2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing

Girth-Eight Reed-Solomon Based QC-LDPC Codes

Xin Xiao, Bane Vasié
School of Electrical and
Computer Engineering
University of Arizona
Tucson, Arizona
Email: {7xinxiao7,vasic}@email.arizona.edu

Abstract—This paper presents a class of regular quasi-cyclic
(QC) LDPC codes whose Tanner graphs have girth at least eight.
These codes are constructed based on the conventional parity-
check matrices of Reed-Solomon (RS) codes with minimum
distance 5. Masking their parity-check matrices significantly
reduces the numbers of short cycles in their Tanner graphs and
results in codes which perform well over the AWGN channel in
both waterfall and low error-rate regions.

I. INTRODUCTION

Some recent research [1]-[5] combines two powerful cat-
egories of codes, namely RS, and LDPC codes, to form
powerful classes of hybrid codes which, not only perform well,
but are also practically implementable. These research works
take two different approaches. The first approach is to encode
and decode an RS code as a powerful LDPC code through a
specific mapping [1], [2]. The second approach is to construct
a structured QC-LDPC code based on the conventional parity-
check matrix of an RS code under certain constraints [3]-[5].
Such a code is referred to as an RS-QC-LDPC code.

In this paper, we present a specific method for constructing
a class of regular RS-QC-LDPC codes whose Tanner graphs
have girth at least 8. The codes in this class are constructed
based on the conventional parity-check matrices of RS codes
with minimum distance 5. Masking is used to reduce the
numbers of short cycles of lengths 8, 10, 12 and 14 in their
Tanner graphs. We show that girth-8 structure in conjunction
with making results in RS-QC-LDPC codes that perform well
over the AWGN channel in both waterfall and low-error rate
regions.

II. CONSTRUCTION OF QC-LDPC CODES BASED ON
FINITE FIELDS

In this section, we give a general description of construction
of QC-LDPC codes based on finite fields of characteristic 2.

Let (5 be an element of order n in GF(2?) where n is a factor
of 2°—1. The set S,,={1, 3, ..., 371} forms a cyclic subgroup
of GF(2%). For 0< i < n, we represent the element 3° by a
circulant permutation matrix (CPM) over GF(2) of size n xn
(with rows and columns labeled from 0 to n — 1, respectively)
whose generator (the top row) has the unit-element “1” of
GF(2°) as its single nonzero component at the position i. We
denote this CPM by C'PM,,(3"). The representation of the
element 3¢ by CPM,, () is unique and the mapping between
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B¢ and CPM,,(B?) is one-to-one. This matrix representation
of B! is referred to as the n x n CPM-dispersion of 3¢ with
respect to the cyclic subgroup S,, of GF(2°). We represent the
0-element of GF(2°) by a zero matrix (ZM) of size n X n.

Since n is a factor of 2° — 1, there is some [ for which In
divides 2° — 1. Let 0 be an element in GF(2%) of order in,
i.e., 0'" = 1. Then, 3 can be expressed as the I-th power of &,
ie., B =" Let Wy, be the cyclic subgroup of GF(2°) with
order In generated by the powers of d. Then, Wy, contains
S, as a subgroup. If we disperse each element in Wy, by
a CPM of size In x In as described above, then the element
B =%, 0 < i < n,as an element in W},,, is dispersed into a
CPM of size In x In, denoted by C' P M, (3"), whose generator
has its single 1-component at position /. In this case, every
element 3% in S,, is uniquely dispersed into a CPM of size
In x In which is referred to as the In x In CPM-dispersion of
B¢ with respect to the super group W, of S,,. The number In
is called the dispersion-factor with respect to W,,. Therefore,
each element in S,, can be one-to-one dispersed into a CPM
of a size equal to the order of a cyclic subgroup of GF(2*)
which contains S,, as a subgroup (including S,, itself).

For 0 < d < b < n, let B(d,b) be a d x b matrix over
GF(2%) with all the nonzero entries from the cyclic subgroups
S, of GF(2°). Suppose we disperse each nonzero entry in
B(d,b) into a CPM of size of in x In with respect to a cyclic
subgroup W,, of GF(2°) with order In that contains S,, as
a subgroup and each zero entry into a ZM of size In X In.
This results in a d x b array H;,(d,b) of CPMs and ZMs
of size In x In. The array H;,(d,b) is called the in x In
CPM-dispersion of B(d, b). The array H,,(d, b) is a din x bln
matrix over GF(2). Typically, In >> 1, and H;,(d,b) is a
sparse matrix. The null space over GF(2) of Hj,,(d,b) gives
a QC-LDPC code, denoted by Cjy, japc(d,b). Since the code
Cin 1dpc(d, b) is constructed based on the matrix B(d, b), the
matrix B(d,b) is referred to as the base matrix.

