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Rigorous estimation of maximum floating-point round-off errors is an important capability central to many
formal verification tools. Unfortunately, available techniques for this task often provide very pessimistic over-
estimates, causing unnecessary verification failure. We have developed a new approach called Symbolic Taylor
Expansions that avoids these problems, and implemented a new tool called FPTaylor embodying this approach.
Key to our approach is the use of rigorous global optimization, instead of the more familiar interval arith-
metic, affine arithmetic, and/or SMT solvers. FPTaylor emits per-instance analysis certificates in the form of
HOL Light proofs that can be machine checked.

In this article, we present the basic ideas behind Symbolic Taylor Expansions in detail. We also survey as
well as thoroughly evaluate six tool families, namely, Gappa (two tool options studied), Fluctuat, PRECiSA,
Real2Float, Rosa, and FPTaylor (two tool options studied) on 24 examples, running on the same machine, and
taking care to find the best options for running each of these tools. This study demonstrates that FPTaylor
estimates round-off errors within much tighter bounds compared to other tools on a significant number of
case studies. We also release FPTaylor along with our benchmarks, thus contributing to future studies and
tool development in this area.
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1 INTRODUCTION

The floating-point number representation is foundational to computing, playing a central role in
the representation and manipulation of real numbers. Unfortunately, floating-point arithmetic suf-
fers from error-inducing rounding operations. That is, after each calculation of a sub-expression,
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the result must be snapped (rounded) to the nearest representable number before the whole ex-
pression can be evaluated. The nearest representable number may be half a unit in the last place or
ulp (in the worst case) away from the calculated (intermediate) result, and this distance is called
round-off error. The value of the ulp is proportional to the result exponent, making errors value de-
pendent. Given all these subtleties, one seldom analyzes computations directly in floating-point.
Instead, one conceives and analyzes computations in the realm of reals, and then ensures that
the amount of discrepancy—round-off error—is “small.” The manner in which round-off errors
are examined and accepted varies from application to application: the more exacting the applica-
tion, the more rigorous the methods employed must be. The IEEE standard (IEEE 754 2008) was
a landmark achievement in computer arithmetic, standardizing the meaning of floating-point op-
erations and the notion of correct rounding. Even systems that abide by the IEEE standard can
violate axioms that one takes for granted in the space of real numbers. One such axiom might
be (b #¢) = ((a—b) # (a — c)). The following session in Python (version 3.5.0) produces these
results, where one can take b = .333333333333333 and ¢ = .333333333333334.

>>> (100+(1.0/3)) - .333333333333333
100.0
>>> (100+(1.0/3)) - .333333333333334
100.0

>>> (10+(1.0/3)) - .333333333333333
10.000000000000002

>>> (10+(1.0/3)) - .333333333333334
10.0

Very few practitioners have the time or wherewithal to dig into the underlying reasons (e.g., it
is known that even the process of printing an answer (Andrysco et al. 2016) introduces rounding).

Some everyday tools can be more befuddling. Excel (version 15.56) produces these answers (the
first two cases are discussed in Kahan (2006)) with the rounding rules involved discussed tangen-
tially (Support 2018):

=(4/3-1)*3-1 prints 0,
=((4/3-1)*3-1) prints -2.22045E-16,
=(4/3-1)*3—1+0 prints -2.22045E-16.

Google sheets used to behave similar to Excel, but now prints -2.22045E-16 even for the first case.

Even in IEEE-standard abiding systems, floating-point arithmetic presents numerous difficulties.
Floating-point error analysis is non-compositional. As an example, Kahan (2006) has pointed out
that there exist input intervals in which (e* — 1)/log(e*) exhibits smaller error than (e* —1)/x
even though clearly x always exhibits smaller error than log(e*). In practice, all these boil down to
two vexing features of floating-point. First, an entire given expression must be analyzed to find out
its maximum round-off error; we cannot, in general, learn much by analyzing the subexpressions.
Second, identities true in real arithmetic do not apply to floating-point.

Our Focus. This article develops rigorous methods to estimate the maximum floating-point
round-off error in straight-line code sequences. Understanding error analysis properly in this
setting is essential before we can meaningfully consider programs with conditionals and loops.
Moreover, there are only a handful of tools that conduct error estimation on codes with condi-
tionals and loops, and very few are available for external evaluation. The approaches employed to

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 2. Publication date: December 2018.



Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions ~ 2:3

handle loops in these tools also differ significantly. These make such comparisons practically dif-
ficult.! Given that the community has established widely understood criteria for measuring errors
in straight-line codes, that will be the focus of our detailed study in this article.

We thoroughly evaluate six tool families, namely, Gappa (two tool options studied), Fluctuat,
PRECISA, Real2Float, Rosa, and FPTaylor (two tool options studied) on 24 examples, running on
the same machine. We are also careful to find the best options for running each of these tools, and
fully document all these options plus our evaluation platforms. We believe that this is a timely
contribution in the light of the recently growing interest in rigorous floating-point analysis.

Currently available techniques for computing round-off errors of even simple straight-line pro-
grams often return quite pessimistic overestimates. A typical cause for such poor behavior are
the chosen underlying abstractions that lose correlations between round-off errors generated by
subexpressions. This can lead to unnecessary verification failures in contexts where one is attempt-
ing to prove upper bounds of round-off error. Another limitation of available rigorous techniques
is that most of them do not handle transcendental functions other than by analyzing truncated
series expansions thereof.

In this article, we present a new approach called Symbolic Taylor Expansions that avoids these
problems, and we implement it in a tool called FPTaylor. A key feature of our approach is that
it employs rigorous global optimization, instead of the more familiar interval arithmetic, affine
arithmetic, and/or SMT solvers for error estimation. In addition to providing far tighter upper
bounds of round-off error in a vast majority of cases, FPTaylor also emits per-instance analysis
certificates in the form of HOL Light proofs that can be machine checked. We note that this abil-
ity to check proof certificates is possessed by Gappa, Real2Float (for polynomial programs), and
PRECISA.

Simple Illustrative Example. Suppose one is asked to calculate the maximum round-off error pro-
duced by t/(t + 1) for t € [0,999] being an IEEE-defined 32-bit floating-point number (IEEE 754
2008). This can be achieved in practice in a few minutes by running through all ~23? cases by (1) in-
stantiating this expression in two precisions, namely, the requested 32-bit precision, and a much
higher precision (say, 128-bit) serving as an approximation for reals, and (2) comparing the answers
over the 232 values of the requested floating-point precision. Clearly, this brute-force approach will
not scale for more than one variable or even a single double-precision (64-bit) variable ¢.

While SMT solvers can be used for small problems (Rimmer and Wahl 2010; Haller et al.
2012), the need to scale encourages the use of various abstract interpretation methods (Cousot
and Cousot 1977), the most popular choices being interval (Moore 1966) or affine (Stolfi and de
Figueiredo 2003) arithmetic. Unfortunately, both these popular methods, while often fast, produce
grossly exaggerated error estimates. In many contexts, such overestimates cause unnecessary
verification failures or result in programmers over-optimizing code.

For example, suppose one sets about to verify using interval analysis that the error in calcu-
lating t/(t + 1) in single-precision is less than 0.001. We show in Section 3 that interval analysis
would produce an estimate of error equal to 0.030517578125. Affine arithmetic also does not fare
well as it is well-known to produce exaggerated answers in the presence of non-linear operators.
In reaction to such high error, a programmer might decide to instantiate ¢ in double-precision, and
reapply interval analysis, resulting in an error equal to 5.6843418860808015e—11. However, by
employing better error analysis, one can avoid un-necessarily switching over to higher precision.
For example, using the methods we propose, we can show that the error in ¢/(¢t + 1) can be
rigorously bounded by 1.1920928955078125e—07 even for single-precision.

In Section 6.3, we do provide some preliminary comparative results pertaining to conditionals.
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Contributions. Now we summarize our key contributions:

—We describe all the details of our rigorous floating-point round-off error estimation ap-
proach based on Symbolic Taylor Expansions and rigorous global optimization, which al-
lows us to reduce the dimensionality of the problem while maintaining critical correlations
between round-off errors.

—We release an open source version of our tool FPTaylor.? FPTaylor handles all basic floating-
point operations and all the binary floating-point formats defined in IEEE 754. It supports
transcendental and mixed-precision expressions, uncertainties in input variables, and esti-
mation of relative and absolute round-off errors;’ it also provides a rigorous treatment of
subnormal numbers.

—For the same problem complexity (i.e., number of input variables and expression size), FP-
Taylor obtains tighter bounds than state-of-the-art tools in most cases, while incurring
comparable runtimes. We also empirically verify that our overapproximations are within a
factor of 1.9 of the corresponding underapproximations computed using a recent dynamic
tool (Chiang et al. 2014).

—FPTaylor has a mode in which it produces HOL Light proof scripts. This facility actually
helped us find a bug in our initial tool version. This experience underscores the importance
of built-in consistency checking mechanisms, especially bridging tool versions.

—Many tools in this space including FPTaylor are based on back-end global optimizers. We
provide a thorough evaluation of FPTaylor on our examples across three different optimiz-
ers. Our studies demonstrate the importance of supporting multiple optimizer types that
perform differently on different types of examples.

Roadmap. We first provide the necessary background in Section 2 and present a brief overview
of our approach and compare it against other existing methods in Section 3. Symbolic Taylor
Expansions are presented in Section 4, implementation details in Sections 5 and 6, evaluation
in Section 7, related work in Section 8, and conclusions in Section 9. In our Appendix, we
provide the following details: (A): a comprehensive results table listing all experimental results,
including Fluctuat with and without subdivisions, and FPTaylor under 10 different combinations
of rounding models, backend optimizer selections, and optimization problem selections (standard
rounding model versus improved rounding model); and (B): an evaluation of the performance of
FPTaylor’s backend optimizers on several harder benchmarks.

2 BACKGROUND

Floating-Point Arithmetic. The IEEE 754 standard (IEEE 754 2008), concisely formalized in a related
article (Goualard 2014), defines a binary floating-point number as a triple of sign (0 or 1), signif-
icand, and exponent, i.e., (sgn, sig, exp), with numerical value (—1)%" X sig x 2P, The standard
defines four general binary formats with sizes of 16, 32, 64, and 128 bits, varying in constraints on
the sizes of sig and exp. The standard also defines special values such as infinities and NaN (not
a number). We do not distinguish these values in our work and report them as potential errors.
Rounding plays a central role in defining the semantics of floating-point arithmetic. Denote the
set of floating-point numbers (in some fixed format) as F. A rounding operator rnd : R — F is a
function which takes a real number and returns a floating-point number which is closest to the

2 Available at https://github.com/soarlab/FPTaylor.

3These terms are defined later, but at a high level the absolute error in evaluating an expression E is the actual difference
between the true (real-valued) answer and the floating-point answer, while the relative error divides the absolute error
with the true answer.
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Table 1. Rounding to Nearest
Operator Parameters

Precision (bits) € 1)
half (16) 271 272
single (32) 272 7130
double (64) 275 7L
quad. (128) 2718 716,495

input real number and has some special properties defined by the rounding operator. Common
rounding operators are rounding to nearest (ties to even), toward zero, and toward +co. A simple
model of rounding is given by the following formula (Goldberg 1991; Goualard 2014)

rnd(x) = x(1 +e) +d, (1)

where |e] < e, |d| < §,and e X d = 0. If x is a symbolic expression, then exact numerical values of
e and d are not explicitly defined in most cases. (Values of e and d may be known in some cases; for
instance, if we know that x is a sufficiently small integer, then rnd(x) = x and thus e = d = 0.) The
parameter € specifies the maximal relative error introduced by the given rounding operator. The
parameter & gives the maximal absolute error for numbers which are very close to zero (relative
error estimation does not work for these small numbers called subnormals). Table 1 shows values
of € and § for the rounding to nearest operator of different floating-point formats. Parameters
for other rounding operators can be obtained from Table 1 by multiplying all entries by 2, while
Equation (1) applies both for rounding toward zero and toward infinity (by suitably adjusting the
ranges of e and d).

