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Abstract—Quantum low-density parity check (QLDPC) codes
are promising in realization of scalable, fault tolerant quan-
tum memory for computation. Many of the QLDPC codes
constructions suffer from unavoidable short cycles in their
Tanner graph which degrade the decoding performance of the
belief propagation (BP) algorithm. In this paper, we propose a
syndrome based generalized belief propagation (GBP) algorithm
for decoding of quantum LDPC codes and analyze how the
proposed algorithm escapes from short cycle trapping sets
effectively compared to the BP algorithm. Simulation results
show improved decoding performance of the GBP algorithm
over BP for the dual containing Calderbank, Shor and Steane
(CSS) codes when cycles of length 4 are considered in the region
based approach.

Index Terms—Generalized Belief Propagation decoding,
quantum LDPC codes, Syndrome decoding, Maximum Like-
lihood decoding.

I. INTRODUCTION

Storing quantum information is indeed the primal step
toward the objective of manipulating quantum information for
computation. Quantum memory is also important for long-
distance quantum communication, primarily in the context of
implementation of quantum repeaters. Recent experimental
results show advances in quantum memories with longer
storage times, higher efficiency using new improved systems
such as rare-earth ion doped crystals and single atoms [1]. On
the theoretical side, research on new and existing quantum
memory protocols, promising proposals for quantum error
correction and applications for quantum storage are signifi-
cant milestones towards future quantum computer [2].

Quantum error correction (QEC) is an integral step towards
realizing such a fault tolerant quantum memory for compu-
tation [2] as it protects quantum information bits (qubits)
from quantum noise or decoherance caused by unwanted
measurements or undesirable evolution of quantum states.
The QEC mechanism proceeds by continuously gathering
parity information by quantum measurement followed by
classical error correction/processing to apply a corrective
quantum operation on the quantum data.

Though surface codes [3], [4] are a prominent pick for the
task due to locality of gates required and good error threshold
(1%), the number of qubits that can be encoded using these
codes is limited. Another prominent class of QEC codes that
have asymptotically finite rate are the quantum low density
parity check (QLDPC) codes (non-local generalization of
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toric codes [5], [6]), inspired from the classical LDPC codes.
Starting from the work by MacKay et al. [7], numerous
QLDPC codes [5], [8] have been designed, with an attempt to
achieve similar, capacity approaching, properties for quantum
channels. Using the stabilizer formalism greatly simplifies
the task of obtaining quantum LDPC codes such as the
Calderbank, Shor and Steane (CSS) codes [9], [10], from
the existing classical codes. However, the symplectic inner
product/commutativity constraint [7] among the stabilizer
generators limits the design of the best possible QLDPC
codes. Optimizing commutativity constraint along with dis-
tance properties and sparsity with low weight stabilizers is
therefore a challenging task.

Bicycle codes proposed by Mackay [7] provides a simple
dual containing CSS code using random sparse cyclic matri-
ces. These codes have shown good performance in compar-
ison to other variants and constructions of CSS codes [11].
However, as mentioned before, the commutativity criterion
introduces a large number of unavoidable cycles of length 4
(short cycles) in their Tanner graphs. Decoding of QLDPC
codes having such short cycles using iterative decoding
techniques such as belief propagation (BP) algorithm [12] is
highly sub-optimal. It is quite evident that dealing with short
cycles using the standard BP algorithm leads to very shallow
error floors and poor decoding performance. Constraining
the component codes of the CSS code to avoid short cycles
adversely affects the rate and also limits the family of quan-
tum sparse codes. Another decoding concern investigated
among QLDPC codes is the symmetric degeneracy problem
[13]. Though heuristic and feedback based solutions were
proposed in [13], [14] to mitigate symmetric degeneracy, it
still remains a challenge for iterative decoding of QLDPC
codes. Hence, for generic QLDPC codes, the search for an
effective decoding strategy is still a hot research topic.

A natural way of dealing with cycles in the graphical model
of a code is to rely on loopy inference algorithms. There
have been numerous approaches for dealing with short cycles
in case of classical codes. A modified belief propagation
algorithm for classical LDPC decoders [15] over graphs with
isolated short cycles was proposed. However, modifications
of this algorithm for nested cycles would be needed in order
to handle generalized dual containing CSS like codes. Also,
these short cycles are shown to be harmful trapping sets for



iterative decoding algorithms [16]. In this paper, we pro-
pose using a syndrome-based Generalized Belief Propagation
(GBP) decoder for the quantum decoding scenario. GBP
relies on extending the cluster variation method introduced
by Kikuchi [17], namely the region graph method proposed
by Yedidia er al. [18]. With respect to conventional BP algo-
rithms, GBP benefits from region-to-region message passing
instead of node-to-node message passing in BP, and has been
shown to dramatically outperform BP in both accuracy and
convergence properties [19]-[22].

