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Abstract

Constrained optimization problems are at the heart of
significant applications in a broad range of domains, includ-
ing finance, transportation, manufacturing, and healthcare.
Modeling and solving these problems has relied on applica-
tion-specific solutions, which are often complex, error-
prone, and do not generalize. Our goal is to create a
domain-independent, declarative approach, supported and
powered by the system where the data relevant to these
problems typically resides: the database. We present a com-
plete system that supports package queries, a new query
model that extends traditional database queries to handle
complex constraints and preferences over answer sets,
allowing the declarative specification and efficient evalua-
tion of a significant class of constrained optimization prob-
lems—integer linear programs (ILP)—within a database.

1. INTRODUCTION

Traditional database queries follow a simple model: they
define constraints, in the form of selection predicates, that
each tuple in the result must satisfy. This model is computa-
tionally efficient, as the database system can evaluate each
tuple individually to determine whether it satisfies the query
conditions. However, many practical, real-world problems
require a collection of result tuples to satisfy constraints col-
lectively, rather than individually.

EXAMPLE 1 (MEAL PLANNER). A dietitian needs to design a
daily meal plan for a patient. She wants a set of three gluten-
free meals, between 2000 and 2500 calories in total, and with a
low total intake of saturated fats.

Similar scenarios, requiring complex, high-order con-
straints arise frequently, and in many practical settings.
A broad set of domains have applications that boil down to
modeling and solving constrained optimization problems,
for example, coordinating fleet and crew assignments in air-
line scheduling to reduce delays and costs,” managing
delinquent consumer credit to minimize losses,' optimizing
organ transplant allocation and acceptance,' and planning
of cancer radiotherapy treatments.?” > A significant class of
constrained optimization problems are integer linear pro-
grams (ILP). ILP solutions alone account for billions in US
dollars of projected benefits within each of these and other
industry sectors.’

Modeling and solving these problems has relied on
application-specific solutions,>® 3172318 which can often
be complex and error-prone, and fail to generalize. Our goal
is to create a domain-independent, declarative approach,
supported and powered by the system where the data
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relevant to these problems typically resides: the database.
We present a complete system that supports package que-
ries, a new query model that extends traditional database
queries to handle complex constraints and preferences
over answer sets, allowing the declarative specification and
efficient evaluation of a significant class of constrained
optimization problems—ILP—within a database. Package
queries are defined over traditional relations, but return
packages. A package is a collection of tuples that (a) individ-
ually satisfy base predicates (traditional selection predi-
cates), and (b) collectively satisfy global predicates
(package-specific predicates). Package queries are combi-
natorial in nature: the result of a package query is a (poten-
tially infinite) set of packages, and an objective criterion can
define a preference ranking among them.

Extending traditional database functionality to provide
support for packages, rather than supporting packages at
the application level, is justified by two reasons: First, the
features of packages and the algorithms for constructing
them are not unique to each application; therefore, the bur-
den of package support should be lifted off application
developers, and database systems should support package
queries like traditional queries. Second, the data used to
construct packages typically reside in a database system,
and packages themselves are structured data objects that
should naturally be stored in and manipulated by a data-
base system.

Our work addresses three important challenges. The first
challenge is to support declarative specification of packages.
SQL enables the declarative specification of properties that
result tuples should satisfy. In Example 1, it is easy to specify
the exclusion of meals with gluten using a regular selection
predicate in SQL. However, it is difficult to specify global con-
straints (e.g., total calories of a set of meals should be between
2000 and 2500 calories). Expressing such a query in SQL
requires either complex self-joins that explode the size of the
query, or recursion, which results in extremely complex que-
ries that are hard to specify and optimize. Our goal is to main-
tain the declarative power of SQL, while extending its
expressiveness to allow for the easy specification of packages.

The second challenge relates to the evaluation of pack-
age queries. Due to their combinatorial complexity, pack-
age queries are harder to evaluate than traditional
database queries.'’ Package queries are in fact as hard as
ILP.® Existing database technology is ineffective at
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evaluating package queries, even if one were to express
them in SQL. Figure 1 shows the performance of evaluating
a package query expressed as a multi-way self-join query in
traditional SQL. As the cardinality of the package increases,
so does the number of joins, and the runtime quickly
becomes prohibitive: In a small set of 100 tuples from the
Sloan Digital Sky Survey (SDSS) dataset,” SQL evaluation
takes almost 24 hours to construct a package of 7 tuples.
Our goal is to extend the database evaluation engine to take
advantage of external tools, such as ILP solvers, which are
more effective for combinatorial problems.

The third challenge pertains to query evaluation perfor-
mance and scaling to large datasets. Integer programming
solvers have two major limitations: they require the entire
problem to fit in main memory, and they fail when the prob-
lem is too complex (e.g., too many variables and/or too many
constraints). Our goal is to overcome these limitations
through sophisticated evaluation methods that allow solv-
ers to scale to large data sizes.

