describe the
HANZO controller, a modular system with extraction, gen-
eration and delegation stages resulting in a device profile
that is enforced in the network using an SDN controller. We
show that all required parameters of a MUD profile can be
derived from traffic observation. We evaluate the system using
a connected-home testbed with both IoT devices and general-
purpose devices.

For our future work, we are integrating a traffic behavior
module for anomaly detection in the device operational state.
Currently, the generated device profile is enforced at the
network gateway. We are exploring multi-level enforcement
models for large-scale networks. A transparent public crowd-
sourced knowledge base that evaluates and rates manufacturers
based upon device operations will create a healthy IoT ecosys-
tem. We are also exploring the use of anonymized device
configuration data to create a public knowledge base.

ACKNOWLEDGMENT

The authors would like to acknowledge Xuan He, Akhilesh
Srivastava, Alexander Bienstock, Adithya Beemanapalli and
Xuxiang Wu for contributions to the initial prototype im-
plementation. We would also like to thank Eliot Lear for
discussing the MUD specification.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium, Vancouver, BC, Canada, August
2017, pp. 1093–1110.

[2] B. Krebs, “IoT Devices as Proxies for Cybercrime,”
2016. [Online]. Available: https://krebsonsecurity.com/2016/10/
iot-devices-as-proxies-for-cybercrime

[3] PenTestPartners, “Thermostat Ransomeware: a Lesson in IoT
Security,” 2016. [Online]. Available: https://www.pentestpartners.com/
security-blog/thermostat-ransomware-a-lesson-in-iot-security

[4] Symantec Corporation, “Internet Security Threat Report,” 2018.
[Online]. Available: https://www.symantec.com/content/dam/symantec/
docs/reports/istr-23-2018-en.pdf

[5] R. D. E. Lear and D. Romascanu, “Manufacturer Usage Description
Specification,” IETF Draft, June 2018. [Online]. Available: https:
//tools.ietf.org/html/draft-ietf-opsawg-mud-25

[6] M. Bjorklund, “The YANG 1.1 Data Modeling Language,” RFC 7950,
August 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7950.txt

[7] M. Jethanandani, L. Huang, S. Agarwal, and D. Blair,
“Network Access Control List (ACL) YANG Data Model,” IETF
Draft, October 2018. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-netmod-acl-model-20

[8] M. J. Covington and R. Carskadden, “Threat Implications of the Internet
of Things,” in The 5th International Conference on Cyber Conflict
(CyCon), Tallinn, Estonia, June 2013, pp. 1–12.

[9] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins, “Evaluation of the
Ability of the Shodan Search Engine to Identify Internet-facing Indus-
trial Control Devices,” International Journal of Critical Infrastructure
Protection, vol. 7, no. 2, pp. 114–123, 2014.

[10] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A Search Engine backed by Internet-wide Scanning,” in The 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, Colorado, USA, October 2015, pp. 542–553.

[11] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: Analysing the Rise of IoT Compromises,” in
The 9th USENIX Workshop on Offensive Technologies (WOOT 15),
Washington, D.C., USA, August 2015.

[12] S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet
worm for iot devices,” Rapidity Networks, vol. 16, 2016.

[13] D. Goodin, “Brickerbot, the permanent denial-of-service botnet, is back
with a vengeance,” Ars Technica, 2017.

[14] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz,
“Extensible Authentication Protocol (EAP),” RFC 3748, June 2004.
[Online]. Available: https://tools.ietf.org/html/rfc3748

[15] R. Droms and W. Arbaugh, “Authentication for DHCP Messages,” RFC
3118, June 2001. [Online]. Available: https://tools.ietf.org/html/rfc3118

[16] L. Seitz, G. Selander, and C. Gehrmann, “Authorization framework for
the internet-of-things,” in 2013 IEEE 14th International Symposium on
"A World of Wireless, Mobile and Multimedia Networks" (WoWMoM),
June 2013, pp. 1–6.

[17] TCPDUMP Project, “Libpcap: Network Traffic Capture Library,” 2018.
[Online]. Available: http://www.tcpdump.org/

[18] Nmap Project, “Nmap Security Scanner,” 2018. [Online]. Available:
https://nmap.org/

[19] IEEE Registration Authority, “Ogranizationally Unique Identifier
(OUI),” 2018. [Online]. Available: https://standards.ieee.org/develop/
regauth/oui/index.html

[20] Wireshark Project, “Wireshark Manufacturer Database,” 2018. [Online].
Available: https://www.wireshark.org/tools/oui-lookup.html

[21] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor
Extensions,” RFC 2132, March 1997. [Online]. Available: https:
//tools.ietf.org/html/rfc2132

[22] Inverse Inc., “Fingerbank API,” 2018. [Online]. Available: https:
//fingerbank.org

[23] L. Daigle, “Whois protocol specification,” RFC 3912, 2004.
[24] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware

detection using network traffic classification,” in IEEE Conference on
Communications and Network Security (CNS), Florence, Italy, Septem-
ber 2015, pp. 134–142.

[25] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems, Cagliari, Italy, June 2000,
pp. 1–15.

[26] S. R. Safavian and D. Landgrebe, “A Survey of Decision Tree Classifier
Methodology,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[27] T. Joachims, “Making large-scale svm learning practical,” Technical Re-
port, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen,
Universität Dortmund, Tech. Rep., 1998.

[28] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance Metric Learning
for Large Margin Nearest Neighbor Classification,” in Advances in Neu-
ral Information Processing Systems, Vancouver, BC, Canada, December
2006, pp. 1473–1480.

[29] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch.” in The 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Oakland, CA,
USA, May 2015, pp. 117–130.

[30] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: Towards
an Open, Distributed SDN OS,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, Chicago, IL, USA, August
2014, pp. 1–6.

[31] Scapy Project, “Packet Crafting for Python,” 2018. [Online]. Available:
https://scapy.net/

[32] SciKit-Learn Project, “Machine Learning in Python,” 2018. [Online].
Available: http://scikit-learn.org/

[33] ONOS Project, “Open Network Operating System,” 2018. [Online].
Available: https://wiki.onosproject.org/display/ONOS/REST

[34] MongoDB Project, “Mongo Database,” 2018. [Online]. Available:
https://github.com/mongodb/mongo

[35] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and
S. Tarkoma, “IoT Sentinel: Automated Device-Type Identification for
Security Enforcement in IoT,” in The 37th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS), Atlanta, GA, USA,
June 2016, pp. 2177–2184.

[36] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and
A. Sadeghi, “Dïot: A crowdsourced self-learning approach for detecting
compromised iot devices,” CoRR, vol. abs/1804.07474, 2018. [Online].
Available: http://arxiv.org/abs/1804.07474

[37] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis — A System
for Knowledge-Driven Adaptable Intrusion Detection for the Internet
of Things,” in The 37th IEEE International Conference on Distributed
Computing Systems (ICDCS), Atlanta, GA, USA, June 2017, pp. 656–
666.

[38] G. Chu, N. Apthorpe, and N. Feamster, “Security and privacy analyses
of internet of things toys,” CoRR, vol. abs/1805.02751, 2018. [Online].
Available: http://arxiv.org/abs/1805.02751

[39] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in The 14th ACM Workshop on Hot Topics in
Networks, Philadelphia, PA, USA, November 2015.

