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Abstract—This paper presents a class of regular quasi-cyclic
(QC) LDPC codes whose Tanner graphs have girth at least eight.
These codes are constructed based on the conventional parity-
check matrices of Reed-Solomon (RS) codes with minimum
distance 5. Masking their parity-check matrices significantly
reduces the numbers of short cycles in their Tanner graphs and
results in codes which perform well over the AWGN channel in
both waterfall and low error-rate regions.

I. INTRODUCTION

Some recent research [1]–[5] combines two powerful cat-

egories of codes, namely RS, and LDPC codes, to form

powerful classes of hybrid codes which, not only perform well,

but are also practically implementable. These research works

take two different approaches. The first approach is to encode

and decode an RS code as a powerful LDPC code through a

specific mapping [1], [2]. The second approach is to construct

a structured QC-LDPC code based on the conventional parity-

check matrix of an RS code under certain constraints [3]–[5].

Such a code is referred to as an RS-QC-LDPC code.

In this paper, we present a specific method for constructing

a class of regular RS-QC-LDPC codes whose Tanner graphs

have girth at least 8. The codes in this class are constructed

based on the conventional parity-check matrices of RS codes

with minimum distance 5. Masking is used to reduce the

numbers of short cycles of lengths 8, 10, 12 and 14 in their

Tanner graphs. We show that girth-8 structure in conjunction

with making results in RS-QC-LDPC codes that perform well

over the AWGN channel in both waterfall and low-error rate

regions.

II. CONSTRUCTION OF QC-LDPC CODES BASED ON

FINITE FIELDS

In this section, we give a general description of construction

of QC-LDPC codes based on finite fields of characteristic 2.

Let β be an element of order n in GF(2s) where n is a factor

of 2s−1. The set Sn={1, β, ..., βn−1} forms a cyclic subgroup

of GF(2s). For 0≤ i < n, we represent the element βi by a

circulant permutation matrix (CPM) over GF(2) of size n×n

(with rows and columns labeled from 0 to n−1, respectively)

whose generator (the top row) has the unit-element “1” of

GF(2s) as its single nonzero component at the position i. We

denote this CPM by CPMn(β
i). The representation of the

element βi by CPMn(β
i) is unique and the mapping between

βi and CPMn(β
i) is one-to-one. This matrix representation

of βi is referred to as the n × n CPM-dispersion of βi with

respect to the cyclic subgroup Sn of GF(2s). We represent the

0-element of GF(2s) by a zero matrix (ZM) of size n× n.

Since n is a factor of 2s − 1, there is some l for which ln

divides 2s − 1. Let δ be an element in GF(2s) of order ln,

i.e., δln = 1. Then, β can be expressed as the l-th power of δ,

i.e., β = δl. Let Wln be the cyclic subgroup of GF(2s) with

order ln generated by the powers of δ. Then, Wln contains

Sn as a subgroup. If we disperse each element in Wln by

a CPM of size ln × ln as described above, then the element

βi = δil, 0 ≤ i < n, as an element in Wln, is dispersed into a

CPM of size ln×ln, denoted by CPMln(β
i), whose generator

has its single 1-component at position il. In this case, every

element βi in Sn is uniquely dispersed into a CPM of size

ln× ln which is referred to as the ln× ln CPM-dispersion of

βi with respect to the super group Wln of Sn. The number ln

is called the dispersion-factor with respect to Wln. Therefore,

each element in Sn can be one-to-one dispersed into a CPM

of a size equal to the order of a cyclic subgroup of GF(2s)
which contains Sn as a subgroup (including Sn itself).

For 0 < d < b ≤ n, let B(d, b) be a d × b matrix over

GF(2s) with all the nonzero entries from the cyclic subgroups

Sn of GF(2s). Suppose we disperse each nonzero entry in

B(d, b) into a CPM of size of ln× ln with respect to a cyclic

subgroup Wln of GF(2s) with order ln that contains Sn as

a subgroup and each zero entry into a ZM of size ln × ln.

