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Abstract—Fog computing has been advocated as an enabling
technology for computationally intensive services in connected
smart vehicles. Most existing works focus on analyzing and opti-
mizing the queueing and workload processing latencies, ignoring
the fact that the access latency between vehicles and fog/cloud
servers can sometimes dominate the end-to-end service latency.
This motivates the work in this paper, where we report a five-
month urban measurement study of the wireless access latency
between a connected vehicle and a fog computing system sup-
ported by commercially available multi-operator LTE networks.
We propose AdaptiveFog, a novel framework for autonomous
and dynamic switching between different LTE operators that
implement fog/cloud infrastructure. The main objective here is
to maximize the service confidence level, defined as the probability
that the tolerable latency threshold for each supported type of
service can be guaranteed. AdaptiveFog has been implemented
on a smart phone app, running on a moving vehicle. The app
periodically measures the round-trip time between the vehicle
and fog/cloud servers. An empirical spatial statistic model is
established to characterize the spatial variation of the latency
across the main driving routes of the city. To quantify the perfor-
mance difference between different LTE networks, we introduce
the weighted Kantorovich-Rubinstein (K-R) distance. An optimal
policy is derived for the vehicle to dynamically switch between
LTE operators’ networks while driving. Extensive analysis and
simulation are performed based on our latency measurement
dataset. Our results show that AdaptiveFog achieves around 30%
and 50% improvement in the confidence level of fog and cloud
latency, respectively.

Index Terms—Fog computing, LTE, cloud computing, con-
nected vehicle, low-latency, measurement study.

I. INTRODUCTION

Low-latency, reliable communications, and processing are

critical to newly emerging smart vehicular services such as

congestion avoidance, accident prevention and active control

intervention, autonomous driving, and intelligent driver assis-

tance (e.g., route computation, searchable maps, etc.). Due

to the limit of space, energy supply, processing and storage

capabilities of the in-vehicle computer, connected smart vehi-

cles supported by high-performance cloud data centers (CDCs)

for data storage (e.g., high-definition map) and processing

has been recently promoted by various industry consortiums

and standardization bodies [1], [2]. The physical connectivity

between vehicles and the CDC may span several wireless and

wired links, each having its own traffic dynamics, medium

access mechanisms, connection intermittency, etc. As a result,

the end-to-end communication path may exhibit unacceptable

latency and connection unreliability. This makes a strong

case for seeking better solutions that are more suitable for

low-latency and high-availability services. Fog computing has

recently been introduced to enable network-edge computing,

thus reducing the end-to-end latency [3]. Supporting smart

vehicular applications via fog computing has the potential to

significantly reduce the communication latency and improve

service reliability [4], [5].

Fog computing-enhanced wireless system has recently been

advocated by mobile network operators (MNOs) as a way

to create new business opportunities, increase revenues, and

reduce costs. Major MNOs, including AT&T, Verizon, and

Deutsche Telekom have all announced plans to integrate fog

computing into their network infrastructure to support emerg-

ing applications such as robotic manufacturing, autonomous

cars, and augmented/virtual reality (AR/VR). LTE is readily

available to support high-speed low-latency wireless solutions

on a global scale, and therefore is in an excellent position

to push for the maturity and large-scale deployment of fog

computing. 3GPP recommends the round-trip-time (RTT) for

user equipments (UEs) across LTE networks to be kept as

low as 10 ms in optimal conditions [6], which is commonly

considered to be negligible compared to other elements of

latencies in the fog computing system such as processing

and queueing latency. Unfortunately, recent reports as well

as our own measurements suggest that the 10 ms latency

requirement is too challenging to be achieved by most existing

LTE networks. In fact, recent studies [7]–[9] observe that the

wireless connection between moving vehicles and the LTE

network can sometimes experience frequent disconnections,

retransmission, and high wireless access latency that dominate

the overall RTT between UEs and external servers at fog nodes

as well as CDCs.

While there have been numerous studies on the wireless

access latency throughout LTE networks, there is a noticeable

lack of a long-term systematic study of latency modeling and

optimization between moving vehicles and cloud/fog servers

for practical LTE systems. In fact, due to the geographically

varying network infrastructure deployment as well as different

requirements and traffic dynamics of vehicular services, mod-

eling and optimizing the latency in an LTE-based vehicular

system is quite difficult.

