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Abstract—Fog computing has been advocated as an enabling
technology for computationally intensive services in connected
smart vehicles. Most existing works focus on analyzing and opti-
mizing the queueing and workload processing latencies, ignoring
the fact that the access latency between vehicles and fog/cloud
servers can sometimes dominate the end-to-end service latency.
This motivates the work in this paper, where we report a five-
month urban measurement study of the wireless access latency
between a connected vehicle and a fog computing system sup-
ported by commercially available multi-operator LTE networks.
We propose AdaptiveFog, a novel framework for autonomous
and dynamic switching between different LTE operators that
implement fog/cloud infrastructure. The main objective here is
to maximize the service confidence level, defined as the probability
that the tolerable latency threshold for each supported type of
service can be guaranteed. AdaptiveFog has been implemented
on a smart phone app, running on a moving vehicle. The app
periodically measures the round-trip time between the vehicle
and fog/cloud servers. An empirical spatial statistic model is
established to characterize the spatial variation of the latency
across the main driving routes of the city. To quantify the perfor-
mance difference between different LTE networks, we introduce
the weighted Kantorovich-Rubinstein (K-R) distance. An optimal
policy is derived for the vehicle to dynamically switch between
LTE operators’ networks while driving. Extensive analysis and
simulation are performed based on our latency measurement
dataset. Our results show that AdaptiveFog achieves around 30 %
and 50% improvement in the confidence level of fog and cloud
latency, respectively.

Index Terms—Fog computing, LTE, cloud computing, con-
nected vehicle, low-latency, measurement study.

I. INTRODUCTION

Low-latency, reliable communications, and processing are
critical to newly emerging smart vehicular services such as
congestion avoidance, accident prevention and active control
intervention, autonomous driving, and intelligent driver assis-
tance (e.g., route computation, searchable maps, etc.). Due
to the limit of space, energy supply, processing and storage
capabilities of the in-vehicle computer, connected smart vehi-
cles supported by high-performance cloud data centers (CDCs)
for data storage (e.g., high-definition map) and processing
has been recently promoted by various industry consortiums
and standardization bodies [1], [2]. The physical connectivity
between vehicles and the CDC may span several wireless and
wired links, each having its own traffic dynamics, medium
access mechanisms, connection intermittency, etc. As a result,
the end-to-end communication path may exhibit unacceptable
latency and connection unreliability. This makes a strong

case for seeking better solutions that are more suitable for
low-latency and high-availability services. Fog computing has
recently been introduced to enable network-edge computing,
thus reducing the end-to-end latency [3]. Supporting smart
vehicular applications via fog computing has the potential to
significantly reduce the communication latency and improve
service reliability [4], [5].

Fog computing-enhanced wireless system has recently been
advocated by mobile network operators (MNOs) as a way
to create new business opportunities, increase revenues, and
reduce costs. Major MNOs, including AT&T, Verizon, and
Deutsche Telekom have all announced plans to integrate fog
computing into their network infrastructure to support emerg-
ing applications such as robotic manufacturing, autonomous
cars, and augmented/virtual reality (AR/VR). LTE is readily
available to support high-speed low-latency wireless solutions
on a global scale, and therefore is in an excellent position
to push for the maturity and large-scale deployment of fog
computing. 3GPP recommends the round-trip-time (RTT) for
user equipments (UEs) across LTE networks to be kept as
low as 10 ms in optimal conditions [6], which is commonly
considered to be negligible compared to other elements of
latencies in the fog computing system such as processing
and queueing latency. Unfortunately, recent reports as well
as our own measurements suggest that the 10 ms latency
requirement is too challenging to be achieved by most existing
LTE networks. In fact, recent studies [7]-[9] observe that the
wireless connection between moving vehicles and the LTE
network can sometimes experience frequent disconnections,
retransmission, and high wireless access latency that dominate
the overall RTT between UEs and external servers at fog nodes
as well as CDCs.

While there have been numerous studies on the wireless
access latency throughout LTE networks, there is a noticeable
lack of a long-term systematic study of latency modeling and
optimization between moving vehicles and cloud/fog servers
for practical LTE systems. In fact, due to the geographically
varying network infrastructure deployment as well as different
requirements and traffic dynamics of vehicular services, mod-
eling and optimizing the latency in an LTE-based vehicular
system is quite difficult.