This results in a d × b array Hln(d, b) of CPMs and ZMs

of size ln × ln. The array Hln(d, b) is called the ln × ln

CPM-dispersion of B(d, b). The array Hln(d, b) is a dln×bln

matrix over GF(2). Typically, ln >> 1, and Hln(d, b) is a

sparse matrix. The null space over GF(2) of Hln(d, b) gives

a QC-LDPC code, denoted by Cln,ldpc(d, b). Since the code

Cln,ldpc(d, b) is constructed based on the matrix B(d, b), the

matrix B(d, b) is referred to as the base matrix.

The performance of the QC-LDPC code Cln,ldpc(d, b) very

much depends on the girth, distribution of short cycles, and

degree distributions of check nodes (CNs) and variable nodes

(VNs) of its Tanner graph Gln(d, b).
It is proved in [6] that the Tanner graph of Cln,ldpc(d, b) has

girth at least 6 if the base matrix B(d, b) satisfies the following

constraint: any 2 × 2 submatrix of B(d, b) is nonsingular

(NS). We referred this constraint as the 2 × 2 submatrix NS-
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constraint, denoted by 2 × 2 SNS-constraint. Also proved in

[6] is a necessary and sufficient condition on B(d, b) for the

Tanner graph of Cln,ldpc(d, b) to have girth at least 8. We

rephrase the condition in the following theorem.

Theorem 1: Let B be a matrix over GF(2s) and C be the QC-

LDPC code given by the null space over GF(2) of the binary

CPM-dispersion of B. A necessary and sufficient condition

for the Tanner graph of C to have girth of at least 8 is that

no 2× 2 or 3× 3 submatrix of B has two identical non-zero

terms in its determinant expansion.

For simplicity, we refer the necessary and sufficient con-

dition given in Theorem 1 as the 2 × 2/3 × 3 submatrix

(SM) constraint. It is clear the 2 × 2/3 × 3 SM-constraint

implies the 2 × 2 SNS-constraint. Various algebraic methods

for constructing 2 × 2 SNS-constrained base matrices can be

found in [5]–[8]. So far, no efficient method for constructing

2×2/3×3 SM-constrained base matrices has been proposed.

In the next section, we present a class of parity-check matrices

of RS codes that satisfy 2 × 2/3 × 3 SM-constraint. Hence,

they can be used as base matrices to construct QC-LDPC codes

whose Tanner graphs have girth at least 8.

III. CONSTRUCTION OF A CLASS OF REGULAR

RS-QC-LDPC CODES WITH GIRTH SIX AND EIGHT

A. A Class of (4, b)-Regular RS-QC-LDPC with Girth at Least

Six

Let β be an element of order n in GF(2s) where n is factor

of 2s − 1 and is divisible by 3. The set Sn={1, β, ..., βn−1}
forms a cyclic subgroup of GF(2s). Form the following 4×n
RS parity-check matrix over GF(2s):

BRS(4, n) =
[

(βi)j
]

1≤i≤4,0≤j<n
. (1)

The null space over GF(2s) of BRS(4, n) gives a 2s-ary

(n, n− 4, 5) cyclic RS code, denoted by CRS(4, n), of length

n, dimension n− 4 and minimum distance 5 whose generator

polynomial has β, β2, β3 and β4 as roots [7].

In general, the RS matrix BRS(4, n) given by (1) does not

satisfy the 2 × 2 SNS-constraint. However, if we choose a

group of columns from BRS(4, n) properly, a 2×2 constrained

RS matrix can be formed. The null space over GF(2s) of

the 2 × 2 constrained RS matrix gives a shortened RS code

of CRS(4, n) with the same minimum distance 5. In the

following, we present a method to construct 2 × 2 SNS-

constrained submatrices of BRS(4, n).
Label the columns of the RS matrix BRS(4, n) from

0 to n − 1. Since n is divisible 3, n = 3m. Partition

the column labels of BRS(4, n) into m = n/3 disjoint

label-triplets, (0,m, 2m), (1, 1+m, 1+ 2m), ..., (l, l+m, l+
2m), ..., (m − 1, 2m − 1, 3m − 1). From each label-triplet

(l, l + m, l + 2m), 0 ≤ l < m, we take one (any one)

label. This gives us m column labels. We denote these m
column labels with j0, j1, ..., jm−1 and arrange them in the

order 0 ≤ j0 < j1 < ... < jm−1 < n. (Note that

the column label jl may not be taken from the label-triplet

(l, l + m, l + 2m).) These m chosen column labels form a

column label-set Λm = {j0, j1, ..., jm−1}. Next, we take m
columns, labeled by j0, j1, ..., jm−1, from BRS(4, n) and form

the following 4×m submatrix of BRS(4, n):

BRS,Λm
(4,m) =

[

(βi)jl
]

1≤i≤4,0≤l<m
. (2)

This RS matrix satisfies the 2×2 SNS-constraint as proved

in the following theorem.

