
What Method to Use for Protein-Protein Docking?

Kathryn A. Porter1†, Israel Desta1†, Dima Kozakov2,3, and Sandor Vajda1,4

A number of well-established servers perform “free” docking of proteins of known structures.  In 

contrast, template-based docking can start from sequences if structures are available for 

complexes that are homologous to the target. Based on the results of the CAPRI-CASP 

structure prediction experiments, template-based methods yield more accurate predictions if 

good templates can be found, but generally fail without such templates. However, free global 

docking, or focused docking around even poor quality template-based models, can still generate 

acceptable docked structures in these cases.  Based on the analysis of a benchmark set, free 

docking of heterodimers yields acceptable or better predictions in the top 10 models for around 

40% of structures. However, it is likely that a combination of template-based and free docking 

methods can perform better for targets that have template structures available. Another way of 

improving the reliability of predictions is adding experimental information as restraints, an option 

built into several docking servers. 
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Computing the structures of protein complexes has been one of the central but challenging 

problems in computational structural biology [1]. Even for relatively rigid proteins it is difficult to 

explore the 6D rotational-conformational space of mutual orientations potentially sampled by a 

pair of proteins as they interact through complementary patches on their surfaces. Predicting 

the association of proteins is further complicated by flexibility. Proteins are not static objects; 

they constantly interconvert between conformers of varying energies [1]. 

In spite of the complexity of the problem, a variety of docking methods, including some easy-to-

use servers, are currently available for predicting the structures of protein-protein complexes.  

The choice of the method used depends on the nature of the docking problem. “Free” docking 

methods can be used if X-ray structures are available for all proteins to be docked or for their 

very close homologs. However, the number of structures of protein complexes has been 

increased in the Protein Data Bank (PDB). Knowledge of complex structures makes prediction 

of related protein complexes amenable to template-based and homology modeling methods, 

even when the structures of component proteins are not available (Figure 1). 

In this review we highlight four observations that we think are relevant to choosing the best 

method for predicting the structure of a protein-protein complex. First, we investigate the 

performance of some of the best known and frequently used “free” docking methods that have 

been tested on the latest update of a widely used protein-protein docking benchmark [2] and in 

the latest rounds of the CAPRI (Critical Assessment of Predicted Interactions) community-wide 

protein docking experiment [3]. We also assess the impact of a machine learning-based ranking 

algorithm on prediction quality. Second, we discuss the shift toward template-based docking, The Trial Version



primarily considering the prediction of homo-oligomers, by looking at the results of the latest 

structure prediction experiments called CASP11-CAPRI [4], and  CASP12-CAPRI [5]. Third, we 

investigate the combination of template-based and free docking algorithms. As will be shown, 

template-based methods usually yield higher quality predictions if good templates are available, 

which is frequently the case for homo-oligomeric targets. However, free docking is still useful if 

no good templates can be found. We also suggest that, depending on template quality, 

switching between template-based and free methods is likely to be useful for predicting the 

structures of hetero-oligomers, as it has already been implemented in some docking servers 

[6,7]. Fourth, we emphasize the role of additional information from site-directed mutagenesis, 

cross-linking, SAXS, and other experiments for improving the reliability of docking results.

Testing free docking methods on a recent benchmark

The protein-protein benchmark set, collected by the Weng lab [8-11], has become well 

established for testing docking methods. The benchmark consists of non-redundant, high-quality 

structures of protein–protein complexes along with the unbound structures of their components. 

The most recent addition includes fifty-five new complexes, creating Version 5 of the 

benchmark, which now contains 230 entries. The developers of Version 5 also tested four “free” 

docking servers, ZDOCK [12], pyDock [13], SwarmDock [14,15], and HADDOCK (High 

Ambiguity Driven DOCKing) [16,17]. ZDOCK [12] and pyDock [13] are rigid-body docking 

algorithms based on the use of fast Fourier transforms (FFTs), with pyDock built on the earlier 

FTDock method [18]. SwarmDock [14,15]  is a flexible docking method which uses a population-

based memetic algorithm to optimize parameters characterizing the orientation, position, and 

conformations of protein subunits. The algorithm combines a modified particle swarm 

optimization global search to identify broad low-energy regions of parameter space, and an 

adaptive local search for refinement. HADDOCK [16,17] is a semi-flexible docking protocol 

which uses experimental information and bioinformatics interface predictions to drive docking. 
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Conformational changes are accounted for through simulated annealing and flexible explicit 

solvent refinement [19]. The performance of the programs was evaluated using the criteria 

established by the evaluation team of the CAPRI docking experiment [3] and essentially 

implemented in the DockQ program [20]. Overall the success rates (at least one acceptable 

prediction for a benchmark case) ranged between 5% and 16% in the top 1 prediction and 20–

38% in the top 10 predictions. The performances of the different docking algorithms were similar 

and correlated with each other [2], with SwarmDock providing the best results, closely followed 

by ZDOCK and the other two servers. 

