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Abstract—Designs and constructions of quasi-cyclic (QC)
LDPC codes for the AWGN channel are presented. The codes
are constructed based on the conventional parity-check matrices
of Reed-Solomon (RS) codes and are referred to as RS-QC-LDPC
codes. Several classes of RS-QC-LDPC codes are given. Cycle
structural properties of the Tanner graphs of codes in these
classes are analyzed and specific methods for constructing codes
with girth at least eight and reducing their short cycles are
presented. The designed codes perform well in both waterfall
and low error-rate regions.

Index Terms—Cycles, Dispersion, Girth, LDPC code, Masking,
Reed-Solomon code, Tanner graph.

I. INTRODUCTION

Some recent research [2]-[5] combines two powerful cate-
gories of codes, namely Reed-Solomon (RS) [6], and LDPC
codes [7], to form powerful classes of hybrid codes which, not
only perform well, but are also practically implementable [8],
[9]. Starting with the conventional parity-check matrix of an
RS code under certain constraints, each element in the matrix,
which belongs to the finite field over which the RS is designed,
is replaced by a circulant permutation matrix (CPM) that
uniquely represents that element. This replacement procedure,
called dispersion [2], results in a parity-check matrix of a
quasi-cyclic (QC) LDPC code which is referred to as an RS-
QC-LDPC code.

It is widely recognized by researchers that short cycles in the
Tanner graphs of LDPC codes upon which iterative decoding
is performed can degrade performance. There are numerous
constructions of LDPC codes with no cycles of length less than
six including properly designed RS-QC-LDPC codes, see e.g.,
[10] for a survey of many such constructions. The literature is
also rich in techniques to reduce or eliminate cycles of lengths
six or more. These techniques can be broadly classified into
two approaches. In the first approach, techniques are proposed
to eliminate short cycles from the Tanner graph of a given
LDPC code, in particular, a QC-LDPC code, see e.g., [11]—
[15]. In the second approach, QC-LDPC codes are constructed
subject to certain constraints to ensure that their Tanner graphs
have no short cycles, see e.g., [16]—[24].
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In this paper, we investigate several aspects of RS-QC-
LDPC codes, including new designs and constructions, girth,
cycle structure, reduction of short cycles in their Tanner
graphs, and error performance over the AWGN channel
(AWGNC). Our technique for eliminating short cycles belongs
to the second aforementioned approach in which constraints
are imposed on the design of the codes so that the resulting
codes do not have short cycles. However, it differs from most
of the previous work in developing and applying the design
constraints specifically to the powerful class of RS-QC-LDPC
codes. Our approach is similar to that presented in [25] in
which the cycle structure was analyzed and a computer search
algorithm was proposed to obtain generalized RS-QC-LDPC
codes of girth 8. We use masking [26] to further reduce
the number of short cycles and to adjust the column and
row weights of the parity-check matrices of the constructed
codes for performance improvement. Our goal is to propose
systematic and flexible constructions of LDPC codes that
balance the requirements of good waterfall performance and
low error-floor while maintaining a structure that facilitates
implementation.

The rest of the paper is organized as follows. Section
IT presents the basic construction of RS-QC-LDPC codes.
Section IIT analyzes cycle structure of the Tanner graph of
an RS-QC-LDPC code and presents methods for constructing
codes with girth at least 8. Section IV gives two special
classes of cycle-8 RS-QC-LDPC codes constructed based on
the conventional parity-check matrices of general RS codes.
Section V concludes the paper with some comments. Simula-
tion results are presented to demonstrate the error performance
of the designed codes. Throughout the paper, performance is
measured for BPSK signaling over the AWGNC. Decoding is
done using scaled min-sum algorithm (MSA) [10], [27] and
simulations are performed on each code, in terms of bit error
rate (BER) and block error rate (BLER), to obtain a scaling
factor that yields good performance. We use the algorithm in
[28] to count cycles.

II. CONSTRUCTION OF RS-BASED QC-LDPC CODES

In this section, we present the basic construction of binary
RS-QC-LDPC codes. The construction of such a code begins
with the conventional parity-check matrix Brg of a chosen
RS code Crg over a finite field GF(2°) which satisfies the
following constraint: any 2 x 2 submatrix of Brg is non-
singular (NS). We call such a constraint the 2 x 2 submatrix
nonsingular (SNS) constraint, denoted by 2x 2 SNS-constraint.
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Such an RS parity-check matrix Brg is referred to as a
2 x 2 SNS-constrained RS parity-check matrix. Once a 2 x 2
SNS-constrained RS parity-check matrix is constructed, we
represent each of its entries by a circulant permutation matrix
(CPM) of a fixed size, say n x n, where n is a factor of 2°—1.
This results in an array Hpgg,, of CPMs of size n x n. It is
a matrix over GF(2) that has the following structure: any two
rows (or two columns) do not have more than one position in
which both have I-entries. Such a structure is referred to as
row-column (RC) constraint [10]. The null space over GF(2)
of Hgg. ,, gives an RS-QC-LDPC code, denoted by Crs n,idpc-
The RC-constraint on Hrg ,, ensures that the Tanner graph of
CRs,n,1dpc has girth at least 6.

A. Construction of 2 x 2 SNS-Constrained RS Matrices

Let 8 be an element of order n in GF(2°) where n is a
factor of 2% — 1. The set S,, = {1,3,...,8" !} forms a
cyclic subgroup of GF(2°). Let d be a positive integer such
that 1 < d < n. Form the following d x n matrix over GF(2°):

Brs.n(d,n) = [(ﬂi)j} 1<i<d,0<j<n ° M

The null space over GF(2%) of Brg ,(d,n) gives a 2°-ary
(n,n —d,d+ 1) RS code, denoted by Crg »(d,n) of length
n, dimension n — d, rate (n — d)/n and minimum distance
d+1 [29]. The matrix Brg ,(d, n) is the parity-check matrix
of the RS code Crsn(d,n) in the conventional form. Let b
be a positive integer such that d < b < n. Suppose we delete
n — b columns from Bgs ,(d,n). We obtain a d x b matrix
Brs..(d,b) over GF(2°) whose null space gives a (b,b —
d,d + 1) shortened RS code. We call both Bgs ,,(d,n) and
Brs,n(d,b) RS matrices.

In general, the RS matrix Brg,,(d,n) does not satisfy the
2 x 2 SNS-constraint. In the following, we give three types of
RS matrices that satisfy the 2 x 2 SNS-constraint.

For the first type, type-1, n = mk is a product of two proper
factors m and k < m. For an integer d such that 1 < d < k+1,
we form the d x m matrix over GF(2°):

Brsn (d,m) = [(BZ)J] 1<i<d,0<j<m ° 2

The null space over GF(2%) of Bpgg,(d,m) gives an
(m,m—d,d+1) shortened code Crg,,(d, m) of the RS code
Crs,n(d,n). We label the columns of Bgs ,,(d, m) from 0 to
m — 1 and the rows from 1 to d.

Theorem 1: The RS matrix Brg »(d, m) given by (2) sat-
isfies the 2 x 2 SNS-constraint.

Proof: Consider a 2 x 2 submatrix in Bpgg ,(d, m)
with four entries (B%)%, (8%)%, (587)%, (B7)" at the locations
(i,9), (i,t),(4,s) and (j,¢) with 1 < ¢ < j < d and
0 < s < t < m. If this matrix is singular, then U—9(t=5) =1,
Since0 < j—i<d<k+1and0<t—s < m, the product
(j—1)(t—s) is less than n = km and nonzero. Since the order
of Bis n, fU=D(=5) —£ 1 and the above 2 x 2 submatrix of
Brs,n(d, m) is nonsingular. We conclude that Brg ,,(d, m)
satisfies the 2 x 2 SNS-constraint. |

For 1 < d < k + 1, the RS matrix Brg n(d,m) given
by (2) is a submatrix of Brs,(d,n) given by (1). It simply
consists of the first m columns of Brg ,(d,n). In fact, any

m consecutive columns of Brg »(d,n) form a 2 x 2 SNS-
constrained d x m RS matrix. This can be proved in a similar
manner as that given in Theorem 1.