Theorem 2: The RS matrix BRS,Λm
(4,m) given by (2)

satisfies the 2× 2 SNS-constraint.

Proof: Label the columns of BRS,Λm
(4,m) from 0 to m− 1.

For 1 ≤ i < k ≤ 4 and 0 ≤ s < t < m, con-

sider a 2 × 2 submatrix of BRS,Λm
(4,m) with four entries

(βi)js , (βi)jt , (βk)js , (βk)jt at the locations (i, s), (i, t), (k, s)
and (k, t). Suppose this matrix is singular. Then, we must

have β(k−i)(jt−js) = 1. Note that 0 < k − i ≤ 3. From the

composition of each label-triplet, we find that jt − js is not

divisible by m and nonzero. Then, the product (k− i)(jt−js)
is not divisible by n = 3m and β(k−i)(jt−js) �= 1. Hence, the

above 2× 2 submatrix of BRS,Λm
(4,m) must be nonsingular

and BRS,Λm
(4,m) satisfies the 2× 2 SNS-constraint.

From the above construction of a 2 × 2 SNS-constrained

RS matrix, we readily see that for 4 < b ≤ m, any b
consecutive columns of BRS(4, n), including end-around case,

form a 2 × 2 SNS-constrained RS matrix BRS,Λb
(4, b). Or

any 4× b submatrix obtained by deleting m− b columns from

BRS,Λm
(4,m) satisfies the 2×2 SNS-constraint. Note that all

the entries in BRS,Λb
(4, b) are elements in the cyclic group

Sn of GF(2s) and non-zero.

The ln× ln CPM-dispersion of BRS,Λb
(4, b) gives a 4× b

array HRS,ln(4, b) of CPMs of size ln×ln which consists of 4

(b) row (column)-blocks of CPMs. Each CPM row (column)-

block of HRS,ln(4, b) consists of ln rows (columns). Each

row (column) in a CPM row (column)-block contains b (4)

1-entries which reside in b (4) separate CPMs in the CPM

row (column)-block, one in each. The b CPMs in each CPM

row-block of HRS,ln(4, b) are distinct, and the 4 CPMs in

each CPM column-block of HRS,ln(4, b) are distinct, except

for the case that BRS,Λb
(4, b) consisting of a column of four

1-entries.

The null space over GF(2) of HRS,ln(4, b) gives a (4, b)-
regular RS-QC-LDPC code, denoted by CRS,ln,ldpc(4, b), of

length lnb. The rate of CRS,ln,ldpc(4, b) is at least (b − 4)/b
which is the rate of the RS code CRS(4, b). Since CPM-

dispersion of BRS(4, b) may induce redundant (linearly de-

pendent) rows in HRS,ln(4, b), the rank of HRS,ln(4, b) may

be smaller than the number of rows dln in HRS,ln(4,m).
The 2× 2 SNS-constraint structure of BRS(4, b) ensures that

HRS,ln(4, b), as a matrix, has the following structure [6]: any

two rows (or two columns) do not have more than one position

in which both have 1-entries. Such a structure is referred

to as row-column (RC) constraint [5]–[7]. The RC-constraint

structure of HRS,ln(4, b) ensures that the Tanner graph of the

RS-QC-LDPC code CRS,ln,ldpc(4, b) has a girth at least 6.
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B. Construction of Regular RS-QC-LDPC Codes with Girth

at least Eight

As pointed out earlier, Theorem 1 gives only a necessary and

sufficient condition on a base matrix whose CPM-dispersion

gives a QC-LDPC code with girth at least 8 but it does not

provide a specific method for constructing such a code. In

the following, we present a set of conditions on selection of

columns from the RS matrix BRS(4, n) given by (1) to form

an RS submatrix to meet the 2×2/3×3 SM-constraint. Hence,

the null space of its CPM-dispersion gives an RS-QC-LDPC

code whose Tanner graph has girth at least 8.