This paper empirically analyzes the latency performance

of vehicle-to-cloud/fog solutions for connected smart vehic-

ular systems in a multi-operator LTE system. We propose a

novel optimization framework, AdaptiveFog, for a vehicle to



dynamically switch between MNO networks that implement

fog and cloud services on the move. We develop a smart phone

app using Android API and place a Google Pixel 2 phone

installed with our developed app in a vehicle to run a five-

month measurement campaign on commercially available LTE

networks deployed by two major MNOs throughout the main

driving routes in a mid-sized city. These measurements are

used to evaluate the impact of handover, driving speed, MNO

network, fog/cloud server, and location on the service latency.

We observe that the spatial variation (over different locations)

of the latency performance across different MNO networks

can be much more significant than the temporal variations

(over different times of the day as well as days of the week).

Accordingly, we investigate the confidence level of various

connected vehicular service across a city-wide geographical

area. An empirical spatial statistic model is established using

the dataset collected in our campaign. We introduce the

weighted Kantorovich-Rubinstein (K-R) metric to quantify the

performance difference between MNO networks, taking into

consideration of the heterogeneity of the demands and prior-

ities of different services. We formulate the MNO selection

and server adaptation problem as a Markov decision process

and derive the optimal policy for a moving vehicle to switch

between different MNOs’ networks. Extensive simulations are

also conducted to evaluate the performance of AdaptiveFog.

Numerical results show that AdaptiveFog achieves around

30% and 50% improvement in the confidence level for fog

and cloud latency, respectively, especially when being applied

to vehicular applications with stringent latency requirement

(e.g., active road safety applications) in existing LTE systems.

II. RELATED WORK

The concept of the fog computing and its relation to other

similar concepts such as cloud and mobile edge computing

can be blurry in some contexts. For example, a cloud service

provider can also deploy smaller-scale cloud computing infras-

tructure, i.e., fog servers, in some areas. In this paper, we use

the term fog computing to refer to a generalized architecture

that includes cloud, edge, and clients [3]. We also use the term

fog node or fog server to denote the servers placed at the edge

of the network. We use the term cloud server to denote the

high-performance server installed at the CDC.

Fog Computing and Connected Vehicles: A fog node is

considered as a cost-effective yet resource-limited computa-

tional device, especially compared to the CDC. Therefore,

most existing works focus on developing new methods and

architectures to improve the utilization of fog resources with

reduced costs. For example, Tong et al. [10] proposed a

hierarchical architecture to improve the resource utilization

throughout a fog computing system. Yu et al. [11] consid-

ered the application provision problem with bandwidth and

delay requirements in a fog computing-enabled Internet-of-

Things (IoT) system. Garcia-Saavedra et al. [12] proposed

an analytical framework, called FluidRAN, that minimizes

the aggregated operator expenditure by optimizing the design

of the virtualized radio access network. Inaltekin et al. [13]

introduced an analytical framework to derive the optimal

location of the virtual controller for balancing latency and

reliability in a fog computing system.

Fog computing-supported connected vehicle has recently

been promoted by both industry and standardization bodies

as a key enabler for emerging smart vehicular applications,

such as intelligent driver-assistance and autonomous driving

[1], [14]. Premsankar et al. [4] studied the placement of edge

computing servers for vehicular applications. An effective

heuristic method was proposed to deploy fog servers based

on the knowledge of road traffic within each deployment area.

Lee et al. [15] proposed an in-kernel TCP scheduler to mitigate

the network latency of connected vehicles with redundant

transmission.

Performance Evaluation and Wireless Network Analysis:

There have been quite a few studies on the performance of

vehicular networks supported by a wireless infrastructure. For

instance, Bedogni et al. [16] analyzed a real-world GPS tra-

jectory dataset to investigate the temporal topology of vehicle-

to-vehicle (V2V) networks. In [5], Asadi et al. studied beam

selection for 5G mmWave-based vehicular-to-infrastructure

(V2I) communications. An online learning algorithm with

environment-awareness was developed and shown to approach

the near-optimal performance.

In [8], Hameed Mir et al. compared the performance of

IEEE 802.11p and LTE for vehicular networking using NS3

simulations. Simulation results show that LTE offers much

better network capacity and mobility support compared to

IEEE 802.11p. Xu et al. [9] conducted extensive real-world

testing for multiple smart vehicular application scenarios. The

results suggest that existing LTE systems are not recommended

for active road safety applications with high-data rate and real-

time requirements, such as collision avoidance. It is however,

sufficient to support non-safety applications including traffic

updates, file download, and Internet access. In [7], Hadzic et

al. investigated the latency between a fixed mobile station

and an LTE-based fog computing system. The authors con-

ducted both in-lab testing using an isolated base station with

controlled parameters as well as real-world evaluation on a

commercial LTE system. The results reveal that the wireless

connection between the UE and the base station introduces

irreducible and non-negligible latency for delay-sensitive fog

computing applications.

