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Abstract—Designs and constructions of quasi-cyclic (QC)
LDPC codes for the AWGN channel are presented. The codes
are constructed based on the conventional parity-check matrices
of Reed-Solomon (RS) codes and are referred to as RS-QC-LDPC
codes. Several classes of RS-QC-LDPC codes are given. Cycle
structural properties of the Tanner graphs of codes in these
classes are analyzed and specific methods for constructing codes
with girth at least eight and reducing their short cycles are
presented. The designed codes perform well in both waterfall
and low error-rate regions.
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I. INTRODUCTION

Some recent research [2]–[5] combines two powerful cate-

gories of codes, namely Reed-Solomon (RS) [6], and LDPC

codes [7], to form powerful classes of hybrid codes which, not

only perform well, but are also practically implementable [8],

[9]. Starting with the conventional parity-check matrix of an

RS code under certain constraints, each element in the matrix,

which belongs to the finite field over which the RS is designed,

is replaced by a circulant permutation matrix (CPM) that

uniquely represents that element. This replacement procedure,

called dispersion [2], results in a parity-check matrix of a

quasi-cyclic (QC) LDPC code which is referred to as an RS-

QC-LDPC code.

It is widely recognized by researchers that short cycles in the

Tanner graphs of LDPC codes upon which iterative decoding

is performed can degrade performance. There are numerous

constructions of LDPC codes with no cycles of length less than

six including properly designed RS-QC-LDPC codes, see e.g.,

[10] for a survey of many such constructions. The literature is

also rich in techniques to reduce or eliminate cycles of lengths

six or more. These techniques can be broadly classified into

two approaches. In the first approach, techniques are proposed

to eliminate short cycles from the Tanner graph of a given

LDPC code, in particular, a QC-LDPC code, see e.g., [11]–

[15]. In the second approach, QC-LDPC codes are constructed

subject to certain constraints to ensure that their Tanner graphs

have no short cycles, see e.g., [16]–[24].
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In this paper, we investigate several aspects of RS-QC-

LDPC codes, including new designs and constructions, girth,

cycle structure, reduction of short cycles in their Tanner

graphs, and error performance over the AWGN channel

(AWGNC). Our technique for eliminating short cycles belongs

to the second aforementioned approach in which constraints

are imposed on the design of the codes so that the resulting

codes do not have short cycles. However, it differs from most

of the previous work in developing and applying the design

constraints specifically to the powerful class of RS-QC-LDPC

codes. Our approach is similar to that presented in [25] in

which the cycle structure was analyzed and a computer search

algorithm was proposed to obtain generalized RS-QC-LDPC

codes of girth 8. We use masking [26] to further reduce

the number of short cycles and to adjust the column and

row weights of the parity-check matrices of the constructed

codes for performance improvement. Our goal is to propose

systematic and flexible constructions of LDPC codes that

balance the requirements of good waterfall performance and

low error-floor while maintaining a structure that facilitates

implementation.

The rest of the paper is organized as follows. Section

II presents the basic construction of RS-QC-LDPC codes.

Section III analyzes cycle structure of the Tanner graph of

an RS-QC-LDPC code and presents methods for constructing

codes with girth at least 8. Section IV gives two special

classes of cycle-8 RS-QC-LDPC codes constructed based on

the conventional parity-check matrices of general RS codes.

Section V concludes the paper with some comments. Simula-

tion results are presented to demonstrate the error performance

of the designed codes. Throughout the paper, performance is

measured for BPSK signaling over the AWGNC. Decoding is

done using scaled min-sum algorithm (MSA) [10], [27] and

simulations are performed on each code, in terms of bit error

rate (BER) and block error rate (BLER), to obtain a scaling

factor that yields good performance. We use the algorithm in

[28] to count cycles.

II. CONSTRUCTION OF RS-BASED QC-LDPC CODES

In this section, we present the basic construction of binary

RS-QC-LDPC codes. The construction of such a code begins

with the conventional parity-check matrix BRS of a chosen

RS code CRS over a finite field GF(2s) which satisfies the

following constraint: any 2 × 2 submatrix of BRS is non-

singular (NS). We call such a constraint the 2× 2 submatrix

nonsingular (SNS) constraint, denoted by 2×2 SNS-constraint.
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Such an RS parity-check matrix BRS is referred to as a

2× 2 SNS-constrained RS parity-check matrix. Once a 2× 2
SNS-constrained RS parity-check matrix is constructed, we

represent each of its entries by a circulant permutation matrix

(CPM) of a fixed size, say n×n, where n is a factor of 2s−1.

This results in an array HRS,n of CPMs of size n × n. It is

a matrix over GF(2) that has the following structure: any two

rows (or two columns) do not have more than one position in

which both have 1-entries. Such a structure is referred to as

row-column (RC) constraint [10]. The null space over GF(2)

of HRS,n gives an RS-QC-LDPC code, denoted by CRS,n,ldpc.

The RC-constraint on HRS,n ensures that the Tanner graph of

CRS,n,ldpc has girth at least 6.

A. Construction of 2× 2 SNS-Constrained RS Matrices

Let β be an element of order n in GF(2s) where n is a

factor of 2s − 1. The set Sn = {1, β, . . . , βn−1} forms a

cyclic subgroup of GF(2s). Let d be a positive integer such

that 1 ≤ d ≤ n. Form the following d×n matrix over GF(2s):

BRS,n(d, n) =
[

(βi)j
]

1≤i≤d,0≤j<n
. (1)

The null space over GF(2s) of BRS,n(d, n) gives a 2s-ary

(n, n − d, d + 1) RS code, denoted by CRS,n(d, n) of length

n, dimension n − d, rate (n − d)/n and minimum distance

d+1 [29]. The matrix BRS,n(d, n) is the parity-check matrix

of the RS code CRS,n(d, n) in the conventional form. Let b
be a positive integer such that d < b < n. Suppose we delete

n − b columns from BRS,n(d, n). We obtain a d × b matrix

BRS,n(d, b) over GF(2s) whose null space gives a (b, b −
d, d + 1) shortened RS code. We call both BRS,n(d, n) and

BRS,n(d, b) RS matrices.

In general, the RS matrix BRS,n(d, n) does not satisfy the

2× 2 SNS-constraint. In the following, we give three types of

RS matrices that satisfy the 2× 2 SNS-constraint.

For the first type, type-1, n = mk is a product of two proper

factors m and k ≤ m. For an integer d such that 1 ≤ d ≤ k+1,

we form the d×m matrix over GF(2s):

BRS,n(d,m) =
[

(βi)j
]

1≤i≤d,0≤j<m
. (2)

The null space over GF(2s) of BRS,n(d,m) gives an

(m,m−d, d+1) shortened code CRS,n(d,m) of the RS code

CRS,n(d, n). We label the columns of BRS,n(d,m) from 0 to

m− 1 and the rows from 1 to d.

Theorem 1: The RS matrix BRS,n(d,m) given by (2) sat-

isfies the 2× 2 SNS-constraint.

Proof: Consider a 2 × 2 submatrix in BRS,n(d,m)
with four entries (βi)s, (βi)t, (βj)s, (βj)t at the locations

(i, s), (i, t), (j, s) and (j, t) with 1 ≤ i < j ≤ d and

0 ≤ s < t < m. If this matrix is singular, then β(j−i)(t−s) = 1.

Since 0 < j − i < d ≤ k + 1 and 0 < t− s < m, the product

(j−i)(t−s) is less than n = km and nonzero. Since the order

of β is n, β(j−i)(t−s) 6= 1 and the above 2 × 2 submatrix of

BRS,n(d,m) is nonsingular. We conclude that BRS,n(d,m)
satisfies the 2× 2 SNS-constraint.

For 1 ≤ d ≤ k + 1, the RS matrix BRS,n(d,m) given

by (2) is a submatrix of BRS,n(d, n) given by (1). It simply

consists of the first m columns of BRS,n(d, n). In fact, any

m consecutive columns of BRS,n(d, n) form a 2 × 2 SNS-

constrained d×m RS matrix. This can be proved in a similar

manner as that given in Theorem 1.