Three of the above servers, i.e., ZDOCK [12], pyDock [13], and SwarmDock [14,15], plus the 

SDOCK program [21] were more recently improved by adding the rescoring scheme called 

IRaPPA (Integrative Ranking of Protein–Protein Assemblies) [22]. IRaPPA characterizes decoys 

using physicochemical descriptors, calculated by the server CCharPPI [23], and combines a 

large selection of metrics using ranking support vector machines (R-SVMs) to obtain a 

consensus ranking by a voting method [22]. Models were trained using complexes from 

Benchmark 4 [11], and the method was evaluated for its ability to select near-native solutions 

using the new complexes added in Benchmark 5 [2]. All methods substantially improved [22], 

and the new SwarmDock version (called “democratic” due to the voting scheme used for the 

ranking) remained the best performer [22]. We were able to run the server on 51 of the 55 

targets added to Benchmark 5 (see Figure 2), and obtained the success rates 23.5%, 35.3%, 

and 43.1%, respectively, in the top 1, top 5, and top 10 predictions. These numbers are close to 

the ones reported in the IRaPPA paper [22] for the top 1 and top 10 predictions.

We also tested our protein docking server ClusPro [24] by predicting the structures of the 

complexes added in Benchmark 5 [2]. ClusPro uses the FFT-based program PIPER [25], but 

substantially differs from ZDOCK and pyDOCK because the 1000 lowest energy structures 

generated by PIPER are clustered using pairwise RMSD as the distance measure, and centers 
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of the  largest clusters rather than the lowest energy structures are selected as the most likely 

models of the complex [24,26]. We used the standard electrostatics-favored ClusPro parameter 

set for enzyme-inhibitor and “other” type of complexes [24], and the antibody parameterization 

for antibody-antigen pairs [27] without further training, and obtained acceptable models for  

13.7%, 37.3%, and 45.1% of the complexes in the top 1, top 5 and top 10 predictions. According 

to these results, ClusPro obtained acceptable solution for one more target and thus performed 

slightly better than the “democratic” SwarmDock server in the top 10 predictions (45.1% versus 

43.1%) and in the top 5 predictions (37.3% versus 35.3%), but its success rate was substantially 

worse in the top 1 predictions (13.7% versus 23.5%) (Figure 2). Thus, while ClusPro remains 

competitive with the other docking programs if the top 5 or top 10 models are considered, which 

are the usual evaluation methods in CAPRI, the machine learning-based scoring function 

IRaPPA improved the discrimination of near-native docked structures. However, the cost of 

descriptor calculations for IRaPPA greatly increases the computation time when compared to 

standard docking runs [22].  In addition, further testing in CAPRI and other prediction 

experiments are needed in order to detect potential overtraining that can occur in machine 

learning with relatively small training sets. We note that a recent analysis found ClusPro more 

stable than other methods for docking unbound protein structures [28], most likely due to the 

final selection based on cluster size rather than scoring function value [29]. 

Comments on results of the latest CAPRI experiment

At the 6th meeting of the CAPRI (Critical Assessment of Predicted Interactions) community-wide 

protein docking experiment predictions were evaluated for 12 protein-protein complexes [3]. The 

five best performing servers were the already discussed ClusPro, SwarmDock, HADDOCK, and 

PyDock, plus the server LzerD [30]. LZerD uses 3D Zernike descriptors based on a 

mathematical series expansion of the protein surface. The best “human” predictor group of 

Guerois used the InterEvDock program that was recently developed into a server [6,31]. The 
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newest version, InterEvDock2, also performs automatic template-based docking, and thus can 

be used without structural information on the input proteins [6]. The server was extensively 

tested but not on the Weng benchmark set [2], and hence its performance cannot be directly 

compared to that of the other servers discussed here. The best success rates (acceptable or 

better in the top 10 predictions) at CAPRI6 were 41.66% and 58.33%, respectively, for servers 

and the Guerois group [3].

Shifting toward template-based docking: The CASP-CAPRI experiments

Focus on template-based methods substantially increased by the addition of protein complex 

prediction to the CASP (Critical Assessment of Techniques for Protein Structure Prediction) 

experiment [4,5], because the predictions had to be based on sequences rather than structures. 