Our Contribution: To the best of our knowledge, this is

the first work that focuses on modeling and optimizing the

latency performance of LTE-based fog computing systems

based on a long-term city-wide measurement. We introduce

a novel distance metric, referred to as weighed K-R distance,

to quantify the difference of latency probability distributions

between different LTE networks. Accordingly, we derive the

optimal policy for selecting an LTE provider and fog/cloud

server when driving through different regions. Our solution is

simple and comprehensive, and can be applied to more general

scenarios with other choices of wireless access technologies

and computational resources.

III. ARCHITECTURE OVERVIEW

We consider a fog computing-supported connected vehicular

system consisting of the following main elements:





TABLE I
LATENCY PERFORMANCE OF TWO MNO NETWORKS

Traces
L1

Fixed

L2

Fixed

All

Fixed

R1(Drive)

(6.1m/s)

R2(Drive)

(15.7m/s)

All

Drive

MNO1

Fog

Latency

(ms)

Mean 62 72 70 83 96 88

STD 18 16 18 28 29 34

Median 55 71 68 77 91 85

Conf. 90% 85 86 85 115 121 120

Cloud

Latency

(ms)

Mean 74 87 85 94 108 96

STD 15 15 21 26 29 33

Median 71 88 86 92 108 94

Conf. 90% 88 100 104 124 129 128

MNO2

Fog

Latency

(ms)

Mean 72 64 72 85 80 83

STD 14 17 15 52 46 51

Median 71 93 71 69 67 66

Conf. 90% 84 87 86 132 112 131

Cloud

Latency

(ms)

Mean 87 74 88 119 125 124

STD 13 13 17 50 47 54

Median 88 71 90 108 117 109

Conf. 90% 99 87 102 166 133 100

traces collected in a major route from the four-month driving

measurements and rank the traces by the location points in

Figure 3(b). We can observe noticeably different patterns

in some locations than others. In other words, compared to

the time of measurements, the geographical heterogeneity

contributes more to the diversity of the statistics of RTT. We

summarize the latency performance of traces collected from

our measurement campaign in Table I. We present the mean,

standard deviation (STD), and median values of all the traces

for our fixed location and driving measurements as well as the

RTT for two fixed locations (L1 and L2) as well as two major

driving routes (R1 and R2 with average driving speeds 6.1m/s
and 15.7m/s, respectively). It can be observed that RTTs

of different MNO networks can vary significantly in some

locations/driving routes. When taking into consideration of all

the traces, both MNOs exhibit similar latency performance in

terms of mean and STD values. However, the driving traces

of both MNO networks show more significant differences

in terms of STD, mean, and median values. One of the

main reasons causing this result is that, the eNB deployment

densities and locations of our considered MNOs are quite

different as shown in Figure 2(b). We will give a more detailed

discussion about the issues that can affect the latency of a

connected vehicular system in Section V.

B. Model Evaluation

Weighted Confidence: Most latency-sensitive applications

do not differentiate the latency performance as long as the

resulting RTT is below the a tolerable threshold. For exam-

ple, it has been reported in [8] that for active road safety

applications such as collision avoidance, emergency alert and

active control intervention for crash prevention, the maximum

tolerable service latency is 100ms. For cooperative traffic

efficiency applications intended to provide additional infor-

mation exchange and coordination for improving the traffic

flow and enhancing the traffic coordination such as traffic

congestion relief and flow control, less than 200ms of latency

is considered as sufficient. For infotainment applications such

as video/audio streaming, up to 500ms of latency is considered

as tolerable.

We therefore consider the proportionally weighed confi-

dence level as the main performance metric to evaluate the

latency of each individual MNO network. More formally,

suppose the UE can support a set of service types, denoted

as M, each has its own maximum tolerable latency denoted

as ri for service type i. The confidence level Fi of service

type i is the probability that the maximum tolerable latency

ri can be satisfied, i.e., we have Fi = Pr (x ≤ ri).
It can be observed that the confidence level is a more re-

alistic and useful performance metric, especially compared to

the average and minimum latency because for most vehicular

applications, it is critical to quantify the chances that a certain

latency threshold can be guaranteed by the wireless system.