Now we consider the second type, type-2, for which the

RS matrix BRS,n(d, n) in the form given by (1) satisfies the

2 × 2 SNS-constraint. Suppose n is not a prime. Let ps be

the smallest prime factor of n and let d be a positive integer

such that 1 ≤ d ≤ ps. Then, the RS matrix BRS,n(d, n) in

the form of (1) satisfies the 2 × 2 SNS-constraint. The third

type, type-3, is that n is a prime factor of 2s − 1. Let d be

a positive integer such that 1 ≤ d ≤ n. Then, the RS matrix

BRS,n(d, n) given by (1) satisfies the 2 × 2 SNS-constraint.

The proofs of 2 × 2 SNS-constraint structure of type-2 and

type-3 are similar to that given in Theorem 1.

It is clear that any submatrix of a 2 × 2 SNS-constrained

RS matrix also satisfies the 2× 2 SNS-constraint. Besides the

above three types, other 2 × 2 SNS-constrained RS matrices

can be constructed by selecting columns from the general RS

matrix BRS,n(d, n) given by (1) under certain constraints.

This will be presented in Section IV.

B. CPM-Dispersions of Elements of a Finite Field

Consider the cyclic subgroup Sn = {1, β, . . . , βn−1} of

GF(2s). For 0 ≤ i < n, we represent the element βi by a

CPM, denoted by CPM n(β
i), over GF(2) of size n×n (with

rows and columns labeled from 0 to n− 1), whose generator

(the top row) has the unit-element “1” of GF(2s) as its single

nonzero component at position i. The representation of the

element βi by CPM n(β
i) is unique and the mapping between

βi and CPM n(β
i) is one-to-one. This matrix representation

of βi is referred to as the n × n CPM-dispersion of βi with

respect to the cyclic subgroup Sn [4]. We represent the 0-

element of GF(2s) by a zero matrix (ZM) of size n× n.

Since n is a factor of 2s − 1, there is some l for which ln
divides 2s−1. Let δ be an element in GF(2s) of order ln, i.e.,

δln = 1. Then, β can be expressed as the l-th power of δ, i.e.,

β = δl. Let Wln be the cyclic subgroup of GF(2s) of order

ln generated by the powers of δ. Then, Wln contains Sn as

a subgroup. If we disperse each element in Wln by a CPM

of size ln× ln as described above, then the element βi = δil,
0 ≤ i < n, as an element in Wln, is dispersed into a CPM of

size ln× ln, denoted by CPM ln(β
i), whose generator has its

single 1-component at position il. In this case, every element

βi in Sn is uniquely dispersed into a CPM of size ln×ln which

is referred to as the ln× ln CPM-dispersion of βi with respect

to the super group Wln of Sn. Clearly, this CPM-dispersion

of each element βi, 0 ≤ i < n, in Sn with respect to the

super group Wln is unique and the mapping between βi and

CPM ln(β
i) is one-to-one with respect to Wln. The number

ln is called the dispersion factor. Therefore, each element in

Sn can be one-to-one dispersed into a CPM of a size equal to

the order of a cyclic subgroup of GF(2s) which contains Sn

as a subgroup (including Sn itself).

C. Construction of RS-QC-LDPC Codes

Any of the three types of 2×2 SNS-constrained RS matrices

given in Section II.A can be used to construct RS-QC-LDPC

codes.
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Consider the 2 × 2 SNS-constrained d × m RS matrix

BRS,n(d,m) over GF(2s) in the form of (2) constructed based

on a cyclic subgroup Sn = {1, β, . . . , βn−1} of GF(2s).
We form an lnd × lnm matrix HRS,ln(d,m) over GF(2)

by dispersing each entry in BRS,n(d,m) into a binary CPM

of size ln × ln with respect to a cyclic subgroup Wln of

GF(2s) of order ln that contains Sn as a subgroup. The matrix

HRS,ln(d,m) is a d×m array of CPMs of size ln× ln. This

array HRS,ln(d,m) is called the ln× ln CPM-dispersion of

BRS,n(d,m), denoted by CPM ln(BRS,n(d,m)). Typically,

ln >> 1, and HRS,ln(d,m) is a sparse matrix with column

and row weights d and m, respectively.

The array HRS,ln(d,m) consists of d (m) row (col-

umn)-blocks of CPMs. Each CPM row (column)-block of

HRS,ln(d,m) consists of ln rows (columns). Each row (col-

umn) in a CPM row (column)-block contains m (d) 1-entries

which reside in m (d) separate CPMs in the CPM row

(column)-block, one in each. The m CPMs in each CPM row-

block of HRS,ln(d,m) are distinct, and the d CPMs in each

CPM column-block of HRS,ln(d,m), except the 0-th column-

block, are distinct.

The null space over GF(2) of HRS,ln(d,m) gives a (d,m)-
regular RS-QC-LDPC code, denoted by CRS,ln,ldpc(d,m),
of length lnm. The rate of CRS,ln,ldpc(d,m) is at least

(m − d)/m which is the rate of the RS code CRS,n(d,m).
Since the RS-QC-LDPC code CRS,ln,ldpc(d,m) is constructed

by CPM-dispersion of the RS matrix BRS,n(d,m), we call

BRS,n(d,m) the base matrix.

The following necessary and sufficient condition on a base

matrix B over GF(2s) for which the CPM-dispersion of B

satisfies the RC-constraint, i.e., the Tanner graph associated

with the CPM-dispersion of B to have a girth of at least 6, is

proved in [30, Corollary 1].

Theorem 2: Let B be a matrix over GF(2s) and C be the

QC-LDPC code given by the null space over GF(2) of the

CPM-dispersion of B. A necessary and sufficient condition

for the Tanner graph of C to have girth of at least 6 is that

every 2 × 2 submatrix of B either contains at least one zero

entry or is nonsingular.

We refer to the necessary and sufficient condition in Theo-

rem 2 as the 2 × 2 submatrix (SM) constraint. Notice that it

includes the 2× 2 SNS-constraint as a special case. Since the

RS matrix BRS,n(d,m) given by (2) satisfies the 2× 2 SNS-

constraint, it satisfies the 2× 2 SM-constraint. As a result, the

Tanner graph of the RS-QC-LDPC code CRS,ln,ldpc(d,m) has

girth of at least 6.

In [30, Corollary 2], the following necessary and sufficient

condition on a base matrix B for which the Tanner graph

associated with the its CPM-dispersion has girth at least 8, is

also proved.

Theorem 3: Let B be a matrix over GF(2s) and C be the

QC-LDPC code given by the null space over GF(2) of the

CPM-dispersion of B. A necessary and sufficient condition

for the Tanner graph of C to have girth of at least 8 is that

no 2× 2 or 3× 3 submatrix of B has two identical non-zero

terms in its determinant expansion.

For convenience, we refer to the necessary and sufficient

condition given in Theorem 3 as the 2×2/3×3 SM-constraint.
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Fig. 1. The BER and BLER performances of the four RS-QC-LDPC codes
given in Examples 1 and 2.

By imposing this constraint on base matrices, RS-QC-LDPC

codes whose Tanner graphs have girth at least 8 will be

presented in Sections III and IV.

Construction of RS-QC-LDPC codes whose Tanner graphs

have girth at least 6 using RS matrices of type-2 and type-3 as

base matrices is exactly the same as that using the RS matrix

BRS,n(d,m) in the form of (2) of type-1 as the base matrix.

Example 1: Suppose we use the field GF(29) for code

construction. Note that 29 − 1 = 511 can be factored as

the product of two primes, 7 and 73. Setting n = 73 and

d = 4, we construct a 4 × 73 RS matrix BRS,73(4, 73) as

given in (1) where β is an element in GF(29) of order 73.