Now we consider the second type, type-2, for which the
RS matrix Brg »(d,n) in the form given by (1) satisfies the
2 x 2 SNS-constraint. Suppose n is not a prime. Let ps; be
the smallest prime factor of n and let d be a positive integer
such that 1 < d < p,. Then, the RS matrix Brg »(d,n) in
the form of (1) satisfies the 2 x 2 SNS-constraint. The third
type, type-3, is that n is a prime factor of 2° — 1. Let d be
a positive integer such that 1 < d < n. Then, the RS matrix
Brs.n(d,n) given by (1) satisfies the 2 x 2 SNS-constraint.
The proofs of 2 x 2 SNS-constraint structure of type-2 and
type-3 are similar to that given in Theorem 1.

It is clear that any submatrix of a 2 x 2 SNS-constrained
RS matrix also satisfies the 2 x 2 SNS-constraint. Besides the
above three types, other 2 x 2 SNS-constrained RS matrices
can be constructed by selecting columns from the general RS
matrix Brg n(d,n) given by (1) under certain constraints.
This will be presented in Section IV.

B. CPM-Dispersions of Elements of a Finite Field

Consider the cyclic subgroup S,, = {1,8,...,8" 1} of
GF(2°). For 0 < i < n, we represent the element 5’ by a
CPM, denoted by CPM ,,(/3%), over GF(2) of size n x n (with
rows and columns labeled from O to n — 1), whose generator
(the top row) has the unit-element “1” of GF(2*) as its single
nonzero component at position i. The representation of the
element 3¢ by CPM ,,(3%) is unique and the mapping between
B¢ and CPM (") is one-to-one. This matrix representation
of 3¢ is referred to as the n x n CPM-dispersion of 3* with
respect to the cyclic subgroup S,, [4]. We represent the O-
element of GF(2°) by a zero matrix (ZM) of size n x n.

Since n is a factor of 2° — 1, there is some [ for which In
divides 2° — 1. Let 6 be an element in GF(2%) of order In, i.e.,
§'" = 1. Then, 3 can be expressed as the [-th power of 4, i.e.,
B = 6'. Let Wy, be the cyclic subgroup of GF(2*) of order
In generated by the powers of §. Then, Wy, contains S,, as
a subgroup. If we disperse each element in Wy, by a CPM
of size In x In as described above, then the element 8¢ = 6%,
0 <7 < n, as an element in Wy, is dispersed into a CPM of
size In x In, denoted by CPM,(/3"), whose generator has its
single 1-component at position ¢/. In this case, every element
B¢ in S, is uniquely dispersed into a CPM of size In xIn which
is referred to as the In x In CPM-dispersion of 3° with respect
to the super group Wy, of S,,. Clearly, this CPM-dispersion
of each element 5%, 0 < i < n, in S,, with respect to the
super group Wy, is unique and the mapping between 3° and
CPM (%) is one-to-one with respect to W,,. The number
In is called the dispersion factor. Therefore, each element in
S,, can be one-to-one dispersed into a CPM of a size equal to
the order of a cyclic subgroup of GF(2%) which contains S,,
as a subgroup (including S,, itself).

C. Construction of RS-QC-LDPC Codes

Any of the three types of 2x 2 SNS-constrained RS matrices
given in Section II.A can be used to construct RS-QC-LDPC
codes.
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Consider the 2 x 2 SNS-constrained d x m RS matrix
Brs,n(d,m) over GF(2?) in the form of (2) constructed based
on a cyclic subgroup S,, = {1,8,...,8" !} of GF(2°).
We form an ind x Inm matrix Hgs ,(d,m) over GF(2)
by dispersing each entry in Bgg ,(d,m) into a binary CPM
of size In x In with respect to a cyclic subgroup Wy, of
GF(2#) of order In that contains S,, as a subgroup. The matrix
Hprs in(d, m) is a d x m array of CPMs of size In x In. This
array Hpg 1, (d, m) is called the In x In CPM-dispersion of
Brs.n(d, m), denoted by CPM,(Bgs,,(d,m)). Typically,
In >> 1, and Hgg ,(d,m) is a sparse matrix with column
and row weights d and m, respectively.

The array Hpgg,(d,m) consists of d (m) row (col-
umn)-blocks of CPMs. Each CPM row (column)-block of
Hpgs 1n(d, m) consists of In rows (columns). Each row (col-
umn) in a CPM row (column)-block contains m (d) 1-entries
which reside in m (d) separate CPMs in the CPM row
(column)-block, one in each. The m CPMs in each CPM row-
block of Hpg in(d, m) are distinct, and the d CPMs in each
CPM column-block of Hgg i, (d, m), except the 0-th column-
block, are distinct.

The null space over GF(2) of Hrg 1, (d, m) gives a (d, m)-
regular RS-QC-LDPC code, denoted by Crs,in idpc(d, m),
of length Inm. The rate of Cgrsin,idpc(d,m) is at least
(m — d)/m which is the rate of the RS code Cgg,,(d, m).
Since the RS-QC-LDPC code Crs in,1dpc(d, m) is constructed
by CPM-dispersion of the RS matrix Bgs ,,(d, m), we call
Brsn(d,m) the base matrix.

The following necessary and sufficient condition on a base
matrix B over GF(2°) for which the CPM-dispersion of B
satisfies the RC-constraint, i.e., the Tanner graph associated
with the CPM-dispersion of B to have a girth of at least 6, is
proved in [30, Corollary 1].

Theorem 2: Let B be a matrix over GF(2°) and C be the
QC-LDPC code given by the null space over GF(2) of the
CPM-dispersion of B. A necessary and sufficient condition
for the Tanner graph of C to have girth of at least 6 is that
every 2 x 2 submatrix of B either contains at least one zero
entry or is nonsingular.

We refer to the necessary and sufficient condition in Theo-
rem 2 as the 2 X 2 submatrix (SM) constraint. Notice that it
includes the 2 x 2 SNS-constraint as a special case. Since the
RS matrix Brg ,,(d, m) given by (2) satisfies the 2 x 2 SNS-
constraint, it satisfies the 2 x 2 SM-constraint. As a result, the
Tanner graph of the RS-QC-LDPC code Cgs,in,idpc(d, m) has
girth of at least 6.

In [30, Corollary 2], the following necessary and sufficient
condition on a base matrix B for which the Tanner graph
associated with the its CPM-dispersion has girth at least 8, is
also proved.

Theorem 3: Let B be a matrix over GF(2°) and C be the
QC-LDPC code given by the null space over GF(2) of the
CPM-dispersion of B. A necessary and sufficient condition
for the Tanner graph of C to have girth of at least 8 is that
no 2 x 2 or 3 x 3 submatrix of B has two identical non-zero
terms in its determinant expansion.

For convenience, we refer to the necessary and sufficient
condition given in Theorem 3 as the 2 x 2/3 x 3 SM-constraint.
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Fig. 1. The BER and BLER performances of the four RS-QC-LDPC codes
given in Examples 1 and 2.

By imposing this constraint on base matrices, RS-QC-LDPC
codes whose Tanner graphs have girth at least 8 will be
presented in Sections III and IV.

Construction of RS-QC-LDPC codes whose Tanner graphs
have girth at least 6 using RS matrices of type-2 and type-3 as
base matrices is exactly the same as that using the RS matrix
Brs.n(d,m) in the form of (2) of type-1 as the base matrix.