Different types of services can have different probability

of being requested as well as priorities to be served. For

example, cooperative traffic efficiency applications may be

requested more often in low-speed traffic congestion area

compared to the active road safety applications. Also, the

active road safety applications should always be assigned with

a higher priority compared to the infotainment applications.

To include these factors into latency performance analysis, a

weighting factor wi can be assigned to each service type i and

the proportionally weighed confidence level is the aggregated

confidence levels with all the supported services being served

at their corresponding tolerable latency thresholds given by

F̂ =
∑

i∈M

wiFi. (1)

Note that (1) is a general performance metrics that can

be applied to a wide range of applications under various

scenarios. For example, suppose the probability of receiving

type i service request is given by Pr (λ = i) for i ∈ M. In

this case, if we set wi = Pr (λ = i), then wiFi is equivalent

to the probability that a service type being requested by the

UE can also be served with the satisfied latency performance.

Distance Metric: To quantify the difference between the

latency performance offered by different MNOs, we introduce

the weighted Kantorovich-Rubinstein (K-R) metric which is

defined as

K(F,G) =
∑

i∈M

wi [Fi  Gi] , (2)

where Fi and Gi correspond to the two empirical cumulative

distribution functions (CDFs) of latency traces recorded in two

different MNO networks.

The weighted K-R distance in (2) corresponds to the

weighted difference between the confidence levels of different

services at their maximum tolerable thresholds. Generally

speaking, the UE should always choose the LTE network that

provides a higher confidence level to achieve a better service

performance guarantee. However, there is a cost for switching

between LTE networks. This cost can be caused by the price

difference between MNO’s networks, extra latency for the UE

to disconnect from one MNO and reconnect to another, and/or

extra energy and processing resource consumed during the

switching. Therefore, the UE needs to not only consider the

current performance of each MNO but also the performance

that can be offered by the MNOs in the future, i.e., the UE

should choose a single MNO or a sequence of MNOs to

maximize the confidence of maintaining guaranteed services

with the minimized cost incurred by switching back-and-forth

between MNO’s networks.



The weighted K-R distance is a useful metric for the UE to

decide whether to switch to another MNO’s network. We will

give a more detailed discussion in Section VII.

Model Updating: The probability distribution of the latency

in some specific locations can change over time, e.g., due

to road work and/or traffic accidents. In this case, the UE

should be able to detect the change and adjust the empiri-

cal PDF according to the updated latency traces. There are

many existing approaches [17] can be applied to detect the

change of empirical PDF using updated samples. Applying

and comparing the model/statistic-changing detection methods

into AdaptiveFog is out of the scope of this paper and will be

left for our future research.

C. Network/Server Selection and Adaptation

Driving Behavior Modeling: In addition to the performance

of the physical network infrastructure, the latency performance

of the UE can also depend on many human-related factors such

as the driving routine, habit, and behavior of the driver. It has

been verified that the driving location and speed of a vehicle

typically follow the Markov property, that is the future state

of the vehicle including the location and speed only depends

on the current state. We apply the driving location and speed

data collected in our measurement campaign to calculate the

empirical state transition probability of the UE when driving

through different locations with different speeds.

Network Adaptation: The main objective is to maximize the

long-term confidence level minus the possible cost incurred

by switching between LTE networks while the UE is driving

through different locations. We consider a slotted decision

making process and assume in each time slot t, the UE can

only choose one MNO’s network. We abuse the notation and

use k to denote both the selected MNO as well as its LTE net-

work. We also use j to denote the fog or cloud server selected

by the UE. As will be shown in Section VI, the cloud latency

is generally lager than the fog latency. However, a cloud server

has much more computational resources compared to the fog

server and therefore can still be considered as the preferred

choice of workload outsourcing if the latency requirement is

not stringent. We write the utility obtained by the UE in time

slot t as

ut(kt, jt) =
∑

i∈M

wiFi,t (st, kt)  1 (kt 6= kt  1) c (3)

where we use subscript t to denote the parameters in time slot

t. 1 (·) is the indicator function, c is the cost of switching

between LTE networks, st is the state information including

the location and speed of the UE, and Fi,t(st, k) is the

confidence level at ri in state st with MNO k being selected

by the UE.