The RS matrix BRS,73(4, 73) satisfies the 2×2 SNS-constraint

from the type-3 construction. Deleting the last 9 columns from

BRS,73(4, 73), we obtain a 4 × 64 RS matrix BRS,73(4, 64).
The 73 × 73 CPM-dispersion of BRS,73(4, 64) results in a

4 × 64 array HRS,73(4, 64) of CPMs of size 73 × 73 which

is a 292 × 4672 matrix of rank 289 with column and row

weights 4 and 64, respectively. The null space over GF(2) of

HRS,73(4, 64) gives a (4, 64)-regular (4672, 4383) RS-QC-

LDPC code CRS,73,ldpc(4, 64) of rate 0.938. Its associated

Tanner graph is of girth 6 with 1,022,876 and 167,500,398

cycles of lengths 6 and 8, respectively. The BER and BLER

performances of the code CRS,73,ldpc(4, 64) decoded with 50

iterations of MSA scaled by a factor of 0.70 are shown in

Fig. 1. The code achieves a BER of 10−8 at an SNR of 5.25

dB without a visible error-floor and at the BER of 10−8, the

code performs 1.35 dB from the Shannon limit (3.906 dB) and

0.911 dB from its threshold (4.339 dB).

For comparison, a QC (4672, 4381) LDPC code is con-

structed using the PEG-algorithm for QC codes [33]. The

parity-check matrix of the QC-PEG code has constant column

weight 4 but three different row weights, 63, 64, and 65. Its

Tanner graph has girth 6 with 1,136,464 cycles of length 6

and 162,030,946 cycles of length 8. The BER and BLER

performances of the (4672, 4381) QC-PEG code decoded

with 50 iterations of MSA scaled by a factor of 0.70 are

also shown in Fig. 1. We see that the performances of the

(4672, 4383) RS-QC-LDPC code and the (4672, 4381) QC-

PEG code overlap with each other in the range of simulation.

Setting n = 511, k = 7 and m = 73, we construct a
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2 × 2 SNS-constrained 8 × 73 RS matrix BRS,511(8, 73) in

the form of (2) using type-1 construction. Any submatrix of

BRS,511(8, 73) can be used as a base matrix for constructing

an RS-QC-LDPC code. In this case, the dispersion factor must

be 511. Suppose we set d = 5, b = 64 and take a 5 × 64
submatrix BRS,511(5, 64) from BRS,511(8, 73) by deleting

the last 9 columns and last 3 rows of BRS,511(8, 73). The

null space over GF(2) of the 511 × 511 CPM-dispersion of

BRS,511(5, 64) gives a (5, 64)-regular (32704, 30153)RS-QC-

LDPC code CRS,511,ldpc(5, 64) of rate 0.922. The BER and

BLER performances of the code CRS,511,ldpc(5, 64) decoded

with 50 iterations of the MSA scaled by a factor of 0.70 are

also shown in Fig. 1. At the BER of 10−8, the code performs

about 0.84 dB from the Shannon limit (3.6 dB) and about 0.27

dB from its threshold (4.171 dB).

D. Masking

Masking was first proposed in [26] and further investigated

in many papers, see, e.g., [5] and the references cited therein.

It is a technique for removing short cycles and/or enlarging

the girth of the Tanner graph of a QC-LDPC code constructed

by CPM-dispersion of a base matrix. It is also useful in

adjusting the column weights in a parity check matrix of a QC-

LDPC codes composed of CPMs to improve performance. If

properly applied, masking may increase the minimum distance

of the code. It also reduces the number of wires in hardware

implementation of the decoder.

Masking an RS base matrix BRS,n(d,m) =
[(βi)j ]1≤i≤d,0≤j<m can be modeled mathematically as

follows. Let Z(d,m) = [zi,j ]1≤i≤d,0≤j<m be a d × m
matrix with the zero and unit elements of GF(2s) as

entries. Define the following product of Z(d,m) and

BRS,n(d,m): BRS,n,mask(d,m) = Z(d,m)⊗BRS,n(d,m) =
[zi,jβ

ij ]1≤i≤d,0≤j<m, where zi,jβ
ij = βij if zi,j = 1,

and zi,jβ
ij = 0 if zi,j = 0. In this matrix product,

the nonzero entries in BRS,n(d,m) at the locations

corresponding to zero entries in Z(d,m) are replaced (or

masked) by zeros. The binary ln × ln CPM-dispersion of

BRS,n,mask(d,m) gives a d × m masked array, denoted

by HRS,ln,mask(d,m), of CPMs and ZMs of size ln × ln.

We call Z(d,m) and BRS,n,mask(d,m) the masking matrix

and the masked base matrix, respectively. The null space of

HRS,ln,mask(d,m) gives a (masked) RS-QC-LDPC code,

denoted by CRS,ln,mask,ldpc(d,m).
Example 2: In this example, we construct an RS-QC-LDPC

code of rate 1/2 using the field GF(28). First, we factor 28−1
as the product of three primes 3, 5 and 17. Set n = 5×17 = 85
and d = 4. (Note that 5 is the smallest prime factor of n = 85.)

Using type-2 construction, we first construct a 2 × 2 SNS-

constrained 4 × 85 RS matrix BRS,85(4, 85) as given in (1)

where β is an element in GF(28) of order 85. We can take

any submatrix of BRS,85(4, 85) as a base matrix and mask it

to produce a masked RS base matrix for constructing an RS-

QC-LDPC code whose Tanner graph may have girth larger

than 6 and much smaller number of short cycles. In addition,

the resulting RS-QC-LDPC code constructed from the masked

base matrix has larger minimum distance and exhibits better

performance compared to the RS-QC-LDPC code constructed

from the unmasked base matrix.

Label the columns of BRS,85(4, 85) from 0 to 84. Suppose

we choose the columns labeled by 2, 5, 7, 13, 20, 31, 48 and

54 from the mother matrix BRS,85(4, 85) and form a 4 × 8
RS submatrix BRS,85(4, 8). We find that BRS,85(4, 8) satisfies

the necessary and sufficient condition given in Theorem 3,

i.e., the 2 × 2/3 × 3 SM-constraint. (How to choose these

columns will be discussed in Section IV.) Choose 85 as the

dispersion factor. The 85×85 CPM-dispersion of BRS,85(4, 8)
gives a 4 × 8 array HRS,85(4, 8) of CPMs of size 85 × 85.

It is a 340 × 680 matrix over GF(2) with column and row

weights 4 and 8, respectively. The rank of HRS,85(4, 8) is

337 and hence, HRS,85(4, 8) has 3 redundant rows. Its null

space over GF(2) gives a (4, 8)-regular (680, 343) RS-QC-

LDPC code CRS,85,ldpc(4, 8) of rate 0.5044. Since its RS base

matrix BRS,85(4, 8) satisfies the 2×2/3×3 SM-constraint, the

Tanner graph GRS,85,ldpc(4, 8) of CRS,85,ldpc(4, 8) has girth at

least 8. The numbers of cycles of lengths 8, 10, 12 and 14 in

GRS,85,ldpc(4, 8) are 32,810, 386,240, 7,256,535, 128,090,240,

respectively. We see that GRS,85,ldpc(4, 8) has girth 8 and in

total 135,765,825 (short) cycles of lengths 8, 10, 12, and 14.

The BER and BLER performances of the (680, 343) RS-

QC-LDPC code CRS,85,ldpc(4, 8) decoded with 50 iterations

of the MSA with a scaling factor of 0.7 are shown in Fig. 1.

We see that the code performs poorly and starts to have an

error-floor below the BLER of 10−4 even though its Tanner

graph has girth 8. This poor error performance is caused by the

large number of short cycles and a small minimum distance

of 10 computed using the improved impulse method [31].