This paper empirically analyzes the latency performance
of vehicle-to-cloud/fog solutions for connected smart vehic-
ular systems in a multi-operator LTE system. We propose a
novel optimization framework, AdaptiveFog, for a vehicle to



dynamically switch between MNO networks that implement
fog and cloud services on the move. We develop a smart phone
app using Android API and place a Google Pixel 2 phone
installed with our developed app in a vehicle to run a five-
month measurement campaign on commercially available LTE
networks deployed by two major MNOs throughout the main
driving routes in a mid-sized city. These measurements are
used to evaluate the impact of handover, driving speed, MNO
network, fog/cloud server, and location on the service latency.
We observe that the spatial variation (over different locations)
of the latency performance across different MNO networks
can be much more significant than the temporal variations
(over different times of the day as well as days of the week).
Accordingly, we investigate the confidence level of various
connected vehicular service across a city-wide geographical
area. An empirical spatial statistic model is established using
the dataset collected in our campaign. We introduce the
weighted Kantorovich-Rubinstein (K-R) metric to quantify the
performance difference between MNO networks, taking into
consideration of the heterogeneity of the demands and prior-
ities of different services. We formulate the MNO selection
and server adaptation problem as a Markov decision process
and derive the optimal policy for a moving vehicle to switch
between different MNOs’ networks. Extensive simulations are
also conducted to evaluate the performance of AdaptiveFog.
Numerical results show that AdaptiveFog achieves around
30% and 50% improvement in the confidence level for fog
and cloud latency, respectively, especially when being applied
to vehicular applications with stringent latency requirement
(e.g., active road safety applications) in existing LTE systems.

II. RELATED WORK

The concept of the fog computing and its relation to other
similar concepts such as cloud and mobile edge computing
can be blurry in some contexts. For example, a cloud service
provider can also deploy smaller-scale cloud computing infras-
tructure, i.e., fog servers, in some areas. In this paper, we use
the term fog computing to refer to a generalized architecture
that includes cloud, edge, and clients [3]. We also use the term
fog node or fog server to denote the servers placed at the edge
of the network. We use the term cloud server to denote the
high-performance server installed at the CDC.

Fog Computing and Connected Vehicles: A fog node is
considered as a cost-effective yet resource-limited computa-
tional device, especially compared to the CDC. Therefore,
most existing works focus on developing new methods and
architectures to improve the utilization of fog resources with
reduced costs. For example, Tong et al. [10] proposed a
hierarchical architecture to improve the resource utilization
throughout a fog computing system. Yu et al. [11] consid-
ered the application provision problem with bandwidth and
delay requirements in a fog computing-enabled Internet-of-
Things (IoT) system. Garcia-Saavedra et al. [12] proposed
an analytical framework, called FluidRAN, that minimizes
the aggregated operator expenditure by optimizing the design
of the virtualized radio access network. Inaltekin et al. [13]
introduced an analytical framework to derive the optimal

location of the virtual controller for balancing latency and
reliability in a fog computing system.

Fog computing-supported connected vehicle has recently

been promoted by both industry and standardization bodies
as a key enabler for emerging smart vehicular applications,
such as intelligent driver-assistance and autonomous driving
[1], [14]. Premsankar et al. [4] studied the placement of edge
computing servers for vehicular applications. An effective
heuristic method was proposed to deploy fog servers based
on the knowledge of road traffic within each deployment area.
Lee et al. [15] proposed an in-kernel TCP scheduler to mitigate
the network latency of connected vehicles with redundant
transmission.
Performance Evaluation and Wireless Network Analysis:
There have been quite a few studies on the performance of
vehicular networks supported by a wireless infrastructure. For
instance, Bedogni et al. [16] analyzed a real-world GPS tra-
jectory dataset to investigate the temporal topology of vehicle-
to-vehicle (V2V) networks. In [5], Asadi er al. studied beam
selection for 5G mmWave-based vehicular-to-infrastructure
(V2I) communications. An online learning algorithm with
environment-awareness was developed and shown to approach
the near-optimal performance.

In [8], Hameed Mir er al. compared the performance of

IEEE 802.11p and LTE for vehicular networking using NS3
simulations. Simulation results show that LTE offers much
better network capacity and mobility support compared to
IEEE 802.11p. Xu et al. [9] conducted extensive real-world
testing for multiple smart vehicular application scenarios. The
results suggest that existing LTE systems are not recommended
for active road safety applications with high-data rate and real-
time requirements, such as collision avoidance. It is however,
sufficient to support non-safety applications including traffic
updates, file download, and Internet access. In [7], Hadzic et
al. investigated the latency between a fixed mobile station
and an LTE-based fog computing system. The authors con-
ducted both in-lab testing using an isolated base station with
controlled parameters as well as real-world evaluation on a
commercial LTE system. The results reveal that the wireless
connection between the UE and the base station introduces
irreducible and non-negligible latency for delay-sensitive fog
computing applications.
Our Contribution: To the best of our knowledge, this is
the first work that focuses on modeling and optimizing the
latency performance of LTE-based fog computing systems
based on a long-term city-wide measurement. We introduce
a novel distance metric, referred to as weighed K-R distance,
to quantify the difference of latency probability distributions
between different LTE networks. Accordingly, we derive the
optimal policy for selecting an LTE provider and fog/cloud
server when driving through different regions. Our solution is
simple and comprehensive, and can be applied to more general
scenarios with other choices of wireless access technologies
and computational resources.