Our work addresses these challenges through the design
of language and algorithmic support for the specification
and evaluation of package queries. We present PaQL
(Package Query Language), a declarative language that pro-
vides simple extensions to standard SQL to support con-
straints at the package level. PaQL is at least as expressive as
ILP, which implies that evaluation of package queries is
NP-hard.” We present a fundamental evaluation strategy,
DIRECT, that combines the capabilities of databases and
constraint optimization solvers to derive solutions to pack-
age queries. The core of our approach is a set of translation
rules that transform a package query to an ILP. This transla-
tion allows for the use of highly-optimized external solvers
for the evaluation of package queries. We introduce an
offline data partitioning strategy that allows package query
evaluation to scale to large data sizes. The core of our evalu-
ation strategy, SKETCHREFINE, lies in separating the pack-
age computation into multiple stages, each with small
subproblems, which the solver can evaluate efficiently. In
the first stage, the algorithm “sketches” an initial sample
package from a set of representative tuples, while the subse-
quent stages “refine” the current package by solving an ILP
within each partition. SKETCHREFINE offers strong approxi-
mation guarantees for the package results compared to
DIRECT. We present an extensive experimental evaluation
on real-world data that shows that our query evaluation
method SKETCHREFINE: (1) is able to produce packages an

Figure 1. Traditional database technology is ineffective at package
evaluation, and the runtime of a SQL formulation of a package query
grows exponentially. In contrast, tools such as ILP solvers are more
effective.
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order of magnitude faster than the ILP solver used directly
on the entire problem; (2) scales up to sizes that the solver
cannot manage directly; (3) produces packages of very good
quality in terms of objective value.

2. LANGUAGE SUPPORT FOR PACKAGES

Database systems do not natively support package queries.
While there are ways to express package queries in SQL,
these are cumbersome and inefficient.

Specifying packages with self-joins. In the limited case of
packages with strict cardinality, that is, a fixed number of
tuples, it is possible to express package queries using rela-
tional self-joins. The query of Example 1 requires three
meals (a package with cardinality three) and can be
expressed as a three-way self-join:

SELECT * FROM Recipes R1, Recipes R2, Recipes R3
WHERE R1.pk < R2.pk AND R2.pk < R3.pk AND
R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND R3.gluten = ‘free’
AND R1.kcal + R2.kcal + R3.kcal BETWEEN 2.0 AND 2.5
ORDER BY R1.saturated_fat  + R2.saturated_fat  +
R3.saturated_fat

Such a query is efficient only for constructing packages with
very small cardinality: larger cardinality requires a larger
number of self-joins, quickly rendering evaluation time pro-
hibitive (Figure 1). The benefit of this specification is that
the optimizer can use the traditional relational algebra oper-
ators and augment its decisions with package-specific strat-
egies. However, this method does not apply for packages of
unbounded cardinality.

Specifying packages using recursion. SQL can express
package queries by generating and testing each possible
subset of the input relation. This requires recursion to build
a powerset table; checking each set in the powerset table for
the query conditions will yield the result packages. This
approach has three major drawbacks. First, it is not declara-
tive, and the specification is tedious and complex. Second, it
is not amenable to optimization in existing systems. Third,
it is extremely inefficient to evaluate, because the powerset
table generates an exponential number of candidates.

2.1. PaQL: The package query language

Our goal is to support declarative and intuitive package
specification. In this section, we describe PaQL, a declara-
tive query language that introduces simple extensions to
SQL to define package semantics and package-level con-
straints. Figure 2 shows the general syntax of PaQL (left) and
the specification for the query of Example 1 (right), which we
use as a running example to demonstrate PaQL’s features.
Square brackets enclose optional clauses and arguments,
and a vertical bar separates syntax alternatives. In this speci-
fication, repeat is a non-negative integer; w_expression
is a Boolean expression over tuple values (as in standard
SQL) and can only contain references to relation name
and relation alias; st expression is a Boolean
expression and obj expression is an expression over
aggregate functions or SQL subqueries with aggregate func-
tions; both st expression and obj expression can
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Figure 2. Specification of the PaQL syntax (left), and the PaQL query for Example 1 (right).

PaQL syntax specification

SELECT PACKAGE (xlcolumn_name [,...]) [AS] package_ name

FROM relation_name [AS] relation_alias
[REPEAT repeat] [,..]

[WHERE w_expression ]

[SUCH THAT st_expression |

[ (MINIMIZEIMAXIMIZE) obj_expression ]

PaQL query for Example 1
Q: SELECT PACKAGE (x) AS P

FROM Recipes R REPEAT O
WHERE R.gluten = ‘free’
SUCH THAT COUNT (P.x) =3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.sat_fat)

only contain references to package name, which specifies
the name of the package result.

Basic package query. The new keyword PACKAGE differ-
entiates PaQL from traditional SQL queries.

Q: SELECT ~
FROM Recipes R

Q: SELECT PACKAGE(x)ASP
FROM Recipes R

The semantics of Q andQ, are fundamentally different: Q is
a traditional SQL query, with a unique, finite result set (the
entire Recipes table), whereas there are infinitely many pack-
ages that satisfy the package query Q: all possible multisets of
tuples from the input relation. The result of a package query
likeQ, isa set of packages. Each package resembles a relational
table containing a collection of tuples (with possible repeti-
tions) from relation Recipes, and therefore a package result of
9, follows the schema of Recipes. Similar to SQL, the PaQL syn-
tax allows the specification of the output schema in the SELECT
clause. For example, PACKAGE(sat_fat, kcal) only returns the
saturated fat and calorie attributes of the package.

Although semantically valid, a query like Q, would not
occur in practice, as most application scenarios expect few,
or even exactly one result. We proceed to describe the addi-
tional constraints in the example query Q (Figure 2) that
restrict the number of package results.

