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Abstract: Direct contact membrane distillation (DCMD) has been conducted to treat hydraulic
fracturing-produced water using polyvinylidenedifluoride (PVDF) membranes. Tailoring the surface
properties of the membrane is critical in order to reduce the rate of adsorption of dissolved organic
species as well as mineral salts. The PVDF membranes have been modified by grafting zwitterion
and polyionic liquid-based polymer chains. In addition, surface oxidation of the PVDF membrane
has been conducted using KMnO,4 and NaOH. Surface modification conditions were chosen in order
to minimize the decrease in contact angle. Thus, the membranes remain hydrophobic, essential
for suppression of wetting. DCMD was conducted using the base PVDF membrane as well as
modified membranes. In addition, DCMD was conducted on the base membrane using produced
water (PW) that was pretreated by electrocoagulation to remove dissolved organic compounds.
After DCMD all membranes were analyzed by scanning electron microscopy imaging as well as
Energy-Dispersive X-Ray spectroscopy. Surface modification led to a greater volume of PW being
treated by the membrane prior to drastic flux decline. The results indicate that tailoring the surface
properties of the membrane enhances fouling resistance and could reduce pretreatment requirements.

Keywords: fouling; hydraulic fracturing; polyionic liquid; surface modification; zwitterion

1. Introduction

Increasing oil and gas production is predicted by the International Energy Agency with a
corresponding increase in the volume of co-produced water that requires suitable treatment before
disposal [1]. Here we focus on gas production by hydraulic fracturing operations. Oil and gas
production from shale formations using hydraulic fracturing techniques has grown rapidly in the
U.S. [2,3]. In order to extract oil and gas from these non-conventional reservoirs, water together with
hydraulic fracturing fluids is injected at high pressure into the well in order to fracture the impervious
rock formation that contains the trapped oil and gas. When the pressure is released flowback and
co-produced water or ‘produced” water (PW) is recovered.

The PW is frequently highly impaired containing fracturing fluids as well as natural
contaminants [4]. Treatment of PW is a major challenge [5,6]. Today deep well injection is frequently
used to dispose the PW in the US in accordance with Environmental Protection Agency (EPA)
regulations [7]. However cost and environmental concerns continue to be hurdles for implementation
of this method of disposal. The simultaneous presence of large salt concentration in terms of total
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dissolved solids (TDS) and non-polar organic hydrocarbons makes the treatment of PW highly
chemically challenging.

Membrane technology using organic and inorganic membranes exhibits potential for treatment
of oily-wastewater feeds having high TDS [8]. The low energy requirement of membrane-based
technology is attractive [9]. Reverse osmosis (RO) has been used to treat PW with TDS in
the range 500-25,000 mg/L. However, the high fouling potential of RO membranes means that
adequate pretreatment of the PW is essential, increasing the overall processing costs [10]. Among
other membrane-based processes, electrochemical-charge-driven separation processes including
electrodialysis has been demonstrated as a technology for the treatment of PW. However, non-charged
contaminants, including organic molecules, silica, and boron are poorly removed [11].

Membrane distillation (MD) is an emerging membrane based separation technology with high
potential for treating different aqueous feed streams containing high TDS [12,13]. The vapor pressure
difference across a porous hydrophobic gas filled membrane is the driving force for mass transfer
across the membrane [14,15]. Water vapor as well as other volatile species will pass from the feed
to the permeate side. However, passage of nonvolatile species and dissolved salts is suppressed.
Since water vapor and not liquid water pass through the membrane pores the membrane must be
sufficiently hydrophobic to suppress ‘wetting” or passage of water together with dissolved salts and
other nonvolatile species [16,17].

A major challenge for the commercial implementation of MD for treating PW is the presence
of polar and nonpolar dissolved organic compounds that can easily adsorb onto the hydrophobic
membrane surface. This can lead to membrane failure [18]. Deshmukh et al. [19] review many of the
strategies used to modify the surface of the membrane in order to suppress fouling. In addition to flux
decline, pore wetting is caused by adsorption of foulants such as surfactants and low surface tension
dissolved species.

