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ity that causes side effects, and to improve 
CAR-driven antitumor efficacy, are being ex-
plored (12). The conceptual innovation of the 
approach taken by Ma et al. is to bypass the 
major histocompatibility complexes (MHCs) 
that present antigens to TCRs needed for tra-
ditional vaccine responses, while preserving 
the immune stimulation provided by vac-
cination. Another conceptual innovation of 
this approach is that it uses the CAR not only 
for tumor targeting but also as a machine to 
enhance T cell activity, demonstrating that 
this chimeric molecule may have multifunc-
tionality. Exploring how these synthetic CAR 
molecules can be used more efficiently, effec-
tively, and creatively will open doors to new 
therapeutic platforms.

The principal limitation of the study of Ma 
et al. is the unknown ability of this strategy 
to boost CAR–T cells in humans. The primary 
toxicity of CAR–T cells has been cytokine re-
lease syndrome, a systemic inflammatory dis-
order resulting from CAR–T cell activation, 
which is more exaggerated in humans than 
in mice. Their innovative approach avoids 
systemic expression of the surrogate CAR tar-
get (i.e., FITC) on vital cells or organs such as 
the brain or liver. However, whether polymer-
antigen expression will be limited to APCs in 
humans, particularly after extensive chemo-
therapy and/or radiotherapy, which may alter 
constitutive antigen presentation, remains to 
be learned.

A notable finding from the work of Ma 
et al. is that boosting CAR–T cell effector 
function did not result in detectable injury 

to antigen-expressing lymph node tissues. 
Paradoxically, this suggests that CAR–T cells 
can be stimulated by APCs without killing 
them, while the CAR–T cells retain the abil-
ity to kill antigen-expressing tumor cells. If 
confirmed, this flexibility has not previously 
been demonstrated by CAR–T cells, which 
are MHC independent and thus may not be 
subject to the same regulatory signals as en-
dogenous T cells. Additionally, vaccine boost-
ing of CAR–T cells resulted in activation of 
endogenous T cells and the development of 
CAR-independent immune memory to other 
tumor antigens. Understanding how adop-
tively transferred CAR–T cells interact with 
the endogenous immune system to promote 
such epitope spreading is important, and 

strategies that combine CAR–T cells with 
vaccines may open a critical window of coop-
eration between synthetic and natural anti-
cancer immunity. j
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T
he divergence of orthologous protein 
sequences across evolutionary lineages 
can be used to pinpoint possible con-
tacts at specific amino acids by exploit-
ing the tendency for compensating 
mutations to coevolve at interacting 

positions within proteins (1). This coevolu-
tionary approach has galvanized the vast 
improvement in protein-structure prediction 
over the past two decades (2).  It has also been 
used to locate contact points between pairs 
of interacting proteins (3), which can serve 
as distance restraints for high-quality mod-
els of multiprotein complexes by structural 
docking (4). On page xx of this issue, Cong 
et al. (5) use this method to explore potential 
interactions among all Escherichia coli and 
Mycobacterium tuberculosis proteins and 
thus enhance knowledge of bacterial protein 
interaction networks (interactomes).

Because macromolecular complexes drive 
most biological processes, elucidating the un-
derlying networks of physically interacting 
proteins is key to understanding the molecu-
lar machinery of a cell. Protein-protein inter-
actions have been investigated traditionally 
by labor-intensive experimental methods, ap-
plied separately to a small set of potentially 
interacting protein targets. Starting with mi-
crobes, scientists began to construct larger 
networks by performing large-scale analyses 
based on yeast two-hybrid (Y2H) screens (6) 
or affinity purification of protein complexes 
coupled to mass spectrometry identification 
(APMS) (7). However, such high-throughput 
approaches can miss certain interactions or 
yield spurious ones, and are limited to organ-
isms in which molecular techniques such as 
gene manipulation are possible (8). To im-
prove the coverage and reliability of micro-
bial interaction networks, researchers have 
tried to incorporate knowledge of functional 
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relatedness, such as the closeness of bacterial 
genes (membership in operons) or similari-
ties in phylogenetic profiles, but such integra-
tive scoring approaches can lead to bias (9).

Given the need to enhance the scope and 
quality of protein interaction networks, the 
use of coevolutionary information on a ge-
nome scale represents a game-changing 
addition; it is also a tremendous challenge. 
Indeed, it is difficult to find true evolution-
ary covariation between residues for a single 
protein because one must minimize the ef-
fect of transitive (false-positive) correlations; 
these can be observed, for example, when two 
amino acid residues contact the same third 
residue but do not contact each other. Tran-
sitive correlation can be removed by global 

statistical approaches involving either direct 
coupling analysis (10), pseudo-likelihood op-
timization (11), or machine learning (12).