The performance of the QC-LDPC code Cyy, 1apc(d, b) very
much depends on the girth, distribution of short cycles, and
degree distributions of check nodes (CNs) and variable nodes
(VNs) of its Tanner graph G, (d, b).

It is proved in [6] that the Tanner graph of Ci,, 1apc(d, b) has
girth at least 6 if the base matrix B(d, b) satisfies the following
constraint: any 2 X 2 submatrix of B(d,b) is nonsingular
(NS). We referred this constraint as the 2 x 2 submatrix NS-
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constraint, denoted by 2 x 2 SNS-constraint. Also proved in
[6] is a necessary and sufficient condition on B(d,b) for the
Tanner graph of Ciy, 14pc(d, b) to have girth at least 8. We
rephrase the condition in the following theorem.

Theorem 1: Let B be a matrix over GF(2°) and C be the QC-
LDPC code given by the null space over GF(2) of the binary
CPM-dispersion of B. A necessary and sufficient condition
for the Tanner graph of C to have girth of at least 8 is that
no 2 x 2 or 3 x 3 submatrix of B has two identical non-zero
terms in its determinant expansion.

For simplicity, we refer the necessary and sufficient con-
dition given in Theorem 1 as the 2 x 2/3 x 3 submatrix
(SM) constraint. It is clear the 2 x 2/3 x 3 SM-constraint
implies the 2 x 2 SNS-constraint. Various algebraic methods
for constructing 2 x 2 SNS-constrained base matrices can be
found in [5]-[8]. So far, no efficient method for constructing
2 x 2/3 x 3 SM-constrained base matrices has been proposed.
In the next section, we present a class of parity-check matrices
of RS codes that satisfy 2 x 2/3 x 3 SM-constraint. Hence,
they can be used as base matrices to construct QC-LDPC codes
whose Tanner graphs have girth at least 8.

III. CONSTRUCTION OF A CLASS OF REGULAR
RS-QC-LDPC CODES WITH GIRTH SI1X AND EIGHT

A. A Class of (4,b)-Regular RS-QC-LDPC with Girth at Least
Six

Let /5 be an element of order n in GF(2°) where n is factor
of 2° — 1 and is divisible by 3. The set S,,={1, 3, ..., "1}
forms a cyclic subgroup of GF(2?). Form the following 4 x n
RS parity-check matrix over GF(2):

Brs(4,n) = [(8")] 1<i<4,0<j<n M

The null space over GF(2°) of Bgrs(4,n) gives a 2%-ary
(n,n —4,5) cyclic RS code, denoted by Crs(4,n), of length
n, dimension n — 4 and minimum distance 5 whose generator
polynomial has 3, 32, 3% and 3% as roots [7].

In general, the RS matrix Brg(4,n) given by (1) does not
satisfy the 2 x 2 SNS-constraint. However, if we choose a
group of columns from B g (4, n) properly, a 2x 2 constrained
RS matrix can be formed. The null space over GF(2°) of
the 2 x 2 constrained RS matrix gives a shortened RS code
of Crs(4,n) with the same minimum distance 5. In the
following, we present a method to construct 2 x 2 SNS-
constrained submatrices of Brg(4,n).

Label the columns of the RS matrix Bgrg(4,n) from
0 to n — 1. Since n is divisible 3, n = 3m. Partition
the column labels of Bprg(4,n) into m = n/3 disjoint
label-triplets, (0, m,2m), (1,1 +m,14+2m),...,(l,l+m, I+
2m),...,(m — 1,2m — 1,3m — 1). From each label-triplet
(I, + m,l + 2m),0 < | < m, we take one (any one)
label. This gives us m column labels. We denote these m
column labels with jg, j1, ..., 7m—1 and arrange them in the
order 0 < jo < jJ1 < < Jm-1 < n. (Note that
the column label j; may not be taken from the label-triplet
(1,1 + m,l 4+ 2m).) These m chosen column labels form a

column label-set A,, = {jo,j1, .-, jm—1}. Next, we take m
columns, labeled by jo, j1, -+, jm—1, from Brs(4,n) and form
the following 4 x m submatrix of Brg(4,n):

Brsa,, (4,m) = [(5Z>Jl} 1<i<4,0<l<m @)

This RS matrix satisfies the 2 x 2 SNS-constraint as proved
in the following theorem.