Consider the m label-triplets (l, l+m, l+2m), 0 ≤ l < m,

for the columns of the 4 × n RS matrix BRS(4, n) formed

in Section II.A with m = n/3. For 4 < b ≤ m, we choose

b column-labels j0, j1, ..., jb−1 from b label-triplets such that

0 ≤ j0 < j1 < ... < jb−1 < n. These b chosen column labels

form a column label-set Λb = {j0, j1, ..., jb−1}. Next, we take

b columns, labeled with j0, j1, ..., jb−1, from BRS(4, n) and

form a 4 × b submatrix BRS,Λb
(4, b) of BRS(4, n). The RS

matrix BRS,Λb
(4, b) satisfies the 2× 2/3× 3 SM-constraint if

and only if the column labels in the set Λb = {j0, j1, ..., jb−1}
satisfy the conditions given in the following theorem.

Theorem 3: The 4× b RS matrix BRS,Λb
(4, b) satisfies the

2× 2/3× 3 SM-constraint if and only if for any three labels

ji1 , ji2 , ji3 in the set Λb = {j0, j1, ..., jb−1} such that ji1 <
ji2 < ji3 , the following nine conditions satisfy:

(p1) li3 �= 2li2 − li1 , (p2) n � li3 + 2li1 − 3li2 ,

(p3) li3 �=
3li2−li1

2
, (p4) n � li2 + li3 − 2li1 ,

(p5) n � li2 + 2li3 − 3li1 , (p6) n � 2li2 + li3 − 3li1 ,
(p7) n � 2li3 − li1 − li2 , (p8) n � 3li3 − 2li1 − li2 ,
(p9) n � 3li3 − li1 − 2li2 .

(3)

Then, the null space of the n × n CPM-dispersion

HRS,n,Λb
(4, b) of BRS,Λb

(4, b) gives a (4, b)-regular

RS-QC-LDPC code CRS,n,ldpc(4, n) whose Tanner graph

GRS,n,ldpc(4, n) has girth of at least 8.

We do not provide a proof of the above theorem here due to

its length and page limitation but we outline the approach to

the proof. The derivations of the nine necessary and sufficient

conditions given in the theorem are based the structure of the

RS matrix BRS(4, n) and the partition of column labels of

BRS(4, n). For each chosen column label jil from a label-

triplet, the locations of 1-entries in each CPM of the CPM

column-block obtained by the CPM-dispersion of the 4 entries

in the jil th-column of BRS(4, n) are uniquely specified by the

label jil and the 4 entries in the jil -th column of BRS(4, n).
If the b labels j0, j1, ..., jb−1 chosen from label-triplets for

which the parity-check matrix HRS,n,Λb
(4, b) formed does not

contains a sequence of six 1-entry locations in HRS,n,Λb
(4, b)

that corresponds to a configuration of a cycle of length 6

in a bipartite graph, then the Tanner graph GRS,Λb,ldpc(4, b)
associated with HRS,n,Λb

(4, b) does not contain cycles of

length 6. In this case, GRS,Λb,ldpc(4, b) has girth at least 8.

It follows from Theorem 1 that the RS matrix BRS,Λb
(4, b)

must satisfy the necessary and sufficient conditions given by

Theorem 1, i.e., the 2 × 2/3 × 3 SM-constraints. Based on

the above facts, we derive the nine necessary and sufficient

conditions given in Theorem 3.

Since the nine necessary and sufficient conditions given in

Theorem 3 are expressed only in terms of the labels (integers)

for the columns of BRS(4, n). The computation complexity

required for finding a column-label set Λb whose labels satisfy

the nine conditions given by (2) is quite simple.

C. Masking

Masking [5], [7], [8] is a technique for removing short

cycles and/or enlarging the girth of the Tanner graph of a QC-

LDPC code constructed by CPM-dispersion of a base matrix.