The paper is organized as follows. In Section II, we
introduce quantum stabilizer codes and explain the syndrome
based decoding problem. We introduce the notations and de-
scribe the syndrome based GBP decoding algorithm in detail
with analysis in Section III. This is followed by simulation
results for comparing the decoding performance in Section
IV. Concluding remarks and future research directions are
given in Section V.

II. QUANTUM DECODING PROBLEM

In this section, we introduce quantum LDPC codes fo-
cusing on dual containing CSS codes using the stabilizer
formalism (Refer to [10], [23] for detailed description).

A. Stabilizer Formalism

Let us denote by P, = i"{[,X,Y,Z}®", 0 < r < 3,
the n-qubit Pauli group, where ®n denotes the n-fold
tensor product, X,Y and Z are the Pauli matrices, I is
the 2 x 2 identity matrix, and " is the phase factor. Let
S =<51,59,...,9,>, —1 ¢ S, be an Abelian subgroup of
P, with generators S;, 1 < ¢ < m. Then, an [n, k] stabilizer
code [9] is defined as a 2F-dimensional subspace C of the
Hilbert space (C?)®" that is a common +1 eigenspace of
S. For a stabilizer group with m independent generators, the
dimension of the quantum code is k = n — m.

The n — k stabilizer generators of an [n, k] stabilizer code
can be represented using a pair of binary matrices by mapping
each element (Pauli I, X, Y or Z) of generators of S to
a binary tuple as follows: I — (0,0), X — (1,0), Z —
(0,1), Y — (1,1). We obtain the rows of the m x 2n check
matrix H. given by

H. = [Hx Hyz], (1)

where Hx and Hy represent binary matrices for bit flip and
phase flip operators respectively. Each row in H, denote a
stabilizer generator, and a pair of corresponding columns in
Hx and Hy represent a qubit.

Among the class of stabilizer codes, we focus our attention
to the CSS codes [24]. They are constructed from two classi-
cal codes C; and Cs, where Cj C (4. Let the corresponding
parity check matrices be H; and Ho, then the check matrix
of CSS code has the form

H, 0
m- [ 0],
The commutativity criterion on the stabilizers is satisfied only
when Hy H] = 0. Restricting Co = C gives us a [[n, 2k—n]]

dual containing CSS code with H; = Hy = H, HH" = 0
resulting in a simple form as follows:
H 0

H, = {0 H} |
In this paper, for the Monte Carlo simulation and analysis,
we chose dual containing CSS code, constructed similar to
Mackay’s bicycle codes [7]. The parity check matrix H is
obtained by using a matrix [M M| where M is cyclic matrix
obtained from a n/2 binary vector of weight p/2 and then
discarding k/2 rows. We use this code only a preliminary tool
only to compare the efficacy of GBP algorithm over belief
propagation and to show how GBP can overcome the problem
of short cycles. Now, we describe the channel model.

@)

B. Channel Model

We focus on memory-less channels wherein the error
on a qubit is independent of the error on other qubits. A
widely studied model is a quantum depolarizing channel
(memoryless Pauli channel), characterized by the depolar-
izing probability p. For simplicity of comparison purposes,
we limit our attention to binary decoding and for this case, a
depolarizing channel is isomorphic to two independent binary
symmetric channels (BSCs). This simplified model ignores
the correlation between bit flip error X and phase flip error
Z with a cross-over probability of 2p/3 for the BSCs for X
and Z errors [7].

Hence, an error on the n qubits can be expressed as a
binary error vector of length 2n in the form [ez ex], where ez
and ex are binary vectors of length n representing Z and X
errors. This gives the syndrome measurement as H.|ez ex]T.
We can obtain syndrome measurements as Hel and He/, for
simulations using dual containing CSS codes. Hence, X and
Z errors can be decoded independently by iterative algorithms
over a Tanner graph corresponding to H [16].