Theorem 2: The RS matrix Brg a
satisfies the 2 x 2 SNS-constraint.

Proof: Label the columns of Bgs a,, (4,m) from 0 to m — 1.
For 1 < i < k < 4and 0 < s < t < m, con-
sider a 2 x 2 submatrix of Bgg a,, (4,m) with four entries
(B%)7=, (B}, (B%)7=, (B%)7* at the locations (i, s), (i, 1), (k, s)
and (k,t). Suppose this matrix is singular. Then, we must
have 3(k~9(U+—Js) = 1. Note that 0 < k — i < 3. From the
composition of each label-triplet, we find that j; — js is not
divisible by m and nonzero. Then, the product (k —%)(j: — js)
is not divisible by n = 3m and f*~90U:=3:) £ 1. Hence, the
above 2 x 2 submatrix of Brg a,, (4,m) must be nonsingular
and Brg a,, (4, m) satisfies the 2 x 2 SNS-constraint.

From the above construction of a 2 x 2 SNS-constrained
RS matrix, we readily see that for 4 < b < m, any b
consecutive columns of Brs(4,n), including end-around case,
form a 2 x 2 SNS-constrained RS matrix Bgg a,(4,b). Or
any 4 x b submatrix obtained by deleting m — b columns from
Brs a,, (4, m) satisfies the 2 x 2 SNS-constraint. Note that all
the entries in Brg a,(4,0) are elements in the cyclic group
S,, of GF(2°) and non-zero.

The In x In CPM-dispersion of Bgrg a, (4,b) gives a 4 x b
array Hpg 15, (4, b) of CPMs of size n x In which consists of 4
(b) row (column)-blocks of CPMs. Each CPM row (column)-
block of Hpgsin(4,b) consists of In rows (columns). Each
row (column) in a CPM row (column)-block contains b (4)
1-entries which reside in b (4) separate CPMs in the CPM
row (column)-block, one in each. The b6 CPMs in each CPM
row-block of Hpg,(4,b) are distinct, and the 4 CPMs in
each CPM column-block of Hpg i, (4, b) are distinct, except
for the case that Brg s, (4,b) consisting of a column of four
1-entries.

The null space over GF(2) of Hpg 1, (4,b) gives a (4, b)-
regular RS-QC-LDPC code, denoted by Crs in,idpc(4,0), of
length inb. The rate of Crs in1dpc(4,0) is at least (b—4)/b
which is the rate of the RS code Cgrs(4,b). Since CPM-
dispersion of Brg(4,b) may induce redundant (linearly de-
pendent) rows in Hpgs (4, ), the rank of Hprg,(4,b) may
be smaller than the number of rows din in Hgg (4, m).
The 2 x 2 SNS-constraint structure of Brg(4, b) ensures that
Hpgs,(4,0), as a matrix, has the following structure [6]: any
two rows (or two columns) do not have more than one position
in which both have I-entries. Such a structure is referred
to as row-column (RC) constraint [5]-[7]. The RC-constraint
structure of Hpg 1, (4, b) ensures that the Tanner graph of the
RS-QC-LDPC code Cgs,in,idpc(4, b) has a girth at least 6.

(4,m) given by (2)

m
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B. Construction of Regular RS-QC-LDPC Codes with Girth
at least Eight

As pointed out earlier, Theorem 1 gives only a necessary and
sufficient condition on a base matrix whose CPM-dispersion
gives a QC-LDPC code with girth at least 8 but it does not
provide a specific method for constructing such a code. In
the following, we present a set of conditions on selection of
columns from the RS matrix Brg(4,n) given by (1) to form
an RS submatrix to meet the 2 x 2/3 x 3 SM-constraint. Hence,
the null space of its CPM-dispersion gives an RS-QC-LDPC
code whose Tanner graph has girth at least 8.