Masking a d × b base matrix B(d, b) = [ai,j ]1≤i≤d,0≤j<b

over GF(2s) can be modeled mathematically as follows.

Let Z(d, b) = [zi,j ]1≤i≤d,0≤j<b be a d × b matrix over

GF(2), a sub-field of GF(2s). Define the following product

of Z(d,m) and B(d, b) : Bmask(d, b) = Z(d, b) ⊗B(d, b) =
[zi,jai,j ]1≤i≤d,0≤j<b where zi,jai,j = ai,j if zi,j = 1 and

zi,jai,j = 0 if zi,j = 0. In this matrix product, the nonzero

entries in B(d, b) at the locations corresponding to zero entries

in Z(d, b) are replaced (or masked) by zeros. The binary CPM-

dispersion of Bmask(d, b) gives a d×b masked array, denoted

by Hmask(d, b), of CPMs and ZMs. We call Z(d, b) and

Bmask(d, b) the masking matrix and the masked base matrix,

respectively. The null space of Hmask(d, b) gives a (masked)

RS-QC-LDPC code, denoted by Cmask,ldpc(d, b).
The 2 × 2/3 × 3 SM-constraint structure of an RS base

matrix in conjunction with proper masking will significantly

reduce the number of short cycles and changing the degree

distributions of CNs and VNs in the Tanner graph of the

masked RS-QC-LDPC code. As a result, the masked code

achieve very good error performances in both waterfall and

low error rate regions. This will be demonstrated by Examples

given in the next section.

In the design of a high-rate (or a medium high-rate) regular

LDPC code to achieve a relative low error rate without an

error-floor, the parity-check matrix of the code must have

a column weight at least 4. For a regular (or irregular)

LDPC code with rate below 3/4 to achieve a good waterfall

error-performance, the column weight (or the average column

weight) of its parity-check matrix should be small, typically

3 or between 3 and 4. If the column weight of a base matrix

B(d, b) for constructing a low to medium high rate QC-LDPC

code is large, masking is needed to reduce its column weight

and eliminate short cycles in its Tanner graph, especially short

cycles of lengths g (girth of the Tanner graph), g + 2, g + 4

and g + 6.

IV. EXAMPLES

In the following, we construct three codes to demonstrate

that girth-8 structure in conjunction with masking indeed

results in RS-QC-LDPC codes that perform well. In decoding

of these codes, we use the min-sum algorithm (MSA) [9].

Example 1: Let GF(28) be the field for code construction.

Let β be a primitive element of GF(28). The order of β is
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255. Set n = 255 which is divisible by 3. Hence, n = 3 ×
85. We first construct a 4 × 255 RS matrix BRS(4, 255) =
[(βi)j ]1≤i≤4,0≤j<255 in the form of (1). This RS matrix does

not satisfies the 2 × 2 SNS-constraint. Label the columns of

BRS(4, 255) from 0 to 254. Partition the column labels of

BRS(4, 255) into 85 disjoint triplets, (l, l + 85, l + 170), 0 ≤
l < 85. Set b = 8. From these 85 triplets, we find the following

set Λ8 = {2, 5, 7, 13, 20, 32, 54, 60} of column labels which

satisfy the 9 conditions given by (3). The labels in Λ8 are the

first numbers of the triplets (2, 87, 172), (5, 90, 175), (7, 92,

177), (13, 98, 183), (20, 105, 190), (32, 117, 202), (54,139,

224), (60, 145, 230), respectively.

Take 8 columns, labeled by 2, 5, 7, 13, 20, 32, 54

and 60, from BRS(4, 255) and form a 4 × 8 RS matrix

BRS,Λ8
(4, 8). Then, BRS,Λ8

(4, 8) satisfies the 2×2/3×3 SM-

constraint. The 255 × 255 CPM-dispersion of BRS,Λ8
(4, 8)

gives a 4 × 8 array HRS,255,Λ8
(4, 8) of CPMs and ZMs

of size 255 × 255. It is a 1020 × 2040 matrix with col-

umn and row weights 4 and 8, respectively. The rank of

HRS,255,Λ8
(4, 8) is 1015, not a full-rank matrix. The null

space over GF(2) of HRS,255,Λ8
(4, 8) gives a (4, 8)-regular

(2040, 1025) RS-QC-LDPC code CRS,Λ8,ldpc(4, 8) with rate

0.5025 which is slightly higher than 0.5. Since BRS,Λ8
(4, 8)

satisfies the 2 × 2/3 × 3 SM-constraint, the Tanner graph

GRS,Λ8,ldpc(4, 8) of CRS,Λ8,ldpc(4, 8) has girth at least 8.