Suppose we mask the RS matrix BRS,85(4, 8) with the

following 4× 8 masking matrix over GF(2) with column and

row weights 3 and 6, respectively, which is proposed in [5],

[32]:

Z(4, 8) =









1 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1
1 1 1 1 1 0 1 0
1 1 1 1 0 1 0 1









. (3)

We obtain a 4× 8 masked RS matrix BRS,85,mask(4, 8) with

column and row weights 3 and 6, respectively. Dispersing each

non-zero entry in BRS,85,mask(4, 8) into a CPM of size 85×85
and a zero entry into a ZM of size 85× 85, we obtain a 4× 8
masked array HRS,85,mask(4, 8) of CPMs and ZMs of size

85 × 85. The array HRS,85,mask(4, 8) is a 340× 680 matrix

with column and row weights 3 and 6, respectively. It is a

full-rank matrix with rank 340. Note that masking removes

the redundant rows of the unmasked array HRS,85(4, 8). The

null space over GF(2) of HRS,85,mask(4, 8) gives a (3, 6)-
regular (680, 340) RS-QC-LDPC code CRS,85,mask,ldpc(4, 8)
of rate 0.5. The numbers of cycles of lengths 8, 10, 12, and

14 in the Tanner graph GRS,85,mask,ldpc(4, 8) of the masked

code CRS,85,mask,ldpc(4, 8) are 1,020, 9,945, 85,170, 720,970,

respectively. The masked Tanner graph GRS,85,mask,ldpc(4, 8)
also has girth 8 but the number of cycles of length 8 is

only 1,020 which is much smaller than the 32,810 cycles

of length 8 in the unmasked Tanner graph GRS,85,ldpc(4, 8).
The total number of cycles of lengths 8, 10, 12 and 14 in
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GRS,85,mask,ldpc(4, 8) is 817,105. Comparing the short cycle

distributions of the unmasked Tanner graph GRS,85,ldpc(4, 8)
and the masked Tanner graph GRS,85,mask,ldpc(4, 8), we find

that there is a very large reduction in short cycles from

135,765,825 to 817,105, a reduction by a factor of almost

166.

The BER and BLER performances of the (680, 340)
CRS,85,mask,ldpc(4, 8) decoded with 50 iterations of the MSA

with a scaling factor of 0.75 are also shown in Fig. 1. We

see that the (680, 340) masked code CRS,85,mask,ldpc(4, 8)
performs much better than the (680, 343) unmasked code

CRS,85,ldpc(4, 8). The masked code achieves a BER of 10−9

without a visible error-floor. At the BER of 10−9, it performs

2.6 dB from the threshold (1.1 dB) for rate 0.5. From [31],

we determine that the minimum distance of the masked code

CRS,85,mask,ldpc(4, 8) is exactly 34. Thus, in this example,

masking more than triples the minimum distance of the code.

For comparison, a QC (680, 340) LDPC code is constructed

using the PEG-algorithm for QC codes. Its parity-check matrix

has regular column and row weights 3 and 6, respectively.

Its Tanner graph has girth 8 with 595, 10,455, 90,865, and

715,020 cycles of lengths 8, 10, 12, and 14, respectively.

Using the impulse method in [31], it follows that the minimum

distance of the QC-PEG code is at most 30. The BER and

BLER performances of the (680, 340) QC-PEG code decoded

with 50 iterations of MSA scaled by a factor of 0.75 are

also shown in Fig. 1. We see that the performances of the

(680, 340) masked RS-QC-LDPC code CRS,85,mask,ldpc(4, 8)
and the PEG code overlap with each other down to the BER

of 10−8 (BLER of 10−7).

Example 3: In this example, we construct a high rate LDPC

code using the field GF(211). First, we factor 211 − 1 as

the product of two primes 89 and 23. We construct a 2 × 2
SNS-constrained 8 × 89 matrix, BRS,89(8, 89), using type-3

construction with n = 89 and d = 8. Then we use the 64

columns in BRS,89(8, 89) with labels 1, 2, 4, 5, 7, 8, 10, 12,

13, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33,

34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55,

57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 79, 80,

81, 83, 84, 86, 87, 88 to form an 8× 64 matrix BRS,89(8, 64)
as a submatrix of BRS,89(8, 89). In addition, we design an

8 × 64 masking matrix Z, consisting of eight 8 × 8 circulant

matrices Zi in order with generators gi, 0 ≤ i < 8, given by

g0 = [1, 0, 1, 0, 1, 1, 0, 0], g1 = [0, 1, 0, 1, 0, 0, 1, 1],
g2 = [0, 0, 1, 0, 1, 1, 0, 1], g3 = [0, 1, 0, 1, 1, 1, 0, 0],
g4 = [0, 1, 1, 0, 1, 1, 0, 0], g5 = [0, 0, 0, 1, 1, 1, 0, 1],
g6 = [0, 0, 0, 1, 1, 1, 1, 0], g7 = [0, 1, 1, 0, 0, 1, 1, 0].

The masked submatrix BRS,89,mask(8, 64) has regular col-

umn and row weights of 4 and 32, respectively. The CPM

dispersion of BRS,89,mask(8, 64) with dispersion factor of 89

gives a 712×5696 parity check matrix HRS,89,mask(8, 64) of

rank 711 and regular column and row weights of 4 and 32,

respectively. Its null space over GF(2) gives a (4, 32)-regular

(5696, 4985) RS-QC-LDPC code CRS,89,mask,ldpc(8, 64) of

rate 0.875. Fig. 2 shows the BER and the BLER performances

of the code decoded with 50 iterations of SPA. For comparison,

the figure also includes the BER performance of the RJA
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Fig. 2. The BER and BLER performances of the RS-QC-LDPC code given
in Example 3

(5792, 5068) LDPC code of the same rate 0.875 presented in

[34]. The CRS,89,mask,ldpc(8, 64) code has a lower error-floor

than the RJA code.

III. RS-BASED QC-LDPC CODES WITH GIRTH AT LEAST

EIGHT

Theorem 2 implies that the 2× 2 SNS-constraint on an RS

matrix over GF(2s) only ensures that the Tanner graph of the

RS-QC-LDPC code constructed based on the CPM-dispersion

of the RS matrix has girth at least 6. Theorem 3 gives a

necessary and sufficient condition on a base matrix whose

CPM-dispersion gives a QC-LDPC code with girth at least 8

but it does not provide a specific method for constructing such

a code. Testing all the 2× 2 and 3× 3 submatrices of a base

RS matrix BRS,n(d, n) for large d and n is either practically

impossible or requires a very large number of computations

over GF(2s). In this section, we develop conditions on the

selection of columns from a 2×2 SNS-constrained RS matrix

to form an RS submatrix to meet the 2 × 2/3 × 3 SM-

constraint given in Theorem 3. Hence, the null space of its

CPM-dispersion gives an RS-QC-LDPC code whose Tanner

graph has girth at least 8.

To develop the girth-8 conditions on the columns of an

RS matrix, we start with the 2 × 2 SNS-constrained d × m
RS matrix BRS,n(d,m) over GF(2s) given by (2), the type-1

construction. All the developments and results also apply to

type-2 and type-3 constructions of 2× 2 SNS-constrained RS

base matrices.

Label the columns of BRS,n(d,m) from 0 to m − 1. Let

d ≤ t ≤ m. Suppose we take a set Λt={l1, l2, . . . , lt} of

labels of t columns in BRS,n(d,m) with 0 ≤ l1 < l2 <
· · · < lt < m ≤ n and form the following d× t submatrix of

BRS,n(d,m):

BRS,n,Λt(d, t) =
[

(

βi
)lj

]

1≤i≤d,1≤j≤t
. (4)

The n× n CPM-dispersion of BRS,n,Λt(d, t) gives a d× t
array HRS,n,Λt(d, t) of CPMs of size n×n which is a dn×tn
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matrix over GF(2) with column and row weights d and t,
respectively. The null space of HRS,n,Λt(d, t) gives a (d, t)-
regular RS-QC-LDPC code CRS,n,Λt,ldpc(d, t) of length tn.

Since BRS,n,Λt(d, t) satisfies the 2 × 2 SNS-constraint, the

array HRS,n,Λt(d, t), as a matrix, satisfies the RC-constraint

and its associated Tanner graph has girth at least 6.

The array HRS,n,Λt(d, t) is composed of t CPM column-

blocks, each consisting of d CPMs of size n× n. Each CPM

column-block consists of n columns (labeled from 0 to n−1),

each containing d 1-entries residing in d separate CPMs. For a

column-label lj, 1 ≤ j ≤ t, in Λt, let Col(lj) denote the CPM

column-block of HRS,n,Λt(d, t) which is the CPM-dispersion

of the column in BRS,n,Λt(d, t) labeled by lj . Then, Col (lj)=
[

CPM n

(

βlj
)T

,CPM n

(

β2lj
)T

, . . . ,CPM n

(

βdlj
)T

]T

and

HRS,n,Λt(d, t) = [Col (l1),Col (l2), . . . ,Col (lt)].
Consider the k-th column ck of Col(lj) with 0 ≤ k < n.