C. Syndrome Decoding for Stabilizer Codes

The quantum decoding problem consists of determining
the most likely recovery operator (up to the coset if degen-
erate) given the calculated error syndrome by measuring the
stabilizer generators. More formally, let the code state |1))
be subject to a memoryless Pauli channel and the received
erroneous quantum state is |¢) = W |[¢), where W € P,.
Since Pauli operators square to identity, decoder goal is
simply to recover |1)) by determining W and applying to
the system, i.e., W |¢) = W2 [)) = [¢)).

Based on the properties of the Pauli group that each
element has eigenvalues of +1 and —1 and any two elements
commute or anti-commute, the erroneous quantum state |¢)
becomes an eigenstate of the elements in S with eigenvalue
+1 or —1. The syndrome is computed by concatenating the
eigenvalues of |¢) for the generators of S using the mapping
1 — 0, —1 — 1. The all-zero syndrome corresponds to
no error as each codeword is stabilized by elements of S.
A detectable error anti-commutes with some generator in S,
otherwise it is called undetectable. The undetected errors are
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Fig. 1. Fig. shows the number of check constraints whose syndrome
computed is not matched to the measured syndrome versus iterations of
BP algorithm for a specific error pattern. The oscillatory behavior shows
that BP is not able to converge to the initial measured syndrome in the
presence of numerous short cycles.

either due to the error operators which take one codeword
to another codeword or by those that are degenerate errors,
belonging to the stabilizer group.

D. Shortcomings of Iterative Decoding

Syndrome-based belief propagation algorithm [11], [13]
and its variants are used for iterative decoding of QLDPC
codes. Observe that for a dual containing QLDPC code, the
row weights p of the parity check matrix H are necessarily
even, and every pair of rows of H must have an even
overlap of 1’s. This ensures that the symplectic inner
product criterion is satisfied, but results in numerous cycles
of length 4 in the Tanner graph. We can guarantee zero
length-4 cycles iff the rows of H have disjoint supports,
which in turn leads to poor error correction. Thus, short
cycles become an unavoidable barrier for the decoding of
dual containing QLDPC codes. We now present an example
wherein, BP fails to converge.

Oscillations in Syndrome BP: We analyze the messages
passed on a factor graph corresponding to the H matrix
for dual containing QLDPC code of size (n — k) x n =
(200 x 400) and p = 8 having 1200 cycles of length 4, and
track the beliefs and syndrome calculated at each iteration.
In Fig. 1, observe that the BP algorithm fails to converge to
the measured syndrome in these iterations. Such oscillatory
behavior occurs when messages pass over short cycles
repeatedly and propagate incorrect beliefs.

We propose the syndrome based GBP in Section III
which can compute the true beliefs even in the presence of
nested cycles and show that the syndrome decoder correctly
converges to the initial measured syndrome.

IIT. GENERALIZED BELIEF PROPAGATION ALGORITHM

The GBP [18] is a graph based algorithm which can pro-
vide an approximate solution to the problem of minimizing
the Gibb’s free energy. The algorithm provides a method to
approximate marginal probabilities of a probability distribu-
tion function. Therefore, GBP can compute the maximum a
posteriori (MAP) estimates which makes it suitable for soft
information symbol-based MAP decoding [18], [25]. In [18],
it has been shown that the GBP algorithm provides exact
marginal probabilities when the corresponding region graph
has no loops. For the region graphs with loops (loopy region
graphs), the algorithm is empirically demonstrated to provide
a good approximation to true marginals at the expense of
large computational complexity [26], [27]. We now describe
the factor graph representation and then reformulate the
problem of syndrome based iterative decoding adapted for
the GBP algorithm.

A. Factor Graph Representation

A factor graph representation for the problem of syndrome
based decoding can be formulated as follows. The factor
graph of this problem is a bipartite graph consisting of two
sets of nodes: variable nodes V and factor nodes C. The
variable nodes represent the error patterns and the factor
nodes check the syndrome constraints. There exists an edge
between the variable node V' € V and the check node C' € C
if the variable node V is involved in the syndrome constraint
of check node C. We denote the set of variable nodes which
are connected to the factor node C' by N and the set of
factor nodes connected to the variable node V' by Ny . Fig.
2(a) shows the factor graph for the H matrix of the classical
(7,4) Hamming code used in the dual containing CSS code
(Eq. 2): [7,1] Steane code as an example.