The distribution of cycles of lengths 8, 10, 12 and 14

in GRS,Λ8,ldpc(4, 8) is {53805, 407490, 8168670, 133452720}.

The girth of GRS,Λ8,ldpc(4, 8) is 8. The total number of cycles

of lengths 8, 10, 12 and 14 is 142,082,685, a very large number

of short cycles.

Suppose we mask the RS matrix BRS,Λ8
(4, 8) with the

following masking matrix:

Z(4, 8) =









1 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1
1 1 1 1 1 0 1 0
1 1 1 1 0 1 0 1









(4)

We obtain a 4 × 8 masked RS matrix BRS,Λ8,mask(4, 8).
The 255 × 255 CPM-dispersion of BRS,Λ8,mask(4, 8) gives

a 4 × 8 array of HRS,255,Λ8,mask(4, 8) of CPMs and ZMs

of size 255 × 255. It is a 1020 × 2040 matrix with col-

umn and row weights 3 and 6, respectively. The rank of

HRS,255,Λ8,mask(4, 8) is 1020, a full-rank matrix. The null

space over GF(2) of HRS,255,Λ8,mask(4, 8) gives a (3, 6)-

regular (2040, 1020) QC-LDPC code CRS,Λ8,mask,ldpc(4, 8)
with rate 1/2.

The distribution of cycles of lengths 8, 10, 12, and 14

in the Tanner graph GRS,Λ8,mask,ldpc(4, 8) of the masked

code CRS,Λ8,mask,ldpc(4, 8) is {765, 10200, 84405, 743580}.

The masked Tanner graph GRS,Λ8,mask,ldpc(4, 8) also has girth

8 but the number of cycles of length 8 is only 765 which

is much smaller than the 53805 cycles of length 8 in the

unmasked Tanner graph GRS,Λ8,ldpc(4, 8). The total number

of cycles of lengths 8, 10, 12 and 14 in GRS,Λ8,mask,ldpc(4, 8)
is 838,950. Comparing the cycle distributions of the unmasked

and masked Tanner graphs, we find that masking results in a

Fig. 1. The BER performances of the RS-QC-LDPC codes given in Examples
1 and 2.

large reduction in short cycles from 142,082,685 to 838,950,

a reduction by a factor of almost 169.

The BER performances of the unmasked (4, 8)-regular

(2040, 1025) RS-QC-LDPC code CRS,Λ8,ldpc(4, 8) and the

masked (3, 6)-regular (2040, 1020) RS-QC-LDPC code

CRS,Λ8,mask,ldpc(4, 8) over the AWGN channel using BPSK

signaling decoded with 50 iterations of the MSA scaled by

factors of 0.70 and 0.75, respectively, are shown in Fig. 1.

We see that the masking improves the error performances

of the unmasked code. This performance improvement is

due to the large reduction of short cycles and the change

of degree distributions of the Tanner graph after masking,

from (4, 8)-regular distribution to (3, 6)-regular distribution.

The masked (3, 6)-regular (2040, 1020) RS-QC-LDPC code

CRS,Λ8,mask,ldpc(4, 8) achieves a BER of 10−9 without a

visible error-floor and at the BER of 10−9, it performs 1.5

dB from its threshold (1.1 dB). It has a 0.3 dB coding gain

over the unmasked (4, 8)-regular (2040, 1025) RS-QC-LDPC

code.

For comparison, the performance of a (2040, 1020) LDPC

code CPEG constructed by using the PEG-algorithm [10] is

also included in Fig.1. We see that the performances of the

(2040, 1020) RS-QC-LDPC code and the PEG code CPEG

overlap with each other in the range of simulation. The parity-

check matrix of the PEG code CPEG has constant column

weight 3 and row weight 6. Furthermore, it is not quasi-cyclic.