III. ARCHITECTURE OVERVIEW

We consider a fog computing-supported connected vehicular
system consisting of the following main elements:
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Fig. 2. (a) User interface of Delay Explorer developed specifically for our
latency measurement and (b) measuring routes and traces in our study.

UE: corresponds to a moving vehicle installed with the over-
the-top applications that can generate computational intensive
workload requests that exceed the capability of the vehicle’s
onboard computers/processors. It can also be smart devices
such as smart sensors, mobile phones, and laptops located in
the vehicle.

LTE Networks: provide wireless links connecting the UE to
fog nodes and the cloud server. In this paper, we consider
multi-operator LTE connections in which the UE can switch to
different MNO networks for submitting its workload request
and receiving the processing result. For example, dual-SIM
smart phones that can take two SIM cards from two MNOs are
already on the market. In addition, Google’s Project Fi-enabled
smart phones also have the capability to switch between
networks of multiple MNOs.

Fog Nodes: correspond to low-cost mini-servers deployed at
the edge of the network to support low-latency services for
connected smart vehicles.

Cloud Server: corresponds to the expensive high-performance
servers deployed by the CDC to provide on-demand compu-
tational service for the UE.

IV. METHODOLOGY

We propose AdaptiveFog, a simple framework for the UE
to dynamically switch between available MNO networks and
cloud/fog servers on the move. It consists of three main
components: trace collection, empirical modeling, and network
adaptation, as illustrated in Figure 1.

A. Trace Collection

Smart Phone App Design: We begin by collecting traces to
measure the network performance between a commercial off-
the-shelf smart phone and the most likely fog node location
as well as a CDC server. For some safety-related applications,

Fig. 3. Traces ranked by (a) different times in a fixed location throughout a
full-week of measurement (b) different location points.

latency is a more important performance metric than the
throughput. Instead of measuring the network bandwidth, we
evaluate the RTT. We develop a smart phone app, called Delay
Explorer using Android API to periodically ping the IP address
of the most likely fog node location and an arbitrary IP address
of the closest Amazon cloud server and record the resulting
RTT at every 500ms. We have removed the measurements
corresponding to the RTTs that are larger than 500ms. In
addition to record the RTT, Delay Explorer also records
other vehicle-related information such as time stamp, GPS
coordinates, altitude, driving speed, as well as network-related
information including network connection type, bearing, ASU,
RSRP, RSRQ, etc., as shown in Figure 2(a). Delay Explorer
only records RTT when it connects to the LTE networks and
will stop recording if LTE connection is dropped.

Measurement Campaign: We ran a five-month city-wide
measurement campaign with a Google Pixel 2 smart phone
installed with Delay Explorer. For the first month, the phone
has been placed at multiple fixed locations across a university
campus and a residential area for continuous recording. It has
then been placed at a vehicle for driving measurement for the
rest 4 months (See Figure 2(b) for the measuring routes). For
each MNO, the UE records two types of latency: 1) Cloud
latency, that is the RTT recorded from pinging the IP address
of the CDC server and 2) fog latency, which corresponds to
the RTT recorded from pinging the first hop IP address in
each MNO’s LTE core network. For the driving measurements,
the vehicle records latency traces on both working days
and weekends and the driving time in each working day is
approximately 2 hours. We have collected over 300,000 traces
from each MNO’s network when driving at the main routes
throughout a mid-sized city.

Results and Discussion: In Figure 3(a), we present the
traces recorded at a fixed lab location for a one-week con-
tinuous measurement to evaluate the impact of the time-
of-measurement on the RTT. We found that there are gen-
erally no observable correlation between the RTT and the
time of measurement. This result is consistent with a recent
study in a similar sized city [15]. We then aggregate all the



TABLE I
LATENCY PERFORMANCE OF TWO MNO NETWORKS

Traces L1 L2 All R1(Drive) R2(Drive) All
Fixed Fixed Fixed (6.1m/s) (15.7m/s) Drive