B. Syndrome Based Generalized Belief Propagation Decoder

We have the observed syndrome o = (01,09,...,0,) €
{0,1}™ as an input to the decoder. The problem is to find the
most-likely error pattern &€ = (éy, és, . .., é,) which satisfies
the observed syndrome. More precisely, we are interested in
the most-likely error pattern € such that

n
€= U arg me?xp(eﬂa), (3)
subject to the constraint that H e’ = o mod 2, where H
is the parity check matrix of code. Assuming the uniform
distribution over all possible error patterns satisfying the
syndrome o, the a-posteriori probability of error pattern

e ={e1,ea,...,e,} given the observed syndrome o is
p(ole)p(e
pelo) = LUIDLE) o ) @
p(o)
and

p(ole) = H 1 {hjeT = 0; mod 2}p(oj|ej), 5)

Jj=1



where e; indicates the bits which are involved in the 4t
syndrome constraint, h; is the j™ row of H matrix, p(c;|e;)
is the probability of satisfying the j® syndrome constraint
given e; and 1{.} is the indicator function which equals
one (resp., zero) when its argument is true (resp., false).
Therefore, we have

p(elo) = H 1 {h;e” = o; mod 2} p(a;le;), (6)

where the normalization constraint Z(o), so called the par-
tition function, is given by

Z H]l{hJeT:O'J mod Q}p(U]|eJ)

e:HeT=g mod 2 j=1
(7N

We denote by b(e) the belief corresponding to the a posteri-
ori probability p (e|o). Using the Kullback-Liebler distance
properties [28], we can show that b(e) = p(e|o) can be
achieved by minimizing the Gibb’s free energy F' such that

Z(o)=

F(e)=U(e)—H(e)=D(b(e) | p(e]| o)) —InZ(o),
(®)
where
Ule) = — Z > b(ej)Inp(ajle;), ©)
H(e)=> b(e)lnb(e) (10)

are the average energy and entropy of e, respectively. Accord-
ing to [18], [25], the Gibb’s free energy can be estimated
using the region-based approximation (RBA) method. In
order to use the region-based approximation method, we need
to construct a valid region graph of the problem in a such way
that every variable node and every factor node in the factor
graph of the quantum code contain at least in one region.

In [18], a region graph construction for the problem of
symbol-based decoding is introduced. We extend it and
formulate a method for syndrome based decoding problem
with the factorization given in the Eq. (5). Each basic
(ancestor) region consists of only one factor node C' € C and
its neighboring variable nodes N¢ such that the region graph
is initially made of m basic regions, where m is the number
of syndrome constraints. Then, the cluster variation method
[18] is applied to establish the remaining of the region graph.
We construct the remaining regions by taking the intersection
of the basic regions and their intersections. The set of all
regions in the region graph is denoted by R. For every region
R € R, we denote the set of variable nodes in the region R
by VR and the error pattern associated with these variables
by er. Let b(egr) and p (er) be the belief and the probability
of the error pattern ep, respectively. Fig. 2 shows the factor
and region graphs for the syndrome based decoding problem
of the (7,4,3) Hamming code as an example of a QLDPC
code.

(a) (b)

Fig. 2. The factor and region graphs for the problem of syndrome based
decoding of the (7,4,3) Hamming code are given. In Fig. 2 (a), the set
of variable nodes V = {V1, Va,..., V7 } represents the error patterns and
the set of factor nodes C = {C', Cy, C3} verify the syndrome constraints.
In Fig. 2 (b), first layer of the region graph consists of 3 basic (ancestor)
regions with only one factor node and its neighboring variable nodes in the
factor graph. The rest of region graph is then constructed using the cluster
variation method [18].

According to [18], the Gibb’s free energy can be approx-
imated using the RBA method as

F(e) = Ur(e) — Hr(e), (11)

where Uz and Hy are respectively the region average energy
and region entropy. The region average energy and region
entropy are

==Y ble;)Inp(a;le;),

Jj=1 e;

= ZCR Zb(eR) Inb(egr),
R eRr

where e; is the set of bits which are involved in the j®
syndrome constraint and cp is the counting number of the
region R and obtained from cgp = 1 — ZpGAR ¢p, Where Ap
is the set of ancestors of region R given by

Ar={R eRIRCR'}.

12)

13)

(14)

We should note that for the region R if Ag = (), then cg = 1.