The standard precisely defines the behavior of several basic floating-point arithmetic operations.
Suppose op : R¥ — R is an operation. Let opg, be the corresponding floating-point operation. Then
the operation opy, is correctly rounded if the following equation holds for all floating-point values
X1se ooy Xt

opfp(xl, ooy xg) = rnd(op(xy, . .., xk)). (2)
The following operations must be correctly rounded according to the standard: +, -, X, /, /, fma.
(Here, fma(a, b, ¢) is a ternary fused multiply-add operation that computes a X b + ¢ with a single
rounding.)

Combining Equations (1) and (2), we get a simple model of floating-point arithmetic which is
valid in the absence of overflows and invalid operations:

o_pfp(xl,...,xk) =op(x1,...,xx)(1+e) +d. (3)

There are some special cases where the model given by Equation (3) can be improved. For instance,
if op is “=” or “+,” then d = 0 (Goualard 2014). Also, if op is “x” and one of the arguments is a non-
negative power of 2, then e = d = 0. These and several other special cases are implemented in
FPTaylor to improve the quality of the error analysis.

Equation (3) can be used even with operations that are not correctly rounded. For example,
most implementations of floating-point transcendental functions are not correctly rounded but
they yield results which are very close to correctly rounded results (Harrison 2000). As another
example, the technique introduced by Bingham and Leslie-Hurd (Bingham and Leslie-Hurd 2014)
can verify relative error bounds of hardware implementations of transcendental functions. In all
such cases, we can still use Equation (3) to model transcendental functions, but we need to in-
crease values of € and § appropriately. In addition, there exist software libraries that compute
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correctly rounded values of transcendental functions (Daramy et al. 2003; Fousse et al. 2007). For
such libraries, Equation (3) can be applied without any changes to the values of € and J.

Taylor Expansion. A Taylor expansion is a well-known formula for approximating an arbitrary
sufficiently smooth function with a polynomial expression. In this work, we use the first-order
Taylor approximation with the second-order error term. Higher-order Taylor approximations are
possible but they lead to complex expressions for second- and higher-order derivatives and do
not give much better approximation results (Neumaier 2003). Suppose f(x1,...,xx) is a twice
continuously differentiable multivariate function on an open convex domain D ¢ R¥. Note that
the open convex domain restriction is only required for the general Taylor’s theorem. We apply
this theorem to elementary functions to derive our rules described in Section 5. As a consequence,
our rules are in general not restricted to any domain, except when we, for example, divide by zero
or take arcsin of an argument outside [—1, 1]. For any fixed point a € D (we use bold symbols to
represent vectors), the following formula holds (e.g., see Theorem 3.3.1 in Mikusinski and Taylor
(2002)):

62
f) = a>+Za—<a a1 3 =T ()~ )y - ). @
ij=1

Here, p € D is a point which depends on x and a.
Later we will consider functions with arguments x and e defined by f(x,e)=

f(x1,...,xn,€1,...,er). We will derive Taylor expansions of these functions with respect
to variables ey, . . ., ex:
k
of
X, e X, a) — —a;) + Ry(x,e). 5
f8) = f02) + ) )+ Ra(x.€) %)
In this expansion, variables x, . . ., x, appear in coefficients g—{l thereby producing Taylor expan-

sions with symbolic coefficients.

3 OVERVIEW OF OUR APPROACH

We now detail the simple example from Section 1 on estimating the worst case absolute round-off
error in the expression t/(t + 1). Our goal is to illustrate the difficulties faced by interval and affine
methods used by themselves, and to bring out many of the key ideas underlying our work. In our
example, t € [0,999] is a floating-point number, and absolute round-off error is defined as err,ps =
|0 — v|, where 0 is the result of floating-point computations and v is the result of corresponding
exact mathematical computations. Let @ and @ denote floating-point operations corresponding to
“/” and “+.”

Suppose interval abstraction were used to analyze this example. The round-off error of ¢ ® 1 can
be estimated by 512¢ where € is the machine epsilon (which bounds the maximum relative error
of basic floating-point operations such as & and @) and the number 512 = 2° is the largest power
of 2 which is less than 1,000 = 999 + 1. Interval abstraction replaces the expression d = t ® 1 with
the abstract pair ([1, 1,000], 512¢) where the first component is the interval of all possible values
of d and 512¢ is the associated round-off error. Now we need to calculate the round-off error of
t @ d. It can be shown that one of the primary sources of errors in this expression is attributable to
the propagation of error in ¢ @ 1 into the division operator. The propagated error is computed by

multiplying the errorin ¢t @ 1 by dtz * At this point, interval abstraction does not yield a satisfactory

4Ignoring the round-off division error, one can view t @ d as t/(dexact + 6) where J is the round-off error in d. Apply
Taylor approximation which yields as the first two terms (#/dexact) — (¢£/ (dgxact))5 .

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 1, Article 2. Publication date: December 2018.



Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions ~ 2:7

result since it computes by setting the numerator ¢ to 999 and the denominator d to 1. Therefore,
the total error bound is computed as 999 X 512¢ = 512,000¢. This works out to be 0.030517578125
for single precision and 5.6843418860808015e—11 for double precision (see Table 1).

The main weakness of the interval abstraction is that it does not preserve variable relationships
(e.g., the two t’s may be independently set to 999 and 0). In the example above, the abstract repre-
sentation of d was too coarse to yield a good final error bound (we suffer from eager composition
of abstractions). While affine arithmetic is more precise since it remembers linear dependencies
between variables, it still does not handle our example well as it contains division, a nonlinear
operator (for which affine arithmetic is known to be a poor fit).

A Dbetter approach is to model the error at each subexpression position and globally solve for
maximal error—as opposed to merging the worst-cases of local abstractions, as happens in the
interval abstraction usage above. Following this approach, a simple way to get a much better
error estimate is the following. Consider a simple model for floating-point arithmetic. Write
t®1=(t+1)(1+¢)and t @ (t® 1) = (t/(t ® 1))(1 + €2) with |e;| < € and |e;| < €. Now, com-
pute the first-order Taylor approximation of our expression with respect to €; and €, by taking ¢
and ¢, as the perturbations around ¢, and computing partial derivatives with respect to them (see
Equations (4) and (5) for a recap):

totony= 0¥ L Lt o@)
(t+1)(1+€) t+1 t+1 t+1
(Here t € [0,999] is fixed and hence we do not divide by zero.) It is important to keep all coefficients
in the above Taylor expansion as symbolic expressions depending on the input variable t. The
difference between t/(t + 1) and t @ (t ® 1) can be easily estimated (we ignore the term O(e?) in
this motivating example but later in Section 4 we demonstrate how rigorous upper bounds are
derived for all error terms):
t t t
1 T ‘t+1‘|61|+‘t+1 leal < 2| €

The only remaining task now is finding a bound for the expression t/(t + 1) for all ¢ € [0,999].
Simple interval computations as above yield t/(t + 1) € [0,999]. The error can now be estimated
by 1998¢, which is already a much better bound than before. We go even further and apply a global
optimization procedure to maximize t/(¢ + 1) and compute an even better bound, i.e., t/(t + 1) < 1
forallt € [0,999]. Thus, the error is bounded by 2¢. This works out to be 1.1920928955078125¢—07.
The combination of Taylor expansion with symbolic coefficients and global optimization yields an
error bound which is 512,000/2 = 256,000 times better than a naive error estimation technique
implemented in many other tools for floating-point analysis. Our error estimation approach has
the added advantage of avoiding the explicit modeling of the operators involved in the problem
being analyzed (“/” and “+” in our example); functions underlying these operators are handled by
the backend global optimizer.

4 SYMBOLIC TAYLOR EXPANSIONS

In this section, we present Symbolic Taylor Expansions at a high level, and then discuss how error
estimation is regarded as an optimization problem (Section 4.1), how relative errors are computed
(Section 4.2), mixed-precision support (Section 4.3), and FPTaylor’s improved rounding model
(Section 4.4). A deep-dive into how exactly Symbolic Taylor Forms are derived is then provided
in Section 5.

Givena function f : R" — R, the goal of the Symbolic Taylor Expansions approach is to estimate
the round-off error when f is realized in floating-point. We assume that the arguments of the
function belong to a bounded domain I, i.e., x € I. In general, the domain I can be quite arbitrary;
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the only requirement is that it is bounded and the function f is defined everywhere on this domain.
In FPTaylor, the domain I is defined with inequalities over input variables. In our benchmarks as
well as our implementation of FPTaylor presented later, we have a; < x; < b; foralli=1,...,n.
In this case, I = [ay,b1] X - -+ X [ap, b,] is a product of intervals.

Let fp(f) : R® — F be a function derived from f where all operations, variables, and constants
are replaced with the corresponding floating-point operations, variables, and constants. Our goal
is to compute the following round-off error:

errip(f.1) = maxlfp()(x) = fGOL ©

The optimization problem in Equation (6) is computationally hard and not supported by most
classical optimization methods as it involves a highly irregular and discontinuous function fp( f).
The most common way of overcoming such difficulties is to consider abstract models of floating-
point arithmetic that approximate floating-point results with real numbers. Section 2 presented
the following model of floating-point arithmetic (see Equation (3)):

opfp(xl, cesXp) = op(xy, .. xp)(14+€) +d.

Values of e and d depend on the rounding mode and the operation itself. Special care must be
taken in case of exceptions (overflows or invalid operations). Our tool can detect and report such
exceptions.

First, we replace all floating-point operations in the function fp(f) with the right-hand side of
Equation (3). Constants and variables also need to be replaced with rounded values, unless they can
be exactly represented with floating-point numbers. We get a new function f (x, e,d) which has
all the original arguments x = (xy,...,x,) € I, but also the additional arguments e = (ey, . .., e)
and d = (dy, . . ., dx) where k is the number of potentially inexact floating-point operations (plus
constants and variables) in fp(f). Note that f(x, 0,0) = f(x). Also, f(x, e,d) = fp(f)(x) for some
choice of e and d. Now, the difficult optimization problem in Equation (6) can be replaced with the
following simpler optimization problem that overapproximates it:

erroverapprox(fs I) = xEI,leiln‘lSae),(ldilg(s |f(X, €, d) - f(x)l (7)
Note that for any I, errg, (f, ) < erToverapprox ( f ,I). However, even this optimization problem is still
hard because we have 2k new variables e; and d; for (inexact) floating-point operations in fp(f).
We further simplify the optimization problem using Taylor expansion.

We know that |e;| <€, |di| <, and e, § are small. Define y; =eq,...,Yr = €k, Yk+1 =
dy, ..., y2x = di. Consider the Taylor formula (see Equation (5)) with the second-order error term
off(x, e, d) with respect to ey, ..., ek, dy, . . ., dx.

P
f(x,e,d) = f(x,0,0) + Z Z—f(x, 0,0)e; + Ry(x, €, d) (8)
im O¢
with
2k k b
1 0% f of
RZ (Xa €, d) - E iél 8ylayj (X’ p)yly] + ; 8_di(x’ 0, O)dl

for some p € R2k suchthaE lpil <efori=1,...,kand |p;| < dfori=k+1,...,2k. Note that we

added first-order terms %(x, 0,0)d; to the error term R, because § = O(e?) (see Table 1; in fact,
§ is much smaller than €?).
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We have f (x,0,0) = f(x) and hence the error from Equation (7) can be determined as follows:

k ~
0
E —f(X, 0, 0)6[
= Bei

where M, is an upper bound for the error term R, (x, e, d). In our work, we use simple methods to
estimate the value of My, such as interval arithmetic or several iterations of a global optimization
algorithm. We always derive a rigorous bound of R, (x, e, d) and this bound is small in general since
it contains an € factor. Large values of M, (relative to the first term in Equation (9)) may indicate
serious stability problems—for instance, the denominator of some expression is very close to zero.
Our tool issues a warning if the computed value of M; is large.