Consider the m label-triplets (I,{ +m,{+2m),0 <1 < m,
for the columns of the 4 x n RS matrix Brg(4,n) formed
in Section ILA with m = n/3. For 4 < b < m, we choose
b column-labels jg, j1, ..., jp—1 from b label-triplets such that
0 < jo <j1 <...<jp_1 <n.These b chosen column labels
form a column label-set Ay, = {jo, j1, ..., jo—1}- Next, we take
b columns, labeled with jo, j1, ..., jo—1, from Brg(4,n) and
form a 4 x b submatrix Bgg a,(4,b) of Brs(4,n). The RS
matrix Brg a, (4,b) satisfies the 2 x 2/3 x 3 SM-constraint if
and only if the column labels in the set A, = {jo, J1, -, Jo—1}
satisfy the conditions given in the following theorem.

Theorem 3: The 4 x b RS matrix Brg s, (4,b) satisfies the
2 x 2/3 x 3 SM-constraint if and only if for any three labels
Jirs Jis» Jis 10 the set Ay = {jo, j1, ..., jo—1} such that j;, <
Jis < Jis» the following nine conditions satisfy:

(pl) lig 7é 2l7,2 - Zi17 (p2) n 1/ li3 + 2l7,1 - 3li27
©3) by # 22 () nt i, + i, — 2y,

(PS) 1 liy + 21y — 3y, (p6) n 1 2, + liy — 3y,  3)
(p7) n 1’ 2[1‘3 — lil — liz) (p8) n '|' 3li3 — 2li1 — li27

(P9) 11 3lsy — liy — 2Ly,

Then, the null space of the n x n CPM-dispersion
Hpgsna,(4,0) of Bgsa,(4,b) gives a (4, b)-regular
RS-QC-LDPC code Cgrs,n,idpc(4,n) whose Tanner graph
GRS,n,1dpe(4, 1) has girth of at least 8.

We do not provide a proof of the above theorem here due to
its length and page limitation but we outline the approach to
the proof. The derivations of the nine necessary and sufficient
conditions given in the theorem are based the structure of the
RS matrix Brg(4,n) and the partition of column labels of
Brs(4,n). For each chosen column label j;, from a label-
triplet, the locations of 1-entries in each CPM of the CPM
column-block obtained by the CPM-dispersion of the 4 entries
in the j;, th-column of Brg(4, n) are uniquely specified by the
label j;, and the 4 entries in the j;,-th column of Brg(4,n).
If the b labels jo,j1,...,Jp—1 chosen from label-triplets for
which the parity-check matrix Hrg 5 A, (4, b) formed does not
contains a sequence of six 1-entry locations in Hgg A, (4, D)
that corresponds to a configuration of a cycle of length 6
in a bipartite graph, then the Tanner graph Grg a, idpc(4, D)
associated with Hpgs 4, (4,b) does not contain cycles of
length 6. In this case, Grg a,.1dpc(4,b) has girth at least 8.
It follows from Theorem 1 that the RS matrix Brg 4, (4,0)
must satisfy the necessary and sufficient conditions given by

Theorem 1, i.e., the 2 x 2/3 x 3 SM-constraints. Based on
the above facts, we derive the nine necessary and sufficient
conditions given in Theorem 3.

Since the nine necessary and sufficient conditions given in
Theorem 3 are expressed only in terms of the labels (integers)
for the columns of Brg(4,n). The computation complexity
required for finding a column-label set A, whose labels satisfy
the nine conditions given by (2) is quite simple.

C. Masking

Masking [5], [7], [8] is a technique for removing short
cycles and/or enlarging the girth of the Tanner graph of a QC-
LDPC code constructed by CPM-dispersion of a base matrix.
Masking a d x b base matrix B(d,b) = [a; ]i<i<d,0<j<b
over GF(2°) can be modeled mathematically as follows.
Let Z(d, b) = [Zi,j]1§i§d70§j<b be a d x b matrix over
GF(2), a sub-field of GF(2°). Define the following product
of Z(d,m) and B(d,b) : Byask(d,b) = Z(d,b) @ B(d,b) =
[Ziﬁjaiﬂj]1§i§d70§j<b where Zi,jQq,5 = Q4,5 if Zig = 1 and
zija;; = 0 if z;; = 0. In this matrix product, the nonzero
entries in B(d, b) at the locations corresponding to zero entries
in Z(d, b) are replaced (or masked) by zeros. The binary CPM-
dispersion of B,k (d, b) gives a d x b masked array, denoted
by H,,.s1(d,b), of CPMs and ZMs. We call Z(d,b) and
Bhask(d, b) the masking matrix and the masked base matrix,
respectively. The null space of H,,,sx(d, b) gives a (masked)
RS-QC-LDPC code, denoted by Cynqsk,idpe(d, b).