Cong et al. used GREMLIN, a pseudo-like-
lihood method they offer as a public server 
(13). As with most evolutionary tools, GREM-
LIN starts with multiple sequence alignment 
of all available orthologs for a target protein. 
The method is based on constructing a para-
metric model that generates the observed 
sequences with the highest probability. How-
ever, estimating the parameters of an exact 
model is computationally intractable; hence, 
GREMLIN optimizes a pseudo-likelihood 
function to reduce unlikely couplings early in 
the search and requires sequences of ortho-
logs across a large number of diverse organ-
isms. Cong et al. adapted their approach to 
one used to determine interprotein contacts, 
which requires large joint alignments of ho-
mologous protein pairs known to interact (4).

The innovation of Cong et al. is their inves-
tigation of coevolution on a whole-proteome 
scale using orthologs mapped across more 
than 40,000 known bacterial genomes. To 
understand the challenge, consider that E. 
coli lab strains express ~4262 proteins, with 
more than 9 million potentially interacting 
protein pairs. To lessen the complexity, Cong 

et al. performed a prescreen based on a less 
computationally demanding analysis of resi-
due-residue correlations. Still, close to a mil-
lion potentially interacting pairs remained 
to be scrutinized with both direct coupling 
analysis (10) and GREMLIN to rank higher-
likelihood candidate protein pairs based on 
the number of predicted residue couplings. 
The authors selected the top 21,816 protein 
pairs from the ranked list and built protein-
protein complexes by computational model-
ing, using the predicted contacts as distance 
restraints for docking.

Restricting considerations to complexes 
that displayed the predicted contacts within 
the putative protein-protein interface re-
duced the number of protein pairs to 804. 

This is a substantial gain relative to existing 
experimental datasets (14), but falls far short 
of the putative bacterial interactome. Under-
representation was especially pronounced for 
less widely conserved assemblies and multi-
protein complexes. As with previous data-
filtering strategies, Cong et al.’s multistep 
algorithm eliminated potential interactions 
that would have been considered meaning-
ful in later steps of the search. To reduce the 
number of false negatives, the authors intro-
duced, into the later stages of their analysis, 
protein pairs reported in previous experi-
mental studies or known to be expressed by 
the same operon, thus arriving at 1618 pairs.

False-positive predictions can also be sub-
stantial. In fact, paralogs that do not interact 
can show strong coevolution. The authors 
attempted to minimize this uncertainty by 
eliminating proteins that show nonspecific 
coevolution with many other proteins, but 
also conducted independent validation exper-
iments. They compared co-evolution-based 
interaction predictions with those inferred 
from high-throughput Y2H and APMS stud-
ies relative to structure-based benchmarks 
derived from x-ray and cryo–electron micros-
copy analyses of E. coli protein assemblies. 
The coevolution-based screen outperformed 

existing experimental methods. One poten-
tial caveat is that APMS studies report co-
complexes, rather than binary interactions.

By exploiting coevolution, Cong et al. 
boosted interactome coverage while lever-
aging existing bacterial protein–interaction 
data. In this way, their approach is comple-
mentary to experimental ones. In E. coli, only 
24.7% of the strongly coevolving 1618 pairs 
are new or unexpected. In fact, 936 interac-
tions were reported previously, homologous 
templates in the Protein Data Bank (PDB) ex-
ist for a further 126 pairs, and 156 pairs have 
genomic associations. These results increase 
confidence in the coevolution approach. 

The results for M. tuberculosis are more 
informative. Of the 667 predicted pairs, only 

203 (30.4%) are supported by homologous 
templates in the PDB or were reported pre-
viously. Thus, the most notable advances of 
Cong et al. may be the potential to map the 
binary protein interfaces and global inter-
action networks of bacterial pathogens and 
study how the core protein interactomes 
have evolved across microbial species. Adapt-
ing this approach to eukaryotic networks rep-
resents a formidable future challenge. j
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From protein pairs to complex interaction networks
With the method shown below, co-evolutionary analyses of amino-acid contacts in E. coli protein pairs can unearth new interprotein contacts that serve to expand 
protein interaction networks. The multiple sequence alignment shown in the "Analyze" step is for a hypothetical E. coli protein and its orthologs (blue rectangles) and 
a potentially interacting partner from the same organisms (gray rectangles). Red boxes indicate interprotein contacts predicted by GREMLIN. 
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Chart
Add validated interactions (red) to an 
E.coli interaction network with 
previously known contacts (black)
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