Next, we note that in Equation (9) the maximized expression depends on e; linearly and it
achieves its maximum value when e; = +e. Therefore, the expression attains its maximum when
the sign of e; is the same as the sign of the corresponding partial derivative, and we transform the
maximized expression into the sum of absolute values of partial derivatives. Finally, we get the
following optimization problem:

€IToverapprox (f.]) £ max + Ms, ©)

x€l, |e;|<e

ﬁ(x, 0,0)

ae, . (10)

k
errfp(_ﬂ I) < erroverapprox(fa I) < M, + 61112[)(2
i=1

The solution of our original, almost intractable problem (i.e., estimation of the floating-point error
errg, (f, I) mentioned in Equation (6)) is reduced to the following two much simpler subproblems:
(i) compute all expressions and constants involved in the optimization problem in Equation (10),
and (ii) solve the optimization problem in Equation (10).

In our implementation, we do not compute partial derivatives directly. Instead, we use special
rules that produce the final symbolic expressions as described in detail in Section 5. There are two
advantages to having these rules. First, the rules help systematically derive the partial derivatives.
Second, our tool supports an improved rounding model (see Section 4.4) that introduces discontin-
uous functions for which partial derivatives cannot be computed; our special rules help overcome
this difficulty.

4.1 Solving Optimization Problems

We compute error bounds using rigorous global optimization techniques (Neumaier 2004). In gen-
eral, it is not possible to find an exact optimal value of a given real-valued function. The main
property of rigorous global optimization methods is that they always return a rigorous bound
for a given optimization problem (some conditions on the optimized function are necessary such
as continuity or differentiability). These methods can also balance between accuracy and perfor-
mance. They can either return an estimation of the optimal value with the given tolerance or return
a rigorous upper bound after a specific amount of time (iterations).

It is also important to note that we are optimizing real-valued expressions, not floating-point
ones. A particular global optimizer can work with floating-point numbers internally but it must
return a rigorous result (i.e., one that overapproximates the optimum). For instance, the optimal
maximal floating-point value of the function f(x) = 0.3 is not 0.3 (since this constant is not exactly
FP-representable); instead it is the smallest floating-point number r which is greater than 0.3. This
ensures that the real-valued bound is below the given answer. It is known that global optimization
is a hard problem. But note that abstraction techniques based on interval or affine arithmetic can be
considered as primitive (and generally overly conservative) global optimization methods. FPTaylor
can use any existing global optimization method to derive rigorous bounds of error expressions,
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2:10 A. Solovyev et al.

and hence it is possible to run it with very conservative but fast global optimization technique if
necessary (Table 3, in fact, lists three optimizers that FPTaylor supports).

The optimization problem in Equation (10) depends only on input variables of the function f,
but it also contains a sum of absolute values of functions. Hence, it is not trivial—some global
optimizers may not accept absolute values since they are not smooth functions. In addition, even
if an optimizer accepts absolute values, they make the optimization problem considerably harder.

There is a naive approach to simplify and solve this optimization problem. Find minimum (y;)

and maximum (z;) values for each term g—{ (x,0,0) separately. Let s;(x) = g—ef (x,0,0). Now, imag-
ine computing the following:

k k k
I;lél[le Is; (x)] < Zl r;lealx [s;i(x)] = Zlmax{—yi,zi}. (11)
= 1= i=

This result can sometimes be overly conservative, but in most cases it is close to the optimal re-
sult as our experimental results demonstrate (see Section 7). This leads to the two approaches
(decomposed versus monolithic) discussed in Table 3 (the decomposed approach allows for the
separate maximizations suggested in Equation (11)).

We also apply global optimization to compute a conservative range of the expression for which
we estimate the round-off error (i.e., the range of the function f). By combining this range infor-
mation with the bound of the absolute round-off error computed from Equation (10), we can get a
rigorous estimation of the range of fp(f). The range of fp(f) is useful for verification of program
assertions and proving the absence of floating-point exceptions such as overflows or divisions by
zero. In addition, FPTaylor computes ranges of intermediate expressions. By default, these ranges
are computed with simple interval arithmetic, but there is also an option to compute them with
global optimization backends. In FPTaylor, potential runtime errors are checked with simple in-
terval arithmetic before the construction of Taylor forms. However, FPTaylor does not check for
all runtime errors accurately (this is not the main goal of FPTaylor).

4.2 Relative Error

It is easy to derive the relative error estimation method from our formulas for absolute errors. The
relative error is computed as

fx) '

Replace fp(f)(x) with f (x, e,d) and use Equation (8) to get the following overapproximation of

the relative error:
k .
Z ( (x,0,0) / f(x) )e,

i=1

(12)

errre fp(f,I) = max
xel

€ITre]_overapprox (f I S max
xel, |e;|<e

(13)

M;
max .
L fx)
Here, M, is exactly the same as in Equation (9). The final optimization problem for the relative

error is
k

f
eITre] fp f I) < errye |_overapprox f I) xe[ |f( ) Iile[ Z
i=1

o, % 0.0/f(0). ()

We can also derive a simplified optimization problem similar to Equation (11). Both Equation (14)
and the corresponding simplified optimization problems are implemented in FPTaylor.

Note that the relative error can be estimated only for functions which are not equal to 0 for all
input arguments.
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4.3 Mixed Precision

We derived Equation (10) under the assumption that all rounding operations have the same preci-
sion. It is easy to derive a general optimization problem for mixed precision computations.

Suppose that each error variable e; is bounded by €;: |e;| < €;. Without loss of generality, assume
that €, = min{ey, . . ., € }. Then the optimization problem given by Equation (10) can be rewritten
in the following way:

of

de;

k
€
errg, (f, 1) < Mz + € IESIXZ E—i

(x,0,0)|. (15)

i=1

FPTaylor has been used to verify results of the mixed precision synthesis tool FPTuner (Chiang
et al. 2017).

4.4 Improved Rounding Model

The rounding model described by Equations (1) and (3) is not tight. For example, if we round a
real number x € (8, 16], then Equation (1) yields rnd(x) = x + xe with |e| < e. A tighter bound for
the same e would be rnd(x) = x + 8e. This more precise rounding model follows from the fact that
floating-point numbers have the same distance between each other in the interval [27, 2"1] for
integer n. These lead to the options standard versus improved discussed in Table 3.

We now show how to implement this improved rounding model. Define p;(x) =
max,ez{2" | 2" < x} for x > 0, p,(0) = 0, and pa(x) = —p2(—x) for x < 0. Now we can rewrite
Equations (1) and (3) as

rnd(x) = x + pa(x)e + d,

16
opg, (X1, - -, xk) = 0p(x1, ..., xk) + p2(op(x1, . .., xk))e +d. (16)

The function p, is piecewise constant. The improved model yields optimization problems with
discontinuous functions p,. These problems are harder than optimization problems for the original
rounding model and can be solved with branch and bound algorithms based on rigorous interval
arithmetic (see Section 6.1).

5 DERIVING SYMBOLIC TAYLOR FORMS

We now present the technical details of deriving symbolic Taylor forms and the accompanying
correctness proofs.

Definitions. We want to estimate the round-off error in computation of a function f : R” — Ron
a domain I ¢ R". The round-off error at a point x € I is defined as the difference fp(f)(x) — f(x)
and fp(f) is the function f where all operations (constants, variable, respectively) are replaced
with floating-point operations (constants, variables, respectively). Inductive rules which define
fp(f) are the following:

fp(x) = x, x is a floating-point variable or constant,

fp(x) = rnd(x), x is a real variable or constant,

fp(op(fi, .-, fr)) = md(op(fp(f), .. .. fp(f))),

where op is +, —, X, /, v fma.

(17)

The definition of fp(sin(f)) and other transcendental functions is implementation dependent and
it is not defined by the IEEE 754 standard. Nevertheless, it is possible to consider the same approx-
imation model of fp(sin(f)) as in Equation (3) with slightly larger bounds for e and d.
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¢ rnd(c)
CONST 2 CONSTruo 7T ()
x rnd(x)
VARG VARRND T e @)
RND {1.5)

(f,1f] @s @ [eM;+ 2]), where M, > max (32, [s:(x)])

(f.s),(g:t) (fis),(g,t)

ABD T g say VB salnl)
MUL (fis), (g,t)

(f xg,[f xt;]; @[g x s;]; @[eM>]), where M > max (ZIQ(X)&(X)I)

INV {.s)
(3341 @ ), where Mo > s (z\mgag) )
SQRT {,9)
(VI.157) @ [edo]) . where M > max <é o e )
SIN {:s)
(sin f, [s; cos f]; @ [eMs]), where M, ng?}\%ﬁge (; ; sin(f(x)Jr% skp(x)er)s;(x)s;(x) D

Fig. 1. Derivation rules of symbolic Taylor forms.

Use Equation (1) to construct a function f (x,e,d) from fp(f). The function f approximates
fp(f) in the following precise sense:

Vx €I, de € D,,d € Ds, fp(f)(x) = f(x,e,d), (18)

where € and § are upper bounds of the corresponding error terms in the model in Equation (1).
Here, Dy = {y | lyi| < a}, i.e., e € D means |e;| < € for all i; likewise, d € Ds means |d;| < § for
all j.

We have the following Taylor expansion of f (x,e,d):

k

];(x, e, d) = f(x) + Z si(x)e; + Ra(x, e,d). (19)

i=1

Here we denote s; = %. We also include the effect of subnormal computations captured by d in

the second-order error term. We can include all variables d; in Ry(x, e, d) since § = O(€?) (in fact, §
is much smaller than €?). Rules for computing a rigorous upper bound of R (x, e, d) are presented
in Figure 1.
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Equation (19) is inconvenient from the point of view of Taylor expansion derivation as it differ-
entiates between first- and second-order error terms. Let M, € R be such that |Ry(x,e,d)| < M,
forallx € I, e € D, and d € Dg. In practice, we estimate M, using interval arithmetic by default,
but one can select global optimization as well. Define si1(x) = % Then the following formula

holds:

Vx € I,e € De,d € Ds, e, lers1] < € ARy(x,e,d) = sppq(X)exsr. (20)
This formula follows from the simple fact that IRZ(X’Z’X‘;)I < SkAfzx) = e. Next, we substitute Equa-

tion (19) into Equation (18), find ey from Equation (20), and replace Rz(x, e, d) with sg.1(X)eg1-
We get the following identity:

k+1

Vx el deq, ... exs1, leil < e ANP(f)(x) = f(x) + Zsi(x)ei. (21)

The identity in Equation (21) does not include variables d. The effect of these variables is accounted
for in the expression si1(X)ek+1-

We introduce the following data structure and notation. Let (f,s) be a pair of a symbolic ex-
pression f (we do not distinguish between a function f and its symbolic expression) and a list
s = [s1;...;s,] of symbolic expressions s;. We call the pair (f, s) a Taylor form. We also use capital
letters to denote Taylor forms, for example, F = (f,s). For any function h(x), we write h ~ (f,s)
if and only if

Vx €I, Je € De, h(x) = f(x) + Z si(X)e;. (22)

If h ~ (f,s), we say that (f,s) corresponds to h. We are interested in Taylor forms (f,s) corre-
sponding to fp(f). Note that the expression on the right-hand side of Equation (22) is similar to an
affine form where all coeflicients are symbolic expressions and the noise symbols e; are restricted
to the interval [—¢, €].

Rules. Our goal is to derive a Taylor form F corresponding to fp(f) from the symbolic expression
of fp(f). This derivation is done by induction on the structure of fp(f). Figure 1 shows main deriva-
tion rules of Taylor forms. In this figure, the operation @ concatenates two lists and [] denotes the
empty list. The notation [~t;]; means [~t;;...;—t,] where r is the length of the corresponding
list.

Consider a simple example illustrating these rules. Let f(x,y) = 1.0/(x + y) and x, y € [0.5, 1.0].
From Equation (17) we get fp(f)(x,y) = rnd(1.0/ rnd(rnd(x) + rnd(y))). (Note that x and y are
real variables so they must be rounded.) We take the rules CONST and VARrnp and apply them to
corresponding subexpressions of fp(f):

CONST(1.0) =(1.0,[]),
VARRND (rnd(x)) = (x, [ferr (x)]) = (x, [x]),
VARRND (rnd(y)) = (v, [ferr (¥)]) = <y, [y]).