The 2 x 2/3 x 3 SM-constraint structure of an RS base
matrix in conjunction with proper masking will significantly
reduce the number of short cycles and changing the degree
distributions of CNs and VNs in the Tanner graph of the
masked RS-QC-LDPC code. As a result, the masked code
achieve very good error performances in both waterfall and
low error rate regions. This will be demonstrated by Examples
given in the next section.

In the design of a high-rate (or a medium high-rate) regular
LDPC code to achieve a relative low error rate without an
error-floor, the parity-check matrix of the code must have
a column weight at least 4. For a regular (or irregular)
LDPC code with rate below 3/4 to achieve a good waterfall
error-performance, the column weight (or the average column
weight) of its parity-check matrix should be small, typically
3 or between 3 and 4. If the column weight of a base matrix
B(d, b) for constructing a low to medium high rate QC-LDPC
code is large, masking is needed to reduce its column weight
and eliminate short cycles in its Tanner graph, especially short
cycles of lengths g (girth of the Tanner graph), g + 2, g + 4
and g + 6.

IV. EXAMPLES

In the following, we construct three codes to demonstrate
that girth-8 structure in conjunction with masking indeed
results in RS-QC-LDPC codes that perform well. In decoding
of these codes, we use the min-sum algorithm (MSA) [9].
Example 1: Let GF(28) be the field for code construction.
Let B be a primitive element of GF(2%). The order of 3 is
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255. Set n = 255 which is divisible by 3. Hence, n = 3 x
85. We first construct a 4 x 255 RS matrix Brgs(4,255) =
[(ﬁi)j]lgi§470§j<255 in the form of (1) This RS matrix does
not satisfies the 2 x 2 SNS-constraint. Label the columns of
Brs(4,255) from 0 to 254. Partition the column labels of
Brs(4,255) into 85 disjoint triplets, (1,14 85,1 + 170),0 <
I < 85. Set b = 8. From these 85 triplets, we find the following
set Ag = {2,5,7,13,20,32,54,60} of column labels which
satisfy the 9 conditions given by (3). The labels in Ag are the
first numbers of the triplets (2, 87, 172), (5, 90, 175), (7, 92,
177), (13, 98, 183), (20, 105, 190), (32, 117, 202), (54,139,
224), (60, 145, 230), respectively.

Take 8 columns, labeled by 2, 5, 7, 13, 20, 32, 54
and 60, from Bps(4,255) and form a 4 x 8 RS matrix
Brs A, (4, 8) Then, Brs A, (4, 8) satisfies the 2 x 2/3 X 3 SM-
constraint. The 255 x 255 CPM-dispersion of Bprg a4 (4, 8)
gives a 4 x 8 array Hpg 255 4,(4,8) of CPMs and ZMs
of size 255 x 255. It is a 1020 x 2040 matrix with col-
umn and row weights 4 and 8, respectively. The rank of
Hpgs 255,44(4,8) is 1015, not a full-rank matrix. The null
space over GF(2) of Hpg 2554(4,8) gives a (4, 8)-regular
(2040, 1025) RS-QC-LDPC code Crg A 1apc(4,8) with rate
0.5025 which is slightly higher than 0.5. Since Brg a4 (4, 8)
satisfies the 2 x 2/3 x 3 SM-constraint, the Tanner graph
GRS, Ag ldpc(4,8) of Crs g ldpc(4,8) has girth at least 8.
The distribution of cycles of lengths 8, 10, 12 and 14
in Grg ag,1dpe(4, 8) is {53805,407490, 8168670, 133452720}.
The girth of Grs Ag.1dpc(4, 8) is 8. The total number of cycles
of lengths 8, 10, 12 and 14 is 142,082,685, a very large number
of short cycles.