Fog Mean 62 72 70 83 96 88

Lalbency STD. 18 16 18 28 29 34

(ms) Median 55 71 68 77 91 85

MNOI Conf. 90% 85 86 85 115 121 120
Cloud Mean 74 87 85 94 108 96

Latency STD. 15 15 21 26 29 33

(ms) Med{an 71 88 86 92 108 94

Conf. 90% 88 100 104 124 129 128

Fog Mean 72 64 72 85 80 83

Latency STD» 14 17 15 52 46 51

(ms) Median 71 93 71 69 67 66

MNO2 Conf. 90% 84 87 86 132 112 131
Cloud Mean 87 74 88 119 125 124

Latency STD. 13 13 17 50 47 54

(ms) 7 Median 88 71 90 108 117 109

Conf. 90% 99 87 102 166 133 100

traces collected in a major route from the four-month driving
measurements and rank the traces by the location points in
Figure 3(b). We can observe noticeably different patterns
in some locations than others. In other words, compared to
the time of measurements, the geographical heterogeneity
contributes more to the diversity of the statistics of RTT. We
summarize the latency performance of traces collected from
our measurement campaign in Table I. We present the mean,
standard deviation (STD), and median values of all the traces
for our fixed location and driving measurements as well as the
RTT for two fixed locations (L1 and L2) as well as two major
driving routes (R1 and R2 with average driving speeds 6.1m/s
and 15.7m/s, respectively). It can be observed that RTTs
of different MNO networks can vary significantly in some
locations/driving routes. When taking into consideration of all
the traces, both MNOs exhibit similar latency performance in
terms of mean and STD values. However, the driving traces
of both MNO networks show more significant differences
in terms of STD, mean, and median values. One of the
main reasons causing this result is that, the eNB deployment
densities and locations of our considered MNOs are quite
different as shown in Figure 2(b). We will give a more detailed
discussion about the issues that can affect the latency of a
connected vehicular system in Section V.

B. Model Evaluation

Weighted Confidence: Most latency-sensitive applications
do not differentiate the latency performance as long as the
resulting RTT is below the a tolerable threshold. For exam-
ple, it has been reported in [8] that for active road safety
applications such as collision avoidance, emergency alert and
active control intervention for crash prevention, the maximum
tolerable service latency is 100ms. For cooperative traffic
efficiency applications intended to provide additional infor-
mation exchange and coordination for improving the traffic
flow and enhancing the traffic coordination such as traffic
congestion relief and flow control, less than 200ms of latency
is considered as sufficient. For infotainment applications such
as video/audio streaming, up to 500ms of latency is considered
as tolerable.

We therefore consider the proportionally weighed confi-
dence level as the main performance metric to evaluate the
latency of each individual MNO network. More formally,
suppose the UE can support a set of service types, denoted

as M, each has its own maximum tolerable latency denoted
as r; for service type ¢. The confidence level F; of service
type ¢ is the probability that the maximum tolerable latency
r; can be satisfied, i.e., we have F; = Pr(x <r;).

It can be observed that the confidence level is a more re-
alistic and useful performance metric, especially compared to
the average and minimum latency because for most vehicular
applications, it is critical to quantify the chances that a certain
latency threshold can be guaranteed by the wireless system.

Different types of services can have different probability
of being requested as well as priorities to be served. For
example, cooperative traffic efficiency applications may be
requested more often in low-speed traffic congestion area
compared to the active road safety applications. Also, the
active road safety applications should always be assigned with
a higher priority compared to the infotainment applications.
To include these factors into latency performance analysis, a
weighting factor w; can be assigned to each service type ¢ and
the proportionally weighed confidence level is the aggregated
confidence levels with all the supported services being served
at their corresponding tolerable latency thresholds given by

Note that (1) is a general performance metrics that can
be applied to a wide range of applications under various
scenarios. For example, suppose the probability of receiving
type 4 service request is given by Pr (A =) for i € M. In
this case, if we set w; = Pr (A = i), then w;F; is equivalent
to the probability that a service type being requested by the
UE can also be served with the satisfied latency performance.
Distance Metric: To quantify the difference between the
latency performance offered by different MNOs, we introduce
the weighted Kantorovich-Rubinstein (K-R) metric which is
defined as

K(F,G)=> wi[F Gi, 2
ieM
where F; and G; correspond to the two empirical cumulative
distribution functions (CDFs) of latency traces recorded in two
different MNO networks.

The weighted K-R distance in (2) corresponds to the
weighted difference between the confidence levels of different
services at their maximum tolerable thresholds. Generally
speaking, the UE should always choose the LTE network that
provides a higher confidence level to achieve a better service
performance guarantee. However, there is a cost for switching
between LTE networks. This cost can be caused by the price
difference between MNOQO’s networks, extra latency for the UE
to disconnect from one MNO and reconnect to another, and/or
extra energy and processing resource consumed during the
switching. Therefore, the UE needs to not only consider the
current performance of each MNO but also the performance
that can be offered by the MNOs in the future, i.e., the UE
should choose a single MNO or a sequence of MNOs to
maximize the confidence of maintaining guaranteed services
with the minimized cost incurred by switching back-and-forth
between MNO’s networks.



The weighted K-R distance is a useful metric for the UE to

decide whether to switch to another MNO’s network. We will
give a more detailed discussion in Section VII.
Model Updating: The probability distribution of the latency
in some specific locations can change over time, e.g., due
to road work and/or traffic accidents. In this case, the UE
should be able to detect the change and adjust the empiri-
cal PDF according to the updated latency traces. There are
many existing approaches [17] can be applied to detect the
change of empirical PDF using updated samples. Applying
and comparing the model/statistic-changing detection methods
into AdaptiveFog is out of the scope of this paper and will be
left for our future research.