Example 1: Suppose we use the field GF(2°) for code
construction. Note that 2 — 1 = 511 can be factored as
the product of two primes, 7 and 73. Setting n = 73 and
d = 4, we construct a 4 x 73 RS matrix Bgg 73(4,73) as
given in (1) where 3 is an element in GF(2°) of order 73.
The RS matrix Brg 73(4, 73) satisfies the 2 x 2 SNS-constraint
from the type-3 construction. Deleting the last 9 columns from
Brs,73(4,73), we obtain a 4 x 64 RS matrix Brs 73(4, 64).
The 73 x 73 CPM-dispersion of Brg 73(4,64) results in a
4 x 64 array Hpg 73(4,64) of CPMs of size 73 x 73 which
is a 292 x 4672 matrix of rank 289 with column and row
weights 4 and 64, respectively. The null space over GF(2) of
Hprs 73(4,64) gives a (4,64)-regular (4672,4383) RS-QC-
LDPC code Crs,73,1dpc(4,64) of rate 0.938. Its associated
Tanner graph is of girth 6 with 1,022,876 and 167,500,398
cycles of lengths 6 and 8, respectively. The BER and BLER
performances of the code Crs,73,1dpc(4, 64) decoded with 50
iterations of MSA scaled by a factor of 0.70 are shown in
Fig. 1. The code achieves a BER of 10~® at an SNR of 5.25
dB without a visible error-floor and at the BER of 1078, the
code performs 1.35 dB from the Shannon limit (3.906 dB) and
0.911 dB from its threshold (4.339 dB).

For comparison, a QC (4672,4381) LDPC code is con-
structed using the PEG-algorithm for QC codes [33]. The
parity-check matrix of the QC-PEG code has constant column
weight 4 but three different row weights, 63, 64, and 65. Its
Tanner graph has girth 6 with 1,136,464 cycles of length 6
and 162,030,946 cycles of length 8. The BER and BLER
performances of the (4672,4381) QC-PEG code decoded
with 50 iterations of MSA scaled by a factor of 0.70 are
also shown in Fig. 1. We see that the performances of the
(4672, 4383) RS-QC-LDPC code and the (4672,4381) QC-
PEG code overlap with each other in the range of simulation.

Setting n = 511,k = 7 and m = 73, we construct a
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2 x 2 SNS-constrained 8 x 73 RS matrix Brs 511(8,73) in
the form of (2) using type-1 construction. Any submatrix of
Brs511(8,73) can be used as a base matrix for constructing
an RS-QC-LDPC code. In this case, the dispersion factor must
be 511. Suppose we set d = 5,b = 64 and take a 5 x 64
submatrix Bps 511(5,64) from Bprss511(8,73) by deleting
the last 9 columns and last 3 rows of Bprss11(8,73). The
null space over GF(2) of the 511 x 511 CPM-dispersion of
Brs511(5,64) gives a (5, 64)-regular (32704, 30153) RS-QC-
LDPC code Cgrs 511,1dpc(5,64) of rate 0.922. The BER and
BLER performances of the code Crs 511,1dpc(5, 64) decoded
with 50 iterations of the MSA scaled by a factor of 0.70 are
also shown in Fig. 1. At the BER of 10~%, the code performs
about 0.84 dB from the Shannon limit (3.6 dB) and about 0.27
dB from its threshold (4.171 dB).

D. Masking

Masking was first proposed in [26] and further investigated
in many papers, see, e.g., [5] and the references cited therein.
It is a technique for removing short cycles and/or enlarging
the girth of the Tanner graph of a QC-LDPC code constructed
by CPM-dispersion of a base matrix. It is also useful in
adjusting the column weights in a parity check matrix of a QC-
LDPC codes composed of CPMs to improve performance. If
properly applied, masking may increase the minimum distance
of the code. It also reduces the number of wires in hardware
implementation of the decoder.

Masking an RS base matrix Bgrsn(d,m) =
[(B*)]1<i<d,0<j<m can be modeled mathematically as
follows. Let Z(d,m) = [z jli<i<d0<j<m be a d x m

matrix with the zero and unit elements of GF(2°%) as
entries. Define the following product of Z(d,m) and
BRS,ﬂ(da m): BRS,n,mask (du m) = Z(d, m)®BRS,n (du m) =
[2,i8]1<i<d,0<j<m, Where z; ;87 = B if 2z;; = 1,
and z; ;87 = 0 if z;; = 0. In this matrix product,
the nonzero entries in Bpgs,(d,m) at the locations
corresponding to zero entries in Z(d,m) are replaced (or
masked) by zeros. The binary In x [n CPM-dispersion of
Brs.nmask(d,m) gives a d x m masked array, denoted
by Hgs in,mask(d, m), of CPMs and ZMs of size In x In.
We call Z(d, m) and Brs n,mask(d, m) the masking matrix
and the masked base matrix, respectively. The null space of
HEgs in,mask(d,m) gives a (masked) RS-QC-LDPC code,
denoted by CRS,ln,mask,ldpc(du m)

Example 2: In this example, we construct an RS-QC-LDPC
code of rate 1/2 using the field GF(2®). First, we factor 2% — 1
as the product of three primes 3, 5 and 17. Setn = 5x17 =85
and d = 4. (Note that 5 is the smallest prime factor of n = 85.)
Using type-2 construction, we first construct a 2 x 2 SNS-
constrained 4 x 85 RS matrix Bprg ss(4,85) as given in (1)
where (3 is an element in GF(2%) of order 85. We can take
any submatrix of Brg g5(4,85) as a base matrix and mask it
to produce a masked RS base matrix for constructing an RS-
QC-LDPC code whose Tanner graph may have girth larger
than 6 and much smaller number of short cycles. In addition,
the resulting RS-QC-LDPC code constructed from the masked
base matrix has larger minimum distance and exhibits better

performance compared to the RS-QC-LDPC code constructed
from the unmasked base matrix.

Label the columns of Brg s5(4, 85) from 0 to 84. Suppose
we choose the columns labeled by 2, 5, 7, 13, 20, 31, 48 and
54 from the mother matrix Bprgs s5(4,85) and form a 4 x 8
RS submatrix Brs s5(4, 8). We find that Brs s5(4, 8) satisfies
the necessary and sufficient condition given in Theorem 3,
i.e., the 2 x 2/3 x 3 SM-constraint. (How to choose these
columns will be discussed in Section IV.) Choose 85 as the
dispersion factor. The 85 x 85 CPM-dispersion of Brs s5(4, 8)
gives a 4 x 8 array Hpg g5(4,8) of CPMs of size 85 x 85.
It is a 340 x 680 matrix over GF(2) with column and row
weights 4 and 8, respectively. The rank of Hprg s5(4,8) is
337 and hence, Hpg s5(4,8) has 3 redundant rows. Its null
space over GF(2) gives a (4, 8)-regular (680,343) RS-QC-
LDPC code Crs,s5,1dpc(4, 8) of rate 0.5044. Since its RS base
matrix Brg s5(4, 8) satisfies the 2x2/3 x 3 SM-constraint, the
Tanner graph Grs 85.1dpc(4, 8) of Crs,s5,1dpc(4, 8) has girth at
least 8. The numbers of cycles of lengths 8, 10, 12 and 14 in
Grs,85,1dpc(4, 8) are 32,810, 386,240, 7,256,535, 128,090,240,
respectively. We see that Grs g5.1dpc(4, 8) has girth 8 and in
total 135,765,825 (short) cycles of lengths 8, 10, 12, and 14.

The BER and BLER performances of the (680,343) RS-
QC-LDPC code Crg 85,1dpc(4,8) decoded with 50 iterations
of the MSA with a scaling factor of 0.7 are shown in Fig. 1.
We see that the code performs poorly and starts to have an
error-floor below the BLER of 10~* even though its Tanner
graph has girth 8. This poor error performance is caused by the
large number of short cycles and a small minimum distance
of 10 computed using the improved impulse method [31].