Repetition constraints. The REPEAT 0 statement in
query Q from Figure 2 specifies that each tuple from the
input relation Recipe can appear in a package result at
most once (no repetitions are allowed). If this restriction is
absent (as in query Q), the multiplicity of a tuple is
unbounded. By allowing no repetitions, Q restricts the
package space from infinite to 2%, where n is the size of the
input relation. Generalizing, REPEAT p allows a package to
repeat tuples up to p times, resulting in (2 + p)" candidate
packages.

Base and global predicates. A package query defines two
types of predicates. A base predicate, defined in the WHERE
clause, is equivalent to a selection predicate and can be eval-
uated with standard SQL: any tuple in the package needs to
individually satisfy the base predicate. For example, query Q
from Figure 2 specifies the base predicate: R.gluten = ‘free’.
Since base predicates directly filter input tuples, they are
specified over the input relation R. Global predicates are the
core of package queries, and they appear in the new SUCH
THAT clause. Global predicates are higher-order than base
predicates: they cannot be evaluated on individual tuples,
but on tuple collections. Since they describe package-level
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constraints, they are specified over the package result P, for
example, COUNT(P.x) = 3, which limits the query results to
packages of exactly 3 tuples.

The global predicates in query Q abbreviate aggregates
that are in reality SQL subqueries. For example, COUNT(P.x)
= 3, abbreviates (SELECT COUNT(x) FROM P) = 3. Using sub-
queries, PaQL can express arbitrarily complex global con-
straints among aggregates over a package.

Objective clause. The objective clause specifies a ranking
among candidate package results and appears with either
the MINIMIZE or MAXIMIZE keyword. It is a condition on the
package-level, and hence it is specified over the package
result P, for example, MINIMIZE SUM(P.sat_fat). Similar to
global predicates, this form is a shorthand for MINIMIZE
(SELECT SUM(sat_fat) FROM P). A PaQL query with an objec-
tive clause returns a single result: the package that optimizes
the value of the objective. The evaluation methods that we
present in this work focus on such queries. In prior work,®
we described preliminary techniques for returning multiple
packages in the absence of optimization objectives, but a
thorough study of such methods is left to future work.

Expressiveness and complexity. PAQL can express gen-
eral ILP, which means that evaluation of package queries is
NP-complete.* > As a first step in package evaluation, we pro-
ceed to show how a PaQL query can be transformed into a
linear program and solved using general ILP solvers.

3. ILP FORMULATION

In this section, we present an ILP formulation for package
queries, which is at the core of our evaluation methods
DIrRECT and SKETCHREFINE. The results in this section are
inspired by the translation rules employed by Tiresias® to
answer how-to queries.

3.1. PaQL to ILP translation
Let R indicate the input relation of the package query, n = |R|
be the number of tuples in R, R.attr an attribute of R, P a pack-
age, falinear aggregate function (such as COUNT and SUM),
©® € {<,>} a constraint inequality, and v € R a constant. For
each tuple ¢, from R, 1 < i < n, the ILP problem includes a
nonnegative integer variable x,, x, > 0, indicating the number
of times ¢, is included in an answer package. We also use
X =(x,,X,,...,x, ) to denote the vector of all integer variables.
A PaQL query is formulated as an ILP problem using the fol-
lowing translation rules.

Repetition constraint. The REPEAT keyword, expressible
in the FROM clause, restricts the domain that the variables



can take on. Specifically, REPEAT p implies 0 <x, <p + 1.

Base predicate. Let 3 be a base predicate, for example,
R.gluten = ‘free’, and R the relation containing tuples from
R satisfying B. We encode B by setting x, = 0 for every tuple
t. & R,

Global predicate. Each global predicate in the SUCH
THAT clause takes the form f(P) ® v. For each such predicate,
we derive a linear function f’(x) over the integer variables.
A cardinality constraint f{lP) = COUNT(P.x) is translated into a
linear function f’(x)= zixl.. A summation constraint f(P) =
SUM(P.attr) is translated into a linear function
f(x)= Zi(ti.attr)xi. Other nontrivial constraints and general
Boolean expressions over the global predicates can be
encoded into a linear program with the help of Boolean vari-
ables and linear transformation tricks found in the litera-
ture.* We refer to the original version of this paper for further
details.»®

Objective clause. We encode MAXIMIZE flP) as max f'(x),
where f’(x) is the encoding of fiP). Similarly MINIMIZE f{P) is
encoded as min f”(X).

EXAMPLE 2 (ILP TRANSLATION). Figure 3 shows a toy example
of the Recipes table, with two columns and 5 tuples. To trans-
form Qinto an ILP, we first create a non-negative, integer vari-
able for each tuple: x,, ..., x.. The cardinality constraint
specifies that the sum of the x, variables should be exactly 3.
The global constraint on SUM(P kcal) is formed by multiplying
each x, with the value of the kcal column of the corresponding
tuple, and specifying that the sum should be between 2 and 2.5.
The objective of minimizing SUM(P.sat_fat) is similarly formed
by multiplying each x, with the sat_fat value of the correspond-
ing tuple.