The targets in CASP11-CAPRI included 23 homo-oligomers (18 dimers and 5 tetramers), and 2 

heterodimers [4]. The best “human” predictors used template-based methods and submitted 15 

or 16 acceptable models. The best servers, HADDOCK and ClusPro, also had to use template-

based models, but the final predictions came from re-docking, similarly resulting in 16 

acceptable models [17]. However, the purely template-based methods yielded 12 to 14 medium 

quality models, whereas only 8 or 9 such models were obtained by servers that used the 

combined approach.  In CASP12-CAPRI the targets were 12 homo-oligomers (3 dimers, 6 

trimers, and 3 tetramers), and 3 hetero-complexes (2 dimers and 1 tetramer). Among these, 5 

homo-oligomers and one heterodimer were considered easy targets, with good templates 

available in the PDB. Accordingly, the best template-based predictors submitted 6 acceptable or 

better predictions. In addition, one docking group (Grudinin) and the ClusPro server also 

obtained acceptable predictions for one heterodimer. However, the purely template-based 

methods again produced a substantially higher number of medium quality models for the other 6 

targets with good templates.
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It is now clear that CASP11-CAPRI and CASP12-CAPRI together had only 15 targets that are 

validated homodimers with structures available in the PDB (Table 1). Among these targets 12 

were considered easy, whereas three (T72, T86, and T116) were difficult due to the lack of 

good templates [4,5]. We attempted to identify templates for all these targets using HHPred [32] 

with default settings and built homology models of the dimers using MODELLER [33] from the 

templates found. The monomers from the template-based models were submitted for global and 

focused docking using ClusPro, where focused docking means restricting the conformational 

search to a box around the template-based model. Table 1 shows the numbers of acceptable or 

better and medium quality or better models derived using the three different protocols. 

Template-based modeling yielded acceptable or medium quality models for all easy targets. 

Subsequent global docking of the models substantially reduced the number of medium quality 

models (from 32 to 10). No template-based models were generated for any of the 3 difficult 

targets, but subsequent global docking yielded an acceptable model for T72. Focused docking 

retained only the structures that had their geometric centers within a box with 3Å sides around 

the center of the ligand in the template-based model. This strategy increased the number of 

acceptable predictions, but reduced the number of medium quality ones (from 32 to 22).

As shown above, docking of monomers from the template-based models generally does not 

improve accuracy, but can add acceptable models if the templates are not very good. The 

problem is that determining template quality is not always simple. A recent case in CASP13-

CAPRI, T137, which was canceled due to an early release of its crystal complex (pdb 6d2v) 

demonstrated this difficulty.  When the target sequence was submitted to HHPred, the top 10 

homodimer templates produced high probabilities (> 0.95). Homology models generated from 

these templates all agreed in their general predicted interface. While these findings suggested 

that the templates were most likely good, all had less than < 22% sequence identity with the 

target. Comparison to the X-ray structure revealed that none of the predicted models were 
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acceptable. However, focused docking around these models was able to generate several 

acceptable predictions from five of the 10 templates. 

Template-based modeling of heterodimers

Since almost all targets in CASP-CAPRI were homo-oligomers, it is interesting to explore how 

the template-based approach would work for heterodimers. We considered the already 

discussed 55 complexes added in Version 5 of the benchmark [2], ran HHPred with default 

settings on each chain, and then checked for matching templates. Since HHpred recommends 

investigating any templates with a probability of 50% or greater, this threshold was used for 

filtering. Templates released after the target complex release date were removed. Even with the 

very permissive acceptance condition of 50%, no templates were found for 26 of the 55 targets. 

The remaining 29 targets had templates, in 21 cases more than one. While we did not further 

study the quality of these templates, based on the results shown above it is likely that their 

availability would improve the quality of docking results for some of the 29 targets. Next, we 

checked how free docking (specifically the ClusPro server) performs for the 26 targets without 

any acceptable template that would be thus considered difficult for template-based docking. 

Results have shown that free docking is still very useful for heterodimers as it provided 

acceptable or better models in the top 10 ClusPro predictions for 10 of 26 targets (38.4%). The 

best results were obtained for antibody-antigen complexes (5 out of 6), followed by enzyme-

inhibitor pairs (4 out of 8). Docking complexes in the “others” category [2] was less successful, 

with acceptable models only for a single target. Therefore, an approach combining template-

based docking for targets with good templates and free docking to the rest would likely increase 

the overall success rate beyond the roughly 40% that was seen for free docking applied to all 

targets. However, it is not yet clear what fraction of hetero-oligomers have acceptable targets in 

general. While for the set considered here this fraction is 47% (26/55), Kundrotas et al. [34] 

suggest that it can be substantially higher, although they also note that only about one-third of 
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these templates are of good quality. According to Mosca et al., the availability of good templates 

also depends on the organism [35], but is generally below 20% of all complexes. 