Suppose we mask the RS matrix Bprgss(4,8) with the
following 4 x 8 masking matrix over GF(2) with column and
row weights 3 and 6, respectively, which is proposed in [5],
[32]:

101 01111
01011111

Z(4,8) = 11111010 )
11110101

We obtain a 4 x 8 masked RS matrix Brg g5,mask(4,8) with
column and row weights 3 and 6, respectively. Dispersing each
non-zero entry in Brg g5 mask (4, 8) into a CPM of size 85x85
and a zero entry into a ZM of size 85 x 85, we obtain a 4 X 8
masked array Hps s5.mask(4,8) of CPMs and ZMs of size
85 x 85. The array HRrg 85 mask(4,8) is a 340 x 680 matrix
with column and row weights 3 and 6, respectively. It is a
full-rank matrix with rank 340. Note that masking removes
the redundant rows of the unmasked array Hpg s5(4, 8). The
null space over GF(2) of Hgs s5 mask(4,8) gives a (3,6)-
regular (680,340) RS-QC-LDPC code Cgs,85,mask,idpc(4; 8)
of rate 0.5. The numbers of cycles of lengths 8, 10, 12, and
14 in the Tanner graph Ggrs 85 mask,idpc(4,8) of the masked
code Cgs,85,mask,ldpc (4, 8) are 1,020, 9,945, 85,170, 720,970,
respectively. The masked Tanner graph Grs 5 mask,idpe(4, 8)
also has girth 8 but the number of cycles of length 8 is
only 1,020 which is much smaller than the 32,810 cycles
of length 8 in the unmasked Tanner graph Grg g5 1apc(4, 8).
The total number of cycles of lengths 8, 10, 12 and 14 in
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GRsS,85,mask,idpc(4, 8) is 817,105. Comparing the short cycle
distributions of the unmasked Tanner graph Grs 85 1dpc(4, 8)
and the masked Tanner graph Grs s5.mask,idpc(4,8), we find
that there is a very large reduction in short cycles from
135,765,825 to 817,105, a reduction by a factor of almost
166.

The BER and BLER performances of the (680,340)
CRrs,85,mask,ldpc(4, 8) decoded with 50 iterations of the MSA
with a scaling factor of 0.75 are also shown in Fig. 1. We
see that the (680,340) masked code Crs 85 mask,idpe(4,8)
performs much better than the (680,343) unmasked code
Crs,s5,1dpc(4, 8). The masked code achieves a BER of 1079
without a visible error-floor. At the BER of 1077, it performs
2.6 dB from the threshold (1.1 dB) for rate 0.5. From [31],
we determine that the minimum distance of the masked code
CRs,85,mask,ldpc(4,8) is exactly 34. Thus, in this example,
masking more than triples the minimum distance of the code.

For comparison, a QC (680, 340) LDPC code is constructed
using the PEG-algorithm for QC codes. Its parity-check matrix
has regular column and row weights 3 and 6, respectively.
Its Tanner graph has girth 8 with 595, 10,455, 90,865, and
715,020 cycles of lengths 8, 10, 12, and 14, respectively.
Using the impulse method in [31], it follows that the minimum
distance of the QC-PEG code is at most 30. The BER and
BLER performances of the (680, 340) QC-PEG code decoded
with 50 iterations of MSA scaled by a factor of 0.75 are
also shown in Fig. 1. We see that the performances of the
(680, 340) masked RS-QC-LDPC code Cgs,s5,mask,idpc(4; 8)
and the PEG code overlap with each other down to the BER
of 10~ (BLER of 1077).

Example 3: In this example, we construct a high rate LDPC
code using the field GF(2''). First, we factor 2! — 1 as
the product of two primes 89 and 23. We construct a 2 X 2
SNS-constrained 8 x 89 matrix, Brs s9(8,89), using type-3
construction with n = 89 and d = 8. Then we use the 64
columns in BRS,89(8, 89) with labels 1, 2, 4, 5, 7, 8, 10, 12,
13, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33,
34,35,37,38, 39,40, 41,43, 44, 46, 47, 48, 50, 51, 52, 54, 55,
57,58, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72,74, 75,76, 79, 80,
81, 83, 84, 86, 87, 88 to form an 8 x 64 matrix Brg g9(8, 64)
as a submatrix of Brg s9(8,89). In addition, we design an
8 x 64 masking matrix Z, consisting of eight 8 x 8 circulant

matrices Z; in order with generators g;, 0 < i < 8, given by
g0:[170717071717070]7 g1:[071707170707171]7
g2:[030713071317031]3 g3:[031703171317030]a
g4:[031713071317030]3 g5:[030703171317031]a
g6:[070707171717170]7 g7:[071717070717170]'

The masked submatrix Brs 89 mask(8,64) has regular col-
umn and row weights of 4 and 32, respectively. The CPM
dispersion of Brg 89.mask(8,64) with dispersion factor of 89
gives a 712 x 5696 parity check matrix Hrs 89 mask (8, 64) of
rank 711 and regular column and row weights of 4 and 32,
respectively. Its null space over GF(2) gives a (4, 32)-regular
(5696, 4985) RS-QC-LDPC code Cgs,89,mask,idpc(8,64) of
rate 0.875. Fig. 2 shows the BER and the BLER performances
of the code decoded with 50 iterations of SPA. For comparison,
the figure also includes the BER performance of the RJA

Bit/Block error rate (BER/BLER)

—o— (5696,4985)RS-QC,SPA BER,50
---- (5696,4985)RS-QC,SPA, BLER, 50
—=— (5792,5068)RJA 178,BER

10°10 L
3 3.5 4 4.5

E?J/NO (dB)

Fig. 2. The BER and BLER performances of the RS-QC-LDPC code given
in Example 3

(5792, 5068) LDPC code of the same rate 0.875 presented in
[34]. The Crs,89,mask,idpe(8, 64) code has a lower error-floor
than the RJA code.

III. RS-BASED QC-LDPC CODES WITH GIRTH AT LEAST
EIGHT

Theorem 2 implies that the 2 x 2 SNS-constraint on an RS
matrix over GF(2°) only ensures that the Tanner graph of the
RS-QC-LDPC code constructed based on the CPM-dispersion
of the RS matrix has girth at least 6. Theorem 3 gives a
necessary and sufficient condition on a base matrix whose
CPM-dispersion gives a QC-LDPC code with girth at least 8
but it does not provide a specific method for constructing such
a code. Testing all the 2 x 2 and 3 x 3 submatrices of a base
RS matrix Brg,,(d,n) for large d and n is either practically
impossible or requires a very large number of computations
over GF(2°). In this section, we develop conditions on the
selection of columns from a 2 x 2 SNS-constrained RS matrix
to form an RS submatrix to meet the 2 x 2/3 x 3 SM-
constraint given in Theorem 3. Hence, the null space of its
CPM-dispersion gives an RS-QC-LDPC code whose Tanner
graph has girth at least 8.

To develop the girth-8 conditions on the columns of an
RS matrix, we start with the 2 x 2 SNS-constrained d X m
RS matrix Brg,,(d, m) over GF(2°) given by (2), the type-1
construction. All the developments and results also apply to
type-2 and type-3 constructions of 2 X 2 SNS-constrained RS
base matrices.

Label the columns of Bgg ,(d,m) from 0 to m — 1. Let
d < t < m. Suppose we take a set A;={l1,l2,...,l:} of
labels of ¢t columns in Brgn(d,m) with 0 < [} < Il <
-+« < ly <m < n and form the following d x ¢ submatrix of
BRS,n(d, m):

B, (d,t) = [ (8)"] *

1<i<d1<j<t

The n x n CPM-dispersion of Brg A, (d,t) givesa d x ¢
array Hrg A, (d, t) of CPMs of size n xn which is a dn x tn
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matrix over GF(2) with column and row weights d and ¢,
respectively. The null space of Hps n a,(d, ) gives a (d,t)-
regular RS-QC-LDPC code Cgrg,n A, idpe(d,t) of length tn.
Since BRrg n,a,(d,t) satisfies the 2 x 2 SNS-constraint, the
array Hpg A, (d,t), as a matrix, satisfies the RC-constraint
and its associated Tanner graph has girth at least 6.