3.2. Query evaluation with DIRECT

Using the ILP formulation, we develop DIRECT, our basic
evaluation method for package queries. In Section 4, we
extendthistechniquetoourmainalgorithm, SKETCHREFINE,
which supports efficient package evaluation in large datas-
ets. Package evaluation with DIRECT employs three steps:

1. Base Relations: We first compute the base relations,
such as Ry R, and Rp, with a series of standard SQL
queries, one for each, or by simply scanning R once
and populating these relations simultaneously.

2. ILP Formulation: We transform the PaQL query to an
ILP problem using the rules described in Section 3.1.
After this phase, all variables x; such that x, = 0 can
be eliminated from the ILP problem because the cor-
responding tuple ¢, cannot appear in any package
solution.

3. ILP Execution: We employ an off-the-shelf ILP solver,
as a black box, to get a solution to each of the integer
variables x. Each x; informs the number of times tuple
t,should be included in the answer package.

EXAMPLE 3 (ILP SOLUTION). The ILP solver operating on the
program of Figure 3 returns the variable assignments to x,
that lead to the optimal solution; x, = 0 means that tuple t,is

Figure 3. Example ILP formulation and solution for query Q, on a
sample Recipe dataset. There are only two packages that satisfy all
the constraints, namely {t,, t,, t.} and {t , t,, t.}, but the first one is the
optimal because it minimizes the objective function.

Recipes min  7.0x + 5.2, + 3.2x; + 6.5x, + 2.0xg
sat_fat kcal st X tXgtXgtx,tX5=3
] 71 045 | x1=0 0.45x, + 0.55x, + 0.25x,
t| 52 055 | x=1 +0.15x, + 1.20x5 = 2.0
t3 | 32 025 | x3=1 0.45x, + 0.55x, + 0.25x,
t | 65 015 | x4=0 +0.15x, +1.20x5 < 2.5
ts | 20 120 | xs=1 X1 X Xa. X4 X5 € (0,1}

not included in the output package, and x, = k means that
tuple t,is included k times. Thus, the result of Q is the package:

{tgx t3’ t5}’

4. SCALABLE PACKAGE EVALUATION

The DIRECT algorithm has two crucial drawbacks. First, it is
only applicable if the input relation is small enough to fit
entirely in main memory: ILP solvers, such as IBM’s CPLEX,
require the entire problem to be loaded in memory before
execution. Second, even for problems that fit in main mem-
ory, this approach may fail due to the complexity of the inte-
ger problem. In fact, ILP is a notoriously hard problem, and
modern ILP solvers use algorithms, such as branch-and-
cut,*® that often perform well in practice, but can “choke”
even on small problem sizes due to their exponential worst-
case complexity.® This may result in unreasonable perfor-
mance if the solvers use too many resources (main memoty,
virtual memory, CPU time), eventually thrashing the entire
system.

In this section, we present SKETCHREFINE, an approxi-
mate divide-and-conquer evaluation technique for efficiently
answering package queries on large datasets. Rather than
solving the original large problem with DIRECT, SKETCHREFINE
smartly decomposes a query into smaller queries, formulates
them as ILP problems, and employs an ILP solver as a black-
box evaluation method to answer each individual query. By
breaking down the problem into smaller subproblems, the
algorithm avoids the drawbacks of DIRECT.

The algorithm is based on an important observation: sim-
ilar tuples are likely to be interchangeable within packages. A
group of similar tuples can therefore be “compressed” to a
single representative tuple for the entire group.
SKETCHREFINE sketches an initial answer package using
only the set of representative tuples, which is substantially
smaller than the original dataset. This initial solution is
then refined by evaluating a subproblem for each group, iter-
atively replacing the representative tuples in the current
package solution with original tuples from the dataset.
Figure 4 provides a high-level illustration of the three main
steps of SKETCHREFINE:

1. Offline Partitioning (Section 4.1): The algorithm
assumes a partitioning of the data into groups of similar
tuples, with a representative tuple chosen for each
group. This partitioning is performed offline (not at
query time).

2. Sketch (Section 4.2.1): SKETCHREFINE sketches an
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Figure 4. The original tuples (a) are partitioned into four groups and a representative is constructed for each group (b). The initial sketch
package (c) contains only representative tuples, with possible repetitions up the size of each group. The refine query for group G, (d)

involves the original tuples from G, and the aggregated solutions to all other groups (G,, G,, and G,). Group G, can be skipped (e) because no
representatives could be picked from it. Any solution to previously refined groups is used while refining the solution for the remaining groups
(f and g). The final approximate package (h) contains only original tuples.

Multiplicity of representative
tuples in the initial package

. G, ® G,
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(a) Original tuples (b) Initial query using (c) Initial package
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(d) Refinement
query for group G1

PARTITION SKETCH

Representative and original tuples selected during previous steps, shown by
hatching lines, are aggregated and used to modify later refinement queries
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(e) Skipping G2 (f) Refinement (g) Refinement  (h) Final approximate
query for group G3  query for group G4 package
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initial package by evaluating the package query only
over the set of representative tuples.
3. Refine (Section 4.2.2): Finally, SKETCHREFINE transforms
the initial package into a complete package by replacing
each representative tuple with some of the original tuples
from the same group, one group at a time.
SKETCHREFINE always constructs approximate feasible
packages, that is, packages that satisfy all the query con-
straints, but with a possibly sub-optimal objective value that
is guaranteed to be within certain approximation bounds.
SKETCHREFINE may suffer from false infeasibility, which
happens when the algorithm reports a feasible query to be
infeasible. The probability of false infeasibility is, however, low
and bounded. We formalize these properties in Section 4.3.