Suppose we mask the RS matrix Bprs a,(4,8) with the
following masking matrix:

10101111
01011111
ZA®)=117 1111010 @)
11110101

We obtain a 4 x 8 masked RS matrix Brg Ay mask(4,8).
The 255 x 255 CPM-dispersion of Brs Ay, mask(4,8) gives
a 4 x 8 array of Hprs 955 A5,mask(4,8) of CPMs and ZMs
of size 255 x 255. It is a 1020 x 2040 matrix with col-
umn and row weights 3 and 6, respectively. The rank of
Hpgs 255, A5, mask (4, 8) is 1020, a full-rank matrix. The null
space over GF(2) of Hgs 255 A5,mask(4,8) gives a (3, 6)-
regular (2040, 1020) QC-LDPC code Crs,ag,mask,idpc(4; 8)
with rate 1/2.

The distribution of cycles of lengths 8, 10, 12, and 14
in the Tanner graph Grs Ay maskldpc(4,8) of the masked
code Crs As,mask,ldpe(4,8) is {765,10200, 84405, 743580}.
The masked Tanner graph Grs Ag mask,idpe(4, 8) also has girth
8 but the number of cycles of length 8 is only 765 which
is much smaller than the 53805 cycles of length 8 in the
unmasked Tanner graph Grs ag 1dpc(4,8). The total number
of cycles of lengths 8, 10, 12 and 14 in Grs A4 mask,ldpc(4, 8)
is 838,950. Comparing the cycle distributions of the unmasked
and masked Tanner graphs, we find that masking results in a

BR ecror rale BER|

28
N (B

Fig. 1. The BER performances of the RS-QC-LDPC codes given in Examples
1 and 2.

large reduction in short cycles from 142,082,685 to 838,950,
a reduction by a factor of almost 169.

The BER performances of the unmasked (4, 8)-regular
(2040, 1025) RS-QC-LDPC code Crg g idpc(4,8) and the
masked (3, 6)-regular (2040, 1020) RS-QC-LDPC code
CRrS, Ag,mask,idpc(4,8) over the AWGN channel using BPSK
signaling decoded with 50 iterations of the MSA scaled by
factors of 0.70 and 0.75, respectively, are shown in Fig. 1.
We see that the masking improves the error performances
of the unmasked code. This performance improvement is
due to the large reduction of short cycles and the change
of degree distributions of the Tanner graph after masking,
from (4, 8)-regular distribution to (3, 6)-regular distribution.
The masked (3, 6)-regular (2040, 1020) RS-QC-LDPC code
CRS, As,mask.idpe(4,8) achieves a BER of 1072 without a
visible error-floor and at the BER of 107, it performs 1.5
dB from its threshold (1.1 dB). It has a 0.3 dB coding gain
over the unmasked (4, 8)-regular (2040, 1025) RS-QC-LDPC
code.

For comparison, the performance of a (2040, 1020) LDPC
code Cppg constructed by using the PEG-algorithm [10] is
also included in Fig.1. We see that the performances of the
(2040, 1020) RS-QC-LDPC code and the PEG code Cpgg
overlap with each other in the range of simulation. The parity-
check matrix of the PEG code Cpgc has constant column
weight 3 and row weight 6. Furthermore, it is not quasi-cyclic.

Examples 1 shows that the 4 x 8 masking matrix Z(4, 8)
given by (4) is very effective in reducing short cycles of
the Tanner graph of an unmasked RS-QC-LDPC code. This
masking matrix can be used as a building block to construct
larger masking matrices for larger RS base matrices. This
masking matrix has a simple structure. The second pair of
columns is a repetition of the first pair of columns and the
fourth pair of columns is a repetition of third pair of columns.
A simple expansion of this masking matrix is to repeat the
first pair and the third pair of columns ¢ times. This expansion
results in a 4 x 4t masking matrix Z(4, 4t) [8].

Example 2: This example is a continuation of Example 1.
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In this example, we construct two RS-QC-LDPC codes, one
with rate 2/3 and the other with rate 3/4. From the 85 column
label-triplets formed in Example 1, we choose two sets,
A = {0,1,4,9,11,20,24,35,41,49,90,225} and A1 =
{1,3,6,13,21,32,44,59, 64, 73,77,83,111, 212, 226, 239},
of column labels from the 85  label-triplets
(1,1 + 85,1 + 170),0 < [ < 85, formed in Example 1
for the RS matrix Brg(4,255). The column labels of each
set satisfy the 9 conditions given by (3). Using these two sets
of column labels, we form a 4 x 12 RS matrix Bgs a,,(4,12)
and a 4 x 16 Brs a,, (4, 16), respectively. Both RS matrices
satisfy the 2 x 2/3 x 3 SM-constraint.

