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Mapping
global protein
contacts

Genome-scale coevolution
experiments expand bacterial
protein interactomes

By Sandor Vajda and Andrew Emili

he divergence of orthologous protein
sequences across evolutionary lineages
can be used to pinpoint possible con-
tacts at specific amino acids by exploit-
ing the tendency for compensating
mutations to coevolve at interacting
positions within proteins (). This coevolu-
tionary approach has galvanized the vast
improvement in protein-structure prediction
over the past two decades (2). It has also been
used to locate contact points between pairs
of interacting proteins (3), which can serve
as distance restraints for high-quality mod-
els of multiprotein complexes by structural
docking (4). On page xx of this issue, Cong
et al. (5) use this method to explore potential
interactions among all Escherichia coli and
Mycobacterium tuberculosis proteins and
thus enhance knowledge of bacterial protein
interaction networks (interactomes).
Because macromolecular complexes drive
most biological processes, elucidating the un-
derlying networks of physically interacting
proteins is key to understanding the molecu-
lar machinery of a cell. Protein-protein inter-
actions have been investigated traditionally
by labor-intensive experimental methods, ap-
plied separately to a small set of potentially
interacting protein targets. Starting with mi-
crobes, scientists began to construct larger
networks by performing large-scale analyses
based on yeast two-hybrid (Y2H) screens (6)
or affinity purification of protein complexes
coupled to mass spectrometry identification
(APMS) (7). However, such high-throughput
approaches can miss certain interactions or
yield spurious ones, and are limited to organ-
isms in which molecular techniques such as
gene manipulation are possible (8). To im-
prove the coverage and reliability of micro-
bial interaction networks, researchers have
tried to incorporate knowledge of functional
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relatedness, such as the closeness of bacterial
genes (membership in operons) or similari-
ties in phylogenetic profiles, but such integra-
tive scoring approaches can lead to bias (9).
Given the need to enhance the scope and
quality of protein interaction networks, the
use of coevolutionary information on a ge-
nome scale represents a game-changing
addition; it is also a tremendous challenge.
Indeed, it is difficult to find true evolution-
ary covariation between residues for a single
protein because one must minimize the ef-
fect of transitive (false-positive) correlations;
these can be observed, for example, when two
amino acid residues contact the same third
residue but do not contact each other. Tran-
sitive correlation can be removed by global

et al. performed a prescreen based on a less
computationally demanding analysis of resi-
due-residue correlations. Still, close to a mil-
lion potentially interacting pairs remained
to be scrutinized with both direct coupling
analysis (70) and GREMLIN to rank higher-
likelihood candidate protein pairs based on
the number of predicted residue couplings.
The authors selected the top 21,816 protein
pairs from the ranked list and built protein-
protein complexes by computational model-
ing, using the predicted contacts as distance
restraints for docking.

Restricting considerations to complexes
that displayed the predicted contacts within
the putative protein-protein interface re-
duced the number of protein pairs to 804.

existing experimental methods. One poten-
tial caveat is that APMS studies report co-
complexes, rather than binary interactions.

By exploiting coevolution, Cong et al.
boosted interactome coverage while lever-
aging existing bacterial protein-interaction
data. In this way, their approach is comple-
mentary to experimental ones. In E. coli, only
24.7% of the strongly coevolving 1618 pairs
are new or unexpected. In fact, 936 interac-
tions were reported previously, homologous
templates in the Protein Data Bank (PDB) ex-
ist for a further 126 pairs, and 156 pairs have
genomic associations. These results increase
confidence in the coevolution approach.

The results for M. tuberculosis are more
informative. Of the 667 predicted pairs, only

From protein pairs to complex interaction networks
With the method shown below, co-evolutionary analyses of amino-acid contacts in E. coli protein pairs can unearth new interprotein contacts that serve to expand
protein interaction networks. The multiple sequence alignment shown in the "Analyze" step is for a hypothetical E. coli protein and its orthologs (blue rectangles) and
a potentially interacting partner from the same organisms (gray rectangles). Red boxes indicate interprotein contacts predicted by GREMLIN.
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statistical approaches involving either direct
coupling analysis (10), pseudo-likelihood op-
timization (1), or machine learning (12).
Cong et al. used GREMLIN, a pseudo-like-
lihood method they offer as a public server
(13). As with most evolutionary tools, GREM-
LIN starts with multiple sequence alignment
of all available orthologs for a target protein.
The method is based on constructing a para-
metric model that generates the observed
sequences with the highest probability. How-
ever, estimating the parameters of an exact
model is computationally intractable; hence,
GREMLIN optimizes a pseudo-likelihood
function to reduce unlikely couplings early in
the search and requires sequences of ortho-
logs across a large number of diverse organ-
isms. Cong et al. adapted their approach to
one used to determine interprotein contacts,
alignments of ho-
bwn to interact (4).
et al. is their inves-
a whole-proteome
pped across more
prial genomes. To
understand the challenge, consider that E.
coli lab strains express ~4262 proteins, with
more than 9 million potentially interacting
protein pairs. To lessen the complexity, Cong
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— Construct multisequence alignments with
orthologs; use co-evolutionary analyses to
find coupled amino acid

Build protein complexes
—»  Use predicted amino acid
contacts (in red) as restraints

This is a substantial gain relative to existing
experimental datasets (74), but falls far short
of the putative bacterial interactome. Under-
representation was especially pronounced for
less widely conserved assemblies and multi-
protein complexes. As with previous data-
filtering strategies, Cong et al’s multistep
algorithm eliminated potential interactions
that would have been considered meaning-
ful in later steps of the search. To reduce the
number of false negatives, the authors intro-
duced, into the later stages of their analysis,
protein pairs reported in previous experi-
mental studies or known to be expressed by
the same operon, thus arriving at 1618 pairs.

False-positive predictions can also be sub-
stantial. In fact, paralogs that do not interact
can show strong coevolution. The authors
attempted to minimize this uncertainty by
eliminating proteins that show nonspecific
coevolution with many other proteins, but
also conducted independent validation exper-
iments. They compared co-evolution-based
interaction predictions with those inferred
from high-throughput Y2H and APMS stud-
ies relative to structure-based benchmarks
derived from x-ray and cryo-electron micros-
copy analyses of E. coli protein assemblies.
The coevolution-based screen outperformed
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203 (30.4%) are supported by homologous
templates in the PDB or were reported pre-
viously. Thus, the most notable advances of
Cong et al. may be the potential to map the
binary protein interfaces and global inter-
action networks of bacterial pathogens and
study how the core protein interactomes
have evolved across microbial species. Adapt-
ing this approach to eukaryotic networks rep-
resents a formidable future challenge.
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