For 1 ≤ i ≤ d, the i-th 1-entry in ck is located at the position

(i−1)n+(k− ilj)n where (x)n denotes the least nonnegative

integer equal to x modulo n. The d-tuple

Loc(lj , k) = ((k − lj)n, n+ (k − 2lj)n,

2n+ (k − 3lj)n, . . . ,

(d− 1)n+ (k − dlj)n)

specifies the locations of the d 1-entries in the k-th column

ck of Col (lj). We call this d-tuple, Loc(lj , k), the 1-entry

location-vector of the k-th column ck of Col(lj).
Let GRS,n,Λt,ldpc(d, t) be the Tanner graph associated with

the parity-check matrix HRS,n,Λt(d, t). Notice that no two

VNs corresponding to two columns in the same CPM column-

block are connected to the same CN and, similarly, no two

CNs corresponding to two rows in the same CPM row-block

are connected to the same VN. Since HRS,n,Λt(d, t) satisfies

the RC-constraint, GRS,n,Λt,ldpc(d, t) has girth at least 6. In

the following, we first investigate the scenarios under which

cycles of length 6, called 6-cycles, exist in GRS,n,Λt,ldpc(d, t)
and then develop the conditions on the labels of Λt under

which GRS,n,Λt,ldpc(d, t) does not contain 6-cycles so that the

girth of GRS,n,Λt,ldpc(d, t) is at least 8.

Suppose GRS,n,Λt,ldpc(d, t) contains a 6-cycle, denoted by

C6. This cycle consists of three VNs, denoted by v1, v2, v3 and

three CNs, denoted by c1, c2, c3. Then, v1, v2, v3 correspond

to three columns in three distinct CPM column-blocks of

HRS,n,Λt(d, t), say, Col (li1),Col (li2),Col (li3), respectively,

where without loss of generality, we assume 1 ≤ i1 < i2 <
i3 ≤ t, which implies that li1 < li1 < li3 . Suppose v1, v2, v3
correspond to columns k1, k2, k3 in the three CPM column-

blocks Col (li1),Col(li2 ),Col(li3), respectively, where 0 ≤
k1, k2, k3 < n. For j = 1, 2, 3, the 1-entry location-vector

of column kj is

Loc(lij , kj) = ((kj − lij )n, n+ (kj − 2lij )n,

2n+ (kj − 3lij )n, . . . ,

(d− 1)n+ (kj − dlij )n).

Suppose the three CNs c1, c2, c3 on C6 correspond to the

three rows, numbered by r1, r2, r3, in HRS,n,Λt(d, t). Assume

that 0 ≤ r1 < r2 < r3 < dn. For 1 ≤ i ≤ 3, let ri =

xin + (ri)n where xi =
⌊

ri
n

⌋

< d and 0 ≤ (ri)n < n. For

1 ≤ i ≤ 3, (ri)n and xi simply indicate that the row ri
is the row labeled by (ri)n in the xi-th CPM row-block of

HRS,n,Λt(d, t). Since the rows r1, r2, r3 are in different CPM

row-blocks and r1 < r2 < r3, it follows that x1 < x2 < x3.

The 6-cycle C6 has six possible configurations, denoted by

C6,τ , 1 ≤ τ ≤ 6, which are in the following form:

C6,1 = (v1 → c1 → v2 → c2 → v3 → c3 → v1),
C6,2 = (v1 → c1 → v2 → c3 → v3 → c2 → v1),
C6,3 = (v1 → c1 → v3 → c3 → v2 → c2 → v1),
C6,4 = (v1 → c2 → v2 → c1 → v3 → c3 → v1),
C6,5 = (v1 → c2 → v3 → c1 → v2 → c3 → v1),
C6,6 = (v1 → c1 → v3 → c2 → v2 → c3 → v1),

where → represents an edge that connects a VN (or CN) to a

CN (or VN).

For 1 ≤ τ ≤ 6, each possible configuration C6,τ of C6

corresponds to a unique sequence L6,τ of 6 different locations

of 1-entries which reside in 6 separate CPMs in HRS,n,Λt(d, t)
with the ending location the same as the starting location. This

sequence L6,τ is called the location-sequence (LS) of 1-entries

of the configuration C6,τ . The six 1-entry location-sequences

of the 6 possible configurations of C6 are given below:

L6,1 = (((k1 − x1li1)n, k1), ((k2 − x1li2)n, k2),

((k2 − x2li2)n, k2), ((k3 − x2li3)n, k3),

((k3 − x3li3)n, k3), ((k1 − x3li1)n, k1),

((k1 − x1li1)n, k1)),

L6,2 = (((k1 − x1li1)n, k1), ((k2 − x1li2)n, k2),

((k2 − x3li2)n, k2), ((k3 − x3li3)n, k3),

((k3 − x2li3)n, k3), ((k1 − x2li1)n, k1),

((k1 − x1li1)n, k1)),

L6,3 = (((k1 − x1li1)n, k1), ((k3 − x1li3)n, k3),

((k3 − x3li3)n, k3), ((k2 − x3li2)n, k2),

((k2 − x2li2)n, k2), ((k1 − x2li1)n, k1),

((k1 − x1li1)n, k1)),

L6,4 = (((k1 − x2li1)n, k1), ((k2 − x2li2)n, k2),

((k2 − x1li2)n, k2), ((k3 − x1li3)n, k3),

((k3 − x3li3)n, k3), ((k1 − x3li1)n, k1),

((k1 − x2li1)n, k1)),

L6,5 = (((k1 − x2li1)n, k1), ((k3 − x2li3)n, k3),

((k3 − x1li3)n, k3), ((k2 − x1li2)n, k2),

((k2 − x3li2)n, k2), ((k1 − x3li1)n, k1),

((k1 − x2li1)n, k1)),

L6,6 = (((k1 − x1li1)n, k1), ((k3 − x1li3)n, k3),

((k3 − x2li3)n, k3), ((k2 − x2li2)n, k2),

((k2 − x3li2)n, k2), ((k1 − x3li1)n, k1),

((k1 − x1li1)n, k1)).

Consider the 1-LS L6,τ , 1 ≤ τ ≤ 6, for the possible configu-

ration C6,τ of C6. This 1-LS consists of three pairs of 1-entry

locations,(((ke − xf lie)n, ke), ((ke′ − xf lie′ )n, ke′)), 1 ≤
e, e′ ≤ 3, e 6= e′ and 1 ≤ f ≤ 3. The two 1-entry
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locations, ((ke − xf lie)n, ke) and ((ke′ − xf lie′ )n, ke′),
in each pair are in the same row (the (rf )n-th row) of

the xf -th CPM row-block of HRS,n,Λt(d, t) and hence

their first coordinates must be equal. This results in three

equalities: (ke − xf lie)n = (ke′ − xf lie′ )n for f = 1, 2, 3.

For example, for the configuration C6,1, the three equalities

are: (k1 − x1li1)n = (k2 − x1li2)n, (k2 − x2li2)n =
(k3 − x2li3)n, and (k3 − x3li3)n = (k1 − x3li1)n. Adding

these three equalities and with some algebraic manipulations,

we get:

((x2 − x1)(li2 − li1) + (x3 − x2)(li3 − li1))n = 0. (5)

Then, the equality given by (5) is the necessary and sufficient

condition for the existence of C6 in configuration C6,1.

Similarly, for the other five possible configurations of C6,

we can derive the necessary and sufficient conditions for their

existence. They are:

C6,2 : ((x2 − x1)(li2 − li1) + (x3 − x2)(li2 − li3))n = 0,
C6,3 : ((x2 − x1)(li3 − li1) + (x3 − x2)(li3 − li2))n = 0,
C6,4 : ((x2 − x1)(li3 − li2) + (x3 − x2)(li3 − li1))n = 0,
C6,5 : ((x2 − x1)(li2 − li3) + (x3 − x2)(li2 − li1))n = 0,
C6,6 : ((x2 − x1)(li3 − li1) + (x3 − x2)(li2 − li1))n = 0.