Here, the function fi; : R — R estimates the rounding error of a given value. We used the simplest
definition of this function: fi;r(c) = c. Butitis also possible to define f,, in a more precise way and
get better error bounds for constants and variables. The rule CONSTrnp (VARRND, respecetively)
may yield better results than application of rules CONST (VAR, respectively) and RND in sequence.
We present the remainder of the Taylor form construction across four steps, naming the inter-
mediate results A through D. Applying the rule ADD to the Taylor forms of rnd(x) and rnd(y):

A= ADD(x, [x]), (y, [y]) = (x +y, [x] @ [y]).
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é
E b

B=RND(A) = <x+y, [x+y] @ [x:y] @ [GMz +2

We now apply the RND rule to A to get

where M, > max, yefo.5,1.01(Ix| + |y|) is found to be 2 internally via interval arithmetic. For the
sake of illustration, let us replace eM, + g by the overapproximation 2.1e:

B=(x+y,[x +y;x;y;2.1€]).
Then we apply the rule INV to B (with some algebraic simplification):

1
x+y

-1 —x -y  —21le
x+y (x+y)? (x+y)? (x +y)?
where M, is computed using the formula in the INV rule. In this case, M, = 16.1, which is computed
internally in FPTaylor using interval arithmetic. The next step is the multiplication rule applied
to the Taylor form corresponding to the constant 1.0 and C: MUL((1.0, []), C) = (fc,sc @ [€ - 0]).
Finally, we apply the rule RND to MUL((1.0, []),C):

-1 -x -y —2.1€ é
-1

1 1
D= , ; ; ; ;
<X+y x+y (x+y)?* (x+y)? (x+y)?

xX+y
As before, we compute eM, + g < 4.1 and get the final Taylor form corresponding to our example
(a complete treatment of all expression types is given under the proof of Theorem 5.1):

1 1 -1 —x -y  =21le
x+y [x+y x+y (x+y)? (x+y)? (x+1y)?’

C = INV(B) =<

@ [€Mz]> ,

16.16;0;4.16]>.

The main property of rules in Figure 1 is given by the following theorem.

THEOREM 5.1. Suppose RULE is one of the derivation rules in Figure 1 with k arguments and op is
the corresponding mathematical operation. Let Fy, . . ., Fx. be Taylor forms such thathy; ~ Fy, ... hx ~
Fy. for some functions hy, .. ., hi. Then we have

Op(hl, . ,hk) ~ RULE(F], . ,Fk).

Proor. We prove the property in turn for all rules defined in Figure 1.

CONST. Let ¢ € R be a constant. Then the corresponding Taylor form is {c, []). The proof of the
fact that ¢ ~ {c, []) is trivial. We have another rule for constants. If the symbolic expression of
fp(f) contains the term rnd(c) (i.e., ¢ cannot be exactly represented with a floating-point number),
then the rule CONSTRnp is applied and the form {c, [ ferr(c)]) is derived. There are different ways
to define the function fe;,(c). The simplest definition is fir(c) = c. In this case, the fact rnd(c) ~
(c, [c]) follows from Equation (1): rnd(c) = c¢(1 + €) = ¢ + ce with |e| < €. (We need to make an
additional assumption that rnd(c) is not in the subnormal range of floating-point numbers, i.e.,
d = 0 in Equation (1); it is usually the case, but if it is a subnormal number, then we still can
construct a correct Taylor form as {c, [§/€]).) It is possible to construct a more precise Taylor
form of ¢ when rnd(c) # c. We can always compute a precise value fe(c) = (rnd(c) — ¢)/e and
the corresponding Taylor form.

VAR. The rules for variables are analogous to rules for constants.

RND. Given a Taylor form (f, s), the rounding rule RND returns another Taylor form which cor-
responds to a rounding operator applied to the expression defined by (f,s). We need to prove
that h ~ (f,s) implies rnd(h) ~ RND({f,s)) (here, rnd(h) is a function defined by rnd(h)(x) =
rnd(h(x))). Fix x. The assumption h ~ (f, s) means that we can find ey, . . ., ex with |e;| < € such
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that h(x) = f(x) + Zl 1 Si(x)e; (see Equation (22)). Equation (1) allows us to find e, and d with
lexs1] < €, |d| < 6 such that

k
md(h(x)) = ( RS si(x)ei) (1+exsr) +d
i=1

k k
= fO) + Y six)ei + f(Rexs + (d e ) si<x>ei) :
i=1

i=1

Define si,; = f and find M, such that M, > maxer(Zi.‘:1 |s; (x)]). Define sg45 = €My + g. We get

d+ epqq Zf-‘:l si(X)e; = Skyz€kso for some er.,. Moreover, it is not difficult to see that |ex 2| < €.
We can write

k+2
3@1, c o5 €k €y, €42, |ei| <€EAN rnd(h(x)) = f(x) + Z si(x)ei‘

i=1

Compare the definitions of si; and si.» with the result of the rule RND and conclude that rnd(h) ~
RND((f, s)).

SUB (ADD). Consider the subtraction rule (the addition rule is analogous). Suppose h; ~ (f,s) and
hy ~ (g, t). Show that hy — hy ~ SUB((f,s),(g,t)). We can find ey, ...,ex and vy,..., 0, |e;| < €,
|v;| < €, such that

hi(x) — hy(x) = ( x)+Zs(x ) (x)+2tj(x)vj)

j=1
k r
= f(x) - g(x) + (Z si(x)e; + Z(—t;(x))vj)-
i=1 j=1

Hence the result follows.
MUL. Suppose that h; ~ (f,s) and hy ~ (g, t). Fix x € I, then by Equation (22) we have

hi(x) = f(x) + Zsi(x)ei, for some ey, ..., e, |e;| <€,
i=1

ha(x) = g(x) + Z tj(x)v;, for some vy, ..., v, |v;] < €.
j=1

Compute the product of h;(x) and h(x):

¢
hi(x)hy(x) = (f(x) + Z Si x)el) (g(x + Z tj(x)v )

i=1

= F()g(x) + Zf(x ) (x)v; + Zg(x (x)e; + Ra(x),

where Ry(x) = Zl Lje1 Si (x)tj(x)e;v;. Find a constant M, such that M, > maxxd(z;’:'l j:1|

si(x)t;(x)]). We have Mye? > |R,(x)| for all x € I. Hence, for any x we can find w = w(x), [w| < ¢,
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such that R,(x) = eM,w. Therefore,
r t
m()h(x) = fX)g(x) + > fE)E+ Y gx)si + (eMy)w.
= i=1

This equation holds for any x € I. Compare the right-hand side of this equation with the definition
of the rule MUL and we get hihy ~ MUL((f, s), (g, t)).

INV. The proof of this rule follows from the following Taylor expansion:

;:__ SiSj
f+2kskec f Zle Z(f+2ksk9k31€]’

where |0k | < |ex| < €. Replace the last sum in this expansion with its upper bound M;e and we get
the rule INV.

SQRT. The proof of this rule follows from the following Taylor expansion:

;S
\/f+ k= \/7+ Z 2\/_ Z (f + 2k ;kek)3/2 e

where |0k | < |ex| < €. Replace the last sum in this expansion with its upper bound M;e and we get
the rule SQRT.

SIN. The proof of this rule follows from the following Taylor expansion:

. . 1 .
sin (f + zkl skek) =sin f + Z sicos(f)e; — 5 lzjl sin (f + Zk] sk6k>s,~sje,-ej,
where |0k | < |ex| < €. Replace the last sum in this expansion with its upper bound M;e and we get
the rule SIN. O

The next theorem summarizes the main result of this section.

THEOREM 5.2. For any input function fp(f), the Taylor form constructed with the rules described
in Figure 1 corresponds to the function fp(f). That is, if the constructed Taylor form is (f,s), then
fp(f) ~ (f,s) and the property in Equation (22) holds.

Proor. We present a sketch of the proof. The proof is by induction on the symbolic expression
fp(f). The base case corresponds to Taylor forms of constants and variables which are derived
with rules CONST and VAR. These rules produce correct Taylor forms (see Theorem 5.1). The in-
duction step follows from the identity (here, we give a proof for the multiplication; all other oper-
ations are analogous): fp(f X g) = rnd(fp(f) X fp(g)). Suppose that fp(f) ~ (f,s) = F and fp(g) ~
(g,t) = G. Theorem 5.1 implies h = fp(f) X fp(9) ~ MUL(F, G) = H and rnd(h) ~ RND(H). There-
fore, fp(f X g) ~ RND(MUL(F, G)) and the result follows by induction. O

6 IMPLEMENTATION

We implemented a prototype tool called FPTaylor for estimating round-off errors in floating-point
computations based on our method described in Sections 4 and 5. The tool implements all fea-
tures described there such as estimation of relative errors (Section 4.2), support for transcendental
functions (Section 5), mixed precision floating-point computations (Section 4.3), and the improved
rounding model (Section 4.4).

FPTaylor is implemented in OCaml and uses several third-party tools and libraries. An interval
arithmetic library (Alliot et al. 2012b) is used for rigorous estimations of floating-point constants
and second-order error terms in Taylor expansions. Internally, FPTaylor implements a very simple
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1: Variables

2: float64 x in [1.001, 2.0],
3: float64 y in [1.001, 2.0];
4: Definitions

5: t rnd64= x * y;
6: // Constraints
/] x+y <=2
8: Expressions

9: r rnd64= (t-1)/(t*t-1);

Fig. 2. FPTaylor input file example.

branch and bound global optimization technique based on interval arithmetic. The main advantage
of this simple optimization method is that it can work even with discontinuous functions which
are required by the improved rounding model described in Section 4.4. Our current implementa-
tion of the branch and bound method supports only simple interval constraints for input domain
specification. FPTaylor also works with several external global optimization tools and libraries,
such as NLopt optimization library (Johnson 2017) that implements various global optimization
algorithms. The optimization algorithms in NLopt are not rigorous and may produce incorrect
results, but they are fast and can be used for obtaining solid preliminary results before applying
slower, rigorous optimization techniques. The Z3 SMT solver (de Moura and Bjerner 2008) can
also be used as an optimization backend by employing a simple binary search algorithm similar
to the one described in related work (Darulova and Kuncak 2014). We use Z3-based optimization
to support inequality constraints; however, it does not work with transcendental or discontinuous
functions. We also plan to support other free global optimization tools and libraries in FPTaylor
such as ICOS (Lebbah 2009), GlobSol (Kearfott 2009), and OpenOpt (OpenOpt 2017). We optionally
use the Maxima computer algebra system (Maxima 2013) for performing symbolic simplifications
which can improve overall performance.

As input FPTaylor takes a text file describing floating-point computations, and prints out the
computed floating-point error bounds as output. Figure 2 demonstrates an example FPTaylor input
file. Each input file contains several sections which define variables, constraints (in Figure 2 con-
straints are not used and are commented out), and expressions. FPTaylor analyzes all expressions
in an input file. All operations are assumed to be over real numbers. Floating-point arithmetic
is modeled with rounding operators and with initial types of variables. The operator rnd64= in
the example means that the rounding operator rnd64 is applied to all operations, variables, and
constants on the right-hand side (this notation is borrowed from Gappa (Daumas and Melquiond
2010)). See the FPTaylor user manual distributed with the tool for all usage details.

Implementation Details of Taylor Form Derivation. In Section 5, the definitions of Taylor forms
and derivation rules are simplified. Taylor forms which we use in the implementation of our
method keep track of error variables e; explicitly in order to account for possible cancellations.
Consider a simple example of computing a Taylor form of fp(f) where f(x,y) = xy — xy with
x,y € [0,1] NF. It is obvious that fp(f)(x,y) = 0 for all x and y. On the other hand, we have
fp(f)(x,y) = rnd(rnd(xy) — rnd(xy)) and if we compute its Taylor form with rules from Figure 1,
we get an error which is of order of magnitude of e. The problem in this example is that the
rounding error introduced by floating-point computation of xy should always be the same. Our
simplified Taylor forms do not explicitly include error terms e;, which we address with the fol-
lowing easy modification. Let a pair (f, [s;eq,];) be a Taylor form where f,s; are symbolic expres-
sions and e,, are symbolic variables. Values of indices a; can be the same for different values of i
(e.g., we can have a; = a; = 1). With this new definition of the Taylor form, the only significant
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change must be done in the rounding rule RND. This rule creates the following list of error terms:
[fl@ s @[eM; + g]. This list needs to be replaced with the list [feq,]@ s @[(eM + g)ea]. Here,
eq is a fresh symbolic variable and the index as corresponds to the symbolic expression f; ar
should be the same whenever the same expression is rounded.

Explicit error terms also provide the mixed-precision support in FPTaylor. It is done by attaching
different bounds (values of € and §) to different error terms.

Improvements to Taylor Form Derivation. We implemented several other improvements of the
derivation rules for obtaining better error bounds:

—Whenever we multiply an expression by a non-negative power of 2 or divide by a negative
power of 2, we do not need to round the result.

—If we divide by a non-negative power of 2 or multiply by a negative power of 2, we only
need to consider potential subnormal errors (given by the term g in the RND rule).

—There are no subnormal errors for rounding after addition, subtraction, or square root (i.e.,
we do not need to add the term g in the RND rule).

— Constants which can be exactly represented by floating-point numbers (of a given precision)
are not rounded.

—The rule CONSTgnp has different implementations for standard (Equation (1)) and im-
proved (Equation (16)) rounding models. For the improved rounding model, we have
ferr(¢) = (rnd(c) — c¢)/€e computed with infinite precision rational arithmetic (all input con-
stants are finite decimal numbers in FPTaylor). For the standard rounding model, we have
ferr(c) = p2(c) (see Section 4.4). This definition is formalized in HOL Light. The fe defi-
nition for the improved rounding model is better and we plan to use it for the standard
rounding model when we formalize it in HOL Light.

—The rule VARpnp has two different implementations for the standard rounding
model. The default implementation is fer(x) = x. Another implementation is fe(x) =
max{|p2(a)l, |p2(b)|} if the variable x belongs to the interval [a, b]. This implementation
may yield better results when the interval [a, b] is not too wide. Essentially, we overesti-
mate the improved rounding error for a variable. From the optimization point of view, the
second implementation is simpler than the default implementation because it replaces some
variables with constants. In our experiments, we observed that the second implementation
is better for all but one benchmark (t_div_t1; see Section 7) and we will present results for
the second implementation only. Whenever the standard rounding model is used, one can
always run experiments with both variable rounding rules and select the best results. Note
that this rule is only applied to real-valued input variables.

6.1 Rigorous Global Optimizer

We have developed a global optimization tool called GELp1ia (Gelpia 2017) to obtain the upper-
bounds of round-off errors. In general, finding the maximum value of an n-variable function re-
quires search over the n-dimensional space of its inputs—an n-dimensional rectangle. Given the
large number of floating-point n-tuples in such input space, exhaustive search is all but impossi-
ble, and sampling can cover only a tiny fraction of possible input tuples. Precision estimation and
optimization methods leverage a variety of tools and techniques, including dReal (Gao et al. 2013),
semi-definite programming (Magron et al. 2017), SMT (Darulova and Kuncak 2014), and classi-
cal tools for interval and affine arithmetic (Daumas and Melquiond 2010; Darulova and Kuncak
2011, 2014). Previous studies (Panchekha et al. 2015; Lee et al. 2016; Solovyev et al. 2015) have
shown that using optimization tools in this arena is promising, often proving to be advantageous
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function IBBA(f, x, T, fiol)
fbestLow & —00
fbestHigh < —o0
Q < Queue()
Q.push(z)
while Q #( do
Ty < Q-pop()
fbestLow — maw(fbestLowv lOU)@T(fLEn))
if wupper(fzn) < frestiow OF width(x,) < x4 OF
width(fx,) < fio then
fbestHigh — max(fbestHigha upper(fxn))
continue
end if
xy, Ty — split(zy,)
Q.push(xy)
Q.push(z,)
end while
return fbestHigh
end function

Fig. 3. Interval branch and bound algorithm (IBBA) underlying GELPIA. Here, f is the function to optimize
and x is the input domain (treated as a scalar here, but in general, is an N-dimensional rectangular domain).
Arguments x;,; and f;,; are scalars used to suppress the split step when either the input or the output
interval width are small.

to more classical (e.g., SMT-based) methods that do not support important classes of functions (e.g.,
transcendental functions). When the interval functions in question are monotonic (for rectangle ry
contained in rectangle ry, i.e., r; E ry, the upper-bound calculation respects f(r;) E f(r2)), one can
perform this search using a combination of heuristics.

The basic heuristics are to split a rectangle along the longest dimension, obtain upper-bounds
for each sub-rectangle, and zoom into the most promising sub-rectangle, while also keeping alive a
population of postponed rectangles (Alliot et al. 2012a). We have found that performing this split at
the point where the exponent increments improves performance. Determining if a sub-rectangle is
promising utilizes the derivative of the function—if the derivative spans zero, then a local maxima
or minima must be present. A multi-point function estimation is used to further order the intervals.
This of course only changes the convergence rate, and not the soundness of the optimizer. This
is known as the interval branch and bound algorithm, and Figure 3 gives the pseudocode as it is
implemented in GELPIA. The arguments x;,; and f;,; dictate, respectively, the maximum width an
input rectangle and output interval are allowed to have before bounding occurs. This allows for
full optimization when these arguments are set to zero. We implemented this basic algorithm with
a number of improvements in our GELPIA global optimizer.

GELPIA is a rigorous global optimizer—it guarantees that the returned upper bound is greater
than or equal to the global maximum, and the returned lower bound is less than or equal to the
global maximum. Key to its efficiency is its use of GAOL (Goualard 2017), an interval library which
uses X86 SIMD instructions to speed up interval arithmetic, and also supports transcendental func-
tions such as sin, cos, tan. GAOL is sound as it satisfies the inclusion property for interval arith-
metic. For example, if [a, b] + [¢,d] = [a + ¢, b + d], where the addition is computed using real
arithmetic, GAOL computes the interval as [a, b] P[c,d] = [a +c, b + d], where a + cis the near-
est double rounded toward —co and b + d is the nearest double rounded toward co. This guarantees
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the interval inclusion property as [a,b] + [c,d] =[a+c,b+d] C [a+c, b+d] =[ab] Plec.d].
Since we are operating on real intervals, we employ rewriting to improve results. For example,
if x = [-1,1] then, x - x equals [-1, 1] in interval arithmetic; we replace the input sub-expression
with x% which evaluates to [0, 1]. We are also able to determine statically if a division-by-zero error
occurs, and emit an appropriate message to the user. We implemented GELPIA as an open source
project using the Rust programming language, and we parallelized the search algorithm. We use
an update thread that periodically synchronizes all solvers to focus their attention on the current
most promising sub-rectangle. Additionally, information from other solvers is used to boost the
priorities of promising sub-rectangles.

6.2 Formal Verification of FPTaylor Results in HOL Light

We formalized error estimations in Equations (10) and (11) in HOL Light (Harrison 2009). In our
formalization we do not prove that the implementation of FPTaylor satisfies a given specification.
Instead, we formalized theorems necessary for validating results produced by FPTaylor. The va-
lidity of results is checked against specifications of floating-point rounding operations given by
Equation (1). We also use Equation (16) to certify error bounds of constants. The general improved
rounding model is not fomally verified yet. We chose HOL Light as the tool for our formalization
because it includes a procedure for formal verification of nonlinear inequalities (including inequal-
ities with transcendental functions) (Solovyev and Hales 2013). Verification of nonlinear inequali-
ties is necessary since the validity of results of global optimization procedures can be proved with
nonlinear inequalities. Proof assistants PVS (Narkawicz and Munoz 2013) and Coq (Martin-Dorel
et al. 2013) also include procedures for verification of nonlinear inequalities.

The validation of FPTaylor results is done as follows. First, FPTaylor is executed on a given
problem with a special proof saving flag turned on. In this way, FPTaylor computes the round-off
errors and produces a proof certificate and saves it in a file. Then a special procedure is executed
in HOL Light which reads the produced proof certificate and formally verifies that all steps in this
certificate are correct. The final theorem has the following form (for an error bound e computed
by FPTaylor):

FVxel, [fp(f)(x) - fx)] <e.

Here, the function fp(f) is a function where a rounding operator is applied to all operations, vari-
ables, and constants. As mentioned above, in our current formalization we define such a rounding
operator as any operator satisfying Equations (1) and (16). We also implemented a comprehensive
formalization of floating-point arithmetic in HOL Light (Jacobsen et al. 2015); our floating-point
formalization is available in the HOL Light distribution. Combining this formalization with theo-
rems produced from FPTaylor certificates, we can get theorems about floating-point computations
which do not explicitly contain references to rounding models from Equations (1) and (16).

The formalization of FPTaylor helped us to find a critical bug in our implementation. We have
an option to use an external tool for algebraic simplifications of internal expressions in FPTaylor
(see Section 6 for more details). All expressions are passed as strings to this tool. Constants in
FPTaylor are represented with rational numbers and they are printed as fractions. We forgot to
put parentheses around these fractions and in some rare cases it resulted in wrong expressions
passed to and from the simplification tool. For instance, if ¢ = 111/100 and we had the expression
1/c, then it would be given to the simplification tool as 1/111/100. We discovered this associativity-
related bug when formal validation failed on one of our test examples. The main takeaway is that
the maintenance and enhancement of FPTaylor (and other tools that generate proof-certificates)
is greatly facilitated by such safety-nets.
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All limitations of our current formalization are limitations of the tool for verification of nonlin-
ear inequalities in HOL Light. In order to get a verification of all features of FPTaylor, it is necessary
to be able to verify nonlinear inequalities containing the discontinuous function p;(x) defined in
Section 4.4. We are working on improvements of the inequality verification tool which will in-
clude this function. Nevertheless, we already can automatically verify interesting results which
are much better than results produced by Gappa, another tool which can produce formal proofs
in the Coq proof assistant (Coq 2016).

6.3 Handling of Conditionals
FPTaylor is not a tool for general-purpose floating-point program analysis. It cannot handle con-
ditionals and loops directly, but can be used as an external decision procedure for program verifi-
cation tools (e.g., Frama-C (2017) and Rakamari¢ and Emmi (2014)).

Conditional expressions can be verified in FPTaylor in the same way as it is done in
Rosa (Darulova and Kuncak 2014). Consider a simple real-valued expression

f(x) =ife(x) < 0then fi(x) else f(x).
The corresponding floating-point expression is the following:
f(x) = if é(x) < 0 then fi(x) else fa(x),

where ¢(x) = ¢(x) + ec(x), fl(x) = fi(x) + e1(x), andfz(x) = f2(x) + ez(x). Our goal is to compute
a bound E of the error e(x) = f(x) - f(x).

First of all, we estimate the error e.(x). Suppose it is bounded by a constant E.: |e.(x)| < E..
Now we need to consider four cases: two cases when both f(x) and f (x) take the same path, and
two cases when they take different paths:

(1) Find E; such that ¢(x) < 0 = |fi(x) - fi(x)| < E1.

(2) Find E, such that c¢(x) > 0 = |fo(x) — fa(x)| < Es.

(3) Find E; such that —E, < ¢(x) <0 = |f(x) — fi(x)| < Es.
(4) Find E4 such that 0 < ¢(x) < E, = [fi(x) — fa(x)| < Es.

Finally, we take E = max{E1, Ey, E3, E4}. Problems (1)-(4) can be solved in FPTaylor. Indeed, FP-
Taylor can handle additional constraints given in these problems (c(x) < 0, and so forth; currently,
constraints are supported by the Z3-based optimization procedure only) and it can directly com-
pute bounds of errors | f, (x) = fi(x)],i = 1, 2. The value of E5 can be determined from the following
inequality:

1fa(x) = ()] < 1f(x) = fi)] + [folx) = fr)].

It is enough to bound the range of the real-valued function f,(x) — fi(x) which FPTaylor can do.
We can find E4 in the same way.

The procedure described above is partially implemented in FPTaylor and we already can handle
some examples with conditionals in a semi-automatic way (we need to prepare separate input files
for each case described above).

Consider a simple example which demonstrates that automatic handling of conditionals in FP-
Taylor is a promising research direction. Figure 4 presents a simple Fluctuat (Delmas et al. 2009)
example with two floating-point variables a and b such that a, b € [0,100]. We want to measure
the round-off error in the result r. We prepared corresponding input files for Rosa and FPTaylor.
Table 2 shows results obtained with Fluctuat (version 3.1071), Rosa (version from May 2014), and
FPTaylor on this simple example. We can see that Fluctuat (even with manual subdivisions) failed
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int main(void) {
double a, b, r;
a = __BUILTIN_DAED_DBETWEEN(0.0, 100.0);
b = __BUILTIN_DAED_DBETWEEN(0.0, 100.0);
if (b >= a) {
r=b/ (b-a+ 0.5);
} else {
r=5b/ 0.5;
}
DSENSITIVITY(r);
return O;

}

Fig. 4. A simple Fluctuat example with a conditional expression.

Table 2. Round-Off Error Estimation Results for the
Example in Figure 4

Fluctuat Fluctuat (subdiv.)  Rosa  FPTaylor
00 00 1.8e-11 5.8e-12

to find any error bound in this example. Results of FPTaylor are about three times better than
Rosa’s results.

7 EXPERIMENTAL RESULTS

In this section, we describe our extensive empirical evaluation of FPTaylor, including a detailed
comparison of various tools and configurations in terms of the computed round-off errors and
performance.

7.1 Tools and Benchmarks

We have conducted a detailed comparative study of FPTaylor against Gappa (version 1.3.1)
(Daumas and Melquiond 2010), Fluctuat (version 3.1384) (Delmas et al. 2009), PRECiSA (Titolo
2017), Real2Float (version 0.7), and the Rosa compiler for reals (we report results from the version
of this tool from the opt branch dated October 2015, as this yields much better results overall)
(Darulova and Kuncak 2014). See Section 8 for more information on these tools. Table 3 lists FPTay-
lor configurations we experimented with, where “Simple bb” denotes a simple implementation of
the branch and bound algorithm used in the FPTaylor paper (Solovyev et al. 2015). As an example,
FPTaylor-fcomputes results using the standard rounding approach (that supports HOL Light proof
generation), decomposed optimization problem (Equation (11)), and Gelpia optimizer. On the other
hand, FPTaylor-h computes results using the improved rounding model (for which our HOL Light
proof generation is not available) combined with the monolithic optimization problem (Equa-
tions (16) and (10)). Table 4 lists the configurations of related tools we experimented with. Gappa
(hints) and Fluctuat (subdiv.) compute results using manually provided subdivision hints. More pre-
cisely, Gappa and Fluctuat are instructed to subdivide intervals of input variables into a given num-
ber of smaller pieces. The main drawback of these manually provided hints is that it is not always
clear which variable intervals should be subdivided and how many pieces are required. It is very
easy to make Gappa and Fluctuat very slow by subdividing intervals into too many pieces (even
100 pieces are enough in some cases).’ Note that we selected the results of only the most

5In one experiment, we provided Gappa with hints of the form $x; $y; and that provided results in-between in quality
between Gappa and Gappa (hints).
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Table 3. Configurations of FPTaylor Used in the Experiments

Configuration Rounding model Optimizer Optimization type

FPTaylor_a standard Simple bb  decomposed
FPTaylor_b standard Simple bb  monolithic
FPTaylor_c improved Simple bb  decomposed
FPTaylor_d improved Simple bb  monolithic
FPTaylor_e standard Gelpia decomposed
FPTaylor_f standard Gelpia monolithic
FPTaylor_g improved Gelpia decomposed
FPTaylor_h improved Gelpia monolithic
FPTaylor_i standard Z3 decomposed
FPTaylor_j standard Z3 monolithic

Table 4. Configurations of Related Tools Used in the Experiments

Tool Version and notes

Fluctuat fluctuat v3.1384

Fluctuat subdiv. fluctuat_v3.1384 with 20 subdivisions per input variable
Gappa Gappa 1.3.1

Gappa simple Gappa 1.3.1 with simple hints

Gappa hints Gappa 1.3.1 with advanced hints

PRECIiSA master branch (commit 19f5089ca9ef) with args. 52 5 2 False 40
Real2Float version 0.7

Rosa master branch (commit 1f9e9d2fc1dc)

Rosa opt opt branch (commit d1360b85a563)

interesting configurations to be included in the article. We provide all results in the accompanying
spreadsheet at Solovyev (2017).

Table 5 lists all of our benchmarks and provides a comparison with the dynamic underap-
proximation tool S3FP (Chiang et al. 2014). We used 24 benchmarks in our empirical evaluation,
most of which were obtained from related work (Darulova and Kuncak 2014; Magron et al. 2017);
we added several more benchmarks that include transcendental functions.® For all benchmarks,
input values are assumed to be real numbers, which is how Rosa treats input values, and hence
we always need to consider uncertainties in inputs. Benchmarks sine, sqroot, and sineOrder3
are different polynomial approximations of sine and square root. The benchmark ¢ div_t1 is
the t/(t + 1) example presented in Section 1. Benchmarks carbonGas, rigidBodyl, rigidBody2,
doppler1, doppler2, and doppler3 are nonlinear expressions used in physics. Benchmarks verhulst
and predPrey are from biological modeling. Benchmarks turbinel, turbine2, turbine3, and jetEngine
are from control theory. Benchmarks kepler0, keplerl, kepler2, himmilbeau, and hartman3 are
from mathematical problems. Benchmark logExp is from the Gappa++ paper (Linderman et al.
2010) and it estimates the error in log(1 + exp(x)) for x € [-8, 8]. Benchmarks sphere and azimuth
are taken from NASA World Wind Java SDK (NASA 2017), which is a popular open-source 3D
interactive world viewer with many users ranging from US Army and Air Force to European
Space Agency. An example application that leverages World Wind is a critical component of the

S0Our benchmarks are available at https://github.com/soarlab/FPTaylor/tree/develop/benchmarks/toplas.
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Table 5. Benchmarks, Their Characteristics, and Comparison
with the Dynamic Underapproximation Tool S3FP

Benchmark Vars Ops Trans FPTaylor-h  S3FP  Ratio
Univariate polynomial approximations

sine 1 18 0 4.5e-16 2.9e-16 1.51
sineOrder3 1 5 0 6.0e-16 4.1e-16  1.45
sqroot 1 14 0 5.1e-16 4.7e-16  1.08
Rational functions with 1 to 6 variables

t_div_t1 1 2 0 2.3e-16 1.6e-16 1.38
carbonGas 1 11 0 6.0e-9 4.2e-9 1.40
doppler1 3 8 0 1.3e-13 1.0e-13  1.24
doppler2 3 8 0 2.3e-13 1.9e-13  1.20
doppler3 3 8 0 6.7e-14 5.7e-14  1.16
himmilbeau 2 14 0 1.1e-12 7.5e-13  1.45
jetEngine 2 48 0 1.1e-11 7.1e-12  1.53
keplerO 6 15 0 7.5e-14 5.3e-14 1.40
kepler1 4 24 0 2.9e-13 1.6e-13 1.72
kepler2 6 36 0 1.6e-12 8.4e-13  1.90
predPrey 1 7 0 1.6e-16 1.5e-16  1.04
rigidBody1 3 7 0 3.0e-13 2.7e-13 1.09
rigidBOdyZ 3 14 0 3.7e-11 3.0e-11 1.21
turbinel 3 14 0 1.7e-14 1.1e-14 145
turbine2 3 10 0 2.0e-14 1.4e-14 1.39
turbine3 3 14 0 9.6e-15 6.2e-15 1.54
verhulst 1 4 0 2.5e-16 2.4e-16  1.02
Transcendental functions with 1 to 4 variables

azimuth 4 14 7 8.9e-15 6.6e-15 1.35
hartman3 3 72 4 4.6e-15 2.4e-15 1.89
logexp 1 3 2 2.0e-15 1.4e-15 1.43
sphere 4 5 2 8.4e-15 6.4e-15  1.29

Columns Vars, Ops, and Trans show the numbers of variables, floating-point op-
erations, and transcendental operations in each benchmark, respectively; column
FPTaylor-h shows error bounds computed by FPTaylor; column S3FP shows lower
bounds of errors estimated with S3FP; column Ratio gives ratios of overapproxima-
tions computed with FPTaylor-h and underapproximations computed with S3FP.

Next Generation Air Transportation System (NextGen) called AutoResolver, whose task is to
provide separation assurance for airplanes (Giannakopoulou et al. 2014).

We first compare the results of FPTaylor with lower bounds of errors estimated with a state-
of-the-art dynamic underapproximation tool S3FP (Chiang et al. 2014) in Table 5. All FPTaylor
results are only 1.0-1.9 times worse than the estimated lower bounds for polynomial and rational
benchmarks and 1.3-1.9 times worse for transcendental tests. This indicates that the overapprox-
imations of round-off errors produced by FPTaylor are typically close to the actual errors. We also
conducted experiments in which SMT solvers that support floating-point reasoning (Cimatti et al.
2013; de Moura and Bjerner 2008) were directly used to measure roundoff error. This was done
by expressing the function of interest in the theory of real numbers as well as in the theory of
floating-point numbers, and then showing that their difference lies within a threshold. This ap-
proach was unable to produce results even on simple examples in a reasonable amount of time (we
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set timeout to 30 minutes). We performed all experiments on an Intel Xeon E5-2680 machine with
126GB of RAM.

7.2 Comparison of Computed Round-Off Errors

Table 6 gives the main results of our experimental comparison. All results are given for double
precision floating-point numbers and we ran Gappa, Fluctuat, Real2Float, and Rosa with standard
settings. We now detail aspects specific to various tools and discuss the results they produce.

For PRECISA, a cursory pass was made in which we varied the required configuration vari-
ables over multiple runs. Based on this “training” phase, a final configuration to run PRECiSA
was chosen based on the best average answer for the benchmarks while not exceeding max-
imum runtime of the existing tools. Times for PRECiSA are based on the tool-reported run-
time. We should observe that this tool-reported runtime actually excludes a setup time that the
tool incurs when run in a batch mode. The authors of PRECiSA (correctly) argue that that this
setup time will be incurred only once when using the tool interactively, and so it makes sense to
ignore it.

We used a simple branch and bound optimization method in FPTaylor since it works better than
Z3-based optimization on most benchmarks. For transcendental functions, we employ increased
values of € and § with the 1.5 coefficient: € = 1.5- 27> and § = 1.5 - 27197, It is well known that
error models for transcendental functions are implementation dependent. The standard recom-
mends (but does not require) to have correctly rounded basic transcendental functions. This can
be achieved with CRLibm or analogous libraries. Java documentation requires 1 ulp error for tran-
scendental functions, which is equivalent to the coefficient of 2.0 in FPTaylor. However, this bound
appears to be too pessimistic: we ran several simple experiments and never observed a round-off
error larger than 0.6 ulp for exp, sin, cos, and log (for double-precision arguments). There are some
formal results for particular implementations. For example, Harrison gives the bound of 0.57341
ulp for cos on IA-64 (Harrison 2000). We chose the coefficient of 1.5 as a compromise between
actual implementations (the coefficient of about 0.6/0.5 = 1.2) and a pessimistic safe choice (the
coefficient of 2.0).

Gappa computed best results in 3 out of 20 benchmarks (we do not count the last 4 benchmarks
with transcendental functions). FPTaylor computed best results in 23 benchmarks, except on the
himmilbeau benchmar.” Gappa without hints was able to find a result better than or equivalent to
FPTaylor-h with respect to the himmilbeau, rigidBody1, and rigidBody2 benchmarks. On the other
hand, in several benchmarks (¢_div_t1, jetEngine, and turbine3), Gappa (even with hints) computed
very pessimistic results.

Real2Float typically produces error bounds that are more pessimistic than Rosa’s. The tool also
ran out of memory on the jetEngine benchmark, which is consistent with the findings in the pa-
per (Magron et al. 2017). At the same time, Real2Float found good error bounds for all transcen-
dental benchmarks. It also was able to find the second best bound for ¢ div_t1.

Rosa consistently computed decent error bounds, with exceptions for ¢ div_t1 and jetEngine.
We used the opt branch of Rosa due to inproved runtimes and improved answers with one ex-
ception being sine which has a slightly better answer using the master branch with a computed
answer of 5.19e-16 versus the opt branch computing 5.74e-16. FPTaylor-h outperformed Rosa on
all benchmarks, while the results with the standard rounding model FPTaylor-f are slightly more
mixed (Rosa produces tighter bounds in that case for sqroot, himmilbeau, kepler0, rigidBody1, and
rigidBody?2).

"While the absolute error changing from (e.g.) 1078 to 107! does not appear to be large, it is a significant two-order of
magnitude difference; for instance, imagine these differences accumulating over 10* iterations in a loop.
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Table 6. Experimental Results for Absolute Round-Off Error Bounds

Fluctuat Gappa Rosa

Benchmark Fluctuat  (subdiv.) Gappa (hints)  PRECiSA R2Float  (opt)  FPTaylor-f FPTaylor-h
sine 8.0e-16 7.5e-16  1.2e-15 7.0e-16 6.0e-16 6.1e-16 5.8e-16 5.6e-16 4.5e-16
0.25 0.11 0.08 25.43 11.76 4.95 5.20 1.20 1.14

sineOrder3 1.2e-15 1.1e-15  8.9e-16 6.6e-16 1.2e-15 1.2e-15 1.0e-15 9.6e-16 6.0e-16
0.36 0.09 0.05 2.09 6.11 2.22 3.82 0.98 1.02

sqroot 6.9e-16 6.9e-16  5.8e-16 5.4e-16  6.9e-16 1.3e-15  6.2e-16 7.0e-16 5.1e-16
0.39 0.09 0.11 5.06 8.18 4.23 4.20 1.05 1.02

t_div_t1 1.2e-10 2.8e-12 1,000 10 2.3e-13 5.5e-16 5.7e-11 5.8e-14 2.3e-16
0.31 0.09 0.01 0.18 5.89 12531 6.55 1.00 0.95

carbonGas 4.6e-8 1.2e-8 2.7e-8 6.1e-9 7.4e-9  2.3e-8 1.6e-8 9.2e-9 6.0e-9
1.55 0.54 0.11 2.35 6.30 4.65 6.03 1.10 1.08

doppler1 4.0e-13 1.3e-13  2.1e-13 1.7e-13 2.7e-13  7.7e-12 2.5e-13 1.6e-13 1.3e-13
0.52 6.30 0.05 3.31 16.17 13.20 10.86 2.20 1.97

doppler2 9.8e-13 2.4e-13  4.0e-13 2.9e-13 5.4e-13  1.6e-11 5.7e-13 2.9e-13 2.3e-13
0.53 6.15 0.05 3.37 16.87 13.33 10.58 2.42 2.20

doppler3 1.6e-13 7.2e-14  1.1e-13 8.7e-14  1.4e-13 8.6e-12  1.1le-13 8.3e-14 6.7e-14
0.80 6.46 0.05 3.32 15.65 13.05 9.41 2.15 1.88

himmilbeau 1.1e-12 1.1e-12  1.1e-12 8.6e-13 l.1e-12 1.5e-12 1.1e-12 1.4e-12 1.1e-12
0.08 0.34 0.07 1.86 26.20 0.66 4.73 1.03 1.02

jetEngine 4.1e-8 1.1e-10 8,300,000 4,500 crash OoM 5.0e-9 1.4e-11 1.1e-11
0.62 1.45 0.20 27.64 N/A N/A 84.01 4.89 2.84

kepler0 1.2e-13 1.1e-13  1.3e-13 1.1e-13  1.2e-13 1.2e-13  8.3e-14 9.5e-14 7.5e-14
0.12 8.59 0.13 7.33 37.57 0.76 5.70 1.13 1.31

kepler1 5.2e-13 3.6e-13  5.4e-13 4.7e-13 crash 4.7e-13  3.9e-13 3.6e-13 2.9e-13
0.10 157.74 0.23 10.68 N/A 22.53 18.82 1.23 2.08

kepler2 2.7e-12 2.3e-12  2.9e-12 2.4e-12 crash 2.1e-12  2.le-12 2.0e-12 1.6e-12
0.12 22.41 0.44 24.17 N/A 16.53 19.67 1.87 1.30

predPrey 2.5e-16 2.4e-16  2.1e-16 1.7e-16 1.7e-16 2.6e-16 2.0e-16 1.9e-16 1.6e-16
0.50 0.18 0.04 1.40 8.08 4 11.20 1.11 1.07

rigidBody1 3.3e-13 3.3e-13  3.0e-13 3.0e-13  3.0e-13 5.4e-13 3.3e-13 3.9e-13 3.0e-13
0.40 1.96 0.06 1.42 7.42 3.09 3.48 1.01 0.99

rigidBody2  3.7e-11 3.7e-11 3.7e-11 3.7e-11 3.7e-11 6.5e-11 3.7e-11 5.3e-11 3.7e-11
0.22 3.87 0.09 2.22 10.79 1.08 4.20 1.04 1.02

turbinel 9.3e-14 3.1e-14  8.4e-14 2.5e-14 3.8e-14 2.5e-11 6.0e-14 2.4e-14 1.7e-14
0.55 5.05 0.11 5.54 2435 136.35 9.10 1.15 1.10

turbine2 1.3e-13 2.6e-14  1.3e-13 3.4e-14 3.1e-14 2.1e-12 7.7e-14 2.6e-14 2.0e-14
0.79 3.98 0.08 3.94 19.17 8.30 5.46 1.09 1.17

turbine3 7.0e-14 1.4e-14 40 0.36 2.3e-14 1.8e-11  4.7e-14 1.3e-14 9.6e-15
0.62 5.08 0.11 6.29 24.47 137.36 7.60 1.14 1.21

verhulst 5.6e-16 4.9e-16  4.2e-16 2.9e-16 2.9e-16 4.7e-16 4.7e-16 3.3e-16 2.5e-16
0.26 0.09 0.02 0.41 4.95 2.52 7.15 1.01 0.99

azimuth - - - - crash 2.9e-13 - 1.2e-14 8.9e-15
- - - - N/A 2.30 - 5.22 4.62

(Continued)
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Table 6. Continued

Fluctuat Gappa Rosa
Benchmark Fluctuat  (subdiv.) Gappa  (hints) PRECiSA R2Float  (opt)  FPTaylor-f FPTaylor-h
hartman3 = = = = = | =13 = 7.0e-15 4.6e-15
- - - - - 3.51 - 12.98 12.67
logexp = = = = — | 2.6e-15 = 2.1e-15 2.0e-15
- - - - - 0.80 - 0.98 0.96
sphere - - - - 9.0e-14 1.6e-14 - l.1e-14 8.4e-15
- - - - 20.58 0.08 - 5.10 5.37

Grey rows show computed round-off errors; white rows show runtimes in seconds; bold font marks best results for
each benchmark; italic font marks pessimistic results at least three orders of magnitude worse than the best ones;
OoM marks the tool running out of memory.

Fluctuat results without subdivisions are worse than Rosa and FPTaylor’s results. Fluctuat re-
sults with subdivisions are comparable to Rosa’s, but they were obtained with carefully cho-
sen subdivisions. It found better results than FPTaylor-f for sqroot, doppler1, doppler2, doppler3,
himmilbeau, rigidBody1, and rigidBody2. FPTaylor with the improved rounding model outper-
formed Fluctuat with subdivisions on all benchmarks. Only FPTaylor and Fluctuat with subdi-
visions found good error bounds for the jetEngine benchmark. We find that PRECiSA performs
about as well as Rosa on all benchmarks, but takes more time than Rosa.

FPTaylor yields best results with the improved rounding model (Equation (16)) combined with
the monolithic optimization problem (Equation (10)). These results are at most 1.6 times better
(with an exception for ¢_div_t1) than results computed with the standard rounding model (Equa-
tion (3)) combined with the decomposed optimization problem (Equation (11)). The main advan-
tage of the decomposed optimization problem is that it creates multiple simple queries for the
underlying optimizer. Hence, it can be applied to more complex problems and used with almost
any global optimizer. On the other hand, the monolithic optimization problem uses only one ad-
vanced query, which typically yields better precision results. However, the advanced query is not
twice differentiable, and often includes discontinuities, both of which violate requirements for
many global optimization algorithms.

7.3 Performance and Formal Verification Results

Table 7 compares performance results of different tools on the 17 benchmarks which all tools
were able to complete (FPTaylor takes about 24 seconds on four transcendental benchmarks
using monolithic optimization). They only provide a rough idea of what to expect performance-
wise with these tools, given that performance is largely a function of the component technologies
(e.g., external optimizers) that all tools end up using. For example, the performance of FPTaylor
using the monolithic optimization problem (FPTaylor-f, FPTaylor-h) is better than using the de-
composed problem (FPTaylor-e, FPTaylor-g), which seems counterintuitive. This is because GELP1A
is invoked multiple times when the decomposed problem is used, leading to a startup time over-
head that on short-running benchmarks overshadows the benefits of having simpler optimization
queries.

In our evaluation of PRECiSA, we found that general configurations often yielded either infe-
rior estimates or increased time relative to FPTaylor. The manner in which configurations are
to be selected can benefit from more guidelines, as it can dramatically affect result quality as
well as execution times. Gappa and Fluctuat (without hints and subdivisions) are considerably
faster than Real2Float, Rosa, and FPTaylor. Gappa often fails to produce tight bounds on nonlinear
examples as Table 6 demonstrates, and it also cannot handle transcendental functions. Fluctuat
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Table 7. Summary
of Performance Results
(In Seconds)

Tool Time (s)
Fluctuat 8.26
Fluct.(div.) 48.95
Gappa 1.22
Gappa(hints) 75.53
PRECiSA 247.94
Real2Float 475.20
Rosa opt 115.26
FPTaylor-e 130.24
FPTaylor-f 21.79
FPTaylor-g 130.52
FPTaylor-h 21.15

without subdivisions is also not as good as FPTaylor in terms of bounding error estimates. Rosa
is slower than FPTaylor because it relies on an inefficient optimization algorithm implemented
with Z3.

We also formally verified all results in the column FPTaylor-fof Table 6. For all these results, cor-
responding HOL Light theorems were automatically produced using our formalization of FPTaylor
described in Section 6.2. Verification time for 12 benchmarks, excluding doppler1-3 and jetEngine,
was 10.5 minutes. jetEngine took 28 minutes, and doppler1-3 took an average of 37 minutes each.
Such performance figures match up with the state of the art (e.g., the Flyspeck project—a formal
proof of the Kepler conjecture), considering that even results pertaining to basic arithmetic oper-
ations must be formally derived from primitive definitions.

7.4 Comparison of Backend Optimizers

Table 8 gives the experimental results for different backend optimizers. This study was done to
highlight the fact that different backend optimizers handle certain benchmarks with different levels
of precision and efficiency. In terms of precision, on most benchmarks all the backends produce the
same or very similar results. However, Z3 does occasionally produce very pessimistic results and/or
is much slower than other backends; it also cannot as of now handle transcendental functions.
Simple bb and GELpIA are comparable in their performance and precision on these benchmarks.
In Appendix B, we present results of an additional evaluation of different backend optimizers we
performed on a set of synthetically created harder benchmarks. This is a preliminary study given
the synthetic nature of the used benchmarks. As can be observed in Table 10, GELP1A offers best
performance on most harder benchmarks when the monolithic optimization problem is used. Such
studies may help improve the heuristics employed in future optimizers, and they also indicate
the need for developing advanced optimization backends to be able to efficiently tackle larger
examples.

8 RELATED WORK

Taylor Series. Methods based on Taylor series have a rich history in floating-point reasoning, in-
cluding algorithms for constructing symbolic Taylor series expansions for round-off errors (Miller
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Table 8. Experimental Results for Different Backend Optimizers

Benchmark  FPTaylor-b (Simple bb)  FPTaylor-f (Gelpia) FPTaylor-j (Z3)

sine 5.6e-16 5.6e-16 5.6e-16
0.88 1.21 0.77
sineOrder3 9.6e-16 9.6e-16 9.5e-16
0.78 0.99 0.61
sqroot 7.0e-16 7.0e-16 7.0e-16
0.78 1.06 0.57
t div_t1 5.8e-14 5.8e-14 5.7e-14
0.72 1.00 0.63
carbonGas 9.2e-09 9.2e-09 9.1e-09
0.86 1.10 0.69
doppler1 1.6e-13 1.6e-13 1.6e-13
1.98 2.20 2.86
doppler2 2.9e-13 2.9e-13 2.9e-13
2.20 2.42 2.96
doppler3 8.3e-14 8.3e-14 8.2e-14
2.45 2.15 2.51
himmilbeau 1.4e-12 1.4e-12 1.4e-12
0.78 1.03 2.17

jetEngine 1.4e-11 1.4e-11 9.2e-08
2.22 4.90 11.33
kepler0 9.5e-14 9.5e-14 1.3e-13
0.91 1.13 10.59
kepler1 3.6e-13 3.6e-13 6.4e-13
0.93 1.24 10.66
kepler2 2.0e-12 2.0e-12 3.2e-12
1.38 1.87 10.69
predPrey 1.9e-16 1.9e-16 1.9e-16
0.84 1.11 0.65
rigidBody1 3.9e-13 3.9e-13 3.9e-13
0.73 1.02 0.58
rigidBody2 5.3e-11 5.3e-11 5.3e-11
0.78 1.05 10.54
turbinel 2.4e-14 2.4e-14 2.4e-14
0.88 1.15 2.24
turbine?2 2.6e-14 2.6e-14 1.7e-13
0.9 1.09 10.59
turbine3 1.3e-14 1.3e-14 7.5e-14
0.87 1.15 10.61
verhulst 3.3e-16 3.3e-16 3.3e-16
0.76 1.01 0.56
azimuth 1.2e-14 1.2e-14 -
3.89 5.23 -
hartman3 5.8e-15 7.0e-15 -
36.096 12.99 -

(Continued)
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Table 8. Continued

Benchmark FPTaylor-b (Simple bb)  FPTaylor-f (Gelpia) FPTaylor-j (Z3)

logexp 2.1e-15 2.1e-15 —
0.72 0.98 -
sphere 1.1e-14 1.1e-14 -
291 5.11 -

Grey rows show computed round-off errors; white rows show runtimes in seconds; bold font marks
best results for each benchmark.

1975; Stoutemyer 1977; Gati 2012; Mutrie et al. 1992), and stability analysis. These works do not
cover round-off error estimation. Our key innovations include computation of the second-order
error term in Taylor expansions and global optimization of symbolic first-order terms. Taylor ex-
pansions are also used to strictly enclose values of floating-point computations (Revol et al. 2005).
Note that in this case round-off errors are not computed directly and cannot be extracted from
computed enclosures without large overestimations.

Abstraction-Based Methods. Various abstraction-based methods (including abstract interpreta-
tion (Cousot and Cousot 1977)) are widely used for analysis of floating-point computations. Ab-
stract domains for floating-point values include intervals (Moore 1966), affine forms (Stolfi and
de Figueiredo 2003), and general polyhedra (Chen et al. 2008). There exist different tools based
on these abstract domains. Gappa (Daumas and Melquiond 2010) is a tool for checking differ-
ent aspects of floating-point programs, and is used in the Frama-C verifier (Frama-C 2017). Gappa
works with interval abstractions of floating-point numbers and applies rewriting rules for improv-
ing computed results. Gappa++ (Linderman et al. 2010) is an improvement of Gappa that extends
it with affine arithmetic (Stolfi and de Figueiredo 2003). It also provides definitions and rules for
some transcendental functions. Gappa++ is currently not supported and does not run on modern
operating systems. SmartFloat (Darulova and Kuncak 2011) is a Scala library which provides an
interface for computing with floating-point numbers and for tracking accumulated round-off. It
uses affine arithmetic for measuring errors. Fluctuat (Delmas et al. 2009) is a tool for static analysis
of floating-point programs written in C. Internally, Fluctuat uses a floating-point abstract domain
based on affine arithmetic (Goubault and Putot 2011). Astrée (Cousot et al. 2005) is another static
analysis tool which can compute ranges of floating-point expressions and detect floating-point ex-
ceptions. A general abstract domain for floating-point computations is described in Martel (2006).
Based on this work, a tool called RangeLab is implemented (Martel 2011) and a technique for im-
proving accuracy of floating-point computations is presented (Martel 2009). Ponsini et al. (2014)
propose constraint solving techniques for improving the precision of floating-point abstractions.
Our results show that interval abstractions and affine arithmetic can yield pessimistic error bounds
for nonlinear computations.

PRECISA (Titolo 2017) is a tool that converts floating-point programs into lemmas for the PVS
proof assistant. This is done by representing errors of floating-point operations symbolically in
terms of the errors of the operands relative to the real-valued operations. PRECiSA’s error formu-
las also include constraints enabling detection of invalid operator inputs and analysis of branch-
ing conditionals. Furthermore, PRECiSA propagates error conditionals into function calls and
branches, thereby enabling more precise analysis in some cases. Hence, unlike FPTaylor, PRECiSA
is capable of analyzing entire programs, including function calls and divergent branches. However,
as our experiments show, FPTaylor greatly outperforms PRECiSA on straight-line floating-point
routines both in terms of precision and efficiency.
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SMT. The work closest to ours is Rosa (Darulova and Kuncak 2014, 2017) in which they combine
affine arithmetic and an optimization method based on an SMT solver for estimating round-off
errors. Their tool Rosa keeps the result of a computation in a symbolic form and uses an SMT
solver for finding accurate bounds of computed expressions. The main difference from our work is
representation of round-off errors with numerical (not symbolic) affine forms in Rosa. For nonlin-
ear arithmetic, this representation leads to overapproximation of error, as it loses vital dependency
information between the error terms. Our method keeps track of these dependencies by main-
taining symbolic representation of all first-order error terms in the corresponding Taylor series
expansion. Another difference is our usage of rigorous global optimization which is more efficient
than using SMT-based binary search for optimization.

While abstract interpretation techniques are not designed to prove general bit-precise results,
the use of bit-blasting combined with SMT solving is pursued by Brillout et al. (2009). Recently,
a preliminary standard for floating-point arithmetic in SMT solvers was developed (Riimmer and
Wahl 2010). Z3 (de Moura and Bjerner 2008) and MathSAT 5 (Cimatti et al. 2013) SMT solvers sup-
port this standard, but only partially. For example, Z3 lacks support for casts from floating-points
into reals and vice versa, which is typically needed for computing errors of floating-point compu-
tations. There exist several other tools which use SMT solvers for reasoning about floating-point
numbers. FPhile (Paganelli and Ahrendt 2013) verifies stability properties of simple floating-point
programs. It translates a program into an SMT formula encoding low- and high-precision ver-
sions, and containing an assertion that the two are close enough. FPhile uses Z3 as its backend
SMT solver. Leeser et al. (2014) translate a given floating-point formula into a corresponding for-
mula for real numbers with appropriately defined rounding operators. Ariadne (Barr et al. 2013)
relies on SMT solving for detecting floating-point exceptions. Haller et al. (2012) lift the conflict
analysis algorithm of SMT solvers to abstract domains to improve their efficacy of floating-point
reasoning.

In general, the lack of scalability of SMT solvers used by themselves has been observed in other
works (Darulova and Kuncak 2014). Since existing SMT solvers do not directly support mixed
real/floating-point reasoning as noted above, one must often resort to non-standard approaches
for encoding properties of round-off errors in computations (e.g., using low- and high-precision
versions of the same computation).

Optimization-Based Methods. Magron et al. (2017) introduce a method for estimating absolute
round-off errors in floating-point nonlinear programs based on semidefinite programming. The
approach works by decomposing the round-off error into an affine part with respect to the error
variable e and a higher-order part. Bounds on the higher-order error part are obtained similar to
how it is done in FPTaylor. For the affine part, instead of using global optimization, the authors em-
ploy a relaxation procedure based on semidefinite programming. Lee et al. (2016) proposed a ver-
ification method that combines instruction rewriting and rigorous precision measurement using
global optimization. A distinguishing feature of their work is that they can handle bit-manipulation
operations over floating-points.

Proof Assistants. An ultimate way to verify floating-point programs is to give a formal proof
of their correctness. To achieve this goal, there exist several formalizations of the floating-point
standard in proof assistants (Melquiond 2012; Harrison 2006). Boldo et al. (2013) formalized a non-
trivial floating-point program for solving a wave equation. This work partially relies on Gappa,
which can also produce formal certificates for verifying floating-point properties in the Coq proof
assistant (Coq 2016).
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Many tools and frameworks in this space separately handle the concerns of straight-line code
analysis and conditional/loop analysis (Boldo et al. 2013; Boldo and Melquiond 2011; Boldo et al.
2009, 2015; Goodloe et al. 2013; Damouche et al. 2017). They typically achieve this by decompos-
ing the overall verification problem down to simpler checks at the straight-line program level,
which are then discharged by simpler tools. Our tool contribution should be viewed as a powerful
assistant for such more general frameworks.

9 CONCLUSIONS

We presented a new method to estimate round-off errors of floating-point computations called
Symbolic Taylor Expansions. We formally establish the correctness of our method, and also de-
scribe a tool FPTaylor that implements it. FPTaylor is one of a small number of tools that rigor-
ously handles transcendental functions. It achieves tight overapproximation estimates of errors—
especially for nonlinear expressions. FPTaylor is not designed to be a tool for complete analysis of
floating-point programs. It cannot handle conditionals and loops directly; instead, it can be used as
an external decision procedure for program verification tools such as Frama-C (Frama-C 2017) or
SMACK (Rakamari¢ and Emmi 2014), or within rigorous floating-point optimization and synthesis
tools such as FPTuner (Chiang et al. 2017). Conditional expressions can be verified in FPTaylor in
the same way as it is done in Rosa (Darulova and Kuncak 2014) (see Section 6.3 for details).

In addition to experimenting with more examples, a promising application of FPTaylor is in error
analysis of algorithms that can benefit from reduced or mixed-precision computations. Another
potential application of FPTaylor is its integration with a recently released tool Herbie (Panchekha
et al. 2015) that improves the accuracy of numerical programs. Herbie relies on testing for round-
off error estimations. FPTaylor can provide strong guarantees for numerical expressions produced
by Herbie. Ideas presented in this article can be directly incorporated into existing tools. For in-
stance, an implementation similar to Gappa++ (Linderman et al. 2010) can be achieved by in-
corporating our error estimation method inside Gappa (Daumas and Melquiond 2010); the Rosa
compiler (Darulova and Kuncak 2014) can also be easily extended with our technique.

APPENDICES
A ADDITIONAL EXPERIMENTAL RESULTS

Table 9 presents a summary of all our experimental results.

B GLOBAL OPTIMIZER EVALUATION ON HARD EXAMPLES

Table 10 presents a study of various backend optimizers on some hard examples from the area of
optimization (Surjanovic and Bingham 2017; Weisstein 2017a, 2017b). This study demonstrates the
need to invest in good backend optimization approaches, in addition to developing improved error
estimation approaches.
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