Examples 1 shows that the 4 × 8 masking matrix Z(4, 8)

given by (4) is very effective in reducing short cycles of

the Tanner graph of an unmasked RS-QC-LDPC code. This

masking matrix can be used as a building block to construct

larger masking matrices for larger RS base matrices. This

masking matrix has a simple structure. The second pair of

columns is a repetition of the first pair of columns and the

fourth pair of columns is a repetition of third pair of columns.

A simple expansion of this masking matrix is to repeat the

first pair and the third pair of columns t times. This expansion

results in a 4× 4t masking matrix Z(4, 4t) [8].

Example 2: This example is a continuation of Example 1.
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In this example, we construct two RS-QC-LDPC codes, one

with rate 2/3 and the other with rate 3/4. From the 85 column

label-triplets formed in Example 1, we choose two sets,

Λ12 = {0, 1, 4, 9, 11, 20, 24, 35, 41, 49, 90, 225} and Λ16 =
{1, 3, 6, 13, 21, 32, 44, 59, 64, 73, 77, 83, 111, 212, 226, 239},

of column labels from the 85 label-triplets

(l, l + 85, l + 170), 0 ≤ l < 85, formed in Example 1

for the RS matrix BRS(4, 255). The column labels of each

set satisfy the 9 conditions given by (3). Using these two sets

of column labels, we form a 4×12 RS matrix BRS,Λ12
(4, 12)

and a 4 × 16 BRS,Λ16
(4, 16), respectively. Both RS matrices

satisfy the 2× 2/3× 3 SM-constraint.

The null spaces over GF(2) of the 255 × 255 CPM-

dispersions of BRS,Λ12
(4, 12) and BRS,Λ16

(4, 16) give a (4,

12)-regular (3060, 2049) RS-QC-LDPC code and a (4, 16)-

regular (4080, 3065) RS-QC-LDPC code, respectively. The

Tanner graphs of both codes have girth 8, one with 259845

cycles of length 8 and the other with 688500 cycles of length

8. The distributions of short cycles of lengths 8, 10 and 12

in the Tanner graphs are {259845, 3886710, 116167800} and

{688500, 17485860, 703291020}, respectively.

To mask the RS matrix BRS,Λ12
(4, 12), we form a 4× 12

masking matrix Z(4, 12) which is constructed by repeating the

first pair and the third pair of columns of the masking matrix

Z(4, 12) given by (4) three times (i.e., t = 3). The masking

matrix Z(4, 16) for the 4 × 16 RS matrix BRS,Λ16
(4, 16)

consists of four 4 × 4 circulants whose generators are: ( 1

1 1 0), (1 1 1 0), (1 1 1 0) and (1 1 0 1). The first 3

circulants of Z(4, 16) are identical. Masking BRS,Λ12
(4, 12)

and BRS,Λ16
(4, 16) with Z(4, 12) and Z(4, 16), respectively,

we obtain two masked RS matrices BRS,Λ12,mask(4, 12) and

BRS,Λ16,mask(4, 16). The null spaces over GF(2) of the

255 × 255 CPM-dispersions of the two masked RS matri-

ces give a (3, 9)-regular (3060, 2040) RS-QC-LDPC code

and a (3, 12)-regular (4080, 3060) RS-QC-LDPC code with

rates 2/3 and 3/4, respectively. The Tanner graphs of both

masked codes have girth 8. The distributions of short cycles

of lengths 8, 10 and 12 in the Tanner graphs of the two

masked RS-QC-LDPC codes are {7905, 105825, 1444320}
and {32640, 495210, 9570915}, respectively. We see that

masking reduces the short cycles of the Tanner graphs of the

two unmasked RS-QC-LDPC codes drastically.

The BER performances of the above four codes over

the AWGN channel using BPSK signaling decoded with 50

iterations of the MSA are shown in Fig. 1. The scaling

factors for both unmasked codes are 0.70 and the scaling

factors for both masked codes are 0.75. We see that mask-

ing improves the error performances of both codes. Both

performance improvements are due to the large reduction of

short cycles and the change of degree distributions of the

Tanner graph after masking. The masked (3, 9)-regular (3060,

2040) RS-QC-LDPC code CRS,Λ12,mask,ldpc(4, 12) achieves a

BER of 10−9 without a visible error-floor and at the BER

of 10−9, it performs 1.11 dB from its threshold (1.79 dB).