(6)

Hence, the Tanner graph associated with the parity-check

matrix HRS,n,Λt(d, t) given by the n× n CPM-dispersion of

the RS matrix BRS,n,Λt(d, t) in (4) contains cycles of length 6

if and only if there are six integers i1, i2, i3, x1, x2, x3, where

1 ≤ i1 < i2 < i3 ≤ t and 0 ≤ x1 < x2 < x3 < d, such that at

least one of the 6 equalities given by (5) and (6) holds. From

this we deduce the following theorem.

Theorem 4: The Tanner graph associated with the parity-

check matrix HRS,n,Λt(d, t) has girth at least 8 if and only if

for any six integers i1, i2, i3, x1, x2, x3, where 1 ≤ i1 < i2 <
i3 ≤ t and 0 ≤ x1 < x2 < x3 < d,

((x2 − x1)(li2 − li1) + (x3 − x2)(li3 − li1))n 6= 0,
((x2 − x1)(li2 − li1) + (x3 − x2)(li2 − li3))n 6= 0,
((x2 − x1)(li3 − li1) + (x3 − x2)(li3 − li2))n 6= 0,
((x2 − x1)(li3 − li2) + (x3 − x2)(li3 − li1))n 6= 0,
((x2 − x1)(li2 − li3) + (x3 − x2)(li2 − li1))n 6= 0,
((x2 − x1)(li3 − li1) + (x3 − x2)(li2 − li1))n 6= 0.

(7)

From the six inequalities given by (7), we readily see

that if the labels of a set Λt = {l1, l2, ..., lt} satisfy the

six inequalities, then the labels of the set Λ∗
t = {(r +

l1)n, (r + l2)n, ..., (r + lt)n} obtained by adding an integer

r, 0 ≤ r < n, to each label in Λt (modulo-n addition) also

satisfy the six inequalities given by (7). Using the label set

Λ∗
t , we can construct another d× t RS matrix BRS,n,Λ∗

t
(d, t)

which satisfies the 2×2/3×3 SM-constraint. For convenience,

we call Λt a 2× 2/3× 3 column-label set.

Theorem 4 tells us how to choose columns from the 2× 2
SNS-constrained d×m RS matrix BRS,n(d,m) given by (2)

to form a d × t RS matrix BRS,n,Λt(d, t) which satisfies

the 2 × 2/3 × 3 SM-constraint. Consequently, the Tanner

graph associated with the CPM-dispersion HRS,n,Λt(d, t) of

BRS,n,Λt(d, t) has girth at least 8. All the six inequalities given

by (7) are expressed in terms of the labels of the CPM column-

blocks and row-blocks. Computations required are relatively

simple. There are
(

n
t

)

sets of t columns among the n columns

in the matrix BRS,n(d, n). This is the number of column-

label sets to be examined until a valid one is found. To check

if a set {l1, l2, ..., lt} is valid, we need to verify that the six

conditions stated in Theorem 4 are satisfied by all tuples of six

integers li1 , li2 , li3 , x1, x2, x3, where 1 ≤ i1 < i2 < i3 ≤ t and

0 ≤ x1 < x2 < x3 < d. Examining a tuple requires 5 integer

subtractions, 6 integer additions, 6 integer multiplications and

6 comparisons. If X is the computational complexity of

examining a tuple, then, in the worst case when all tuples are

examined before finding a valid one, the total computational

complexity is O
(

(

n
t

)(

t
3

)(

d
3

)

)

X).

All the results developed above for 2× 2 SNS-constrained

RS matrix BRS,n(d,m) of type-1 apply to 2 × 2 SNS-

constrained RS matrices of type-2 and type-3.

Example 4: In this example, we use the same field GF(29)

as used in Example 1 to construct a rate-1/2 RS-QC-LDPC

code whose Tanner graph has girth 8. First, we factor 29−1 =
511 as the product of 7 and 73. Set n = 511, k = 7 and

m = 73. Choose d = 4. Using the construction of type-1, we

form a 2×2 SNS-constrained 4×73 RS matrix BRS,511(4, 73)
as in (2). Label the columns of BRS,511(4, 73) from 0 to

72. From the 73 column labels, we find a set Λ8 of eight

column labels 2, 5, 9, 15, 26, 42, 64, and 72 which satisfy

the six inequalities given by (7) in Theorem 4. Hence, the

set Λ8 = {2, 5, 9, 15, 26, 42, 64, 72} forms a 2 × 2/3 × 3
constrained column-label set. Choose the eight columns from

BRS,511(4, 73) which are labeled by 2, 5, 9, 15, 26, 42, 64,

and 72 and form a 4 × 8 RS submatrix BRS,511,Λ8
(4, 8) of

BRS,511(4, 73). Then, the matrix BRS,511,Λ8
(4, 8) satisfies the

2× 2/3× 3 SM-constraint.

The 511 × 511 CPM-dispersion of BRS,511,Λ8
(4, 8) gives

a 4 × 8 array HRS,511,Λ8
(4, 8) of CPMs of size 511 × 511

which is a 2044× 4088 matrix over GF(2) with column and

row weights 4 and 8, respectively. The null space over GF(2)

of HRS,511,Λ8
(4, 8) gives a (4, 8)-regular (4088, 2047) RS-

QC-LDPC code CRS,511,Λ8,ldpc(4, 8) of rate 0.501, slightly

higher than 1/2. The Tanner graph GRS,511,Λ8,ldpc(4, 8) of the

code has girth 8. The numbers of short cycles of lengths 8,

10, 12, and 14 in GRS,511,Λ8,ldpc(4, 8) are 87,892, 623,420,

12,511,835, and 192,430,366, respectively. The total number

of such short cycles in GRS,511,Λ8,ldpc(4, 8) is 205,653,483.

We also constructed RS-QC-LDPC codes using other label

sets generated randomly. Compared to the code generated

using Λ8, the BER of these codes show higher error-

floors. For example, the RS-QC-LDPC codes constructed

by the label sets {43, 118, 135, 231, 308, 335, 353, 383},

{50, 65, 143, 280, 324, 417, 463, 467}, and

{19, 216, 336, 405, 434, 468, 478, 491} have similar waterfall

performance but show an error-floor of over an order of

magnitude higher at SNR of 3dB.

Suppose we mask the RS matrix BRS,511,Λ8
(4, 8) with

the 4 × 8 masking matrix given by (3). We obtain a 4 × 8
masked RS matrix BRS,511,Λ8,mask(4, 8). The 511 × 511
CPM-dispersion of BRS,511,Λ8,mask(4, 8) gives a 4 × 8
masked array HRS,511,Λ8,mask(4, 8) of CPMs and ZMs of

size 511× 511 which is a 2044× 4088 full-rank matrix with
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Fig. 3. The BER and BLER performances of the RS-QC-LDPC codes given
in Example 4.

column and row weights 3 and 6, respectively. The null space

over GF(2) of HRS,511,Λ8,mask(4, 8) gives a (3, 6)-regular

(4088, 2044) RS-QC-LDPC code CRS,511,Λ8,mask,ldpc(4, 8) of

rate exactly 1/2. The Tanner graph GRS,511,Λ8,mask,ldpc(4, 8)
of the masked code CRS,511,Λ8,mask,ldpc(4, 8) also has girth

8. The numbers of short cycles of lengths 8, 10, 12, and 14

in GRS,511,Λ8,mask,ldpc(4, 8) are 1,022, 14,308, 141,547, and

1,016,890, respectively. The total number of short cycles in

GRS,511,Λ8,mask,ldpc(4, 8) is 1,173,767.

Comparing the short cycle distributions of the masked Tan-

ner graph GRS,511,Λ8,mask,ldpc(4, 8) and the unmasked Tanner

graph, GRS,511,Λ8,ldpc(4, 8), we see that masking results in

an enormous reduction in short cycles. The reduction of the

number of cycle-8 is from 87,892 to 1,022, and the reduction

of the total number of short cycles is from 205,653,483 to

1,173,767, a reduction by a factor of more than 175.