The array Hgg A, (d,t) is composed of ¢ CPM column-
blocks, each consisting of d CPMs of size n x n. Each CPM
column-block consists of n columns (labeled from 0 to n— 1),
each containing d 1-entries residing in d separate CPMs. For a
column-label [;,1 < j <t, in Ay, let Col(l;) denote the CPM
column-block of Hgs ». 4, (d, t) which is the CPM-dispersion
of the column in Bgg A, (d, t) labeled by ;. Then, Cgl(lj) =
|[CPM (85)", CPM, (8%0) ... CPM, (5%)" |
Hgs n.a,(d,t) = [Col(l1), Col(l2), ..., Col(ly))].

Consider the k-th column c; of Col(l;) with 0 < k < n.
For 1 <4 < d, the i-th 1-entry in ¢y is located at the position
(1 —1)n+ (k—il;), where (z),, denotes the least nonnegative
integer equal to z modulo n. The d-tuple

LOC(lj, k) = ((k — lj)n,n =+ (k - 2lj)n7
27’L+(k—3lj)n,...,
(d—=Dn+ (k—dlj))

and

specifies the locations of the d 1-entries in the k-th column
ci of Col(l;). We call this d-tuple, Loc(l;, k), the 1-entry
location-vector of the k-th column ci of Col(l;).

Let Grsn A, 1dpc(d, t) be the Tanner graph associated with
the parity-check matrix Hprg A, (d,t). Notice that no two
VNs corresponding to two columns in the same CPM column-
block are connected to the same CN and, similarly, no two
CNs corresponding to two rows in the same CPM row-block
are connected to the same VN. Since Hggs ,, a,(d, t) satisfies
the RC-constraint, Grg n A, ,1dpc(d, t) has girth at least 6. In
the following, we first investigate the scenarios under which
cycles of length 6, called 6-cycles, exist in Grs n A, 1dpc(d; )
and then develop the conditions on the labels of A; under
which Grs n.A,.1dpe(d, t) does not contain 6-cycles so that the
girth of Grg n A, 1ape(d,t) is at least 8.

Suppose Grs.n.a,,dpc(d, t) contains a 6-cycle, denoted by
Cs. This cycle consists of three VNs, denoted by vy, v2, v3 and
three CNs, denoted by ¢y, c2, c3. Then, vy, v2, v3 correspond
to three columns in three distinct CPM column-blocks of
Hgs n.a,(d,t), say, Col(l;,), Col(l,), Col(l;,), respectively,
where without loss of generality, we assume 1 < i3 < g <
13 < t, which implies that [;, < [l;, < l;,. Suppose v, v2, v3
correspond to columns ki, ko, ks in the three CPM column-
blocks Col(l;,), Col(l;,), Col(l;,), respectively, where 0 <
ki, ko, ks < n. For 5 = 1,2,3, the l-entry location-vector
of column k; is

Loc(li;, kj) = ((kj — i )nsn + (kj — 20, )n,
2n + (k'] - 3lij)n; e
(d= O+ (ks — dii))a).

Suppose the three CNs c1, ¢z, c3 on Cg correspond to the
three rows, numbered by 71,72, r3, in Hrg A, (d,t). Assume
that 0 < 71 < 179 < r3 < dn. Forl <4 <3, letr, =

z;n + (r;), where z; = L%J < dand 0 < (r;), < n. For
1 <4 <3, (r;)n and x; simply indicate that the row r;
is the row labeled by (r;), in the x;-th CPM row-block of
Hpgs n.a,(d, t). Since the rows rq, 72,73 are in different CPM
row-blocks and r; < ro < r3, it follows that z1 < x9 < x3.

The 6-cycle Cg has six possible configurations, denoted by
Cs,7,1 < 1 < 6, which are in the following form:

06712(’01—>Cl—>U2—>CQ—>U3—>C3—>’U1),
062—(’01—)Cl—)vg—>03—>’03—)62—)1)1),
063—(’01—)Cl—)vg—>03—>’02—)62—)1)1),
0674:('[)1_)CQ_)U2—>(31—>'U3_)C3_)U1)7
065:( —>Cg—>’l)3—>01—>’02—>03—>’1)1),
CGGZ(’Ul—>Cl—>’l)3—>02—>’U2—>C3—>’U1),

where — represents an edge that connects a VN (or CN) to a
CN (or VN).

For 1 < 7 < 6, each possible configuration Cs , of Cg
corresponds to a unique sequence Lg - of 6 different locations
of 1-entries which reside in 6 separate CPMs in Hgg A, (d, t)
with the ending location the same as the starting location. This
sequence L  is called the location-sequence (LS) of 1-entries
of the configuration Cs ~. The six 1-entry location-sequences
of the 6 possible configurations of Cg are given below:

Lex = ((k1 —z1liy)n, k1), (k2 — z1liy ), k2),
((k2 — z2liy)n, k2), ((k3 — x2liy)n, k3),
((k3 — 23lis)n, k3), (k1 — 2313, )n, K1),

(k1 = 21ls, )n, k1)),

Leo = (((k1 —z1liy)n, k1), ((k2 — z1liy ), k2),
((k2 — x3liy)n, k2), ((k3 — x3liy )n, k3),
((k3 — z2liz)n, k3), (k1 — @2liy )n, K1),

(k1 = 21ls, )n, k1)),

L6,3 = (((kl - $1li1)n,k1), ((k3 - $1li3)n,k3),
((ks — @3liy)n, k3), (k2 — z3liy )n, k2),
((k2 — 2aliz)n, k2), (k1 — m2liy )ny K1),
(k1 — 21l3y )ns k1)),

Les = (((kr —x2liy)n, k1), (k2 — @2l )n, k2),
((k2 — @1liy ), k2), (k3 — z1liy)n, k3),
((ks — 3lis)ns ks), (k1 — x3liy )ns K1),
(k1 — z2liy )ns k1)),

L6,5 = (((kl - leil)n,/ﬁ), ((k3 - $21i3)n,/€3),
((ks — @1liy)n, k3), (k2 — z1liy )n, k2),
((k2 — 23liy)ns k2), (k1 — x3liy )ns K1),
(k1 — z2liy )ns k1)),

L6,6 = (((kl - $1li1)n,k1), ((k3 - $1li3)n,k3),

((k3 — z2lig)n, k3), (k2 — z2liy )n, k2),
(k2 — z3liy)n, k2), (k1 — 23l )n, k1),
((k1 = z1liy )n, k1))

Consider the 1-LS Lg -, 1 < 7 < 6, for the possible configu-
ration Cs - of Cg. This 1-LS consists of three pairs of 1-entry
locations,(((ke — x¢li, )n, ke), (ke — 2 li, Jnyker)), 1 <
e,el < 3,e # ¢ and 1 < f < 3. The two l-entry
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locations, ((ke — fli.)n,ke) and  ((ker — xfli , )n, Ker)s
in each pair are in the same row (the (rf),-th row) of
the zy-th CPM row-block of Hpgg, a,(d,t) and hence
their first coordinates must be equal. This results in three
equalities: (k. —z¢l;,)n = (ke —xfl; ), for f = 1,2,3.
For example, for the configuration Cs i, the three equalities
are: (kl — xllil)n = (kg — Illi2)n, (kg — :CQZ»L'2)" =
(kg —ZCQZiS)n, and (kg — .Iglm)n = (kl — xSZil)rr Addlng
these three equalities and with some algebraic manipulations,
we get:

(w2 = x1)(liy = b)) + (w3 — 22)(liy — 1i,)),, = 0. (5)

Then, the equality given by (5) is the necessary and sufficient
condition for the existence of Cg in configuration Cp ;.