Strategies to suppress fouling must, on a fundamental level, increase the energy barrier
to foulant attachment as well as increase (i.e. make less negative) the Gibbs free energy for
adsorption. Development of omniphobic membranes that exhibit high contact angles for water
and non-polar organic compounds by tailoring membrane surface chemistry and morphology has
been investigated [20]. However, while many of these approaches show promise, development of
economically viable membrane casting and surface modification methods is likely to be challenging.

Here we focus on surface modification of polyvinylidenedifluoride (PVDF) membranes which
have been frequently used in membrane distillation studies [21]. Several methods of surface
modification of PVDF membranes, including zwitterionic self-assembly, nanoparticle induced
omniphobicity, inducing superhydrophobicity etc.; have been reported in literature in order to
impart fouling resistance during membrane distillation [20,22-24]. In our previous work we have
shown that electrocoagulation is effective in reducing the Total Organic Carbon (TOC) load in oily
wastewater streams [18,25-28]. Specifically, for PW we have shown that membrane stability is
significantly increased if the PW is pretreated using electrocoagulation. However, the viability of using
electrocoagulation depends on the equipment as well as operating cost. Thus, by imparting greater
resistance to fouling of the PVDF membrane by organic compounds a more robust membrane could be
developed for which the pretreatment costs would be less.

We have investigated two relatively simple surface modification method for altering the
properties of the base PVDF membrane. Specifically, we aim to hydrophilize the surface by
adding hydrophilic groups. While this could suppress adsorption of nonpolar organic compounds,
it is essential the surface is resistant to wetting. Thus, we must maintain a high-water contact
angle. In the first approach two different hydrophilic polymer chains have been investigated.
Poly N-(3-sulfopropyl)-N-methacroyloxyethyl-N,N-dimethylammonium betaine (SAMB, zwitterionic
polymer) has been grafted from the surface of the PVDF membrane. We have also grafted
1-allyl-3-vinylimidazolium bromide (Allyl, ionic liquid). In both cases the polymer chains were
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grafted using UV initiated free radical polymerization. The polymers contain fixed charges as well as
hydrophobic segments.

In the second approach we investigate the use of NaOH and KMnO;, to hydrophilize the
membrane surface. Previous investigators [29-33] have indicated that incubating PVDF membranes in
alkaline solution can lead to dehydrofluorination as fluoride in the PVDEF backbone is replaced
by hydroxide groups. In the case of KMnO,; Wang et al [34] have shown that incubating
ploy(tetrafluoraethylene) (PTFE) films with KMnOy in a nitric acid solution led to the replacement of
fluoride by hydroxide and carbonyl groups. Here we use a similar procedure for PVDF membranes.
In this second approach we avoid grafting an additional nanostructure from the membrane surface
which could lead to an increase in the resistance to transport through the membrane and hence a
decrease in permeate flux.

Direct contact membrane distillation (DCMD) had been conducted using PW obtained from
Southwestern Energy Fayetteville Shale (Arkansas, USA). The driving force for water vapor transport
across the membrane is the vapor pressure difference generated by the temperature difference across
the membrane. Base PVDF as well as modified PVDF membranes have been tested. In addition, the
base PVDF membrane has been tested with water pretreated using electrocoagulation in order to
compare results with the modified membranes.

2. Materials and Methods

2.1. Materials

Methanol, vinyl imidazole, allyl bromide, Poly N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-
dimethylammonium betaine (SAMB), potassium permanganate (KMnQO,), and sodium hydroxide
(NaOH) were purchased from Sigma Aldrich (St. Louis, MO, USA). Benzophenone was purchased
from (Acros Organics, Morris, NJ, USA) while ethyl acetate was purchased from Alfa-Aesar (Ward Hill,
MA, USA). Nitric acid (HNOg3) was procured from VWR (Radnor, PA, USA). Deionized (DI) water
was obtained from a Thermo Fisher 18 M(Q) (Barnstead Smart2Pure system, Schwerte, Germany).
Polyvinylidene fluoride (PVDF) membranes were provided by Millipore Sigma (Billerica, MA, USA).

2.2. Characterization of Base Membrane

The characteristics of the PVDF membranes are summarized in Table 1.