C. Network/Server Selection and Adaptation

Driving Behavior Modeling: In addition to the performance
of the physical network infrastructure, the latency performance
of the UE can also depend on many human-related factors such
as the driving routine, habit, and behavior of the driver. It has
been verified that the driving location and speed of a vehicle
typically follow the Markov property, that is the future state
of the vehicle including the location and speed only depends
on the current state. We apply the driving location and speed
data collected in our measurement campaign to calculate the
empirical state transition probability of the UE when driving
through different locations with different speeds.

Network Adaptation: The main objective is to maximize the
long-term confidence level minus the possible cost incurred
by switching between LTE networks while the UE is driving
through different locations. We consider a slotted decision
making process and assume in each time slot ¢, the UE can
only choose one MNO’s network. We abuse the notation and
use k to denote both the selected MNO as well as its LTE net-
work. We also use j to denote the fog or cloud server selected
by the UE. As will be shown in Section VI, the cloud latency
is generally lager than the fog latency. However, a cloud server
has much more computational resources compared to the fog
server and therefore can still be considered as the preferred
choice of workload outsourcing if the latency requirement is
not stringent. We write the utility obtained by the UE in time

slot ¢ as
Z w; Fi 4 (se, kt)
ieEM

kh]t 1 (kt 7A Ky 1) c 3)

where we use subscript ¢ to denote the parameters in time slot
t. 1(-) is the indicator function, ¢ is the cost of switching
between LTE networks, s; is the state information including
the location and speed of the UE, and Fj (st k) is the
confidence level at r; in state s; with MNO k& being selected
by the UE.

We consider a slotted decision making process with infinite
horizon. The optimal policy for the UE to select the optimal
MNO and fog/cloud server for a given service time duration
T is given by

7w ({k,j)) = argmmE < lim Z’y ug (k, j ) 4)

where 0 < v < 1 is the discount factor specifying how
impatient the UE is, i.e., the smaller the + the more the UE
cares about the latency performance in the current time slots
than the future.

V. LATENCY ANALYSIS IN LTE-BASED FOG COMPUTING

The RTT between the UE and the fog node for an LTE-
supported fog computing network can be affected by the
following factors:

Fog Node Placement: Most existing works assume that
simply deploying fog servers at the eNB (LTE base station)
location can achieve a negligible RTT between the UE and
the fog server [1], [18], [19]. However, as observed in [7],
eNBs are typically installed at inaccessible locations (e.g.,
the top of a hill or open spaces such as lamp posts and
street cabinets) and therefore cannot offer sufficient space and
resources (e.g., electric power and cooling load) for servers.
In addition, allowing the workload submitted by the UE to be
redirected to a co-located server at the eNB instead of being
forwarded to the LTE core network, i.e., ePC, via S1 interface
will also require a total redesign of LTE interfaces. In a real
LTE system, data packets of the UE will be passing through
many IP routing hops within the ePC. Unfortunately, these
internal IP hops have been hidden from the public access. The
UE can only get a private subnet IP address that is translated to
a public address at the P-GW. In fact, in our measurement, we
observe that, in each MNO’s network, the first hop IP address
identified by “traceroute” remains the same across different
cities. This is typically for IPv4-based networks where IP
addresses are scarce. In this case, an Internet-based application
at the UE perceives the entire ePC as a single routing hop. To
minimize the RTT between the UE and the fog node, the fog
node should be placed close to the first public IP address also
referred to as the first node in the ePC that can be identified.
Uplink Latency: We consider the scenario that the UE
submits its workload using the data-only best-effort service
offered by the MNOs. In this case, the UE must first initiate the
uplink data transmission by submitting a one-bit scheduling
request (SR) to the physical uplink control channel (PUCCH)
informing the eNB about the new packet arrivals. The UE will
then wait for the eNB to schedule a grant that specifies the
radio resources for uplink transmission. If the UE does not
receive the uplink resources from the eNB, it will resend the
SR on PUCCH based on the SR periodicity from Sms to 80ms
(In LTE Release 9, new Ims and 2ms SR periodicities have
been added.) [20].

Downlink Latency: The eNB will feedback the processing
result to the UE when it is available. In LTE-FDD, a Ims
subframe is considered to be the typical wireless transmission
time interval between the UE and the eNB. This pluses
the frame alignment time (typically 0.5ms), UE processing
latency (1.5ms). In case that the result delivery fails, the
UE will feedback a negative acknowledgment (NACK) after
4 subframes and the Hybrid ARQ (HARQ) retransmission
occurs 4 subframes after receiving the NACK resulting a total
8ms of delay.