The BER and BLER performances of CRS,511,Λ8,ldpc(4, 8)
and CRS,511,Λ8,mask,ldpc(4, 8), decoded with 50 iterations of

the MSA scaled by factors of 0.7 and 0.75, respectively, are

shown in Fig. 3. We see that masking results in a significant

performance improvement. The masked code achieves a BER

of 10−9 at an SNR of 2.18 dB and shows no error-floor.

At the BER of 10−9, it performs about 1.9 dB from the

Shannon limit (0.188 dB) and 1 dB from its threshold (1.1

dB). This performance improvement of the masked code is

mainly caused by the large reduction of short cycles and the

change of degree distribution from (4, 8)-regular distribution

to (3, 6)-regular distribution due to masking.

The (3, 6)-regular masked (4088, 2044) code

CRS,511,Λ8,mask,ldpc(4, 8) performs slightly better than

the (4080, 2040) QC-LDPC code given in [10, Fig. 11.9,

p. 503] and the Euclidean geometry code C2 of girth 8 in

[10, Fig. 12.9, p. 541] decoded with 50 iterations of the sum

product algorithm (SPA).

For comparison, a QC (4088, 2044) LDPC code is con-

structed using the PEG-algorithm for QC codes. Its parity-

check matrix has regular column and row weights 3 and

6, respectively. Its Tanner graph has girth 8 with 1,022,

7,665, 89,425, and 760,879 cycles of lengths 8, 10, 12,

and 14, respectively. The BER and BLER performances

of the (4088, 2044) QC-PEG code decoded with 50 itera-

tions of MSA scaled by a factor of 0.75 are also shown

in Fig. 3. The masked (4088, 2044) RS-QC-LDPC code

CRS,511,Λ8,mask,ldpc(4, 8) performs slightly better than the

QC-PEG code.

Example 5: In this example, we intend to design a rate-2/3

RS-QC-LDPC code using the field GF(29). Set d = 5.

Since d is less than the smallest prime factor 7 of 511, we

can use type-2 construction to form a 5 × 511 RS matrix

BRS,511(5, 511) which satisfies the 2 × 2 SNS-constraint.

Label the columns of BRS,511(5, 511) from 0 to 510. Using

the constraints given in Theorem 4, we find a set Λ15 =
{2, 5, 9, 18, 38, 77, 165, 172, 255, 283, 299, 314, 360, 379, 460}
of 15 labels that satisfies the 6 constraints. Next, we form

a 5 × 15 RS matrix BRS,511,Λ15
(5, 15) using the columns

in BRS,511(5, 511) labeled by the numbers in Λ15. Then,

BRS,511,Λ15
(5, 15) satisfies the 2× 2/3× 3 SM-constraint.

Form a 5 × 15 masking matrix Z(5, 15) which consists

of three 5 × 5 circulants whose generators are (1 0 1

0 1), (1 0 0 1 1), and (0 1 1 0 1) in order. Mask-

ing BRS,511,Λ15
(5, 15) with Z(5, 15), we obtain a 5 × 15

masked RS matrix BRS,511,Λ15,mask(5, 15) with column and

row weights 3 and 9 respectively. Using BRS,511,Λ15
(5, 15)

and BRS,511,Λ15,mask(5, 15) as base matrices and 511 as

the dispersion factor, we can construct a (5, 15)-regular

(7665, 5114) RS-QC-LDPC code CRS,511,Λ15,ldpc(5, 15) of

rate 0.667 and a (3, 9)-regular (7665, 5110) masked RS-

QC-LDPC code CRS,511,Λ15,mask,ldpc(5, 15) of rate 2/3. The

Tanner graphs of both codes have girth 8. The Tan-

ner graph GRS,511,Λ15,ldpc(5, 15) of the unmasked code

CRS,511,Λ15,ldpc(5, 15) contains 1,635,200 cycles of length

8 and 53,696,902 cycles of length 10, however the Tan-

ner graph GRS,511,Λ15,mask,ldpc(5, 15) of the masked code

CRS,511,Λ15,mask,ldpc(5, 15) contains 6,132 cycles of length 8

and 107,821 cycles of length 10. We see that masking reduces

short cycles of lengths 8 and 10 drastically.

The BER and BLER performances of CRS,511,Λ15,ldpc(5, 15)
and CRS,511,Λ15,mask,ldpc(5, 15), decoded with 50 iterations

of the MSA scaled by 0.7 and 0.75, respectively, are shown

in Fig. 4. We see that the masked code outperforms the

corresponding unmasked code. At the BER of 10−8, the (3, 9)-
regular (7665, 5110) masked code CRS,511,Λ15,mask,ldpc(5, 15)
performs 1.42 dB from the Shannon limit (1.08 dB) and 0.713

dB from its threshold (1.787 dB).

IV. TWO SPECIAL CONSTRUCTIONS OF RS-QC-LDPC

CODES WITH GIRTH AT LEAST 8

In this section, we first present a special case of the con-

struction given in Section III. Next, we give a new construction

of 2 × 2 SNS-constrained RS matrices based on which we

construct 2 × 2/3 × 3 SM-constrained base matrices for RS-

QC-LDPC codes whose Tanner graphs have girth at least eight.

Let d = 4. Consider a 4 × t RS matrix BRS,n,Λt(4, t) in

the form of (4) constructed from a mother 2 × 2 constrained

RS matrix BRS,n(4, n) based on a chosen column-label set

Λt. Since 0 ≤ x1 < x2 < x3 < 4, there are 4 possibilities

for (x1, x2, x3), which are (0, 1, 2), (0, 1, 3), (0, 2, 3), (1,

2, 3). Substituting these four possibilities of (x1, x2, x3) into
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the six inequalities given by (7) in Theorem 4, we obtain the

following corollary.

Corollary 1: Let BRS,n,Λt(4, t) be the 4× t matrix formed

by the columns of the RS matrix BRS,n(4, n) labeled by the

numbers in a column-label set Λt. Let HRS,n,Λt(4, t) be the

n × n CPM-dispersion of BRS,n,Λt(4, t). The Tanner graph

associated with HRS,n,Λt(4, t) has girth at least 8 if and only

if the following 9 conditions on the column-labels in Λt hold:

(p1) n ∤ li3 − 2li2 + li1 , (p2) n ∤ li3 − 3li2 + 2li1 ,
(p3) n ∤ 2li3 − 3li2 + li1 , (p4) n ∤ li3 + li2 − 2li1 ,
(p5) n ∤ 2li3 + li2 − 3li1 , (p6) n ∤ li3 + 2li2 − 3li1 ,
(p7) n ∤ 2li3 − li2 − li1 , (p8) n ∤ 3li3 − li2 − 2li1 ,
(p9) n ∤ 3li3 − 2li2 − li1 .

(8)

We note that the columns of the 4 × 8 RS base matrix

BRS,85(4, 8) over GF(28) used for constructing the rate-1/2

(680, 340) RS-QC-LDPC codes in Example 2 are chosen from

the mother matrix BRS,85(4, 85) over GF(28) with column

labels satisfying the nine conditions given by (8). In this

example, with a 8-core CPU, g++ compiler, for d = 4, t =
8, n = 85, it needs only 1.67ms to find a valid column-label

set.

Next, we consider the RS matrix BRS,n(d, n) over GF(2s)

given in the general form of (1) which is constructed by

using the cyclic subgroup Sn = {1, β, ..., βn−1} of GF(2s)

generated by an element β of order n with d < n. This RS

matrix, in general, does not satisfy the 2× 2 SNS-constraint,

except for the type-2 and type-3 cases. In the following, we

consider a special case for which we can construct 2×2 SNS-

constrained matrices by choosing columns from BRS,n(d, n)
under certain conditions. From these 2 × 2 SNS-constrained

matrices, we can construct 2×2/3×3 SM-constrained matrices

based on Corollary 1.