Table 1. Characteristics of the PVDF membranes.

Nomn}al Porosity  Thickness dmean G.as Liquid Entry Contact  Tortuosity
Membrane Pore Size () (6) (um) Permeation Pressure LEP Anele 0
(pm) H (um) (KPa) 8
PVDF 0.2 0.69 110 0.22 400 145° + 2 2.01

2.3. Characterization of Produced Water (PW)

Hydraulic fracturing PW was used after pre-filtration using a screen filter to remove large
particulate matter. The PW was characterized for total dissolved solid (TDS), total suspended solids
(TSS), turbidity and total organic compounds (TOC) using EPA standard methods 160.1, 160.2,
415.1 and 180.1 [35], respectively as well as total nitrogen (TN) at the Arkansas Water Resources
Center (Fayetteville, AR, USA). Cations and anions were measured using EPA methods 200.7 and
300.0, respectively, while metal ions were analyzed by Inductively Coupled Plasma Atomic Emission
Spectrometry (ICP-AES). Table 2 summarizes the analytical results. The major ionic species present in
the PW are found to be Ca, Na, Mg and Cl resulting in high TDS. The PW sample was also found to
have a high TOC.
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Table 2. The characterization of Produced Water (PW).

Parameter Concentration (ppm)
Calcium 24052
Magnesium 2463
Sodium 50379
Chloride 128786
Sulfate 8.6
TOC 181
TSS 1460
TN 15
TDS 202130
Turbidity 273 NTU

2.4. Synthesis of lonic Liquid Monomer

To prepare 1-allyl-3-vinylimidazolium bromide (Allyl) monomer, 0.025 M of vinyl imidazole and
ally bromide were placed in a glass container and then the mixture was heated at 60 °C for three hours
with vigorous stirring. Phase separation occurs after the reaction is complete with a viscous yellow
color liquid setting to the bottom of the container. This is the ionic liquid phase. The top transparent
layer was carefully discarded, and the ionic liquid phase was washed with excess ethyl acetate (three
times) to remove unreacted precursors. The ionic liquid was used with no further purification.

2.5. Membrane Modification

Prior to modification, the membranes were washed twice with (1:1) v:v water:ethanol to
remove preservatives and impurities and then rinsed with DI water. Membrane coupons were
cut (12.5 x 4.5 cm) and then modified.

2.5.1. UV Grafting of Hydrophilic Polymers

The membranes were soaked in 50 mL methanol containing 15 g of benzophenone for 30 min.
Since the membrane swells in methanol, benzophenone can enter the membrane matrix as well as
adsorb on the membrane surface. The membranes were then air dried for 12 h at room temperature.
Polymerization was conducted by placing the membrane coupon with active surface facing upwards
in a petri dish. Next 5 mL of 10 mg/mL of the aqueous SAMB solution was added and the petri dish
was placed in the UV reactor. In the case of the Allyl monomer, 2.4 mL of the monomer solution was
added to 10 mL of DI water. The solution was then poured on top of the membrane and exposed to UV
light. The UV reaction time was 5 min (UV irradiation 160 W). This time was chosen in order to ensure
the resistance due to the grafted polymer chains did not lead to a significant decrease in permeate flux.
Finally, the membranes were washed with DI water and dried at room temperature.

2.5.2. Surface Oxidation by KMnO4 and NaOH

KMnO; (3 g) were dissolved in DI water (50 mL) and then nitric acid (3 mL) was added to the
solution. The membrane was placed in a glass container containing KMnO4-HNOj solution, with
the active surface facing downwards. The container was then sealed securely and left for two hours
at 60 °C. Next the membrane was taken out and washed with DI water thoroughly. For surface
modification with NaOH a similar protocol was used. The membrane was incubated in 7.5 M NaOH
at 70 °C for 30 min.