Handover: One of the main factors that cause service in-
terruption, drop of connection, and increased latency for the



UE when driving is the handover, i.e., the UE as well as its
connected service is transferred from one cell/eNB to another.
The handover decision is typically initiated by the UE via
its connected eNB when its measured downlink signal power
from its serving eNB is below a certain threshold. In particular,
the UE starts measuring the signal strength of a neighboring
eNB when the received signal power of the current eNB is
below a threshold value. The UE will then report the result to
the source eNB. Since the signal measuring and neighboring
cell searching are made by the UE even in the idle state (during
DRX periods), the latency of cell searching and identification
is typically assumed to be negligible. Once the downlink
measurement results reported from the UE satisfies a certain
condition, the source eNB will initiate the handover process by
sending radio resource control (RCC) reconfiguration message
to the UE which specifies the identity of the target eNB.
According to [21], the maximum allowed delay for RCC
reconfiguration is 15 ms. The source eNB will also send a
handover request message to the target eNB. Once received the
request, the target eNB will allocate the resources in the target
cell and allocate a new Radio Network Temporary Identifier
(RNTI) to the UE. The handover can be based on the Sl
interface between two eNB without requiring coordination
through the higher level components such as MME and P-
GW. When S1 interface is unavailable, the handover will
be processed by the MME via X1 interface. From the UE’s
perspective, it is impossible to differentiate these two types of
handover. In fact, it is generally impossible for the UE to tell
which handover procedure has been executed.

VI. EMPIRICAL MODELING
A. Cloud vs. Fog Latency

Latency and Reliability Tradeoff: We present the histogram
as well as the empirical PDF of cloud and fog latency mea-
sured in a fixed lab location in Figures 4 and 5, respectively. It
can be observed that the PDF of fog latency follows the dual
modal with the first and second peaks at around 54ms and
87ms, respectively. The 33ms difference between these two
peaks is mainly caused by the SR retransmission periodicity
(around 20 to 40ms) and the HARQ retransmission delay
(around 1 to 8 ms). Note that, in [7], the authors observed
a sawtooth RTT pattern caused by the SR retransmission
periodicity at every 20ms with around 40ms amplitude in a
fixed lab location. Since our latency traces are recorded at
every 500ms, we did not observe any strong sawtooth pattern
in our dataset. However, the SR retransmission still contributes
to the second peak of the latency traces. From Figures 4 and
5, we can observe that the Internet connection between the
LTE network and the cloud server contributes to approximately
10ms over the overall RTT of the UE. It is interesting to
observe that for most of the latency traces, the standard
deviation of the cloud latency is less than that of the fog node.
This means that the extra delay and connection variation of
the Internet compensates the latency variation of the wireless
links between the UE and the ePC. The above observation also
verifies the recent study reported in [13] where the authors
suggest that although the cloud server normally has higher

average latency compared to the fog node, the service latency
between the UE and cloud offers lower uncertainty, i.e., less
standard deviation, compared to that between UE and fog
node.

In Figures 6 and 7, we compare the empirical PDF generated

from the cloud and fog latency traces. We observe that the
mobility of the UE contributes to around 10 to 20ms in
average for the latency, compared to the fixed location. More
importantly, the driving latency traces show a significantly
increase in the variance of the RTT, i.e., around 30ms to
40ms increase for the 90 percentile of the empirical PDF for
fog node and cloud latency, respectively. This is caused by
handover, data loss, and reconnection which will be discussed
in more details in the rest of this section.
Cloud/Fog Server Selection and Adaptation In Figures 8 and
9, we compare the CDFs of fog node and cloud latencies and
compare their K-R distance under various latency thresholds,
e.g., 50ms and 100ms, with the weighting factor set to be 1. We
can observe that for fixed-location latency traces, the minimum
K-R distance between cloud and fog latency is at 85ms in
which the difference between two CDFs is only 0.23%. In
other words, if the UE’s applications cannot differentiate the
service quality as long as the latency is controlled below 85ms,
offloading the workload to cloud or fog node will not cause
much noticeably different latency performance. However, for
the applications that are sensitive to the latency below 85ms,
the fog node will offer much better performance than the CDC.
In particular, if the maximum tolerable latency of the UE is at
63ms, the difference between the confidence interval of cloud
and first node to meet the required latency requirements will
be as high as 58.6%.

For the driving latency traces, we observe that the difference
between cloud and fog node becomes less compared to that of
the fixed location. In particular, the minimum K-R distance is
at 74ms with only 0.55% difference between the confidence
level of cloud and fog latency. The maximum K-R distance
is at 10Ims where switching from cloud server to fog server
can result in over 16.5% increase of confidence level. This
means that the uncertainty of wireless connection plays a more
dominant role in our driving latency traces, compared to the
fixed location data set.