The marginal probabilities {p(e;|c)}_, can be estimated
by minimizing Eq. (11) subject to the edge constraints given
by

> bley) =bler) VP E€PrVRER  (I5)
UEB[»\R
and the normalization constraints given by
> bler) =1,VR € R. (16)

€eRr

The edge constraints ensure that the belief of a region can
be obtained from its parent regions, where the parent regions
of a region R is identified by

Pr={R' e RIRCR,}R"cR, RCR'CR}. (17)

The message and belief update equations of GBP for the
problem of syndrome based decoding are obtained from solv-
ing the constrained minimization problem of the approximate
Gibb’s free energy F’(e) using Lagrange multipliers. For
every region R € R, the update messages from its parent
regions P € Pg at iteration k£ > 1 is given by



i
m®) L (er) =

= bk D(ep)
°P\R

k) (k)
M plojle)) n =% (er) I n =% _(ep
A]-G.A” E 1””6’PR P'" >R DEDR PIEPD\R P/'—D

where Dp, is the descendant regions of the region R identified
by

Dr={R' e RIRD R'}. (18)

We set the initial beliefs of regions to be uniform. The
belief update equation for every R € R at iteration k£ > 1 is
given by

k
H mSDLR(eR)

PePr

x H H mgf’)aD(eD)

DeDr P'€Pp\r

b er) o« [] plojle;)

A;EAR

(19)

Then, we can obtain the estimated error pattern &%) at
iteration k£ > 1 using the beliefs of regions. The iterative
algorithm is terminated at iteration & if é®) satisfies the
observed syndrome o, else is continued till the predefined
maximum number of iteration.

IV. SIMULATION RESULTS

In this section, we compare the syndrome based GBP
with BP algorithm by performing Monte Carlo simulations.
As explained in Section II-D, we use dual containing CSS
codes, constructed similar to Mackay’s bicycle codes with the
simplified depolarizing noise channel model. Note that the
syndrome based GBP algorithm can be used for decoding
other classes of QLDPC codes such as the hyper graph
product codes [5]. We use this example of bicycle codes for
comparison purposes only.

In Fig. 3, we plot the decoding performance curves com-
paring syndrome GBP with the syndrome BP algorithm
for 100 iterations. Result for a hard decision Gallager-B
algorithm [16] is also plotted in the figure. There is an
improvement of up to an order of magnitude (in FER value)
when GBP decoder is used in comparison to the standard
BP decoder. This shows superior ability of the GBP and the
region based method to achieve significantly low FER values
by breaking short cycle trapping sets.

In Fig. 1, observe that the BP algorithm fails to converge to
the measured syndrome in these iterations. Such oscillatory
behavior occurs when messages pass over short cycles repeat-
edly and propagate incorrect beliefs. In Fig. 4, we show how
correctly computing the beliefs using GBP over the region
graph even in presence of nested cycles, helps the decoder
syndrome output to converge to the measured syndrome.

=
=
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5 J
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8
B
(5] .
g
<
]
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Fig. 3. Frame error rate (FER) vs. BSC(2p/3) curves comparison between
GBP algorithm, BP, and the Gallager-B algorithm for 100 iterations on the
Tanner graph of H matrix with size (n — k) x n = (200 x 400) and p = 8.
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Fig. 4. Fig. shows the number of check constraints whose syndrome
computed is not matched to the measured syndrome versus iterations of
GBP and BP algorithm for the same error pattern as in Fig. 1. The GBP is
able to converge to the initial measured syndrome in 16 iterations even in
the presence of numerous short cycles.

V. CONCLUSIONS AND FUTURE WORK

To summarize, we proposed a syndrome based GBP algo-
rithm, to effectively deal with short cycles present in quantum
LDPC codes. Simulation results show improved decoding
performance of the GBP algorithm over BP for the dual
containing CSS codes when cycles of length 4 are considered
in the region based approach. Also, we observe that the
convergence behavior can be improved by carefully changing
the algorithm parameters. The algorithm can be naturally
extended to non-binary GBP and also modified to exploit
X and Z error correlations for improved performance. Also,
hyper-graph product codes may be a suitable candidate for the
demonstration of effectiveness of non-binary GBP algorithm.



As another future work, GBP algorithm needs to be
reformulated to find the most likely error coset to make use of
degeneracy of quantum codes. Also, it would be interesting to
find new trapping sets that adversely affect beliefs computed
by GBP algorithm. Analyzing the complexity and also finding
suitable trade-offs are also considered as our future work.
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