Similarly, for the other five possible configurations of Cj,
we can derive the necessary and sufficient conditions for their
existence. They are:

Co,2 (w2 — w1)(liy = liy) + (23 — 22)(liy, — 1iy)),, =0,
Co,3 1 (w2 — 1) (liy — liy) + (x3 — 22)(liy — 1i)),, = 0,
Co,a: (w2 — 1) (liy — liy) + (23 — 22)(liy — 13y)),, = 0,
Co,5 1 (w2 — 1) (liy — lig) + (z3 — 22)(liy — 13y)),, = 0,
Co6: (22 —21)(liy — liy) + (23 — 22)(li, — 1)), = 0{6)

Hence, the Tanner graph associated with the parity-check
matrix Hgg , a,(d, t) given by the n x n CPM-dispersion of
the RS matrix Brs 4, (d, t) in (4) contains cycles of length 6
if and only if there are six integers 1, i, %3, T1, T2, T3, Where
1<ii<ig<ig<tand 0 <z < 29 < x3 < d, such that at
least one of the 6 equalities given by (5) and (6) holds. From
this we deduce the following theorem.

Theorem 4: The Tanner graph associated with the parity-
check matrix Hgs A, (d, t) has girth at least 8 if and only if
for any six integers i1, ¢, 13,21, T2, T3, Where 1 < i1 < iy <
ig<tand 0 <z <29 <23 <d,

(@2 —21)(liy — liy) + (v3 — 22)(liy — 1iy)),, # 0,
(w2 = 21)(liy — liy) + (23 — 22)(Liy — li)),, # 0,
(w2 = 21)(liy — liy) + (23 — 22) (L — 1liy)),, # 0, )
(w2 = @1)(liy — liy) + (23 — 22)(Liy — liy)),, # 0,
(w2 = 21)(liy — liy) + (v3 — 22)(liy — 1iy)),, #0,
(w2 = 21)(lis — biy) + (23 — 22)(liy, — 131)),, # 0.

From the six inequalities given by (7), we readily see
that if the labels of a set Ay = {l1,lo,...,l;} satisfy the
six inequalities, then the labels of the set A; = {(r +
11)n, (r + 12)n, .., (r + l;)n} obtained by adding an integer
r,0 < r < n, to each label in A; (modulo-n addition) also
satisfy the six inequalities given by (7). Using the label set
A}, we can construct another d x ¢t RS matrix Brs Az (d,t)
which satisfies the 2 x 2/3 x 3 SM-constraint. For convenience,
we call Ay a 2 x 2/3 x 3 column-label set.

Theorem 4 tells us how to choose columns from the 2 x 2
SNS-constrained d x m RS matrix Brgs ,(d,m) given by (2)
to form a d x ¢ RS matrix Brg p a,(d,t) which satisfies
the 2 x 2/3 x 3 SM-constraint. Consequently, the Tanner
graph associated with the CPM-dispersion Hpg A, (d,t) of
Brs.n.a, (d,t) has girth at least 8. All the six inequalities given
by (7) are expressed in terms of the labels of the CPM column-
blocks and row-blocks. Computations required are relatively

simple. There are (?) sets of ¢ columns among the n columns

in the matrix Brg ,(d,n). This is the number of column-
label sets to be examined until a valid one is found. To check
if a set {l1,12,...,l¢} is valid, we need to verify that the six
conditions stated in Theorem 4 are satisfied by all tuples of six
integers Ui, , liy, lis, €1, T2, x3, where 1 < 41 < iy < i3 < ¢and
0 <1 < 3 < z3 < d. Examining a tuple requires 5 integer
subtractions, 6 integer additions, 6 integer multiplications and
6 comparisons. If X is the computational complexity of
examining a tuple, then, in the worst case when all tuples are
examined before finding a valid one, the total computational

complexity is O( (1) (3) (g)) X).

All the results developed above for 2 x 2 SNS-constrained
RS matrix Bgs,(d,m) of type-1 apply to 2 x 2 SNS-
constrained RS matrices of type-2 and type-3.

Example 4: In this example, we use the same field GF(2°)
as used in Example 1 to construct a rate-1/2 RS-QC-LDPC
code whose Tanner graph has girth 8. First, we factor 2° —1 =
511 as the product of 7 and 73. Set n = 511,k = 7 and
m = 73. Choose d = 4. Using the construction of type-1, we
form a 2x 2 SNS-constrained 4 x 73 RS matrix Brg 511(4, 73)
as in (2). Label the columns of Bgg511(4,73) from 0 to
72. From the 73 column labels, we find a set Ag of eight
column labels 2, 5, 9, 15, 26, 42, 64, and 72 which satisfy
the six inequalities given by (7) in Theorem 4. Hence, the
set As = {2,5,9,15,26,42,64,72} forms a 2 x 2/3 x 3
constrained column-label set. Choose the eight columns from
Brs511(4, 73) which are labeled by 2, 5, 9, 15, 26, 42, 64,
and 72 and form a 4 x 8 RS submatrix Brg 511,44(4,8) of
Brs511(4, 73). Then, the matrix Brs 5114, (4, 8) satisfies the
2 x 2/3 x 3 SM-constraint.

The 511 x 511 CPM-dispersion of Brg 511,45(4,8) gives
a 4 x 8 array Hpg 511,04 (4,8) of CPMs of size 511 x 511
which is a 2044 x 4088 matrix over GF(2) with column and
row weights 4 and 8, respectively. The null space over GF(2)
of Hrss11,,(4,8) gives a (4, 8)-regular (4088, 2047) RS-
QC-LDPC code Crs,511,As,1dpe(4,8) of rate 0.501, slightly
higher than 1/2. The Tanner graph Grg 511,A4,1dpc(4, 8) of the
code has girth 8. The numbers of short cycles of lengths 8§,
10, 12, and 14 in GRrs 511,As,1dpc(4, 8) are 87,892, 623,420,
12,511,835, and 192,430,366, respectively. The total number
of such short cycles in Grs 511,44 1apc(4,8) is 205,653,483.
We also constructed RS-QC-LDPC codes using other label
sets generated randomly. Compared to the code generated
using Ag, the BER of these codes show higher error-
floors. For example, the RS-QC-LDPC codes constructed
by the label sets {43,118,135,231,308,335,353,383},
{50, 65,143,280, 324,417,463, 467}, and
{19, 216, 336, 405, 434, 468,478,491} have similar waterfall
performance but show an error-floor of over an order of
magnitude higher at SNR of 3dB.

Suppose we mask the RS matrix Brgs11,a,(4,8) with
the 4 x 8 masking matrix given by (3). We obtain a 4 X 8
masked RS matrix Brs 511.Aq.mask(4,8). The 511 x 511
CPM-dispersion of Bprgs511,A5,mask(4,8) gives a 4 x 8
masked array Hpgs 511,A4,mask(4,8) of CPMs and ZMs of
size 511 x 511 which is a 2044 x 4088 full-rank matrix with
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Fig. 3. The BER and BLER performances of the RS-QC-LDPC codes given
in Example 4.

column and row weights 3 and 6, respectively. The null space
over GF(2) of Hps 511,A5,mask(4,8) gives a (3,6)-regular
(4088, 2044) RS-QC-LDPC code CRS,511,A8,mask,ldpc(47 8) of
rate exactly 1/2. The Tanner graph Grs 511,A5,mask,ldpe(4; 8)
of the masked code Crs 511,As,mask,idpc(4,8) also has girth
8. The numbers of short cycles of lengths 8, 10, 12, and 14
in Grs511,A,mask,idpc(4,8) are 1,022, 14,308, 141,547, and
1,016,890, respectively. The total number of short cycles in
gRS,Sll,Ag,mask,ldpc(478) is 17173’767

Comparing the short cycle distributions of the masked Tan-
ner graph Grs 511,Ag,mask,ldpc(4, 8) and the unmasked Tanner
graph, Grs 511,As,1dpc(4,8), we see that masking results in
an enormous reduction in short cycles. The reduction of the
number of cycle-8 is from 87,892 to 1,022, and the reduction
of the total number of short cycles is from 205,653,483 to
1,173,767, a reduction by a factor of more than 175.