We consider a slotted decision making process with infinite

horizon. The optimal policy for the UE to select the optimal

MNO and fog/cloud server for a given service time duration

T is given by

π (〈k, j〉) = argmin
〈k,j〉

E

(

lim
T→∞

T
∑

t=1

γtut (k, j)

)

, (4)

where 0 < γ ≤ 1 is the discount factor specifying how

impatient the UE is, i.e., the smaller the γ the more the UE

cares about the latency performance in the current time slots

than the future.

V. LATENCY ANALYSIS IN LTE-BASED FOG COMPUTING

The RTT between the UE and the fog node for an LTE-

supported fog computing network can be affected by the

following factors:

Fog Node Placement: Most existing works assume that

simply deploying fog servers at the eNB (LTE base station)

location can achieve a negligible RTT between the UE and

the fog server [1], [18], [19]. However, as observed in [7],

eNBs are typically installed at inaccessible locations (e.g.,

the top of a hill or open spaces such as lamp posts and

street cabinets) and therefore cannot offer sufficient space and

resources (e.g., electric power and cooling load) for servers.

In addition, allowing the workload submitted by the UE to be

redirected to a co-located server at the eNB instead of being

forwarded to the LTE core network, i.e., ePC, via S1 interface

will also require a total redesign of LTE interfaces. In a real

LTE system, data packets of the UE will be passing through

many IP routing hops within the ePC. Unfortunately, these

internal IP hops have been hidden from the public access. The

UE can only get a private subnet IP address that is translated to

a public address at the P-GW. In fact, in our measurement, we

observe that, in each MNO’s network, the first hop IP address

identified by “traceroute” remains the same across different

cities. This is typically for IPv4-based networks where IP

addresses are scarce. In this case, an Internet-based application

at the UE perceives the entire ePC as a single routing hop. To

minimize the RTT between the UE and the fog node, the fog

node should be placed close to the first public IP address also

referred to as the first node in the ePC that can be identified.

Uplink Latency: We consider the scenario that the UE

submits its workload using the data-only best-effort service

offered by the MNOs. In this case, the UE must first initiate the

uplink data transmission by submitting a one-bit scheduling

request (SR) to the physical uplink control channel (PUCCH)

informing the eNB about the new packet arrivals. The UE will

then wait for the eNB to schedule a grant that specifies the

radio resources for uplink transmission. If the UE does not

receive the uplink resources from the eNB, it will resend the

SR on PUCCH based on the SR periodicity from 5ms to 80ms

(In LTE Release 9, new 1ms and 2ms SR periodicities have

been added.) [20].

Downlink Latency: The eNB will feedback the processing

result to the UE when it is available. In LTE-FDD, a 1ms

subframe is considered to be the typical wireless transmission

time interval between the UE and the eNB. This pluses

the frame alignment time (typically 0.5ms), UE processing

latency (1.5ms). In case that the result delivery fails, the

UE will feedback a negative acknowledgment (NACK) after

4 subframes and the Hybrid ARQ (HARQ) retransmission

occurs 4 subframes after receiving the NACK resulting a total

8ms of delay.

Handover: One of the main factors that cause service in-

terruption, drop of connection, and increased latency for the



UE when driving is the handover, i.e., the UE as well as its

connected service is transferred from one cell/eNB to another.

The handover decision is typically initiated by the UE via

its connected eNB when its measured downlink signal power

from its serving eNB is below a certain threshold. In particular,

the UE starts measuring the signal strength of a neighboring

eNB when the received signal power of the current eNB is

below a threshold value. The UE will then report the result to

the source eNB. Since the signal measuring and neighboring

cell searching are made by the UE even in the idle state (during

DRX periods), the latency of cell searching and identification

is typically assumed to be negligible. Once the downlink

measurement results reported from the UE satisfies a certain

condition, the source eNB will initiate the handover process by

sending radio resource control (RCC) reconfiguration message

to the UE which specifies the identity of the target eNB.

According to [21], the maximum allowed delay for RCC

reconfiguration is 15 ms. The source eNB will also send a

handover request message to the target eNB. Once received the

request, the target eNB will allocate the resources in the target

cell and allocate a new Radio Network Temporary Identifier

(RNTI) to the UE. The handover can be based on the S1

interface between two eNB without requiring coordination

through the higher level components such as MME and P-

GW. When S1 interface is unavailable, the handover will

be processed by the MME via X1 interface. From the UE’s

perspective, it is impossible to differentiate these two types of

handover. In fact, it is generally impossible for the UE to tell

which handover procedure has been executed.