Let d = 4. Suppose 3 is a factor of n, i.e., 3|n. Label

the columns of the 4 × n RS matrix BRS,n(4, n) from

0 to n − 1. Partition the column-labels of BRS,n(4, n)
into n/3 disjoint triplets, (0, n/3, 2n/3), (1, 1 + n/3, 1 +
2n/3), . . . , (n/3 − 1, 2n/3 − 1, n − 1). From each triplet

(i, i + n/3, i + 2n/3), 0 ≤ i < n/3, we take any one label

ji and form a set Λn/3 = {j0, j1, . . . , jn/3−1} with n/3
column labels. Next, we select the n/3 columns, labeled by

j0, j1, . . . , jn/3−1, from BRS,n(4, n) and form a 4×n/3 sub-

matrix BRS,n,Λn/3
(4, n/3). Following the proof of Theorem

1, it can be shown that BRS,n,Λn/3
(4, n/3) satisfies the 2× 2

SNS-constraint. This gives another construction of 2× 2 SM-

constrained RS matrices.

Using BRS,n,Λn/3
(4, n/3) as the mother matrix and choos-

ing a set of t columns with labels satisfying the nine conditions

given by (8), we can construct a 2×2/3×3 SM-constrained RS

matrix BRS,n,Λt(4, t). Then, the null space of the n×n CPM-

dispersion HRS,n,Λt(4, t) of BRS,n,Λt(4, t) gives an RS-QC-

LDPC code with girth at least 8.

In Examples 2 and 4, we showed that the 4 × 8 masking

matrix Z(4, 8) given by (3) is very effective in reducing short

cycles of the Tanner graph of an RS-QC-LDPC code. This

masking matrix can be used as a building block to construct

larger masking matrices for larger RS base matrices. This

masking matrix has a simple structure. The second pair of

columns is a repetition of the first pair of columns and the

fourth pair of columns is a repetition of third pair of columns.

A simple expansion of this masking matrix is to repeat the

first pair and the third pair of columns t times [5], [32]. This

expansion results in a 4× 4t masking matrix Z(4, 4t).
If we permute the columns of the Z(4, 8), we can put it

into the following form:

Zc(4, 8) =









1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1









. (9)

The matrix Zc(4, 8) given by (9) consists of two 4 × 4
circulants. The second circulant is simply obtained by shifting

the rows (or columns) of the first circulant downward (or to

the left) one position cyclically. We can use the first circulant

as a building block to construct a 4 × 4t masking matrix

Zc(4, 4t) by repeating it t times and/or using its downward (or

left) cyclic-shifts. The matrix Zc(4, 4t) has circulant structure

and has column and row weights 3 and 3t, respectively. The

subscript “c” in Zc(4, 16) stands for “circulant”. Suppose we

set t = 4 and form the following 4× 16 masking matrix with

column and row weights 3 and 12, respectively:

Zc(4, 16) =








1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1
0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0
1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1
1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1









.

(10)

In forming the matrix of Zc(4, 16), we use the first circulant of

Zc(4, 8) three times, and its first downward cyclic-shift once.

Example 6: In this example, we use the field GF(28) to

construct an RS-QC-LDPC code of rate 3/4. First, we construct

a 4 × 255 RS matrix BRS,255(4, 255) over GF(28) in the

form of (1) which does not satisfy the 2× 2 SNS-constraint.

Label the columns of BRS,255(4, 255) from 0 to 254. Since

3 is a factor of 255, we can partition the column numbers of

BRS,255(4, 255) into 85 disjoint triplets, (i, i+85, i+170), 0 ≤
i < 85. For 4 ≤ t ≤ 85, suppose we choose a set of t
triplets. From each triplet of this set, we take one number.

This results in a set Λt = {l1, l2, ..., lt} of labels of t columns

of BRS,255(4, 255). Using the t columns in BRS,255(4, 255)
labeled by the numbers in Λt, we form a 4 × t RS matrix

BRS,255,Λt(4, t). This matrix satisfies the 2×2 SNS-constraint.

If the labels in Λt satisfy all of the nine conditions given

by (8), then the 4 × t matrix BRS,255,Λt(4, t) satisfies the

2 × 2/3× 3 SM-constraint. The null space of the 255× 255
CPM-dispersion of BRS,255,Λt(4, t) gives an RS-QC-LDPC

code of length 255t whose Tanner graph has girth at least 8.

Set t = 16. Suppose we choose the following

set of column labels of BRS,255(4, 255): Λ16 =

{1, 3, 6, 13, 21, 32, 44, 59, 64, 73, 77, 83, 111, 212, 226, 239}.

The column labels in Λ16 satisfy the 9 conditions given by

(8). Using the column labels in Λ16, we form a 4 × 16 RS

matrix BRS,255,Λ16
(4, 16) which satisfies the 2 × 2/3 × 3

SM-constraint. The null space over GF(2) of the 255 × 255
CPM-dispersions of BRS,255,Λ16

(4, 16) gives a (4, 16)-regular
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Fig. 4. The BER and BLER performances of the four RS-QC-LDPC codes
given in Examples 5 and 6.

(4080, 3065) RS-QC-LDPC code CRS,255,Λ16,ldpc(4, 16)
whose Tanner graph GRS,255,Λ16,ldpc(4, 16) has girth

8. The numbers of cycles of lengths 8, 10, and 12

in GRS,255,Λ16,ldpc(4, 16) are 688,500, 17,485,860, and

703,291,020, respectively, for a total of 721,465,380, which

is a quite large number of short cycles.

In order to reduce the number of short cycles in

GRS,255,Λ16,ldpc(4, 16), we can mask the RS matrix

BRS,255,Λ16
(4, 16) with the masking matrix given

by (10). Masking results in a masked RS matrix

BRS,255,Λ16,mask(4, 16) with column weights 3 and 12,

respectively. The null space of the 255× 255 CPM-dispersion

HRS,255,Λ16,mask(4, 16) of BRS,255,Λ16,mask(4, 16) gives

a (3, 12)-regular (4080, 3060) masked RS-QC-LDPC code

CRS,255,Λ16,mask,ldpc(4, 16) of rate 3/4. The numbers of

short cycles of lengths 8, 10, and 12 in the Tanner graph

GRS,255,Λ16,mask,ldpc(4, 16) of CRS,255,Λ16,mask,ldpc(4, 16)
are 32,640, 495,210, and 9,570,915, respectively, for a total

of 10,098,765. We see that masking reduces the total number

of short cycles of lengths 8, 10, and 12 in the unmasked

Tanner graph by a factor of more than 71.

The BER and BLER performances of CRS,255,Λ16,ldpc(4, 16)
and CRS,255,Λ16,mask,ldpc(4, 16), decoded with 50 iterations of

the MSA are also shown in Fig. 4. The scaling factor for the

unmasked and the masked codes are 0.70 and 0.75, respec-

tively. We see that masking improves the error performance of

the unmasked code. The (3, 12)-regular (4080, 3060) masked

RS-QC-LDPC code CRS,255,Λ16,mask,ldpc(4, 16) achieves a

BER of 10−9 without a visible error-floor and performs less

than 1 dB from its threshold (2.2564 dB) and 1.62 dB from

the Shannon limit (1.628 dB). The masked code performs well

in both waterfall and low error rate regions. It outperforms

the (4080, 3093) QC-LDPC code of rate 0.758 presented in

[10, Fig. 11.10, p. 505] and the (4096, 3073) finite-geometry

code of rate 0.750 presented in [29, Fig. 17.31, p. 910], both

decoded wth SPA.

V. CONCLUSION

In this paper, we presented designs and constructions of QC-

LDPC codes for the AWGN channel based on the conventional

parity-check matrices of Reed-Solomon codes, called RS-QC-

LDPC codes. Four classes of RS-QC-LDPC codes whose

Tanner graphs have girth at least 6 were given. Cycle structural

properties of the Tanner graphs of codes in these classes are

analyzed and specific methods for constructing codes with

girth at least 8 and reducing their short cycles are presented.

The designed codes perform well in both waterfall and low

error-rate regions. The methods presented in this paper for

constructing binary RS-QC-LDPC codes can be generalized

for constructing nonbinary RS-QC-LDPC codes.
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