The null spaces over GF(2) of the 255 x 255 CPM-
dispersions of Brg a,,(4,12) and Bgg a,,(4,16) give a (4,
12)-regular (3060, 2049) RS-QC-LDPC code and a (4, 16)-
regular (4080, 3065) RS-QC-LDPC code, respectively. The
Tanner graphs of both codes have girth 8, one with 259845
cycles of length 8 and the other with 688500 cycles of length
8. The distributions of short cycles of lengths 8, 10 and 12
in the Tanner graphs are {259845, 3886710,116167800} and
{688500, 17485860, 703291020}, respectively.

To mask the RS matrix Brg a,,(4,12), we form a 4 x 12
masking matrix Z(4, 12) which is constructed by repeating the
first pair and the third pair of columns of the masking matrix
Z(4,12) given by (4) three times (i.e., ¢ = 3). The masking
matrix Z(4,16) for the 4 x 16 RS matrix Bprsa,,(4,16)
consists of four 4 x 4 circulants whose generators are: ( 1
110,01110),@0110)and (1 10 1). The first 3
circulants of Z(4,16) are identical. Masking Bgrgs a,, (4, 12)
and Brs a,,(4,16) with Z(4,12) and Z(4, 16), respectively,
we obtain two masked RS matrices Brs A1, mask(4,12) and
BRrs As,mask(4,16). The null spaces over GF(2) of the
255 x 255 CPM-dispersions of the two masked RS matri-
ces give a (3, 9)-regular (3060, 2040) RS-QC-LDPC code
and a (3, 12)-regular (4080, 3060) RS-QC-LDPC code with
rates 2/3 and 3/4, respectively. The Tanner graphs of both
masked codes have girth 8. The distributions of short cycles
of lengths 8, 10 and 12 in the Tanner graphs of the two
masked RS-QC-LDPC codes are {7905,105825,1444320}
and {32640, 495210,9570915}, respectively. We see that
masking reduces the short cycles of the Tanner graphs of the
two unmasked RS-QC-LDPC codes drastically.

The BER performances of the above four codes over
the AWGN channel using BPSK signaling decoded with 50
iterations of the MSA are shown in Fig. 1. The scaling
factors for both unmasked codes are 0.70 and the scaling
factors for both masked codes are 0.75. We see that mask-
ing improves the error performances of both codes. Both
performance improvements are due to the large reduction of
short cycles and the change of degree distributions of the
Tanner graph after masking. The masked (3, 9)-regular (3060,
2040) RS-QC-LDPC code Crg A, mask,idpc(4, 12) achieves a
BER of 10~? without a visible error-floor and at the BER
of 1079, it performs 1.11 dB from its threshold (1.79 dB).
The masked (3, 12)-regular (4080, 3060) RS-QC-LDPC code
CRS,Avg.mask,1dpc(4, 16) achieves a BER of 1072 without

a visible error-floor and at the BER of 1079, it performs
0.98 dB from its threshold (2.27 dB). For comparison, the
performances of a (3060, 2040) LDPC code and a (4080,3060)
LDPC code constructed by PEG-algorithm are also included
in Fig.1. We see that the performances of the RS-QC-LDPC
code and the PEG code of the same length overlap with each
other in the range of simulation. The (3060, 2040) PEG code
even suffers from error floor at the BER of 1078, The RS-
QC-LDPC code and the PEG code of the same length have
the same degree distribution. However, the PEG codes are not
quasi-cyclic.

V. CONCLUSION

In this paper, we presented designs and constructions of
(4, b)- and (3, b)-regular QC-LDPC codes based on the
conventional parity-check matrices of a class of RS codes of
minimum distance 5. The Tanner graphs of these codes have
girth at least 8. We also showed that if we mask the base matrix
of a girth-8 (4, b)-regular RS-QC-LDPC code, we can reduce
the number of short cycles in its Tanner graph and obtain a
(3, b)-regular RS-QC-LDPC code which performs well. The
methods presented in this paper for constructing binary RS-
QC-LDPC codes can be generalized for constructing non-
binary RS-QC-LDPC codes.
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