2.6. Characterization of Modified Membranes

Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM),
Energy-Dispersive X-Ray (EDX) Spectroscopy and water contact angle measurements were carried
out in order to characterize the modified membrane surface. Each membrane sample was dried
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Figure 1. Schematic diagram of the DCMD apparatus.
The permeate filux was determined by the equatiion below [36]}:
_%
J= A € Q)

whete JidgRermeaterfliexpreasetimlanh!. 1, is the velume of waler prrnRatedihIL, Ay, is the
effestive suiface aren of membiane eypresdlinm?, and t is the DEMD time in hour. The conduetivity
of the permeate was measured continuously during the operation by a conductivity-meter (VWR).
If the permeate conductivity increased above 50 uS cm™ it was assumed pore wetting had occurred
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3.1.2. Surface Oxidation
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membrane contains C and F as is expected for PVDE. The presence of gold is due to the coating added
prior to analysis. After DCMD the percentage of C and F on the surface decreases due to adsorption of
rejected species from the PW. Comparing the elemental analysis for the base membrane after DCMD

with PW and PW pretreated with electrocoagulation it can be seen that adsorption of inorganic species




Int. J. Environ. Res. Public Health 2019, 16, 685 10 of 12

is higher for the pretreated PW. This is not unexpected as electrocoagulation is used to remove organic
species. The result indicates that the base membrane is fouled by adsorption of both organic and
inorganic species.

For the SAMB and Allyl modified membrane the percentage nitrogen is much higher than the
KMnO,4 and NaOH modified membranes. This is not unexpected as the grafted polymers contain
N. In fact, it is similar to the percentage N detected for the base membrane after DCMD with PW.
However, the amount of N for the KMnO4 and NaOH modified membranes is similar to that for the
base membrane tested with pretreated PW by electrocoagulation. The pretreated PW will contain very
little N associated with dissolved organic compounds. Taken together these results suggest that the
modified membranes, especially modification by surface oxidization are more resistant to adsorption
of organic compounds.

Again, all membranes indicate the presence of gold due to the coating used. Though there is some
variation all modified membranes show higher amounts of adsorbed inorganic species on the surface
than the base membrane after DCMD. For the base membrane challenged with pretreated PW, the
amount of inorganic species detected on the surface is similar to the modified membranes. These results
suggest that surface modification does not improve resistance to adsorption by inorganic species. It is
important to note however, that the amount of water processed by the modified membranes especially
the NaOH treated membrane is greater than the base membrane.

Increasing the stability of the membrane during DCMD is critical to suppress wetting and flux
decline during DCMD. For modified membranes, we have tried to minimize the decrease in the
air/water contact angle. However, it is the underwater adsorption of solutes in the PW onto the
membrane surface that is most relevant [39,40]. Air/water contact angles provide a general indication
of the likely resistance of the surface to fouling.

The results suggest that simple surface oxidation procedures could enhance the membrane
resistance and increases membrane productivity. It may also lead to reduced pretreatment requirements.
In the case of electrocoagulation which has been used here, optimizing reaction conditions will depend
on the fouling resistance of the modified membrane as well as the quality of the PW. Optimization of the
electrocoagulation conditions must minimize corrosion of the electrodes as well as power requirements.
Further regeneration of the membrane after DCMD may be easier leading to longer membrane lifetimes.
Here NaOH treated membranes showed the greatest improvement in performance. While this may
be a simple and economical way to modify the base membrane, it is essential not to damage the
membrane and degrade performance by over modification.

4. Conclusions

A major challenge for commercialization of DCMD is membrane stability due to the possibility of
fouling by dissolved organic species as well as inorganic salts. Membrane fouling leads to flux decline
and breakthrough of the feed into the permeate side. Four different surface modifications of base
PVDF membranes have been investigated. Polymer chains consisting of zwitterionic groups as well as
polyionic liquids and surface oxidation by KMnO4 and NaOH were studied. Modification conditions
were chosen in order to minimize the decrease in water contact angle compared to the base membrane.

All four modifications led to improved membrane productivity when tested with PW. For PW
that was pretreated by electrocoagulation to remove dissolved organic compounds, the increases in
productivity was the greatest. This result suggested that adsorption of dissolved organic compounds was
a major cause of membrane fouling. Elemental analysis indicated that all modified membranes were more
resistant to fouling by organic compounds though increased resistance to adsorption of inorganic species
relative to the base membrane was not observed. The result suggests that simple surface modification
procedures may enhance membrane fouling resistance thus improving membrane stability.
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