The masked (3, 12)-regular (4080, 3060) RS-QC-LDPC code

CRS,Λ16,mask,ldpc(4, 16) achieves a BER of 10−9 without

a visible error-floor and at the BER of 10−9, it performs

0.98 dB from its threshold (2.27 dB). For comparison, the

performances of a (3060, 2040) LDPC code and a (4080,3060)

LDPC code constructed by PEG-algorithm are also included

in Fig.1. We see that the performances of the RS-QC-LDPC

code and the PEG code of the same length overlap with each

other in the range of simulation. The (3060, 2040) PEG code

even suffers from error floor at the BER of 10−8. The RS-

QC-LDPC code and the PEG code of the same length have

the same degree distribution. However, the PEG codes are not

quasi-cyclic.

V. CONCLUSION

In this paper, we presented designs and constructions of

(4, b)- and (3, b)-regular QC-LDPC codes based on the

conventional parity-check matrices of a class of RS codes of

minimum distance 5. The Tanner graphs of these codes have

girth at least 8. We also showed that if we mask the base matrix

of a girth-8 (4, b)-regular RS-QC-LDPC code, we can reduce

the number of short cycles in its Tanner graph and obtain a

(3, b)-regular RS-QC-LDPC code which performs well. The

methods presented in this paper for constructing binary RS-

QC-LDPC codes can be generalized for constructing non-

binary RS-QC-LDPC codes.

ACKNOWLEDGMENT

This work was partially supported by the NSF grants ECCS-

1500170 and SaTC-1813401, the AppoTech and NuFront gift

grants.

REFERENCES

[1] S. Lin, K. Abdel-Ghaffar, J. Li and K. Liu, “Iterative soft-decision
decoding of Reed-Solomon codes of prime lengths,” Proc. IEEE Int.

Symp. Inform. Theory (ISIT), Aachen, Germany, Jun. 25-30, 2017, pp.
341–345.

[2] S. Lin, K. Abdel-Ghaffar, J. Li, and K. Liu, “A scheme for encoding and
iterative soft decision decoding of cyclic codes of prime lengths: Appli-
cations to Reed-Solomon, BCH, and quadratic residue codes” submitted
to the IEEE Trans. Inf. Theory, 2016 (revised 2018).

[3] Q. Diao, J. Li, S. Lin and I. F. Blake, “New classes of partial geometries
and their associated LDPC codes,” IEEE Trans. Inf. Theory, vol. 62, no.
6, pp. 2947-2965, Jun. 2016.

[4] J. Li, K. Liu, S. Lin and K. Abdel-Ghaffar, “Reed-Solomon based
nonbinary globally coupled LDPC codes: Correction of random errors
and bursts of erasures,” Proc. IEEE Int. Symp. Inform. Theory (ISIT),
Aachen, Germany, Jun. 25-30, 2017, pp. 381–385.

[5] J. Li, S. Lin, K. Abdel-Ghaffar, W.E. Ryan, and D.J. Costello, Jr.,
LDPC Code Designs, Constructions, and Unification, Cambridge, UK:
Cambridge University Press, 2017.

[6] Q. Diao, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “A matrix-theoretic
approach for analyzing quasi-cyclic low-density parity-check codes,”
IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 4030 - 4048, Jun. 2012.

[7] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern, New
York, NY: Cambridge Univ. Press, 2009.

[8] J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic LDPC codes:
Construction, low error-floor, large girth and a reduced-complexity de-
coding scheme,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2626-2637,
Aug. 2015.

[9] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propa-
gation based decoding of low-density parity-check codes,” IEEE Trans.

Inf. Theory, vol. 50, no.3, p. 406 - 414, Mar. 2002.
[10] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular

progressive edge-growth Tanner graph,” IEEE Trans. Inf. Theory, vol.
51, no. 1, pp. 386-398, Jan. 2005.