Docking with additional information

Free docking generates a large ensemble of potential conformations (Figure 1), but selecting 

near-native ones is frequently difficult due to the moderate accuracy of scoring functions [29].  

This second step can be substantially improved by accounting for prior experimental 

information, even when the latter is fairly limited. For example, selection of the interface can be 

facilitated by results from site-directed mutagenesis experiments, whereas cross-linking yields 

direct distance restraints. The HADDOCK program and server explicitly employs such 

information based on biochemical/biophysical interaction data to drive the docking process [16]. 

Other docking servers, including ClusPro [36], ZDOCK [37], and pyDock [38] were more 

recently enhanced to take advantage of such restraints. Another source of information, 

increasingly used in docking, is small angle X-ray scattering (SAXS). Accordingly, SAXS data 

can be directly incorporated into docking by several servers, including HADDOCK [39], pyDock 

[40], and ClusPro [41]. For ClusPro an ultra-fast filtering implementation of the approach is also 

available [42]. 

Conclusions

As demonstrated by validation on a recent benchmark, the best “free” docking servers find 

acceptable models among the top 10 predictions for around 40% of the targets. Re-ranking the 

predictions by a machine learning-based scoring method increased the number of near-native 

structures among the top 1 predictions from about 10% to over 20%. The inclusion of docking in 

the joint CASP-CAPRI experiments has led to increased visibility for template-based methods 

utilizing homology modeling of the complexes. Indeed, if good templates are available, 

template-based docking produces substantially higher quality predictions than free docking. 
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However, free docking is still needed if no good templates are available, and it also offers an 

opportunity to include prior information to enhance the quality of predictions. Most targets in 

CASP-CAPRI experiments were homo-oligomers with good templates, and hence the results 

provided limited information for directly comparing template-based and free docking. Therefore 

we tested the availability of templates for the 55 heterodimer targets added to the well-

established protein docking benchmark set, and found that no templates were available for 

almost 50% of the complexes. Free docking applied to these targets revealed acceptable or 

better models for about 40% of these complexes without templates. Thus, template-based 

docking of targets with good templates and free docking the targets with only poor or no 

templates is likely to increase the success rates beyond 40%. At this point the only other way to 

improve the reliability of docking results is to account for experimental information which 

provides additional restraints, an option already included in several well-known docking servers. 
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Captions to Figures
Figure 1. General comparison of template-based and free docking methods for an example 

heterodimer target. (a) A template-based method begins with the target sequences, using a 

template search to identify an existing heterodimer template from the PDB (Protein Data Bank). 

Homology modeling is used to map the target sequence onto the template structure. The model 

is refined to its final form.  (b) In free docking the two components must be individually 

crystallized. Billions of protein conformations are evaluated, often through the use of an FFT-

based algorithm. Final models of the heterodimer are ranked and minimized. 

Figure 2. Comparison of ClusPro and the “democratic” SwarmDock servers on their prediction 

accuracy of 51 targets added to Benchmark 5. Four of the 55 targets in the benchmark were not 

included since either ClusPro or SwarmDock were not able to yield results. 
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Table 1. Number of models by template-based docking (A),  
global free docking (B), and focused free docking (C). 

CAPRI ID PDB ID A B C
T69 4Q34 1* 1* 1*
T72 4Q69 0 1* 0
T75 4Q9A 3*/2** 2* 3*/2**
T79 5A49 2*/2** 2* 2*/2**
T80 4PIW 10*/6** 10*/1** 10*/3**
T85 4WJI 8*/5** 8*/3** 8*/4**
T86 4U13 0 0 0
T87 4WBT 9*/4** 9* 9*/2**
T90 4XAU 10*/4** 10*/3** 8*/3**
T91 4URJ 6*/2** 4* 5*/1**
T92 4W66 2* 3* 10*
T93 4XRR 8*/5** 9*/2** 8*/3**
T94 4W9R 1* 0 1*
T116 5IDJ 0 0 0
T119 5YVS 9*/2** 9*/1** 8*/2**

TOTAL 69*/32** 68*/10** 73*/22**
*  Acceptable or better predictions
** Medium or better predictions
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