Fog server typically has much less computing power com-
pared to the cloud server. Therefore, most existing works
suggest to only offload the most latency-sensitive applications
to fog nodes and leave the more delay-tolerant service work-
load to the CDC. Our observation here suggests that the K-R
distance offers more specific decision threshold for identifying
the services that should be submitted to CDC or fog nodes. In
particular, for a given LTE network and maximum tolerable
delay r;, we can write a simple threshold-based policy for
selecting fog or cloud server to process each service type ¢ as

A

where G; and G is the empirical CDFs of cloud and fog
latency at value r; and 6y is the threshold specifying the
difference between tolerable confidence levels of fog node

{Cloud Server},
{Fog Server}

It K(Gi, G) < 0,
Otherwise,

(&)
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and cloud latency that can be considered to be negligible for
service type 1.

B. Different MNOs

It is known that the service latency offered by different
MNOs exhibit significant spatial variation depending on the
location and eNB deployment densities at each area. To inves-
tigate the possible causes of the different latency performances
of MNOs, we need to look into specific areas. In particular,
in Figures 12-15, we present the empirical PDF of the RTT
measured at the first level of a multi-story parking lot for
both MNQO'’s networks. We can observe that for MNO 1, the
RTT in the parking lot results suffer around 10ms increase in
the average compared to the RTT of the office in Figures 4
and 5. This can be caused by the higher chances of HARQ
retransmission and in-synchronization. The RTT offered by
MNO 2 however experience a much higher noticeable increase
in both terms of average latency as well as the standard
deviation due to the less dense deployment of the eNB in the
surrounding area compared to the MNO 1. Another reason
causing the performance degradation of MNO 2 is that the
LTE network of MNO 2 in the local area operated at 1900
MHz. MNO 1 however operates at a lower frequency band
(850MHz) which can have better penetration through concrete
wall. This will also increase the chance of packet loss, in-
synchronization, connection drop, and retransmission.

In Figures 16 and 17, we compare the CDFs of the cloud
and fog nodes latency offered by the two MNOs. For the fog
latency, we observe that if the latency constraint of the UE is at
88ms, then difference of the confidence levels offered by two
MNOs reaches the maximum value at 25.79%. Also MNO 2
offers higher confidence level for services with the maximum
tolerable latency below 131ms. The fog latency offered by two
MNOs provide the same confidence level at 64ms and 125ms.
The maximum difference between the fog latency confident
level is at 80ms. In this case, MNO 2 offers 29.91% higher
confidence level than MNO 1.
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C. Handover

To investigate the impact of the handover on the latency
performance, we present the empirical PDF of the RTT when
the UE is driving between two eNB in a open straight route
outside of the city center in Figures 18 and 19. Since it
is impossible to identify the exact location/timing of the
handover, i.e., handover can even happen after the UE drove
pass the targeting eNB, the latency performance during the
handover in practice will be much worse than the results
presented in Figures 18 and 19. Also we consider the two
eNB located outside of the city center in an open road. The
handover process is expected to cause much higher latency
increase in an urban environment. Even with these limitations,
we can still observe that the average latency for both cloud and
fog node increase around 40ms. According to our discussion
in Section V, this means that most of the handover processes
are successful in the first attempt.

D. Driving Speed

For a moving vehicle, it is expected that the fast driving
speed will increase the chances of the Doppler effect resulting
in much higher chances of packet drop or connection failure.
To investigate the impact of the driving speed on the service
latency in practical system, we analyze the latency traces
at different driving speeds in Figure 24. We first present
the mean and standard deviation of the latency traces in all
the dataset collect from our driving measurement campaign.
Surprisingly, we did not observe a significant increase of
the RTT when the driving speed increases. For example, the
average fog latency remains almost the same even when the
driving speed approach 20m/s. The cloud latency increases
for around 20ms at 20m/s of speed. This is because the
driving speed can only become large when the vehicle is drove
outside of the city center. The increased in-synchronization and
disconnection probability will be compensated by the decrease
of the reflection and blockage experienced inside the city. We
compare the latency traces collected in an urban area with high
eNB deployment density. We again observe a slight increase
of the average cloud and fog latency, i.e., around 10-20ms of
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increase for both latency. However, we observe a significant
increase in the standard deviation of both latency when the
speed become large (e.g., over 10m/s).

VII. OPTIMAL NETWORK/SERVER SELECTION AND
ADAPTATION

In this section, we derive the optimal policy for the UE to
dynamically switch between two LTE networks. As mentioned
earlier, in addition to the physical setup of the network,
the latency of the UE is also closely related to the driving
routine of the vehicle which can be affected by driver’s
intended destinations (e.g., home and office locations), driving
habit, timing, and traffic conditions. This further increases the
complexity of deriving the optimal policy. Fortunately, existing
works as well as our measurement confirmed that the vehicle’s
future location and speed mainly depend on its current location
and speed. In the rest of this section, we formulate the network
adaptation and fog/cloud server selection as a Markov decision
process (MDP). A simple threshold policy can then be derived
for the UE to make an autonomous decision about whether or
not to switch to another LTE network.

