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CMAP, École Polytechnique
Route de Saclay, 91128 Palaiseau, France

zoltan.szabo@polytechnique.edu

Department of Statistics
Pennsylvania State University

314 Thomas Building
University Park, PA 16802

bks18@psu.edu

Abstract

Random Fourier features (RFF) represent
one of the most popular and wide-spread
techniques in machine learning to scale up
kernel algorithms. Despite the numerous suc-
cessful applications of RFFs, unfortunately,
quite little is understood theoretically on
their optimality and limitations of their per-
formance. Only recently, precise statistical-
computational trade-offs have been estab-
lished for RFFs in the approximation of ker-
nel values, kernel ridge regression, kernel
PCA and SVM classification. Our goal is to
spark the investigation of optimality of RFF-
based approximations in tasks involving not
only function values but derivatives, which
naturally lead to optimization problems with
kernel derivatives. Particularly, in this pa-
per, we focus on the approximation quality
of RFFs for kernel derivatives and prove that
the existing finite-sample guarantees can be
improved exponentially in terms of the do-
main where they hold, using recent tools from
unbounded empirical process theory. Our
result implies that the same approximation
guarantee is attainable for kernel derivatives
using RFF as achieved for kernel values.

1 INTRODUCTION

Kernel techniques [3, 30, 17] are among the most influ-
ential and widely-applied tools, with significant impact
on virtually all areas of machine learning and statis-
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tics. Their versatility stems from the function class as-
sociated to a kernel called reproducing kernel Hilbert
space (RKHS) [2] which shows tremendous success in
modelling complex relations.

The key property that makes kernel methods compu-
tationally feasible and the optimization over RKHS
tractable is the representer theorem [11, 25, 40]. Par-
ticularly, given samples {(xi, yi)}ni=1 ⊂ X×R, consider
the regularized empirical risk minimization problem
specified by a kernel k : X × X → R, the associated
RKHS Hk ⊂ RX, a loss function V : R × R → R≥0,
and a penalty parameter λ > 0:

min
f∈Hk

J0(f) :=
1

n

n∑

i=1

V (yi, f(xi)) + λ ‖f‖2
Hk

, (1)

where Hk is the Hilbert space defined by the following
two properties:

1. k(·, x) ∈ Hk (∀x ∈ X),1 and

2. f(x) = 〈f, k(·, x)〉
Hk

(∀x ∈ X, ∀f ∈ Hk), which is
called the reproducing property.

Examples falling under (1) include e.g., kernel ridge
regression with the squared loss or soft-classification
with the hinge loss:

V (f(xi), yi) = (f(xi)− yi)
2,

V (f(xi), yi) = max(1 − yif(xi), 0).

(1) is an optimization problem over a function class
(Hk) which could generally be intractable. Thanks to
the specific structure of RKHS, however, the represen-
ter theorem enables one to parameterize the optimal
solution of (1) by finitely many coefficients:

f(·) =
n∑

j=1

cjk(·, xj), cj ∈ R. (2)

1k(·, x) denotes the function y ∈ X 7→ k(y, x) ∈ R while
keeping x ∈ X fixed.
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As a result, (1) becomes a finite-dimensional optimiza-
tion problem determined by the pairwise similarities
of the samples [k(xi, xj)]:

min
c∈Rn

J̃0(c) :=
1

n

n∑

i=1

V


yi,

n∑

j=1

cjk(xi, xj)




+ λ

n∑

i=1

n∑

j=1

cicjk(xi, xj), (3)

where the second term follows from the reproducing
property of kernels.

However, in many learning problems such as non-
linear variable selection [20, 21], (multi-task) gradi-
ent learning [39], semi-supervised or Hermite learn-
ing with gradient information [42, 26], or density esti-
mation with infinite-dimensional exponential families
[28], apparently considering the derivative information

(∂pf(xi) := ∂p1+...+pdf(xi)

∂
p1
x1

···∂pd
xd

, X := Rd) other than just

the function values (f(xi)) turns out to be beneficial.
In these tasks containing derivatives, (1) is generalized
with loss functions Vi : R|Ii|+1 → R≥0 (i = 1, . . . , n;
|Ii| denotes the cardinality of Ii) to the form

min
f∈Hk

J(f) :=
1

n

n∑

i=1

Vi

(
yi, {∂pf(xi)}p∈Ii

)
+λ ‖f‖2

Hk
.

(4)

The solution of this minimization task —similar to
(1)—enjoys a finite-dimensional parameterization [42]:

f(·) =
n∑

j=1

∑

p∈Ij

cj,p∂
p,0k(·,xj), (cj,p ∈ R),

where ∂p,qk(x,y) := ∂
∑d

i=1(pi+qi)k(x,y)

∂
p1
x1

···∂pd
xd

∂
q1
y1

···∂qd
yd

. Hence, the op-

timization in (4) can be reduced to

min
c

J̃ (c) =

=
1

n

n∑

i=1

Vi


yi,

{
n∑

j=1

∑

p∈Ij

cj,p∂
p,0k(xi,xj)

}

p∈Ii




+λ

n∑

i=1

∑

p∈Ii

n∑

j=1

∑

q∈Ij

ci,pcj,q∂
p,qk(xi,xj), (5)

where c = (ci,p)i∈{1,...,n},p∈Ii
∈ R

∑n
i=1 |Ii|, and we

used the derivative-reproducing property of kernels

∂pf(x) =
〈
f, ∂p,0k(·,x)

〉
Hk

.

Compared to (3) where the kernel values determine the
objective, (5) is determined by the kernel derivatives
∂p,qk(xi,xj).

While kernel techniques are extremely powerful due
to their modelling capabilities, this flexibility comes
with a price, often they are computationally expensive.
In order to mitigate this computational bottleneck,
several approaches have been proposed in the litera-
ture such as the Nyström and sub-sampling methods
[37, 9, 22], sketching [1, 38], or random Fourier features
(RFF) [18, 19] and their approximate memory-reduced
variants and structured extensions [12, 7, 4].

The focus of the current submission is on RFF, ar-
guably the simplest and most influential approxima-
tion scheme among these approaches.2 The RFF
method constructs a random, low-dimensional, explicit
Fourier feature map (ϕ) for a continuous, bounded,
shift-invariant kernel k : