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ARTICLE INFO ABSTRACT

Keywords: Volatile organic compounds (VOCs) are a class of organic liquid compounds with low vapor pressures, which
VOCs enables them to vaporize at ambient conditions. VOCs are largely toxic, carcinogenic, and mutagenic, and have

Abatement profound adverse effects on human health and the ecological environment. Many VOCs cause ruinous health
iztal}’s‘? effects even at very low concentrations (ppm) and therefore control of these organic compounds is essential for
sorption

ensuring good air quality. Rising levels of VOCs in the outdoor environment, particularly in urban areas, has
sparked considerable research into the abatement of VOCs. This has evolved into a myriad of pollution control
technologies, including thermal catalytic oxidation, photocatalytic oxidation, non-thermal plasma, adsorption,
and hybrid adsorption-oxidation processes. In order for catalytic and adsorption-based process to emerge as a
promising method for VOC abatement, development of efficient materials is a crucial step. This review discusses
recent developments made in the fields of catalysis and separation, with an emphasis on catalytic materials,
including noble-metal catalysts, transition metal-oxide catalysts, perovskites, titania and ceria based catalysts,
and dual-functioning adsorbent/catalysts. Various capture materials, such as activated carbons, zeolites, and
metal organic frameworks (MOFs), are also discussed for the purpose of providing insight into the efficacy of

Capture-destruction materials

adsorbent inclusion in hybridized separation-destruction processes.

1. Introduction

Volatile organic compounds (VOCs) are organic compounds which
vaporize easily under ambient indoor conditions. They are defined as
“any compound of carbon, excluding carbon monoxide, carbon dioxide,
carbonic acid, metallic carbides or carbonates and ammonium carbo-
nate, which participates in atmospheric photochemical reactions” by
the U.S. EPA. There are, however, some compounds that may be de-
scribed by this classification, but may not fulfill other criteria to be
classified as a VOC under the code of regulations (Code of Federal
Regulations, 40: Chapter 1, Subchapter C, Part 51, Subpart F, 51,100).
These compounds are organic in nature, as the name suggests, and only
contain carbon, nitrogen, sulfur, oxygen and chlorine. Since the days of
rapid industrialization, emission levels of VOCs have been steadily in-
creasing to a point of concern. According to the National Emission
Inventory (NEI), archival data suggests that the largest emission of
VOCs from anthropogenic sources is released from the industry due to
the use of solvents and high-volume emission levels, closely followed by
automotive exhaust (Fig. 1). High emission industries include paper
factories, petroleum refineries and textile manufacturers [1].

Exposure to VOCs has three broad effects, namely, biological, en-
vironmental, and human health. Outdoor VOC pollution has significant
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environmental impacts, namely soil quality, groundwater contamina-
tion, smog formation, and ozone imbalance, while VOCs in the indoor
environment are highly toxic and have larger biological effects, such as
cancer-causing and respiratory health effects. In the indoor environ-
ment, VOCs are emitted from paints, wood finish, and improperly
ventilated cooking.

The molecular structure of the type of VOC encountered is of great
importance when determining the most suitable abatement method.
VOCs can be broken down into three distinct classes, (i) carbonyl, (ii)
aromatic, and (iii) halogenated. Carbonyl compounds is the largest
classification type and includes aldehydes and ketones [2-4]. Aromatic
compounds include some of the most commonly encountered VOCs.
They frequently contaminate soil and water through vapor sorption or
liquid discharge and therefore must be considered when assessing
outdoor air quality [5-7]. Halogenated compounds are of particular
importance due to their strong toxicities and abundance in a variety of
products. They have been known to contaminate air and groundwater
systems making them of particular interest for abatement [8,9]. Some
of the most commonly emitted VOCs are BTX (Benzene, Toluene, and
Xylene) compounds, acetone, and formaldehyde [10,11]. Table 1 below
provides an overview of many commonly encountered VOCs, their
classifications, and structure.
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Fig. 1. VOC emissions in the United States by tier [1].
Table 1
The name, classification, and structure of many commonly encountered VOCs.
Name VOC Type Structure
Acetone Carbonyl (o]

Benzene

Aromatic @

Carbon tetrachloride Halogenated cl

a
Chlorobenzene Halogenated Cl
Dichloroethane (DCE) Halogenated cl
cl
Dichloromethane (DCM) Halogenated CI\/C‘
Ethanol Carbonyl /\OH
Ethyl Acetate (EA) Carbonyl Q
o
Ethylbenzene (EB) Aromatic @_\
Hexane Carbonyl NN
Methanol Carbonyl OH
Methyl ethyl ketone (MEK) Carbonyl )OJ\/
o-Xylene Aromatic |
Trichloroethylene (TCE) Halogenated o :'
|
Toluene Aromatic CHj;

Considering these prominent issues to human civilization, many
investigations have been performed on various abatement technologies,
including capture, destruction, or hybridized capture and destruction
methods. Capture methods are largely material based, and focus pri-
marily on adsorption whereas destruction methods, such as thermal
catalytic oxidation, photocatalytic oxidation, non-thermal plasma
technology, are heavily influenced by catalytic properties. Catalysts are
essential in ensuring that these destruction methods operate efficiently.
They lower the activation energy required for thermal and photo-
catalytic oxidation, providing both cost-effective and safer reaction
conditions. Frequently used catalysts include noble-metal [12,13] and
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mixed metal oxides [14-17], and perovskites [18,19]. Noble-metal
based catalysts have been widely reported to have the highest activity
in removing VOCs at low temperatures [20]. Research has shown that
doping with noble metals such as Pd, Pt, Ni, Au, and Rb can sig-
nificantly enhance the VOCs abatement ability of materials [21-24].
They are, however, expensive to use which limits their feasibility in a
number of processes. In contrast, mixed-metal oxide catalysts (MMOs)
are cheaper to make and prevent degradation of the active materials.
MMOs work synergistically, where one metal oxide acts as the active
material and the other acts as the support. Compared with single metal
oxides such as SiO, [25] and TiO,, the use of MMOs, such as NiO,/SiO,
[26], MnO,/Si0,, TiO,/SiO, [27,28], and ZrO,/SiO, exhibit better
performance as catalysts for the oxidation of VOCs. Perovskites are
calcium-titanium oxide minerals composed mainly of calcium titanate
(CaTiO3). Many different cations can be embedded in perovskites,
thereby increasing their thermal stability and activity. [19,29,30]

Adsorptive capture materials have also been investigated for VOC
capture due to high surface areas and pore volumes which allow for the
capture of VOCs in dilute gaseous streams. Activated carbons, zeolites,
and mesoporous silicas are robust and well-established adsorbents that
have been shown to be particularly effective in the abatement of many
kinds of VOCs. Activated carbon is a processed carbon of small, low-
volume pores and high surface areas [31,32] suitable for adsorption of
VOCs [31-35]. Zeolites are microporous, aluminosilicate minerals with
well-defined pore structures and adjustable acidities that make them
highly attractive adsorbents or catalysts for molecules of certain sizes
and shapes [36]. Zeolites have been widely used as adsorbents for VOCs
capture and degradation. More recently, metal organic frameworks
(MOFs) have arisen as viable materials for VOC capture. They consist of
metal ions coordinated to organic ligands and form one-, two-, or three-
dimensional structures. Their high adsorption capacities and excep-
tional surface areas make them particularly promising for VOC capture
[37-41]. Although specific reviews have been published in the past
with regards to VOC pollution problems and abatement materials
[42-47], this review seeks to perform a succinct study on the recent
material developments made in the areas of catalysis and separation,
with an emphasis on catalytic materials, including noble-metal cata-
lysts, transition metal-oxide catalysts, perovskites, titania and ceria
catalysts, and dual-functioning adsorbent/catalysts.

2. Catalysts used in the abatement of VOCs

VOC abatement is commonly carried out using capture, destruction,
or hybridized capture and destruction methods. These are classified
under prevention methods and involve the abatement of a VOC at the
exhaust of the process. The most common destruction methods used in
industry include thermal catalytic oxidation, photocatalytic oxidation,
and non-thermal plasma technologies. However, these methods suffer
from numerous disadvantages, including high energy penalties asso-
ciated with elevated temperatures. To overcome this, the use of cata-
lysts as a means of activation energy reduction are frequently em-
ployed. Through the use of catalysts, these processes can achieve total
oxidation of different types of VOCs between 150-250°C [1]. Fre-
quently used catalysts include noble metal based [12,13], metal [14,15]
and mixed metal oxide based [16,17], fibers [48], and zeolites [49,50].
These catalysts types are further discussed in detail in this section.

2.1. Noble metal-based catalysts

The most commonly used catalysts for the complete combustion of
VOCs are noble metal-based catalysts. These are usually used in place of
supported noble metals, due to their high cost. Noble metal-based
catalysts tend to show higher conversion rates at lower temperatures as
compared to other catalyst types. Commonly used noble metals are
palladium (Pd), platinum (Pt), and Rubidium (Ru) [51]. They are
supported on materials with a high oxygen mobility, such as metal
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Table 2

Summary of noble metal-based catalysts used in the total oxidation of some common VOCs.
Catalyst voC Concentration Reaction temperature (K) Removal efficiency Ref
Ru/TiO, Chlorobenzene 500 ppm, 560 90 [59]
Rh/TiO, Chlorobenzene 500 ppm, 613 90 [59]
Ru-Ce/TiO, Chlorobenzene 500 ppm, 563 90 [60]
1.5wt.% Pd/HY Methanol 4v/v% 393 90 [61]
Au/FeOy Formaldehyde 80 ppm, 293 75 [62]
Pt/y-Al,03 Formaldehyde 230 ppm, 293 92 [63]
Rh/TiO, Formaldehyde 100 ppm, 348 100 [64]
Au-Ce-TiO, Toluene 1000 ppm, < 673 100 [65]
Au-Fe-TiO, Toluene 1000 ppm, < 673 100 [65]
1 wt. %Au-Pd/3DOM Co304 Toluene 1000 ppm,, 453 100 [66]
0.1 wt.% Pt/0.2 wt.% Pd/MCM-41 Toluene 500 ppm,, 453 100 [67]
Pd-Au Fe;03/CeO Benzene 42gcm—3 473 100 [68]
Pd-Ni/SBA-15 Benzene 1000 ppm 630 100 [69]

oxides [52], aluminosilicates, or perovskites [53]. Multiple studies have
been made on the total oxidation of VOCs using catalytic thermal oxi-
dation. During the selection of the dopant noble metal, multiple para-
meters are considered, such as dispersion and loading [54]. Table 2
provides an overview of noble metal catalysts that have been used in
the total oxidation of common VOCs. In a study done by O’Malley et al.
[55], it was found that apart from the aforementioned parameters, the
reaction rate of a VOC in an oxidation reaction depends on the strength
of the weakest C-H bond in Pt based catalysts. The effect of synthesis
procedure and support material also plays a large role in the perfor-
mance of these catalysts [56]. In low temperature catalysis, adsorption
and activated surface oxygen species [57] were also found to be an
important factor. Naturally, the effect of the support plays an important
role. For example, in a study done by Chen et al. [58], it was found that
Pt mounted on AIOOH showed the best catalytic activity for the oxi-
dative removal of formaldehyde in room temperature when compared
to other support metal oxides investigated.

Due to their high surface area, low cost, easy synthesis procedure,
and accessible surface oxygen species, transition metal/mixed metal
oxides are frequently used as supports for noble metals. They also have
high thermal resistivity and have a strong resistance towards deacti-
vation [70]. In circumstances with a higher sulfur content in the gas
feed, mixed metal oxides have been shown to outperform noble metals
[71], thereby increasing its utility in the catalysis of different kinds of
VOCs, such as S-VOCs. Ru based catalysts are frequently used in the
destruction of C-VOCs [72]. For example, in a study by Liu et al. [59] on
the oxidation of chlorobenzene over different noble metals supported
by TiO,, the Ru based catalyst showed complete destruction of the VOC
at the lowest temperature (300 °C). Furthermore, on analysis of poly-
chlorinated by products, it was found that Ru/TiO, had the lowest
concentration, revealing the significance of Ru for the specific control
of halogenated VOCs. Similarly, Ye et al. [60], investigated Ru based
catalysts supported on TiO, and a mixture of Ce and TiO, along with a
host of other metal oxides for the total oxidation of chlorobenzene. It
was revealed that TiO, had better catalytic activity at lower tempera-
tures when compared to all other metal oxides tested, such as ZrO,, y-
A1203 and SIOZ (Flg 2)

It has also been inferred that the phase of the titania present in-
fluences reaction rates. Dang et al. [73] presented an Ru based catalyst
supported by high surface area mixed metal oxides, such as titania-
silica or zirconia-silica, for the oxidative removal of VOCs and halo-
genated VOCs at low temperatures, achieving 100% destruction at
300-350 °C. By keeping loading percentages low and durability high,
this is a cost effective noble metal-based catalyst for the destruction of
VOCs. Gold based catalysts are also frequently used for the catalysis of
VOCs. Gold nanoparticles (NPs) doped onto metal oxides have en-
hanced VOC catalysis.

lustrated by Fig. 3, Sinha et al. [74] compared the efficiencies of y-
MnO, and Au/ y-MnO, for the removal of acetaldehyde and toluene. It
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Fig. 2. Catalytic activity of Ruthenium supported by various metal oxides [60],
where P25 refers to a mix of rutile and anatase phases of titania.
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Fig. 3. Removal efficiencies of y-MnO, and Au/ y-MnO, for acetaldehyde
(empty), toluene (solid) and hexane (pattern) [74].

is suggested that an oxygen spillover effect caused by Au into the va-
cancies in the metal oxide causes a synergistic effect that promotes VOC
attraction. Three-dimensionally ordered macropore (3DOM) structures
have also been frequently used in tandem with noble metals and have
several advantages such as interconnected pore systems and high sur-
face areas, providing large contact areas. [75] These are a combination
of transition metal and metal oxides. Jian et al. [75] investigated the
potential of gold NPs on 3DOM structures mounted on perovskites. It
was found that 1.67 wt. % Mn304-2Au/3DOM LSCO (Lag ¢Srg 4C003)
had the lowest Toy at 230 °C when compared to other weight ratios.
Absorbed oxygen species and strong interactions between NPs was
found to be the reason for its enhanced catalytic performance. Bime-
tallic materials have also been used in this scenario. Xie et al. [76]
studied the destructive potential of Au—-Pd/3DOM Mn,05 for methane
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Fig. 4. Conversion of toluene and light off temperatures compared to particle size [79].

and o-xylene. The bimetallic Au-Pd-0.22wt. % Fe/3DOM Mn,03
showed a 90% destruction at 213 °C, much lower than other metals
tested (Cr, Mn and Co) suggesting the potential of doping a transition
metal, in this case Fe, onto a NP based catalyst to provide an increase in
surface oxygen species due to greater interaction. Incorporation with
polymer templating has also been explored. For example, Liu et al. [77]
studied the oxidation performance of mesoporous Co30, impregnated
by Au nanocatalysts with a polymer based template for the destruction
of BTX compounds and CO. The BTX compounds were fed at a con-
centration of 1000 ppm,. The strong association between Au NPs and
the ceria resulted in an enhanced catalytic activity at temperatures >
250 °C. Pt based catalysts are one of the most efficient of this material
class for VOC oxidation and are characterized by lower light off tem-
peratures when compared to other noble metals. [54] Particle size and
dispersion is said to strongly influence the catalytic performance of Pt
based catalysts [78]. Chen et al. [79] compared the effect of Pt particle
size supported on ZSM-5 with the conversion of toluene (Fig. 4). A
steady increase in performance was observed from the increase from
1.3nm to 1.9nm particle size and then started to decrease. Results
revealed an optimum particle size that yielded the lowest light off
temperatures, which was due to a balance between Pt dispersion and
proportion.

The room temperature catalytic oxidation of formaldehyde is an-
other common application for Pt based catalysts. Most commonly, Pt
supported by TiO is used for this process, where, Pt functions as the
active phase, while the mixed metal oxide support provides oxygen
vacancies [80]. A study by Nie et al. [81] revealed the importance of
support geometry for the RT catalysis of HCHO. Pt supported by metal
oxide based hollow sphere composite materials with a hierarchical
meso-macropore system showed much better catalytic activity and CO,
production when compared to conventional powder based catalyst.
Additionally, Pt and TiO, composite catalysts have arisen as attractive
modes of formaldehyde capture and destruction at ambient conditions
(Fig. 5) [82]. Pt-based catalysts, however, have a tendency to get

deactivated in the presence of chlorinated hydrocarbons which is
usually overcome by higher loading percentages [83]. In an investiga-
tion by Huang et al. [84], the effect of reduction treatment was studied
and it was revealed that with the right treatment, complete conversion
of HCHO at low concentrations (10 ppm) was achieved even at 0.1 wt.
% Pt loadings due to the presence of rich chemisorbed oxygen species.

Alkali earth metals, on addition to Pt based catalysts, have enhanced
catalytic performances for the oxidation of HCHO by altering the re-
action pathway by the activation of the hydroxyl group [85]. Deacti-
vation of the catalysts can due to a number of causes, such as sulfur or
halogen poisoning and its interactions and thermal degradation [83].
This can cause a problem when dealing with these materials on an in-
dustrial scale, and therefore, the utility of noble metal based catalysts is
limited.

2.2. Transition metal oxide-based catalysts

Due to noble metals being so expensive to use, transition metal
oxide-based catalysts have been studied frequently to achieve similar
conversion rates. They are commonly transition metal elements, usually
from groups III-B through II-B with respect to the periodic table [54].
However, unlike noble metals, light off temperatures for these types of
catalysts are generally higher. The following properties of the material
have been identified to be very important in catalysis over transition
metal oxides [86]:

(i) Lattice oxygen;
(ii) Metal-oxygen bond;
(iii) Host structure;
(iv) Redox properties;
(v) Multifunctionality of active sites;
(vi) Site isolation; and
(vii) Cooperation of the phases within the material
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Fig. 5. Changes in formaldehyde concentration for a Pt/TiO, (PTCO0.5) composite and Pt (PCO.5) catalyst at room temperature (a) HCHO conversion (b) Product

formation (CO,) [82] - Published by the Royal Chemistry Society.
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Cerium oxide, CeO,, that has been prepared by precipitation or
combustion method has been shown to be very active for VOC and CO
oxidation, due to its oxygen storage capacity [87,88]. Quite often, using
different transition metal oxides enhances activity rates. In a study done
by Balzer et al. [88], which investigated ceria based materials for the
catalytic oxidation of different VOCs, y-Al,03-CeO, revealed to have
comparatively lower light off temperatures in all cases when compared
to the pure ceria catalyst. Addition of metals such as Zr also increases
surface acidity of the catalysts [89]. While Cr and V based catalysts
have been shown to have a good oxidation performance, they pose a
challenge due to their increased solid toxicity [90,91]. Mn based ma-
terials are less toxic can overcome this issue. They are also more cost
effective. Mn based catalysts are frequently used for VOC oxidation
[92]. Multiple factors contribute to the effectiveness of manganese
oxide catalysts, such as increased oxygen mobility through the crystal
lattice [93]. It is also interesting to note that structural influences of the
manganese oxide also contribute to activity rates, for example, the
polyvalent character and freely accessible surface oxygen species of y-
MnO, makes it a good candidate for oxidative reactions [94]. Lahousse
et al. [95] investigated the effects of crystallographic characters for the
total oxidation of VOCs, ethyl acetate (EA) in particular. The effect of
different phases of manganese oxide on the conversion of EA is illu-
strated by Fig. 6.

As we can observe, the effectiveness of the manganese dioxide in EA
conversion was highest in its nsutite phase (y-MnO,) and gradually
reduces from ramsdellite to pyrolusite (B-MnO,) respectively which
was loosely attributed to the MnO, octahedral arrangement, co-
ordination number of the oxygen anion species and the presence of
atomic vacancies. The type of manganese oxide can also alter the re-
action pathway [96]. To enhance the activity of manganese oxides,
other transition metals may be added, such as Zr or Ce, to enhance the
surface acidity of the material and it can potentially be used in a variety
of situations, like the abatement of chlorinated compounds such as
trichloroethylene (TCE) or oxygenated VOCs such as butanol due to
redox coupling [97,98]. Both Ceria and MnOy have also been shown to
be very effective when dealing with C-VOCs [99]. While Mn and Ce
based oxides are frequently used, the use of other transition metal
oxides can have its own special advantages. For example, iron oxide has
a high sintering temperature, and can therefore avoid deactivation re-
latively better in high temperature situations [100]. Similarly, distor-
tion of the crystal lattice by another metal may potentially enhance O,
mobility, while doping with rare earth metals can potentially improve
oxygen vacancies [101].

2.3. Perovskites

Perovskite catalysts are a class of composite material frequently

16

VOC conversion (%/mz)
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Fig. 6. Effect of different phases of MnO, on the total oxidation of EA [95].
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Fig. 7. Mechanism of VOC oxidation over perovskite catalysts.

encountered in catalysis. These materials were first introduced in the
1970s, as a means to serve as an alternative for precious metal based
catalytic converters in automobiles [102]. They can be represented by
the empirical formula ABO3, where A is a cation which is usually an
alkaline, alkaline earth or lanthanide metal, while B refers to a cation of
transition metal configuration. They have low surface characteristics
when compared to metal oxide or MOF based catalysts. The mechanism
of VOCs on these materials is represented by Fig. 7.

Utilizing the unique property of polyvalency of the d block elements
in the structure, multiple possible charge distributions are encountered
throughout the structure of the material [103]. This results in tunable
redox properties, which can be greatly advantageous in heterogeneous
catalysis. They are also used frequently as supports for noble metals.
Not many studies have been performed in the investigation of these
materials for VOC oxidation. Manganese based perovskites have been
shown to be efficient in VOC oxidation. Deng et al. [104] investigated
the potential of hydrothermally prepared manganese oxide based per-
ovskite catalysts of the structure Lag sSro sMnO3 8. A dependence on the
synthesis procedure was revealed, which could suggest the importance
in preparation methods for the materials. Surface enrichment of Mn and
surface oxygen vacancies were found to be the important factors in
determining VOC oxidation efficiency. However, Mn based catalysts are
sensitive to sulfur poisoning, and hence are limited by their application
in the abatement of SVOCs. This is attributed to the screening effect,
caused by the combination of the A or B cation with the sulfur anion,
which leads to rapid deactivation [30]. In a recent study done by
Izadkhah et al. [105], Co based perovskites performed better when
doped with other transition metals, namely, Mn and Fe in this case, for
the total oxidation of toluene.

Qin et al. [106] studied the conversion of EA over silver doped
LaBOs, where B was Co, Mn, Ni and Fe. Similar to other studies, Co
based catalysts were shown to have an enhanced efficiency in EA
conversion. The active sites in xylene oxidation on cobalt based oxides
[107] were identified to be Co?™* species concentration, which were the
main species for surface oxygen activation. The synergistic effect of the
silver particles on the surface was discovered to be a significant factor
along with its high redox activity rates in the performance of Ag/LaBO3
when compared to the variations of the bare perovskite. This is illu-
strated in Fig. 8. With the objective of enhancing catalytic performance
of these materials, Pan et al. [108] prepared a double perovskite cat-
alyst, which is a perovskite with two different and synergistic transition
metal cations. These materials were tested for multiple different VOCs,
such as toluene, isopropyl alcohol and ethylene at fairly dilute con-
centrations (300 ppm). Results indicated a lower light off temperature
for the bimetallic catalyst when compared to the single metal per-
ovskite. From Fig. 7, it is inferred that the doping with two different
metals would cause a much higher concentration of lattice oxygen and
vacancies, thereby increasing catalytic performance. The effect of hu-
midity is another aspect to consider in this situation, as it tends to effect
the electrical properties of the perovskite [109]. When devising a VOC
sensor, for example, high humidity situations [110] have been shown to
effect response times, which could suggest an effect on catalytic affinity
of these compounds. Liu et al. [111] prepared an active samarium
manganese oxide based perovskite catalyst for the abatement of dif-
ferent VOCs with varied morphologies. The net like morphology along
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Fig. 8. Conversion of EA over various perovskites and their Ag doped coun-
terparts [106] - Published by the Royal Society of Chemistry.

with increased chemical properties such as surface Mn**/Mn>* species
and lattice oxygen concentration resulted in a low temperature com-
plete conversion of toluene, benzene and o-xylene to CO, at 240, 270
and 300 °C, significantly lower than many other metal oxide-based
catalysts and even some noble metal ones. It has also been revealed that
the incorporation of Ce in a manganese oxide based perovskite structure
yields a much better activity towards VOCs due to an increased Mn*™*
concentration and consequently, better redox properties [112]. He et al.
[113] incorporated Ce and Ni with manganese based perovskites for the
total oxidative catalysis of TCE and it was revealed that the addition of
these metals enhanced the redox properties of Mn**/Mn>* within the
structure, yielding a lower light off temperature. Complete conversion
was achieved, indicating the potential of these materials for C-VOCs.

2.4. Zeolite catalysts

Transition metals, metal oxides and noble metals incorporated onto
zeolite structures through ion exchange have also shown to have a good
potential for VOC oxidation [114-116]. Zeolites are materials with high
surface to volume ratio, along with a 3D tetrahedral structure (TO,4)
bonded by oxygen atoms and are commonly known as ‘molecular
sieves’. They are a combination of Si and Al based oxides, with the
general formula M,/n[(AlO,)(SiO5)y]-zZH;0, where M refers to the ion
exchanged cation or proton. Catalytic activity is usually dependent on
the atom used to replace the M position. The faujasite (FAU) structure
has been found to be particularly effective for VOC oxidation [117].

There exist two primary types of zeolites, acidic and basic. The
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behavior of acidic zeolites is a little more complex and coking is found
to be a larger problem [116,118]. Common zeolites are generally mi-
croporous, and are difficult to handle when considering continuous
flow operations. Furthermore, they lead to increased coke formation
within the pore system [50]. Crystal size and active site spatial dis-
tribution was found to be one of the most important factors in de-
termining zeolite catalytic activity. These issues can be tackled in
zeolitic materials with comparative ease using organic structure di-
recting agents (OSDAs) [119]. Apart from shape and size selectivity and
stable physiochemical properties, the ion exchange capacity of zeolite
materials make them excellent oxidative catalysts as well [120]. Basi-
city of the zeolite has been found to be related to the catalytic activity
of VOCs [121]. Mochida et al. [122] performed one of the first VOC
oxidation studies on transition metal exchanged zeolites, using Na-Y.
Supported noble metals (Pd, Pt) showed the lowest activation energy,
followed by Cu, which suggested the potential of these materials for this
operation. Commonly, Pd and Pt are the noble metals used in this
particular scenario. The type of framework selected also has a large
effect on catalytic performance of VOCs. For example, The effect of the
framework used was investigated in a study done by Tidahy et al.
[121], using the commonly used frameworks (illustrated by Fig. 9).
Interestingly, catalytic activity was shown to be the reverse when
comparing both FAU and beta polymorph A (BEA) type zeolites, which
was explained due to the dispersion of Pd particles, among other fac-
tors.

Tidahy et al. [114] assessed the catalytic performance of Pd sup-
ported by an FAU zeolite framework for the total oxidation of toluene
and compared it to commonly used transition mixed metal oxides. Basic
zeolites performed much better than acidic zeolites, with significantly
lower light off temperatures for Pd doped materials when compared to
mixed metal oxides used. Jabténska et al. [61] studied Pd particles
deposited on acidic zeolite (HY) and FAU-Na zeolite (NaY) for the low
temperature decomposition of methanol. The HY doped with Pd
(1.5 wt. %) showed much better performance, with Toy of 120 °C. when
compared to the basic zeolite. Blanch-Raga et al. [123] prepared Cu and
Co modified 3-zeolites for the conversion of TCE. The best performance
was obtained by Cu exchanged zeolite, with a Tgy of 360 °C, which was
attributed to a better combination of redox properties.

The challenges faced by the use of these materials for the catalytic
thermal oxidation of VOCs are the high toxicity of some halogen and
sulfurous compounds, coking and the presence of water vapor. There
are different kinds of coke, but dealing with VOCs frequently results in
either carbonaceous or sulfurous coke. This is commonly indicated by a
dark colored deposition on the catalyst. There exists two pathways in
which coking can occur, namely, internal and external. This is another
reason why adsorbent materials such as activated carbons are not
commonly used, as regeneration temperatures are commonly too high
for material recovery. When dealing with CVOCs, HCl poisoning is of

Fig. 9. Zeolite frameworks commonly used in VOC oxidation, (a) FAU (b) BEA framework (Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures).
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Fig. 10. Effect of dopants on HCHO degradation over TiO, based photocatalysts
[134].

particular concern due to its corrosive nature. Ce and Mn based cata-
lysts have been shown to be resistant to such poisoning.

2.5. Titania and ceria catalysts

Titania based catalysts have been screened to have superior effi-
ciencies for PCO due to their physiochemical stability under high en-
ergy radiation, photochemical properties and relative non-toxicity
[124,125]. Similar to other processes, anatase phase of titania is more
active than the rutile phase [126] due to better charge pair generation,
higher molecular oxygen affinity, higher surface hydroxyl group con-
centration and lower charge recombination rate. Surface characteristics
such as morphology of the material has been identified to be an im-
portant factor in determining reaction rates. For example, in a study
done by Tellez et al. [127], TiO, of anatase modification (UV100) and
photocatalyst (P25) phases of titania employed as films were examined
for the conversion of MEK. The former had a much better conversion
when compared to the latter. Furthermore, one of the controlling fac-
tors was revealed to be surface density when keeping the surface
chemistry consistent, with higher values corresponding to higher con-
version. The inference was that the higher light transmission through
the UV100, superior production of OH® radicals and extended residence
times from the high degree of microporosity resulted in a better per-
formance.

Structural dimensionality of the titania is another important factor
to consider. One-dimensional (1D) structures, such as rods, fibers or
nanotubes (NTs), have shorter pathways during charge carrier diffusion
and good light scattering properties. Two-dimensional (2D) structures,
such as sheets, have better contact surfaces and adhesion rates, while
three-dimensional (3D) structures such as monoliths benefit greatly
from an interconnected porous framework, which results in higher
charge carrier mobility.

With the advent of this technology, investigation into different
materials has been initiated. The properties of titania can be modified
by [128] (i) increasing charge separation to reduce charge re-
combination effects, (ii) increasing wavelength response range, (iii)
modifying selectivity by exploring adsorption mechanisms. This can be
achieved by doping with noble metals or other transition metals. By the
immobilization of these materials onto specific supports, quantum ef-
ficiency of the photocatalyst can be enhanced. This imparts several
useful properties on the catalyst, such as greater exposure to irradia-
tion, good surface characteristics and high pollutant selectivity [129].
Doping with rare-earth metals such as Pd, Pt and Ag increases light
absorption potential and decreases electron and hole recombination
[130], which could potentially shift the required energy from a high
energy spectrum like UV to low energy spectrum like the visible light
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spectrum. In a study done by Mogal et al. [131], various factors influ-
encing photocatalytic properties were examined for silver doped TiO,
catalysts. It was found that optimum doping amounts of silver effec-
tively enhanced multiple properties of titania, such as, control of par-
ticle growth and agglomeration, surface qualities and photochemical
properties. Grabowska et al. [132] incorporated noble metal nanos-
tructures into TiO, microsphere composites for the total oxidation of
phenol and toluene using the photodeposition method. While highly
efficient decontamination was observed in the UV spectrum, significant
decomposition was detected even in the visible spectrum at optimum
loading percentages due to a high absorbance potential. Size selectivity
and dispersion of the noble metal particles were found to be controlling
factors in degradation efficiency. The doping of noble metals can also
potentially influence phase behavior of the titania, maintaining the
anatase phase and preventing the transition to the less active rutile
phase [133].

Ceria based catalysts have frequently been used in the destruction of
hydrocarbons and VOCs, and have shown to be active catalysts for that
purpose [135]. Gaseous formaldehyde (HCHO) was destroyed over
various modified TiO, films in a study done by Liang et al. [134] When
comparing reaction efficiencies, it was revealed that doping with Ce
and Ag increased the photocatalytic performance of base TiO,, with the
former showing superior reaction rates (Fig. 10). Ceria based catalysts
showed a superior performance when compared to all other samples
tested. A Ce-modified TiO, photocatalyst exhibited enhanced stability
and efficiency for formaldehyde degradation (83%) at room tempera-
ture (Fig. 11). [136]

Synergistic effects between thermocatalytic and photocatalytic op-
erations were investigated over ceria based titania catalysts in a com-
prehensive study performed by Zeng at al. [137]. The synergistic effect
gave rise to enhanced benzene conversion, and is attributed to the
promotion of CeO, reducibility due to the photocatalysis on the TiO,
surface. Cerium doping gives rise to other interesting results. For ex-
ample, Fiorenza et al. [138] studied the decomposition of 2-propanol
over Au/TiO, and Au/TiO5-CeO,. Results indicated that while Au/TiO,
showed superior conversion rates, cerium doping increased the CO,
selectivity.

Mineral supported TiO, has been explored for PCO in the past
[139]. Diatomite is a porous non-metal mineral with a mixture of
various metal oxides. In a study done by Wang et al. [140], diatomite
with immobilized TiO, particles was synthesized via a modified sol-gel
method. It was inferred that the calcination temperature had an effect
in surface hydroxyl group content, thereby effecting photocatalytic
activity. In yet another study, Zhang et al. [141] prepared TiO,/dia-
tomite composite materials for the abatement of gaseous HCHO using
the hydrolysis deposition of titanyl sulfate. While surface characteristics
decreased after the composite preparation, activity rates greatly
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Fig. 11. Stability testing of HCHO degradation over a Ce modified TiO, based
photocatalysts [136].
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increased when compared to bare titania along with a greater reusa-
bility. Li et al. [142] prepared a novel fluorine doped TiO,/diatomite
composite material via facile sol-gel method. This shows the potential
of these materials, as enhanced activity was detected with visible
spectrum light. Clays are tetrahedral sheet like silicate materials with
good surface qualities such as high surface area and porosity. Due to
this, they have multiple interesting properties that could be utilized in
catalysis of VOCs [143], albeit frequently in the liquid phase. Some
common examples of expanding clays are vermiculite and smectite,
while non-expanding clays are Kaolinite and Mica. Mishra et al. [144]
studied the effects of different kinds of clay supports on the degradation
efficiency of different VOCs. Clay texture was an important factor to
consider, along its optical properties. Following this, Mishra et al. [145]
doped a TiOy/bentonite composite with noble metals and compared
their efficiency for the degradation of chlorobenzene and benzaldehyde
under UV light. Ag doped materials showed the best efficiency, when
compared to bare and other doped samples, suggesting the enhance-
ment of degradation of contaminants due to the doping process.
Mounting of Titania on zeolitic frameworks has also been explored,
with increased efficiencies resulting from much better surface qualities
and unique properties, such as acid leaching properties that stabilize
metal dispersion rates [146].

3. Capture materials used in VOC abatement

Hybridized capture and destruction methods have been of particular
interest in recent years. Conventional catalytic reactors require high
VOC concentrations in gaseous inlet streams in order to achieve op-
timum conversion rates, and oftentimes, VOCs exist in relatively minute
concentrations that can render low destruction conversions and high
energy penalties for these catalytic methods. Therefore, the in-
corporation of an adsorptive capture method working in tandem with a
reaction destruction method allows for both the effective capture and
destruction of VOCs from dilute gaseous streams at ambient conditions.
Adsorptive materials, including activated carbons (Section 3.1), zeolites
(Section 3.2), silicas (Section 3.3), and metal organic frameworks
(MOFs) (Section 3.4) have all been investigated as potential VOC
abatement adsorbents that have the capacity to be retrofitted into hy-
bridized systems. These materials have all successfully been retrofitted
into structured materials and have been tested for long-term stability
and durability in industry-simulated environments. Additionally, sev-
eral adsorbents have arisen as promising adsorbents for VOC abate-
ment, namely hypercrosslinked polymer networks (HCP) (Section 3.5)
and composite materials (Section 3.6). These materials are outlined in
this section in order to provide a robust overview of the different solid
adsorbents that have been investigated for VOC abatement.

3.1. Activated carbon

VOC abatement by means of activated carbon (AC) is currently the
most widely-used commercial adsorbent due to its high adsorptive ca-
pacity, high versatility, cost efficiency, and high chemical stability. AC
is a microcrystalline non-graphitic form of carbon with a high surface
area and porosity that makes it ideal for gas separation processes. AC is
a versatile material and has been utilized for VOC abatement in various
powdered and structured forms, including beads, granules, fibers, NTs,
and monoliths [42,147-149]. AC has been used in the capture and re-
covery of most types of hydrophobic VOCs, including acetone, cyclo-
hexane, EA, hexane, methane, xylene, and toluene [150,151]. This
versatility in VOC capture is due primarily to its surface area (com-
mercial AC Brunauer-Emmett-Teller (BET) surface areas reported be-
tween 900 - 1300 mz/g) and pore volumes (commercial AC reported
values between 0.40 — 0.70 cm3/g) [152]. However, adsorption capa-
cities can vary between commercial ACs depending upon these char-
acteristics. Das et al. [153] compared the effect of surface area on the
adsorption of toluene and found that breakthrough times were four
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times longer in commercial AC with a surface area of 1700 m?/g
compared that with a surface area of 1000 m?/g. Another study com-
pared the adsorption capacities of acetone, hexane, and TCE, and found
increased capacities at larger surface areas [154]. With respect to the
influence of pore volume, it has been shown that its small micropores
dominate VOC adsorption. One study found that benzene adsorption
capacity is enhanced at pore sizing smaller than 0.70 nm [155]. How-
ever, narrower pores can also cause diffusional resistances, resulting in
slower adsorption kinetics [156]. This causes economic inefficiencies in
large industrial processes when longer desorption times are required.
However, fixed beds of AC have been successfully regenerated at at-
mospheric pressure and room temperature, increasing its economic
feasibility [157].

There are, however, several drawbacks to ACs. AC is naturally a
non-polar adsorbent which limits its usefulness towards hydrophilic
VOCs. AC also suffers from thermal instabilities and a low spontaneous
ignition set-point, eliminating its usability for high temperature appli-
cations. Moreover, ACs micropores hinder the transport of VOC mole-
cules with large kinetic diameters. Lastly, AC is characterized by dis-
ordered pore sizing. This increases the likelihood of diffusional
resistances as VOC molecules enter and leave AC crystals [42]. Progress
has been made in recent years to address these drawbacks and enhance
the adsorptive capacities of AC. Alternative synthesis methods have
been investigated to increase the specific surface area of AC, with
successes up to 3000 m?/g. Studies have also focused on surface func-
tionalization for the capture of hydrophobic VOCs. A recent study by
Baur et al. [158] functionalized AC fibers with amine for formaldehyde
removal at low concentrations. Chemical modification of ACs via acids
and bases has also been investigated in order to increase the adsorption
capacities of single and binary VOC mixtures, as well as increase aro-
matic/alcoholic VOC selectivity at low concentrations [159,160]. Ad-
ditionally, alternative materials have been investigated for formulation.
Traditionally, AC is synthesized from carbon-rich materials such as
wood, coal, or petroleum pitch through the processes of carbonization
and activation. Agricultural waste such as rice straw, cotton stalks,
coconut shell, and rubber-seed shell have been investigated as ecolo-
gically sustainable alternatives [161]. Rice straw has emerged as a vi-
able material, producing AC with a BET surface area of 997 m?/g and
pore volume 0.9 cm®/g [162].

3.2. Zeolite-based adsorbents

Zeolites are another established sorbent for the removal/recovery of
VOCs. Zeolites are crystalline aluminosilicates that exhibit high thermal
and chemical stabilities, and are characterized by well-defined pore
structures and unique surface chemistries that make them well-suited
for a large number of gas separation applications. Though not as widely
used commercially as ACs, molecular sieve 13X (MS13X) zeolite, and
dealuminated Y-zeolite (DAY) have been extensively studied for the
removal of alcohols, aromatics, and aldehydes from exhaust streams.
Zeolites have the ability to abate both hydrophobic and hydrophilic
VOCs, depending on the zeolite type chosen for capture, and, similar to
ACs, the largest adsorption capacities are found amongst zeolites with
large surface areas and pore volumes [163]. MS13X is a hydrophilic
adsorber, and has been utilized for the recovery of aromatic and alde-
hyde compounds at low concentrations [164]. At 25 °C, adsorption of
toluene and MEK was found to have uptakes of 3.7 and 10.8 mmol/g,
respectively [165]. MS13X has also been studied for volatile alcohol
abatement. In order to highlight the importance of both VOC con-
centration and gas stream flow rates on adsorption, dynamic adsorption
studies of ethanol, methanol, and iso-propanol have been performed,
exhibiting uptakes between 2.95-3.18 mmol/g at concentrations ran-
ging 2800 — 7300 ppm [166]. However, the impact of water moisture
on gas adsorption for MS13X is a critical factor which must be ad-
dressed, especially for the purposes of indoor air control. In humid
environments, water vapor has been shown to occupy actives sites,
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decreasing the uptake of both hydrophobic and hydrophilic VOCs
[167]. Studies have further revealed that the for adsorption of toluene,
water vapor will replace preadsorbed toluene in a phenomena known as
“roll over” [164]. MS13X also requires high regeneration temperatures
(> 400°C) in order to ensure complete water removal. These are im-
portant considerations for indoor air capture, as ambient air generally
contains high concentrations of water [163].

DAY-zeolite has been studied for the abatement of VOCs. DAY is a
hydrophobic zeolite, and has been investigated for the removal of
acetone, toluene, and xylene. DAY-zeolites have BET surface areas re-
corded between 500 - 900 m?/g and pore volumes between 0.28 —
0.40 cm®/g [168,169]. In dry conditions at 25 °C, it exhibits adsorption
capacities for toluene and MEK of 11.6 mmol/g and 10.5 mmol/g, re-
spectively [165]. Comparing the results of toluene and MEK for MS13X
and DAY, it’s clear that hydrophobic zeolites achieve much higher ad-
sorption capacities for non-polar VOCs. In situations where it is desir-
able to capture a variety of VOCs, DAY-zeolites will serve as a more
robust adsorbent [168]. While DAY-zeolite is considered hydrophobic
due to its high Si/Al ratio, it still exhibits water uptake when exposed to
ambient air conditions (characterized by water concentrations > 5000
ppm). In a recent publication by Nigar et al. [170] competitive ad-
sorption was displayed in binary mixtures containing water and n-
hexane. Upon saturation with water, DAY shows a 12.6 wt. % water
uptake. Though not as extreme as the MS13X water uptake (30 wt. %
[1711), it can still affect adsorption properties and result in diminished
adsorptive capacities. In a recent study by Kang et al. [172], FAU and
MEFI zeolites were compared for the adsorptive removal of DCM vapor.
They found ZSM-5 exhibits both superior adsorptive working capacities
and desorption kinetics (Fig. 12) over NaX and NaY zeolite and was not
affected by water vapor due to both a low Al content and evenly dis-
persed active sites.

3.3. Amine-modified mesoporous silica

The utilization of ordered mesoporous silica eliminates the limita-
tions placed on zeolites and ACs for the capture of large VOC molecules.
Mesoporous silicas are characterized by large pore volumes, high sur-
face areas, a narrow distribution of pore sizing, and open pore struc-
tures which makes them ideal for gas separation processes [173,174].
In particular, Santa Barbara Amorphous-15 (SBA-15) and mobile com-
position of matter No. 48 (MCM-48) are two types of silica which have
been studied for the abatement of VOCs due to a unique pore system.
Known as a “bimodal pore system,” complementary micropores in the
silica walls connect to the mesopores, giving the silica both micro-
porous and mesoporous characteristics. This makes the materials ideal
for both the capture and diffusion of a wide variety of VOCs [175,176].
SBA-15 consists of two-dimensional hexagonal arrays of uniform cy-
lindrical mesopores and MCM-48 consists of three-dimensional
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bicontinueous cubic arrangements of mesopores. However, silica pos-
sess silanols (Si—OH) on its wall surface. These silanols decrease both
the hydrophobicity of the material and its adsorption capacities for non-
polar VOCs in the presence of water [177,178]. In order to overcome
this, the surface chemistry of silica can be tailored through the organic
functionalization of amines [179]. Bare silica has been studied for its
capture capacities towards commonly encountered VOCs, including
toluene and hexane. Amine-functionalized silica, however, has been
focused on the capture and recovery of formaldehyde.

Pre-functionalized bare SBA-15 has been investigated for the ad-
sorption of hexane and toluene. SBA-15 with a BET surface area of
685m?/¢ and a total pore volume of 0.75cm?/g, yielded adsorption
uptakes of 7.58 mmol/g and 6.40 mmol/g of hexane and toluene, re-
spectively [180]. The higher capacity for hexane illustrates the influ-
ence of the silanol surface groups [181,182]. MCM-48 has been studied
for a much wider range of commonly encountered VOCs. Unlike most of
the adsorbents discussed up to this point, MCM-48 has defined hydro-
philic properties which make it suitable for the capture of polar VOCs
[183]. MCM-48 is characterized by larger BET surface areas and pore
volumes than SBA-15 (1100 m?/g and 1.08 cm?/g, respectively), and
has been studied particularly for the abatement of VOCs at low partial
pressures [184]. Due to the influence of the silanol groups, significant
uptakes of methanol, and acetone are observed for MCM-48 at low
partial pressures [183-186]. The adsorption capacities of various VOCs
at 30 °C are shown in Table 3.

Amine-impregnated silica (aminosilica) is a relatively new tech-
nology that has been investigated for its promising effects on for-
maldehyde abatement for the purpose of indoor capture
[158,187-189]. The amine is impregnated onto the surface and into the
channels of the silica where it reacts covalently with formaldehyde.
Generally, SBA-15 serves as the silica support for amine functionaliza-
tion [189]. Amines can be loaded onto the silica at different weight
amounts in order to optimize maximum adsorption capacity and se-
lectivity for a particular VOC [190-192]. At low amine loadings, op-
timal adsorption capacities may not be reached, while high loadings
may block pore entrances and result in decreased surface area and
adsorption. Therefore, finding the optimal amine to silica ratio is the
current research focus. Many different types of polymeric amines have
been tested, including linear poly(ethyleneamine) (PEI), poly(allyla-
mine) (PAA), branched poly(ethyleneamine) (PEIBR), and tetra-
ethylenepentamine (TEPA) [187,189]. Investigations at low vapor
concentrations of formaldehyde (100-200 ppm) have revealed pro-
mising results. Bare SBA-15 has no affinity for formaldehyde, however,
when loaded with 48 wt. % PEIBR, it yields a capacity of 4.3 mmol/g.
Similarly, SBA-15 loaded with 35 wt. % PEILI yields a 3.1 mmol/g ca-
pacity [189]. While these results are promising, more detailed analyses
must be performed on these materials in order to determine re-
generative capacities and chemical and thermal stabilities. Many
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Fig. 12. (A) Breakthrough and (B) desorption curves of DCM for FAU and MFI zeolites. Reprinted with permission from J. Chem. Eng. Data 2018, 63, 6, 2211-2218.

Copyright 2018 American Chemical Society.



T. Gelles, et al.

Table 3
Equilibrium Data of VOCs over MCM-48 at 30 °C [184].

voC Pressure (kPa) Amount Adsorbed (mmol/g)
Benzene 1.103 1.853
Toluene 1.110 7.243
Hexane 0.991 0.497
Cyclohexane 1.311 0.468
Methanol 1.012 2.355
Acetone 1.280 2.434

amines decompose at moderate temperature ranges (90°C-120 °C),
which may eliminate the use of temperature swing adsorption for re-
generation. Amines are also prone to leeching, which would affect the
shelf-life and durability of aminosilicas [193,194]. Therefore, further
research is required for these promising sorbents.

3.4. Metal-Organic Frameworks (MOFs)

Metal-organic frameworks (MOFs) represent a departure from the
traditional solid-state adsorbents outlined above (AC, zeolites, silicas)
into more advanced materials. MOFs are three-dimensional hybrid
materials that consist of metal ions coordinated to organic ligands
through strong covalent bonds. MOFs exhibit large surface areas and
open crystalline structures, and, unlike traditional adsorbents, MOF
surface chemical functionalities can be tailored to meet a wide variety
of different gas separation demands, including the gas separation of low
concentration VOCs [195]. Over the past several years, two promising
MOFs have emerged for this purpose: Material Institut Laviosier (MIL-
101) and Hong Kong University of Science and Technology (HKUST).
Both MIL-101 and KHUST exhibit exceptional thermal and chemical
stabilities and have been successfully modified into structured ad-
sorbents. This increases their versatility for incorporation into a wide
range of industrial, commercial, and even domestic applications. MIL-
101 is a Cr/Fe-based MOF linked with terephthalate groups. MIL-101
has both large surface areas (BET surface areas greater than 3000 m?/g)
and cell pore volumes (total pore volumes of 1.75 cm®/g and greater),
making it favorable for VOC adsorption. It also has a higher synthesis
yield compared to other comparable MOFs and excellent desorption
kinetics. Saturation-regeneration cycles have shown that MIL-101 has a
VOC desorption efficiency of over 97% [196]. Upon comparison to SBA-
15 and other silicates, MIL-101 displays higher capacities towards
commonly encountered VOCs at low pressures [197,198]. MIL-101 has
only recently been tested for the removal of aromatic and halogenated
VOCs, including xylenes, benzene, EA, and DCE, referenced in Table 4
[196,197,199,200], and has shown superior adsorptive capacities for
these VOCs at low concentrations.

MIL-101 exhibits preferential selectivity towards polar sorbents.
This is the result of favorable interactions between polar molecules and
the MIL-101 framework [202]. Most of the adsorbents outlined thus far
have preferential capacities for non-polar VOCs, making MIL-101 an
attractive option for the capture of hydrophilic VOCs. Regardless of its
preference for polar sorbents, at similar temperature and pressure

Table 4
Equilibrium adsorption of Various VOCs over MIL-101.

VvOC SgeT Temperature (K) Pressure Amount Adsorbed Ref.
(m%/g) (kPa) (mmol/g)

Acetone 3,980 298 55.0 22.3 [198]
Benzene 3,054 298 0.55 15.0 [201]
Benzene 3,360 308 0.08 5.5 [196]
EA 3,360 308 0.08 3.3 [196]
DCE 3,360 308 0.08 9.7 [196]
p-xylene 3,054 298 0.06 9.5 [199]
Toluene 3,980 298 55.0 14.0 [198]
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conditions, the adsorption of benzene (a non-polar molecule) on MIL-
101 were still much higher than those for silicas SBA-15 and Silica-1 as
well as zeolite ZSM-5 [196]. Recent studies have investigated the ad-
sorption capacities of VOC capture in packed beds of MIL-101 in humid
environments. What has been found is that water vapor competitively
adsorbs to MIL-101 actives sites, decreasing active sites available to
VOC capture [196]. Therefore, the effect of water vapor must be
properly accounted for the purposes of VOC abatement for both wet
flue gas streams and indoor air conditions. Overall, MIL-101 is a su-
perior adsorbent for the capture of both polar and non-polar VOCs.

Another promising MOF that has exhibited exceptional adsorption
capacities towards VOCs is HKUST-1 (also called Cu-BTC). HKUST-1 is a
Cu-based MOF and well known for a uniform micropore sizing and good
hydrothermal stability. Its cages are slightly smaller than those of MIL-
101, which gives it a stronger adsorption affinity towards VOCs with
smaller kinetic diameters [203-205]. HKUST-1 was first investigated
for the capture and storage of acetylene, where it exhibited an uptake of
8.97 mmol/g at 25°C and 1 atm (Fig. 13a), and exhibited a superior
heats of adsorption compared to the other MOFs investigated (Fig. 13b)
[206]. From this, the study of HKUST-1 has expanded to include studies
of benzene and water vapor. At 25°C and at relative pressures up to
0.16, HKUST-1 exhibits a benzene uptake of almost 10 mmol/g [207].
This study has HKUST-1 as a promising candidate for benzene capture
at low concentrations. However, similar to MIL-101, in binary trials of
benzene and water vapor, competitive adsorption has been observed,
resulting in reduced benzene adsorption [207]. Overall, MIL-101 and
HKUST-1 are promising adsorbents for VOC capture. However, they
must be further examined in order to determine their economic feasi-
bility. MOFs are currently very costly to make and require detailed and
complicated synthesis methods which, if synthesized incorrectly, result
in diminished porosity and render them impractical to use in large in-
dustrial scales.

3.5. Hypercosslinked polymer networks (HCP)

Hypercrosslinked polymer networks (HCP) are a class of porous
organic polymers (POPs). They are microporous adsorbents that are
comprised of an entirely rigid porous polymer framework [208,209].
HCPs are produced by further crosslinking polymers in a particular
solvent and represent a class of materials that exhibit high surface areas
(between 600 — 2200 m?/g), large pore volumes, and are easier to
synthesize than MOFs. Historically, HCPs have been studied for the
purposes of water treatment, however, research within the last 10 years
has turned its focus on the removal of VOCs from gas streams [210].
HCP adsorbents with a poly (styrenedivinylbenzene) matrix (HY-1) and
polymeric resin (NDA-201) are two promising HCP adsorbents for the
abatement of benzene, MEK, and chlorinated VOCs [211,212]. In a
study by Long et al. [211], HY-1 was investigated against AC for its
adsorption capacities to benzene and MEK. As shown in Table 5, at
30 °C and 9kPa, HY-1 shows superior capacities to AC for both VOCs.
Additionally, when exposed to increased temperatures, reduced ad-
sorption capacities were more pronounced in HY-1 than AC. This em-
phasizes the that, along with superior adsorption capacities, HY-1 is
more efficient to regenerate in a temperature swing process compared
to AC [211].

NDA-201 is another type of HCP that has been studied for the
abatement of chlorinated VOCs. NDA-201 is a hydrophilic adsorbent,
which makes it ideal for capturing polar chlorinated VOCs. In a second
study by Long et al, the adsorption capacities of TCE, tetracloromethane
(TCM), and DCE are investigated at 30 °C and low partial pressures,
shown in Table 5. Three favorable adsorption isotherms were exhibited
for these VOCs [212]. Further research is required for HY-1 and NDA-
201 in order to ascertain both thermal and chemical stabilities and
large-scale deployment feasibility.
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Fig. 13. (a) Acetylene adsorption isotherms of microporous MOFs at 22 °C and (b) heat of adsorption of acetylene for several MOF types (black represents HKUST-1 in
both figures). Reprinted with permission from [206]. Copyright 2009 American Chemical Society.

Table 5
Equilibrium adsorption of various VOCs over HCPs and AC at 30 °C.
Adsorbent VOC Sper (m?/g)  Pressure Amount Adsorbed Ref.
(kPa) (mmol/g)
HY-1 Benzene 1,244.2 9 6.40 [211]
MEK 1,244.2 9 6.24 [211]
AC Benzene 1,015.2 9 4.48 [211]
MEK 1,015.2 9 4.16 [211]
NDA-201 TCE 855.6 8 6.85 [212]
TCM 855.6 22 8.38 [212]
DCE 855.6 9 8.16 [212]

3.6. Composite materials

In recent years, composite materials have risen as an attractive
adsorbent alternative to VOC capture. Composite materials combine
two different solid-state adsorbents for the purposes of enhancing ad-
sorptive capacities. Composite adsorbents are synthesized by either pre-
treatment or post-treatment methods, and effective composite materials
will maintain the physical, thermal, and chemical characteristics of
both adsorbents but will have VOC adsorption capacities and selectiv-
ities greater than the those of the parent components, and should also
have surface areas and pore volumes greater than the individual com-
ponents. To date, a wide variety of composite materials have been re-
searched for the purposes of VOC capture for both hydrophobic and
hydrophilic VOCs. One of the most researched composite types are
carbon derivatives. Carbon-silica composites (CSC) have been re-
searched as good candidates for VOC adsorption due to high surface
areas and pore volumes. With these composite materials types, carbon
becomes embedded into the mesopores of the silica reducing the pore
size and shortening the path of diffusion, both of which have been at-
tributed to VOC adsorption. The pore sizing can be controlled by the
amount of AC loaded. This allows for the direct tuning of pore size, and
subsequently for the tuning of specific VOCs. In a study by Janus et al.
[213], MEK adsorption was tested for CSCs and was found to be higher
than that of the parent silica material. In another study by Dou et al.
[214], the adsorption of benzene was tested over CSC. At 25 °C, the
adsorption capacity of the CSC was greater than that of the AC alone
(5.06 mmol/g to 4.37 mmol/g, respectively). CSCs also have been
thoroughly characterized and along with superior adsorption capa-
cities, they also have higher ignition temperatures than AC, making
them a more appropriate adsorbent to use in industrial processes [215].
MOF-carbon composites are a novel branch of adsorbents that have
been researched for the abatement of hexane and acetone. In a recent
study, MIL-101 and graphene (CrO@MIL-101) composites were suc-
cessfully synthesized and tested for acetone removal. GrO@MIL-101
was found to have both a BET surface area and pore volume greater
than the bare MIL-101 (2928 m?/g and 1.43 cm®/g to 2651 m?/g and
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1.29 cm®/g, respectively) and exhibited an acetone uptake of over 44%
more than the bare MIL-101 at 15°C [216,217]. In another study,
CrO@MIL-101 was synthesized with different amounts of graphite
(between 2-15 wt. %) and tested for hexane adsorption. The GrO@MIL-
101 with a 5wt.% loading had a superior BET surface area and pore
volume (3502.2 mz/g and 1.75 crns/g) and had a hexane uptake twice
that of the bare MIL-101 at 25 °C [216]. Lastly, in a novel study by Saini
and Pires, MOF-199 was loaded into zeolite ZSM-5 for the adsorption of
the common indoor VOCs: benzene, hexane, and cyclohexane. The
composite yielded a higher BET surface area than the ZSM-5 parent
(957 m?/g to 363 m?/g, respectively) and enhanced the adsorption ca-
pacity of the ZSM-5 by 150%, 283%, and 468% for hexane, benzene,
and cyclohexane, respectively. This is the first study where a MOF-
zeolite composite was developed and investigated for VOC capture.
Moreover, MOF-199 is a Cu-based MOF that is both inexpensive and
easy to synthesize, making this composite material an attractive ad-
sorbent for commercial applications [218].