VI. EMPIRICAL MODELING

A. Cloud vs. Fog Latency

Latency and Reliability Tradeoff: We present the histogram

as well as the empirical PDF of cloud and fog latency mea-

sured in a fixed lab location in Figures 4 and 5, respectively. It

can be observed that the PDF of fog latency follows the dual

modal with the first and second peaks at around 54ms and

87ms, respectively. The 33ms difference between these two

peaks is mainly caused by the SR retransmission periodicity

(around 20 to 40ms) and the HARQ retransmission delay

(around 1 to 8 ms). Note that, in [7], the authors observed

a sawtooth RTT pattern caused by the SR retransmission

periodicity at every 20ms with around 40ms amplitude in a

fixed lab location. Since our latency traces are recorded at

every 500ms, we did not observe any strong sawtooth pattern

in our dataset. However, the SR retransmission still contributes

to the second peak of the latency traces. From Figures 4 and

5, we can observe that the Internet connection between the

LTE network and the cloud server contributes to approximately

10ms over the overall RTT of the UE. It is interesting to

observe that for most of the latency traces, the standard

deviation of the cloud latency is less than that of the fog node.

This means that the extra delay and connection variation of

the Internet compensates the latency variation of the wireless

links between the UE and the ePC. The above observation also

verifies the recent study reported in [13] where the authors

suggest that although the cloud server normally has higher

average latency compared to the fog node, the service latency

between the UE and cloud offers lower uncertainty, i.e., less

standard deviation, compared to that between UE and fog

node.

In Figures 6 and 7, we compare the empirical PDF generated

from the cloud and fog latency traces. We observe that the

mobility of the UE contributes to around 10 to 20ms in

average for the latency, compared to the fixed location. More

importantly, the driving latency traces show a significantly

increase in the variance of the RTT, i.e., around 30ms to

40ms increase for the 90 percentile of the empirical PDF for

fog node and cloud latency, respectively. This is caused by

handover, data loss, and reconnection which will be discussed

in more details in the rest of this section.

Cloud/Fog Server Selection and Adaptation In Figures 8 and

9, we compare the CDFs of fog node and cloud latencies and

compare their K-R distance under various latency thresholds,

e.g., 50ms and 100ms, with the weighting factor set to be 1. We

can observe that for fixed-location latency traces, the minimum

K-R distance between cloud and fog latency is at 85ms in

which the difference between two CDFs is only 0.23%. In

other words, if the UE’s applications cannot differentiate the

service quality as long as the latency is controlled below 85ms,

offloading the workload to cloud or fog node will not cause

much noticeably different latency performance. However, for

the applications that are sensitive to the latency below 85ms,

the fog node will offer much better performance than the CDC.

In particular, if the maximum tolerable latency of the UE is at

63ms, the difference between the confidence interval of cloud

and first node to meet the required latency requirements will

be as high as 58.6%.

For the driving latency traces, we observe that the difference

between cloud and fog node becomes less compared to that of

the fixed location. In particular, the minimum K-R distance is

at 74ms with only 0.55% difference between the confidence

level of cloud and fog latency. The maximum K-R distance

is at 101ms where switching from cloud server to fog server

can result in over 16.5% increase of confidence level. This

means that the uncertainty of wireless connection plays a more

dominant role in our driving latency traces, compared to the

fixed location data set.

Fog server typically has much less computing power com-

pared to the cloud server. Therefore, most existing works

suggest to only offload the most latency-sensitive applications

to fog nodes and leave the more delay-tolerant service work-

load to the CDC. Our observation here suggests that the K-R

distance offers more specific decision threshold for identifying

the services that should be submitted to CDC or fog nodes. In

particular, for a given LTE network and maximum tolerable

delay ri, we can write a simple threshold-based policy for

selecting fog or cloud server to process each service type i as

j =

{

{Cloud Server}, If K(Gi, G
′
i) ≤ θf ,

{Fog Server} Otherwise,
(5)

where Gi and G′
i is the empirical CDFs of cloud and fog

latency at value ri and θf is the threshold specifying the

difference between tolerable confidence levels of fog node
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Fig. 7. Empirical PDF of
fog latency when driving.
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Fig. 8. Latency CDF in a fixed
location with latency thresholds
at 50ms, 100ms, 150ms.
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Fig. 9. Latency CDF when
driving with thresholds
50ms, 100ms, 150ms.

Mean: 88.41
 STD: 24.63
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Fig. 10. Empirical PDF of
MNO 2’s cloud latency when
driving.

Mean: 75.51 
STD: 34.34
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Fig. 11. Empirical PDF of
MNO 2’s fog latency when
driving.