The BER and BLER performances of Crs 511,45, idpc (4, 8)
and Crs 511,Ag,mask.ldpc(4, 8), decoded with 50 iterations of
the MSA scaled by factors of 0.7 and 0.75, respectively, are
shown in Fig. 3. We see that masking results in a significant
performance improvement. The masked code achieves a BER
of 1072 at an SNR of 2.18 dB and shows no error-floor.
At the BER of 1079, it performs about 1.9 dB from the
Shannon limit (0.188 dB) and 1 dB from its threshold (1.1
dB). This performance improvement of the masked code is
mainly caused by the large reduction of short cycles and the
change of degree distribution from (4, 8)-regular distribution
to (3, 6)-regular distribution due to masking.

The  (3,6)-regular  masked  (4088,2044)  code
CRrS,511,As,mask,idpc(4,8) performs slightly better than
the (4080,2040) QC-LDPC code given in [10, Fig. 11.9,
p. 503] and the Euclidean geometry code Cs of girth 8 in
[10, Fig. 12.9, p. 541] decoded with 50 iterations of the sum
product algorithm (SPA).

For comparison, a QC (4088,2044) LDPC code is con-
structed using the PEG-algorithm for QC codes. Its parity-
check matrix has regular column and row weights 3 and
6, respectively. Its Tanner graph has girth 8 with 1,022,
7,665, 89,425, and 760,879 cycles of lengths 8, 10, 12,
and 14, respectively. The BER and BLER performances
of the (4088,2044) QC-PEG code decoded with 50 itera-

tions of MSA scaled by a factor of 0.75 are also shown
in Fig. 3. The masked (4088,2044) RS-QC-LDPC code
CRrS,511,As,mask,idpc(4,8) performs slightly better than the
QC-PEG code.

Example 5: In this example, we intend to design a rate-2/3
RS-QC-LDPC code using the field GF(2%). Set d = 5.
Since d is less than the smallest prime factor 7 of 511, we
can use type-2 construction to form a 5 x 511 RS matrix
Brs511(5,511) which satisfies the 2 x 2 SNS-constraint.
Label the columns of Brs 511(5,511) from 0 to 510. Using
the constraints given in Theorem 4, we find a set Aj5 =
{2,5,9,18,38,77,165,172,255, 283,299, 314, 360, 379, 460}
of 15 labels that satisfies the 6 constraints. Next, we form
a 5 x 15 RS matrix Bgrg s511,4,5(5,15) using the columns
in Brs511(5,511) labeled by the numbers in Ajs. Then,
Brss11.a,5 (5, 15) satisfies the 2 x 2/3 x 3 SM-constraint.

Form a 5 x 15 masking matrix Z(5,15) which consists
of three 5 x 5 circulants whose generators are (1 0 1
01, T 0011),ad (01 1 0 1) in order. Mask-
ing Brs.s11,4,5(5,15) with Z(5,15), we obtain a 5 x 15
masked RS matrix Brs 511,A;5,mask (5, 15) with column and
row weights 3 and 9 respectively. Using Brs 511,45 (5, 15)
and Brs511,A15,mask(D, 15) as base matrices and 511 as
the dispersion factor, we can construct a (5,15)-regular
(7665,5114) RS-QC-LDPC code Cgrs,511,A;5,1dpc(D,15) of
rate 0.667 and a (3,9)-regular (7665,5110) masked RS-
QC-LDPC code Crs,511,A,5,mask,idpc(D, 15) of rate 2/3. The
Tanner graphs of both codes have girth 8. The Tan-
ner graph Grs 511,A,5,idpc(D,15) of the unmasked code
CRS,5117A15,ldpc(5,15) contains 1,635,200 cycles of length
8 and 53,696,902 cycles of length 10, however the Tan-
ner graph Ggrs 511,A,5,mask,ldpe(D, 15) of the masked code
CRS,511,A15,mask,ldpe(D, 15) contains 6,132 cycles of length 8
and 107,821 cycles of length 10. We see that masking reduces
short cycles of lengths 8 and 10 drastically.

The BER and BLER performances of Cgs 511,A,5,idpc(5, 15)
and Crs.511,A,5,mask,idpc(D, 15), decoded with 50 iterations
of the MSA scaled by 0.7 and 0.75, respectively, are shown
in Fig. 4. We see that the masked code outperforms the
corresponding unmasked code. At the BER of 1078, the (3, 9)-
regular (7665,5110) masked code Crs 511,A,5,mask,ldpc(D; 15)
performs 1.42 dB from the Shannon limit (1.08 dB) and 0.713
dB from its threshold (1.787 dB).

IV. Two SPECIAL CONSTRUCTIONS OF RS-QC-LDPC
CODES WITH GIRTH AT LEAST 8

In this section, we first present a special case of the con-
struction given in Section III. Next, we give a new construction
of 2 x 2 SNS-constrained RS matrices based on which we
construct 2 x 2/3 x 3 SM-constrained base matrices for RS-
QC-LDPC codes whose Tanner graphs have girth at least eight.

Let d = 4. Consider a 4 x ¢t RS matrix Brs n.a,(4,¢) in
the form of (4) constructed from a mother 2 x 2 constrained
RS matrix Brg,»(4,n) based on a chosen column-label set
A;. Since 0 < 21 < 2 < x3 < 4, there are 4 possibilities
for (x1,x2,x3), which are (0, 1, 2), (0, 1, 3), (0, 2, 3), (1,
2, 3). Substituting these four possibilities of (z1, z2, z3) into
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the six inequalities given by (7) in Theorem 4, we obtain the
following corollary.

Corollary 1: Let Brg A, (4,t) be the 4 x ¢ matrix formed
by the columns of the RS matrix Brg (4, n) labeled by the
numbers in a column-label set A;. Let Hps A, (4,t) be the
n x n CPM-dispersion of Bgrs n.a,(4,t). The Tanner graph
associated with Hgg A, (4, t) has girth at least 8 if and only
if the following 9 conditions on the column-labels in A; hold:

(p3) n 'i' 2113 — 3112 + li17 (p4) n 'i' lz.g + li2 — 2li1,

(P3) nt 2l + i, — 3y, (P6) ntlyy +21, —3l;,, (8)
(p7) n J( 2[1'3 — liQ — li], (pS) n 1’ 3li3 — lig — 21i1,

(p9) n J( 3[1'3 — 2li2 — lil-

We note that the columns of the 4 x 8 RS base matrix
Brsss(4,8) over GF(28) used for constructing the rate-1/2
(680, 340) RS-QC-LDPC codes in Example 2 are chosen from
the mother matrix Brg s5(4,85) over GF(2®) with column
labels satisfying the nine conditions given by (8). In this
example, with a 8-core CPU, g++ compiler, for d = 4,¢t =
8,n = 85, it needs only 1.67ms to find a valid column-label
set.

Next, we consider the RS matrix Brs,,(d, n) over GF(2°)
given in the general form of (1) which is constructed by
using the cyclic subgroup S,, = {1,5, ..., 3"~} of GF(2%)
generated by an element 3 of order n with d < n. This RS
matrix, in general, does not satisfy the 2 x 2 SNS-constraint,
except for the type-2 and type-3 cases. In the following, we
consider a special case for which we can construct 2 x 2 SNS-
constrained matrices by choosing columns from Brg ,(d, n)
under certain conditions. From these 2 x 2 SNS-constrained
matrices, we can construct 2x2/3 x 3 SM-constrained matrices
based on Corollary 1.