We formulate the network adaptation and fog/cloud server
selection as a MDP with infinite horizon consisting of the
following elements:

State: The state of the UE includes its driving speed v,
location z, and the connected LTE network [. Typically,
driving speed and location are continuous variables. However,
in real world measurement study, the empirical PDF of the
driving speed and location are generated from the histogram
with only finite numbers of states. We can therefore define
the state space S as a finite set of possible intervals of speed,

location regions, and LTE network choices of the UE. We
write each instance of state as s = (v, z,1) for s € S.

Action: The UE can decide whether or not to switch to another
LTE network labeled as k for k # [ or stay with the current
choice k = [. It can also choose to offload its workload to fog
or cloud server. We assume each service can only be submitted
to one LTE network at a time. We define the action space A
of the UE as all the possible choices of LTE networks and
fog and cloud servers. We also write the action of the UE as
a = (k,j) for a € A.

State Transition Function: The probability of transitioning
from one possible location and driving speed to another
location and speed can be calculated from our driving mea-
surement dataset. We observe that the driving speed as well
as its probability of transitioning to another possible speed is
closely related to the driving time. In particular, the driving
speed and the probability of transitioning from one speed to
another during rush hours is generally different from those
during the non-peak hours. We therefore generate a set of
different state transition probabilities at different time slots
throughout a day. To simplify our description, we assume the
state transition probability can be considered as fixed during
the time slot of consideration and write the probability of
state transferred from state s to s’ when taking action a as

(s',s,a) = Pr(s'|s,a).

Utility Function: The main objective is to maximize the
confidence level for the UE to have all the services being
successfully served within the required latency. We assume
the UE can receive requests from a set of services defined as
M each has a fixed probability of arrival in each time slot
denoted as p; for service type ¢, for ¢ € M. Let r; be the
maximum tolerable delay for type ¢ service. To avoid the UE
to switch back-and-forth between different MNOs, we assume
a fixed cost for switching from one LTE network to another.
We consider the instantaneous utility function in (3).

To maximize the long-term utility, the best action for the
UE to take is to maximize both its utility in the current time
slot as well as the expected utility in future time slots. This
problem can be solved by employing the standard dynamic
programming approach. We omit the details due to the limit



of space.

VIII. NUMERICAL RESULTS

In this section, we evaluate the performance of AdaptiveFog
using our driving dataset. In Figures 20 and 21, we present
the empirical PDFs of both fog node and cloud latency when
the UE can use AdaptiveFog to dynamically switch between
MNOs. We can observe that AdaptiveFog provides significant
benefit to the fog latency with almost 15ms and 9ms reduction
on the average latency compared to the case that the UE can
only access a single MNO’s LTE network. More importantly,
AdaptiveFog reduces the standard deviation of the latency by
almost a half compared to the scenario that the UE is stuck
with a single MNO. For the cloud latency, the improvement
on the average latency is relatively limited. However, we can
again observe a significant reduction on the standard deviation
of the cloud latency especially compared to the single MNO
case.

It is obvious that the performance of AdaptiveFog is closely
related to the cost for the UE to switch between MNO’s
networks. In Figures 22 and 23, we present the confidence
level under different switching cost for both fog node and
cloud latency with and without using AdaptiveFog. We com-
pare confidence level of three latency thresholds, 100 ms,
120 ms, and 150 ms, corresponding to vehicular applications
with different levels of stringent latency requirement. Note that
confidence level of the single MNO will not change with MNO
switching cost. We observe that, when the switching cost is
low, AdaptiveFog achieves almost 30% improvement in confi-
dence level of cloud latency, compared to the single-operator
case. For the fog latency, AdaptiveFog achieves almost 50%
improvement in the confidence level for supporting the active
road safety applications. Note that these results are simulated
by applying all of our driving data set to evaluate the perfor-
mance improvement of AdaptiveFog. In some specific local
area such as the one MNO has much higher eNB deployment
density than the other, the performance improvement achieved
by AdaptiveFog should be even higher.

IX. CONCLUSION

This paper has reported a city-wide measurement of the
wireless access latency between a moving vehicle and a fog
computing system connected through a multi-operator LTE
network. A novel networking and server adaptation frame-
work, called AdaptiveFog, has been proposed for vehicles to
autonomously and dynamically connect with different LTE
networks and fog or cloud servers. We have developed a
smart phone app running on a moving vehicle to periodically
measure the RTT of the UE when connecting with fog/cloud
servers though different LTE networks. An empirical spa-
tial statistic model is established to characterize the spatial
variation of latency performance across various locations of
the city. We introduce the weighted K-R distance to quantify
the performance difference between different LTE networks.
An optimal policy has been derived for a moving vehicle to
sequentially switch to the optimal LTE networks. Extensive

simulations have been performed. Our results show that Adap-
tiveFog achieves around 30% and 50% improvement in the
confidence level for fog node and cloud latency, respectively.
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