4. Materials designed for hybrid processes

In recent years, many materials have been investigated for the
specific purpose of utilization in hybridized capture and destruction
processes. These include the study of dual or bi-functional materials and
hybrid adsorbent/catalysts. Dual or bi-functional materials, which are a
class of materials that share efficient removal rates in the different
operations considered in the system. Bifunctional materials is also a
term used for materials can that be used in the same process for dif-
ferent pollutants [219,220]. For example, Karthik et al. [221] studied
the simultaneous catalytic abatement of VOCs and NOx compounds
over Cu-Al-MCM-41, a proposed bifunctional catalyst. It was inferred
that the Cu®* ions in the presence of the Al sheets showed an increased
NOy selectivity and provided moderate removal rates of acetone. This
material was also superior to the commonly used Cu-ZSM-5, which
while showed better performance earlier on, suffered from heavy coke
formation. In yet another investigation, Jin et al. [222] studied the
potential of Pd/Cr,03-ZrO, for the oxidation of DCM, a CVOC, EA and
toluene respectively. It was found that the Cr containing materials
showed improved conversion rates for DCM and EA when compared to
the other materials tested, while the presence of Pd greatly improved
toluene conversion. This shows us the importance of selecting the
composition of the catalyst when considering a process.

Multiple studies have been performed on the performance of ad-
sorptive reactor technology for the abatement of VOCs in the past.
Zeolite based materials have been the focus of this concept due to their
superior surface characteristics, acidic properties and high activity rates
due to ordered structures [223,224]. For example, in an early in-
vestigation by Greene et al. [225], this technology was used to assess
the conversion of halogenated VOCs. Cr ion exchanged ZSM-5 zeolites
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were used for this study, and close to 60-90 % energy savings were
observed. In another study performed by Atwood et al. [226], the po-
tential of Cr-ZSM-5 was investigated for the adsorptive reaction of TCE
at 350 °C. A very high conversion of 99% was achieved which a much
greater energy efficiency, when compared to a conventional packed
column. Sinha et al. [227] investigated Cr based mesoporous materials
using a neutral templated synthesis route for dual functionality in the
elimination of toluene. High conversion rates along with strong se-
lectivity towards the VOC indicated the potential of these materials for
the use in a hybrid system. Cr based materials have also shown to have
a good adsorptive performance for commonly encountered VOCs [14].
The influence of material structure is also important. For example,
Wang et al. [37] demonstrated the use of Ru/hierarchical HZSM-5
zeolite as efficient bi-functional (hybrid) adsorbent/catalyst for bulky
aromatic VOCs elimination under the presence of other parameters such
as relative humidity. Their results proved that Ru/hierarchical HZSM-5
zeolite shows increased external surface and mesoporous volume,
shortened diffusion length and enhanced low-temperature reducibility
compared with Ru/conventional HZSM-5 zeolite. In addition to im-
proved conversion rates, the former was able to establish cyclic carbon
conservation without any production of secondary pollutants like NOy.
Research study by Zaitan et al. [228] employed hydrophobic synthetic
zeolite, ZSM-5, as an adsorbent/catalyst bi-functional to abate toluene.
Adsorbed toluene was thereafter oxidized, releasing mainly CO, and
H-0, indicating a total oxidation process. After four successive cycles of
adsorption/oxidation, the adsorption efficiency was not affected (92% —
99%), which reveals the reusability and lifetime of this catalyst.

5. Conclusion and outlook

VOCs represent some of the most common and worrisome pollutants
due to both their toxicity and their precursor role in chemical smogs.
While the use of VOCs in common household implements, such as paint,
is decreasing, outdoor emissions are rising to a point of concern, par-
ticularly in many urban areas. A number of abatement technologies
have been investigated over the years in order to develop an over-
arching process that can successfully remove a variety of VOCs from
gaseous streams. Capture, destruction, and hybridized capture-de-
struction methods have arisen as promising methods. When selecting an
appropriate system, the material chosen as to serve as the adsorbent or
catalyst is essential in the overarching efficacy of the system.

Noble-metal based catalysts are the most commonly used catalysts
for the complete destruction of VOCs, showing high conversion rates at
low temperatures. However, these catalyst types are expensive, making
them largely inefficient for large-scale deployment. Transition metal
oxide catalysts are a more cost-effective alternative to noble-metal
catalysts and can achieve similar conversion rates. However, they ex-
hibit higher light-off temperatures which drives up energy-demands
and reduces large-scale feasibility. The surface areas, pore volumes, and
hydrophobic properties of many adsorbents allow for affinities towards
a myriad of VOCs. AC, DAY-zeolite, and amine-modified mesoporous
silicas are well-established adsorbent materials and have demonstrated
enhanced VOC capture capacities and water stability characteristics.
More recently, MOFs, including MIL-101 and zeolite/MOF composite
materials, have arisen as attractive adsorbents.

In recent years, many investigations have been performed to find
dual-functioning materials and hybridized adsorbent/catalysts that can
both be retrofitted into capture and destruction systems and used to
abate a myriad of different VOC types. Many promising materials have
arisen, including Cr ion exchanged ZSM-5 and Cu/hierarchical ZSM-5,
both of which operate effectively as dual-functioning hybridized ma-
terials. Influenced by these recent advances, future work will focus on
similar adsorbent/metal ion composite materials that utilize the ad-
sorbent as the support bed where noble or transitional metal ions can be
doped on the surface in order to enhance catalytic properties and lower
material costs. The use of zeolites, ACs, and mesoporous silicas as
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supports are durable and inexpensive adsorbents that can be custo-
mized to fit a variety of VOC abatement needs. Future work will also
focus on the use of MOFs, particularly MIL-101(Cr), as support beds for
catalyst doping due to exceptional surface areas and the high potential
for surface characteristic tenability, which allows for effective func-
tionalization with a number of sulfates and metal ions in order to in-
crease catalytic activity. Additionally, future work will also focus on the
development of bifunctional materials that can accommodate the in-
tandem capture and destruction of VOCs and SO/NOy from automotive
and industrial exhaust streams. Materials such as Cu-Al-MCM-41 have
already proven to be effective in the abatement of acetone and NOy
compounds. These composite materials are highly advantageous for the
abatement of rising VOC emissions in cities, and have the potential to
be expanded upon in order to mitigate a number of different VOC types
in conjunction with many other hazardous pollutants.

We have summarized recent progresses made in the development of
adsorbents and catalysts for the capture and destruction of VOCs. The
past several years have witnessed a breakthrough in the development of
advanced materials for such applications, and in light of recent material
advancements, we have proposed future directions based on the in-
corporation of adsorption and reaction in order to improve the overall
feasibility and cost-efficacy of these materials. In conclusion, the
abatement of VOCs is a complex matter that involves the consideration
of many different parameters that can vary significantly depending on
the particular VOC or VOC class it is desired to abate. Although great
progress has been made on the abatement of these volatile compounds,
the effective incorporation of these materials into industrial processes
requires further investigations.
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