Mean: 82.27
STD: 22.27
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Fig. 12. Empirical PDF of cloud
latency (MNO 1) in a multistory
parking lot.
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Fig. 13. Empirical PDF of fog
latency (MNO 1) in a multi-
story parking lot.

and cloud latency that can be considered to be negligible for

service type i.

B. Different MNOs

It is known that the service latency offered by different

MNOs exhibit significant spatial variation depending on the

location and eNB deployment densities at each area. To inves-

tigate the possible causes of the different latency performances

of MNOs, we need to look into specific areas. In particular,

in Figures 12-15, we present the empirical PDF of the RTT

measured at the first level of a multi-story parking lot for

both MNO’s networks. We can observe that for MNO 1, the

RTT in the parking lot results suffer around 10ms increase in

the average compared to the RTT of the office in Figures 4

and 5. This can be caused by the higher chances of HARQ

retransmission and in-synchronization. The RTT offered by

MNO 2 however experience a much higher noticeable increase

in both terms of average latency as well as the standard

deviation due to the less dense deployment of the eNB in the

surrounding area compared to the MNO 1. Another reason

causing the performance degradation of MNO 2 is that the

LTE network of MNO 2 in the local area operated at 1900

MHz. MNO 1 however operates at a lower frequency band

(850MHz) which can have better penetration through concrete

wall. This will also increase the chance of packet loss, in-

synchronization, connection drop, and retransmission.

In Figures 16 and 17, we compare the CDFs of the cloud

and fog nodes latency offered by the two MNOs. For the fog

latency, we observe that if the latency constraint of the UE is at

88ms, then difference of the confidence levels offered by two

MNOs reaches the maximum value at 25.79%. Also MNO 2

offers higher confidence level for services with the maximum

tolerable latency below 131ms. The fog latency offered by two

MNOs provide the same confidence level at 64ms and 125ms.

The maximum difference between the fog latency confident

level is at 80ms. In this case, MNO 2 offers 29.91% higher

confidence level than MNO 1.

C. Handover

To investigate the impact of the handover on the latency

performance, we present the empirical PDF of the RTT when

the UE is driving between two eNB in a open straight route

outside of the city center in Figures 18 and 19. Since it

is impossible to identify the exact location/timing of the

handover, i.e., handover can even happen after the UE drove

pass the targeting eNB, the latency performance during the

handover in practice will be much worse than the results

presented in Figures 18 and 19. Also we consider the two

eNB located outside of the city center in an open road. The

handover process is expected to cause much higher latency

increase in an urban environment. Even with these limitations,

we can still observe that the average latency for both cloud and

fog node increase around 40ms. According to our discussion

in Section V, this means that most of the handover processes

are successful in the first attempt.

D. Driving Speed

For a moving vehicle, it is expected that the fast driving

speed will increase the chances of the Doppler effect resulting

in much higher chances of packet drop or connection failure.

To investigate the impact of the driving speed on the service

latency in practical system, we analyze the latency traces

at different driving speeds in Figure 24. We first present

the mean and standard deviation of the latency traces in all

the dataset collect from our driving measurement campaign.

Surprisingly, we did not observe a significant increase of

the RTT when the driving speed increases. For example, the

average fog latency remains almost the same even when the

driving speed approach 20m/s. The cloud latency increases

for around 20ms at 20m/s of speed. This is because the

driving speed can only become large when the vehicle is drove

outside of the city center. The increased in-synchronization and

disconnection probability will be compensated by the decrease

of the reflection and blockage experienced inside the city. We

compare the latency traces collected in an urban area with high

eNB deployment density. We again observe a slight increase

of the average cloud and fog latency, i.e., around 10-20ms of





of space.

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of AdaptiveFog

using our driving dataset. In Figures 20 and 21, we present

the empirical PDFs of both fog node and cloud latency when

the UE can use AdaptiveFog to dynamically switch between

MNOs. We can observe that AdaptiveFog provides significant

benefit to the fog latency with almost 15ms and 9ms reduction

on the average latency compared to the case that the UE can

only access a single MNO’s LTE network. More importantly,

AdaptiveFog reduces the standard deviation of the latency by

almost a half compared to the scenario that the UE is stuck

with a single MNO. For the cloud latency, the improvement

on the average latency is relatively limited. However, we can

again observe a significant reduction on the standard deviation

of the cloud latency especially compared to the single MNO

case.