Let d = 4. Suppose 3 is a factor of n, i.e., 3|n. Label
the columns of the 4 x n RS matrix Bprs,(4,n) from
0 to n — 1. Partition the column-labels of Brs ., (4,n)
into n/3 disjoint triplets, (0,n/3,2n/3),(1,1 + n/3,1 +
2n/3),...,(n/3 — 1,2n/3 — 1,n — 1). From each triplet
(i, +n/3,i4+2n/3),0 < i < n/3, we take any one label
Ji and form a set A,;3 = {jo,j1,.-,Jns/3—1} With n/3
column labels. Next, we select the n/3 columns, labeled by
J0sJ1s+ -+ Jnj3—1, from Brs »(4,1) and form a 4 x n/3 sub-
matrix Brs n.a, ,(4,1/3). Following the proof of Theorem
1, it can be shown that Brs n A, ,,(4,7/3) satisfies the 2 x 2
SNS-constraint. This gives another construction of 2 x 2 SM-
constrained RS matrices.

Using Brs,n,a,, 5 (4,7/3) as the mother matrix and choos-
ing a set of £ columns with labels satisfying the nine conditions
given by (8), we can construct a 2x2/3 x 3 SM-constrained RS
matrix Brg A, (4, t). Then, the null space of the n x n CPM-
dispersion Hggs n.a,(4,t) of Brsn.a,(4,t) gives an RS-QC-
LDPC code with girth at least 8.

In Examples 2 and 4, we showed that the 4 x 8 masking
matrix Z(4, 8) given by (3) is very effective in reducing short
cycles of the Tanner graph of an RS-QC-LDPC code. This
masking matrix can be used as a building block to construct
larger masking matrices for larger RS base matrices. This
masking matrix has a simple structure. The second pair of

columns is a repetition of the first pair of columns and the
fourth pair of columns is a repetition of third pair of columns.
A simple expansion of this masking matrix is to repeat the
first pair and the third pair of columns ¢ times [5], [32]. This
expansion results in a 4 x 4¢ masking matrix Z(4, 4t).

If we permute the columns of the Z(4,8), we can put it
into the following form:

11101101
01111110

Z:(4,8) = 1011 0111 ©)
1101 1011

The matrix Z.(4,8) given by (9) consists of two 4 X 4
circulants. The second circulant is simply obtained by shifting
the rows (or columns) of the first circulant downward (or to
the left) one position cyclically. We can use the first circulant
as a building block to construct a 4 x 4¢ masking matrix
Z.(4,4t) by repeating it ¢ times and/or using its downward (or
left) cyclic-shifts. The matrix Z.(4,4t) has circulant structure
and has column and row weights 3 and 3t, respectively. The
subscript “c” in Z.(4, 16) stands for “circulant”. Suppose we
set £ = 4 and form the following 4 X 16 masking matrix with
column and row weights 3 and 12, respectively:

Z.(4,16) =

11101 11011101101

01110111011 11110

1011 101110110111

1101 1101110711011
(10)

In forming the matrix of Z.(4, 16), we use the first circulant of
Z.(4,8) three times, and its first downward cyclic-shift once.
Example 6: In this example, we use the field GF(2%) to
construct an RS-QC-LDPC code of rate 3/4. First, we construct
a 4 x 255 RS matrix Bgg 255(4,255) over GF(2%) in the
form of (1) which does not satisfy the 2 x 2 SNS-constraint.
Label the columns of Bgs 255(4,255) from 0 to 254. Since
3 is a factor of 255, we can partition the column numbers of
BRrs,255(4, 255) into 85 disjoint triplets, (¢,4+85,i+170),0 <
i < 85. For 4 < t < 85, suppose we choose a set of ¢
triplets. From each triplet of this set, we take one number.
This results in a set Ay = {l1,1ls, ..., 1;} of labels of ¢ columns
of Brs 255(4,255). Using the ¢ columns in Bps 255(4, 255)
labeled by the numbers in A;, we form a 4 x ¢ RS matrix
Brs 2554, (4,t). This matrix satisfies the 2x 2 SNS-constraint.
If the labels in A, satisfy all of the nine conditions given
by (8), then the 4 x ¢ matrix Bprg 2s5,a,(4,t) satisfies the
2 x 2/3 x 3 SM-constraint. The null space of the 255 x 255
CPM-dispersion of Brg 2s5.4,(4,t) gives an RS-QC-LDPC
code of length 255¢ whose Tanner graph has girth at least 8.
Set ¢ = 16. Suppose we choose the following
set of column labels of Bpgsoss(4,255): A =
{1,3,6,13,21,32,44,59,64,73,77,83,111, 212, 226, 239}.
The column labels in Aj¢ satisfy the 9 conditions given by
(8). Using the column labels in Ajg, we form a 4 x 16 RS
matrix Bps 2s5.4,,(4,16) which satisfies the 2 x 2/3 x 3
SM-constraint. The null space over GF(2) of the 255 x 255
CPM-dispersions of Brs 2551, (4, 16) gives a (4, 16)-regular
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Fig. 4. The BER and BLER performances of the four RS-QC-LDPC codes
given in Examples 5 and 6.

(4080,3065) RS-QC-LDPC code Cgrs,255,A,,idpc(4,16)
whose Tanner graph Grsg 255 A16,1dpe(4,16) has  girth
8. The numbers of cycles of lengths 8, 10, and 12
in GRrs 255 A14,1dpc(4,16) are 688,500, 17,485,860, and
703,291,020, respectively, for a total of 721,465,380, which
is a quite large number of short cycles.

In order to reduce the number of short cycles in

GRS,255,A16,1dpc(4,16), we can mask the RS matrix
Brs2ss5.0,4(4,16)  with  the masking matrix given
by (10). Masking results in a masked RS matrix

Brs 255,A16,mask(4,16) with column weights 3 and 12,
respectively. The null space of the 255 x 255 CPM-dispersion
HRs 255,016,mask (4,16)  of Brs 255 A16,mask(4,16) gives
a (3,12)-regular (4080,3060) masked RS-QC-LDPC code
CRS,255,A16,mask,ldpe(4,16) of rate 3/4. The numbers of
short cycles of lengths 8, 10, and 12 in the Tanner graph
gRS,255,A15,mask,ldpc(4716) of CRS,255,A15,mask,ldpc(4u16)
are 32,640, 495,210, and 9,570,915, respectively, for a total
of 10,098,765. We see that masking reduces the total number
of short cycles of lengths 8, 10, and 12 in the unmasked
Tanner graph by a factor of more than 71.

The BER and BLER performances of Crs 255 A6, idpc (4, 16)
and Crs,255,A16,mask,ldpc (4, 16), decoded with 50 iterations of
the MSA are also shown in Fig. 4. The scaling factor for the
unmasked and the masked codes are 0.70 and 0.75, respec-
tively. We see that masking improves the error performance of
the unmasked code. The (3, 12)-regular (4080, 3060) masked
RS-QC-LDPC code Cgs,255,A16,mask,ldpe(4, 16) achieves a
BER of 10~ without a visible error-floor and performs less
than 1 dB from its threshold (2.2564 dB) and 1.62 dB from
the Shannon limit (1.628 dB). The masked code performs well
in both waterfall and low error rate regions. It outperforms
the (4080,3093) QC-LDPC code of rate 0.758 presented in
[10, Fig. 11.10, p. 505] and the (4096, 3073) finite-geometry
code of rate 0.750 presented in [29, Fig. 17.31, p. 910], both
decoded wth SPA.

V. CONCLUSION

In this paper, we presented designs and constructions of QC-
LDPC codes for the AWGN channel based on the conventional
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parity-check matrices of Reed-Solomon codes, called RS-QC-
LDPC codes. Four classes of RS-QC-LDPC codes whose
Tanner graphs have girth at least 6 were given. Cycle structural
properties of the Tanner graphs of codes in these classes are
analyzed and specific methods for constructing codes with
girth at least 8 and reducing their short cycles are presented.
The designed codes perform well in both waterfall and low
error-rate regions. The methods presented in this paper for
constructing binary RS-QC-LDPC codes can be generalized
for constructing nonbinary RS-QC-LDPC codes.
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