In the subsequent discussion, we use R(attr,, ..., attr)) to
denote an input relation with k attributes. R is partitioned
into m groups G, ..., G, . Each group G,C R, 1 <i<m, hasa
representative tuple ¢, which may not always appear in R.
We denote the partitioned space with P ={(G,,t,)|1<i<m}.
We refer to packages that contain representative tuples as
sketch packages and packages with only original tuples as
complete packages (or simply packages). We denote a com-
plete package with p and a sketch package with ps, where
8 C P is the set of groups that are yet to be refined to trans-
form pgto a complete answer package p.

4.1. Offline partitioning
SKETCHREFINE relies on an offline partitioning of the input
relation R into groups of similar tuples. Partitioning is based
on a set of partitioning attributes from the input relation R, a
size threshold, and a set of diameter bounds. The size thresh-
oldt,1 <t < n, restricts the size of each partitioning group G,
1 < i <m,toamaximum of t original tuples, that is, |G | <.
The diameter dl.j >0ofagroup G, 1 <i<m,onattribute attrj, 1
<Jj <k, is the greatest absolute distance between all pairs of
tuples within group G, The diameter bounds, »,. > 0,1 <i<m,
1 <j <k, require all diameters to be bounded by d, <o, .
Setting the partitioning parameters. The size threshold,
T, affects the number of partitions, m: a lower t leads to
smaller partitions, but more of them (larger m). For best
response time of SKETCHREFINE, © should be set so that
both m and t are small. Our experiments show that a proper
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setting can lead to an order of magnitude improvement in
query response time.

The diameter bounds, ,, are not required, but they can
be enforced to ensure a desired approximation guarantee.
In general, enforcing the diameter limits may cause the
resulting partitions to become excessively small. While still
obeying the approximation guarantees, this could increase
the number of resulting partitions and thus degrade the
running time performance of SKETCHREFINE. This is an
important trade-off between running time and quality that
we also observe in our experiments, and it is a very common
characteristic of most approximation schemes.*

Partitioning method. Our partitioning procedure is
based on k-dimensional quad-tree indexing.'* The method
recursively partitions a relation into groups until all the
groups satisfy the size threshold and meet the diameter
limits. First, relation R is augmented with an extra group
ID column gid, such that ¢.gid = i if tuple ¢ is assigned to
group G.. The procedure initially creates a single group G,
that includes all the original tuples from relation R, by ini-
tializing gid = 1 for all tuples. Our method recursively com-
putes the sizes and diameters of the current groups, as well
as the centroid of each group. It then partitions the groups that
violate either the size or the diameter limits, using the cen-
troids as partitioning boundaries. In the last iteration, the
centroids for each group become the representative tuples,
f.,1<i<m,and get stored in a new representative relation R
(gid, attr , ..., attr)).

One-time cost. Partitioning is an expensive procedure.
Partitioning the data in advance avoids this cost at query
time. For a known workload, our experiments show that
partitioning the dataset on the union of all query attributes
provides the best performance in terms of query evaluation
time and approximation error for the computed answer
package. We also demonstrate that our query evaluation
approach is robust to a wide range of partition sizes, and to
imperfect partitions that cover more or fewer attributes
than those used in a particular query. This means that,
even without a known workload, a partitioning performed
on all of the data attributes still provides good perfor-
mance. Note that the same partitioning can be used to sup-

port different queries over the same dataset. In our



experiments, we show that a single partitioning performs
consistently well across different queries.

4.2. Query evaluation with SKeTcHREFINE

During query evaluation, SKETCHREFINE first sketches a
package solution using the representative tuples (SKETCH),
and then it refines it by replacing representative tuples with
original tuples (REFINE). We describe these steps using the
example query Q from Figure 2.

SKETCH. Using the representative relation R produced by
the partitioning, the SKETCH procedure constructs and eval-
uates a sketch query, Q(R). The result is an initial sketch pack-
age, ps, containing representative tuples that satisfy the
same constraints as the original query Q:

Q(R): SELECT PACKAGE(x) AS ps
FROM R
WHERE R.gluten = ‘free’
SUCH THAT

COUNT(ps.x) = 3 AND

SUM(ps.kcal) BETWEEN 2.0 AND 2.5 AND

(SELECT COUNT(x) FROM ps WHERE gid = 1) < |G, |

AND ...

(SELECT COUNT(x) FROM ps WHERE gid = m) < |G_|
MINIMIZE SUM(ps.sat_fat)

The new global constraints (in bold) ensure that every
representative tuple does not appear in ps more times
than the size of its group, G.. This accounts for the repeti-
tion constraint REPEAT 0 in the original query.
Generalizing, with REPEAT p, each # can be repeated up to
|G,|(1+p) times. These constraints are omitted from Q(R) if
the original query does not contain a repetition
constraint.

Since the representative relation R contains exactly m
representative tuples, the ILP problem corresponding to
this query has only m variables. This is typically small
enough for the black-box ILP solver to manage directly,
and thus we can solve this package query using the DIRECT
method. If m is too large, we can solve this query recur-
sively with SKETCHREFINE: the set of m representatives
is further partitioned into smaller groups until
the subproblems reach a size that can be efficiently
solved directly.

The SKETCH procedure fails if the sketch query Q(R) is
infeasible, in which case SKETCHREFINE reports the orig-
inal query Q as infeasible. This may constitute false infea-
sibility, if Q is actually feasible. In Section 4.3, we show
that the probability of false infeasibility is low and
bounded.

REFINE. Using the sketched solution over the represen-
tative tuples, the REFINE procedure iteratively replaces
the representative tuples with tuples from the original
relation R, until no more representatives are present in
the package. The algorithm refines the sketch package
psone group at a time. For a group G, with representative
£, let P: C ps be the set of representatives picked from
G, (i.e., ¢, with possible duplicates). The algorithm pro-
ceeds as follows:

« It derives package p;, from ps, by eliminating all
instances of ¢ from ps. Thatis, p,=ps\ p,. This is a solu-
tion to all groups except G..

* The algorithm then constructs a refine query, Q(ps),
which searches for a set of tuples p, C G, to replace the
eliminated representatives:

Q(ps): SELECT PACKAGE(x) AS p,
FROM G,REPEAT 0
WHERE G..gluten = ‘free’
SUCH THAT

COUNT(p,.») + COUNT( p,.») = 3 AND
SUM(p,.kcal) + SUM( p,.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(p,.sat_fat)

* The algorithm adds the result of Q(py), p, in the current
solution, ps. Now, group G, is refined with actual tuples.

In Q(pg), COUNT( p; .x) and SUM( p;, .kcal) are values com-
puted directly on p; before the query is formed. They are
used to modify the original constraint bounds to account for
tuples and representatives already chosen for all the other
groups. The global constraints in Q(ps) ensure that the combi-
nation of tuples in p, and p, satisfy the original query Q.
Thus, this step produces the new refined sketch package
Py =p,Up,where 8 =8\{(G,)} .

Since G, has at most t tuples, the ILP problem correspond-
ing to Q(ps) has at most 1 variables. This is typically small
enough for the black-box ILP solver to solve using the DIRECT
method. Similar to the sketch query, if t is too large,
SKETCHREFINE can evaluate the query recursively: the tuplesin
group G, are further partitioned into smaller groups until the
subproblems reach a size that can be efficiently solved
directly.

Ideally, the REFINE step will only process each group with
representatives in the initial sketch package once. However,
the order of refinement matters as each refinement step is
greedy: it selects tuples to replace the representatives of a
single group, without considering the effects of this choice
on other groups. As a result, a particular refinement step
may render the query infeasible (no tuples from the remain-
ing groups can satisfy the constraints). When this occurs,
REFINE employs a greedy backtracking strategy that recon-
siders groups in a different order.

Greedy backtracking. REFINE activates backtracking when
it encounters an infeasible refine query, Q(ps). Backtracking
greedily prioritizes the infeasible groups. This choice is moti-
vated by a simple heuristic: if the refinement on G, fails, it is
likely due to choices made by previous refinements; there-
fore, by prioritizing G, we reduce the impact of other groups
on the feasibility of Q(ps). This heuristic does not affect the
approximation guarantees.

The algorithm logically traverses a search tree (which is
only constructed as new branches are created and new
nodes visited), where each node corresponds to a unique
sketch package ps. The traversal starts from the root, corre-
sponding to the initial sketch package, where no groups
have been refined (8 = P), and finishes at the first encoun-
tered leaf, corresponding to a complete package (8 = 0). The
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algorithm terminates as soon as it encounters a complete
package, which it returns. The algorithm assumes a (ini-
tially random) refinement order for all groups in 8§ and
places them in a priority queue. During refinement, this
group order can change by prioritizing groups with infea-
sible refinements.

Runtime complexity. In the best case, all refine queries
are feasible and the algorithm never backtracks. In this case,
the algorithm makes up to m calls to the ILP solver to solve
problems of size up to 1, one for each refining group. In the
worst case, SKETCHREFINE tries every group ordering lead-
ing to an exponential number of calls to the ILP solver. Our
experiments show that the best case is the most common
and backtracking occurs infrequently.

4.3. Theoretical guarantees

We present two important results on the theoretical guaran-
tees of SKETCHREFINE: (1) it produces packages that closely
approximate the objective value of the packages produced
by DIRECT; (2) the probability of false negatives (i.e., queries
incorrectly deemed infeasible) is low and bounded. The
extended version of this work* includes the formal proofs of
both results.

For a desired approximation parameter ¢, we can derive
diameter bounds o, for the offline partitioning that guaran-
tee that SKETCHREFINE will produce a package with objec-
tive value (1+e)-factor close to the objective value of the
solution generated by DIRECT for the same query.

THEOREM 1 (APPROXIMATION BOUNDS). Let R(attr,, ..., attr,)
be a relation with k attributes, and let Q be a feasible package
query with a maximization (minimization, resp.) objective over
R. Let S be an exact solver that produces an answer to Q with
optimal objective value OPT. We denote with ALG the objective
value of the package returned by SKETCHREFINE using S as a
black-box solver. For any ¢ € [0, 1) (¢ € [0, c0), resp.), there
exists B €[0,1) (B €[1, 00), resp.) that depends on g, such that if
R is partitioned into m groups with diameter limits:

m,j=rgicn{|1—[3|~|t.attrj|}, Vie[l,m], Vje[Lk] (@)

then ALG > (1 - €)OPT (ALG < (1 + €)OPT, resp.).

For a feasible query Q, false infeasibility may happen in two
cases: (1) when the sketch query AR is infeasible; (2) when
greedy backtracking fails (possibly due to suboptimal parti-
tioning). In both cases, SKETCHREFINE would (incorrectly)
report a feasible package query as infeasible. False negatives
are, however, extremely rare, as the following theorem
establishes.

THEOREM 2 (FALSE-INFEASIBILITY BOUNDS). For any query Q
and any random package P, if P is feasible for Q, then with high
probability: (1) the SKETCH query AR) is feasible; (2) all
REFINE queries Q(ps), 1 < i < m, are feasible. Thus,
SKETCHREFINE returns a feasible result.

5. EXPERIMENTAL EVALUATION
This section presents an extensive experimental evaluation of
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our techniques for package query execution on real-world
data. The results show the following properties of our meth-
ods: (1) SKETCHREFINE evaluates package queries an order of
magnitude faster than DIRECT; (2) SKETCHREFINE scales up to
sizes that DIRECT cannot handle directly; (3) SKETCHREFINE
produces packages of high quality (similar objective value as
the packages returned by DIRECT). We have also performed
extensive experiments on benchmark data that demonstrate
the robustness of SKETCHREFINE under imperfect partition-
ing and different approximation parameters.*>

5.1. Experimental setup

We implemented our package evaluation system as a layer
on top of PostgreSQL.* The system interacts with the DBMS
via SQL and uses IBM’s CPLEX'? as the black-box ILP solver.
A package is materialized into the DBMS as a relation, only
when necessary (e.g., to compute its objective value). The
experiments compare DIRECT with SKETCHREFINE. Both
methods use the PaQL to ILP translation presented in
Section 3.1: DIRECT translates and solves the original query;
SKETCHREFINE translates and solves the subqueries. We
demonstrate the performance of our query evaluation meth-
ods using a real-world dataset consisting of approximately
5.5 million tuples extracted from the Galaxy view of the
SDSS,* and a workload of seven feasible package queries
(Figure 5) constructed by adapting some of the real-world
sample SQL queries available directly from the SDSS
Website. The experiments use the following efficiency and
effectiveness metrics:

Response time. We measure response time as wall-clock
time to generate an answer package. This includes the time
to translate the PaQL query into one or several ILP problems,
the time to load the problems to the solver, and the time the
solver takes to produce a solution.

Approximation ratio. We compare the objective value of a
package returned by SKETCHREFINE with the objective value
of the package returned by DIRECT on the same query. Using
Obj,and Obj to denote the objective values of SKETCHREFINE
and DIRECT, respectively, we report the empirical approxima-
tion ratio (O)g—JP for maximization queries, and SZJJ.‘ for minimiza-
tion queries. An approximation ratio of one indicates that
SKETCHREFINE produces a solution with same objective
value as the solution produced by the solver on the entire
problem. The higher the approximation ratio, the lower the
quality of the result package.

5.2. Results and discussion
We evaluate two fundamental aspects of our algorithms: (1)

* Our code is publicly available on our project Website: http://packagebuilder.
cs.umass.edu.

Figure 5. Summary of queries in the Galaxy workload. The full PaQL
queries appear in the extended version of this work.*

Query 0, Q, Q, [ Qs Qg Q;
Objective max min min min min min max
# of SUM constraints | 2 4 2 1 1 5 5
COUNT (%) BETWEEN 5 AND 10




their query response time and approximation ratio with
increasing dataset sizes; (2) the impact of varying partition-
ing size thresholds, T, on SKETCHREFINE’S performance.

Query performance as dataset size increases. The first set
of experiments evaluates the scalability of our methods on
input relations of increasing size. First, we partition each
dataset using the union of all package query attributes in the
workload: we refer to these partitioning attributes as the
workload attributes. We do not enforce diameter conditions,
o, , during partitioning for three reasons: (1) because the
diameter conditions may affect the size of the resulting par-
titions, and we want to tightly control the partition size
through the parameter t; (2) to show that an offline parti-
tioning can be used to answer efficiently and effectively both
maximization and minimization queries, even though they
would normally require different diameters; (3) to demon-
strate the effectiveness of SKETCHREFINE in practice, even
without having theoretical guarantees in place.

We perform offline partitioning with partition size
threshold t set to 10% of the dataset size. We derive the par-
titionings for the smaller data sizes (less than 100% of the
dataset), by randomly removing tuples from the original
partitions. This operation is guaranteed to maintain the
size condition.

Figure 6 reports our scalability results on the Galaxy
workload. The figure displays the query response time in
seconds on a logarithmic scale, averaged across 10 runs for
each datapoint. At the bottom of each plot, we also report
the mean and median approximation ratios across all data-
set sizes. The graph for Q2 does not report approximation
ratios because DIRECT evaluation fails to produce a solution

for this query across all data sizes. We observe that DIRECT
can scale up to millions of tuples in three of the seven que-
ries. Its runtime performance degrades, as expected, when
data size increases, but even for very large datasets DIRECT is
usually able to answer the package queries in less than a few
minutes. However, DIRECT has high failure rate for some of
the queries, indicated by the missing data points in some
graphs (queries Q2, Q3, Q6, and Q7). This happens when
CPLEX uses the entire available main memory while solving
the corresponding ILP problems. For some queries, such as
Q3 and Q7, this occurs with bigger dataset sizes. However,
for queries Q2 and Q6, DIRECT even fails on small data. This
is a clear demonstration of one of the major limitations of
ILP solvers: they can fail even when the dataset can fit in
main memory, due to the complexity of the integer problem.
In contrast, our scalable SKETCHREFINE algorithm is able to
perform well on all dataset sizes and across all queries.
SKETCHREFINE consistently performs about an order of
magnitude faster than DIRECT across all queries. Its run-
ning time is consistently below one or two minutes, even
when constructing packages from millions of tuples.

Both the mean and median approximation ratios are very
low, usually all close to one or two. This shows that the sub-
stantial gain in running time of SKETCHREFINE over DIRECT
does not compromise the quality of the resulting packages.
Our results indicate that the overhead of partitioning with
diameter limits is often unnecessary in practice. Since the
approximation ratio is not enforced, SKETCHREFINE can
potentially produce bad solutions, but this happens rarely.

Effect of varying partition size threshold. In the second
set of experiments, we vary t, which is used during

Figure 6. Scalability on the Galaxy workload. SketcHREFINE uses an offline partitioning computed on the full dataset, using the workload
attributes, t = 10% of the dataset size, and no diameter condition. DirecT scales up to millions of tuples in about half of the queries, but it fails
on the other half. SketcHRerINE scales well in all cases and runs about an order of magnitude faster than Direcrt. Its approximation ratio is
always low, even though the partitioning is constructed without diameter conditions.
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Figure 7. Impact of partition size threshold t on the Galaxy workload, using 30% of the original dataset. Partitioning is performed at each
value of t using all the workload attributes, and with no diameter condition. The baseline Direct and the approximation ratios are only shown
when Direct is successful. The results show that t has a major impact on the running time of SkeTcHREFINE, but almost no impact on the
approximation ratio. Direct can be an order of magnitude faster than Direct with proper tuning of t.
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partitioning to limit the size of each partition, to study its
effects on the query response time and the approximation
ratio of SKETCHREFINE. In all cases, along the lines of the
previous experiments, we do not enforce diameter condi-
tions. Figure 7 show the results obtained on the Galaxy work-
load, using 30% of the original data. We vary t from higher
values corresponding to fewer but larger partitions, on the
left-hand size of the x-axis, to lower values, corresponding to
more but smaller partitions. When DIRECT is able to pro-
duce a solution, we also report its running time (horizontal
line) as a baseline for comparison.

The results show that the partition size threshold has a
major impact on the execution time of SKETCHREFINE, with
extreme values of 1 (either too low or too high) often resulting
in slower running times than DIRECT. With bigger partitions,
on the left-hand side of the x-axis, SKETCHREFINE takes about
the same time as DIRECT because both algorithms solve prob-
lems of comparable size. When the size of each partition starts
to decrease, moving from left to right on the x-axis, the
response time of SKETCHREFINE decreases rapidly, reaching
about an order of magnitude improvement with respect to
DIRECT. Most of the queries show that there is a “sweet spot”
at which the response time is the lowest: when all partitions
are small, and there are not too many of them. This point is
consistent across different queries, showing that it only
depends on the input data size. After that point, although the
partitions become smaller, the number of partitions starts to
increase significantly. This increase has two negative effects: it
increases the number of representative tuples, and thus the
size and complexity of the initial SKETCH query, and it
increases the number of groups that REFINE may need to
refine to construct the final package. This causes the running
time of SKETCHREFINE, on the right-hand side of the x-axis, to
increase again and reach or surpass the running time of
DIRECT. The mean and median approximation ratios are in all
cases very close to one, indicating that SKETCHREFINE retains
very good quality regardless of the partition size threshold.

6. CONCLUSION AND FUTURE WORK

We introduced a complete system that supports the declarative
specification and efficient evaluation of package queries. We
presented PaQL, a declarative extension to SQL, and we devel-
oped a flexible approximation method, with strong theoretical
guarantees, for the evaluation of PaQL queries on large-scale
datasets. Our experiments on real-world data demonstrate that
our scalable evaluation strategy is effective and efficient over
varied data sizes and queries. We have further extended our
techniques and experimental evaluation and placed our
research in the context of related work."

Our work so far focused on deterministic package queries,
but many applications of constrained optimization require sup-
port for uncertainty: airline fleet scheduling has uncertain pas-
senger demands, or investment portfolio optimization deals
with uncertain returns and risks, etc. We are currently working
on extending our system to support optimization of the
expected value of an objective function subject to expectation
constraints of the form E(SUM(x)) > b, or probabilistic con-
straints of the form SUM(x) > b WITH PROBABILITY > 95%. The
challenge is to ensure robust optimal solutions, computed
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efficiently, that behave well under the many possible realiza-
tions of the uncertain data.

Another open problem is to efficiently handle incremental
package queries to enable user-facing, interactive constrained
optimization applications such as vacation planning. Rather
than calling the solver for each incremental query variation
from scratch, we are exploring the use of efficient database
techniques, such as top-k querying, to provide faster, albeit
approximate, solutions for interactive applications.
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