It is obvious that the performance of AdaptiveFog is closely

related to the cost for the UE to switch between MNO’s

networks. In Figures 22 and 23, we present the confidence

level under different switching cost for both fog node and

cloud latency with and without using AdaptiveFog. We com-

pare confidence level of three latency thresholds, 100 ms,

120 ms, and 150 ms, corresponding to vehicular applications

with different levels of stringent latency requirement. Note that

confidence level of the single MNO will not change with MNO

switching cost. We observe that, when the switching cost is

low, AdaptiveFog achieves almost 30% improvement in confi-

dence level of cloud latency, compared to the single-operator

case. For the fog latency, AdaptiveFog achieves almost 50%

improvement in the confidence level for supporting the active

road safety applications. Note that these results are simulated

by applying all of our driving data set to evaluate the perfor-

mance improvement of AdaptiveFog. In some specific local

area such as the one MNO has much higher eNB deployment

density than the other, the performance improvement achieved

by AdaptiveFog should be even higher.

IX. CONCLUSION

This paper has reported a city-wide measurement of the

wireless access latency between a moving vehicle and a fog

computing system connected through a multi-operator LTE

network. A novel networking and server adaptation frame-

work, called AdaptiveFog, has been proposed for vehicles to

autonomously and dynamically connect with different LTE

networks and fog or cloud servers. We have developed a

smart phone app running on a moving vehicle to periodically

measure the RTT of the UE when connecting with fog/cloud

servers though different LTE networks. An empirical spa-

tial statistic model is established to characterize the spatial

variation of latency performance across various locations of

the city. We introduce the weighted K-R distance to quantify

the performance difference between different LTE networks.

An optimal policy has been derived for a moving vehicle to

sequentially switch to the optimal LTE networks. Extensive

simulations have been performed. Our results show that Adap-

tiveFog achieves around 30% and 50% improvement in the

confidence level for fog node and cloud latency, respectively.
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[7] I. Hadžić, Y. Abe, and H. C. Woithe, “Edge computing in the ePC: A
reality check,” in Proc of ACM/IEEE Symposium on Edge Computing,
San Jose, CA, Oct. 2017.

[8] Z. Mir Hameed and F. Filali, “LTE and IEEE 802.11 p for vehicular
networking: a performance evaluation,” EURASIP Journal on Wireless

Communications and Networking, vol. 2014, no. 1, p. 89, 2014.
[9] Z. Xu, X. Li, X. Zhao, M. H. Zhang, and Z. Wang, “DSRC versus 4G-

LTE for connected vehicle applications: a study on field experiments
of vehicular communication performance,” Journal of Advanced Trans-

portation, vol. 2017, 2017.
[10] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for

mobile computing,” in Proc of IEEE INFOCOM, San Francisco, CA,
Apr. 2016, pp. 1–9.

[11] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in Proc

of IEEE INFOCOM, Honolulu, HI, Apr. 2018.
[12] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis,

“FluidRAN: Optimized vRAN/MEC orchestration,” in Proc of IEEE

INFOCOM, Honolulu, HI, Apr. 2018.
[13] H. Inaltekin, M. Gorlatova, and M. Chiang, “Virtualized control over

fog: Interplay between reliability and latency,” arXiv:1712.00100v2,
Feb. 2018. [Online]. Available: http://arxiv.org/abs/1712.00100

[14] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. ZHANG, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2, pp.
36–44, Jun. 2017.

[15] H. Lee, J. Flinn, and B. Tonshal, “RAVEN: Improving interactive latency
for the connected car,” in Proc. of ACM Mobicom, New Delhi, India,
Nov. 2018, pp. 557–572.

[16] L. Bedogni, M. Fiore, and C. Glacet, “Temporal reachability in vehicular
networks,” in Proc of IEEE INFOCOM, Honolulu, HI, Apr. 2018.

[17] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proc of Intern. Conf. Very Large Data Bases, Toronto,
Canada, Aug. 2004, pp. 180–191.

[18] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in Proc of IEEE

INFOCOM, Atlanta, GA, May 2017.
[19] ——, “Distributed optimization for energy-efficient fog computing in

the tactile internet,” IEEE J. Sel. Area Commun., vol. 36, no. 11, pp.
2390–2400, Nov. 2018.

[20] 3GPP, “3GPP radio resource control (RRC) (Release 10),” 3GPP PS
36.331, v10.14.0, Sep 2014.

[21] ——, “Handover procedures,” 3GPP TS 23.009, Jan. 2015.
[22] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., 2014.


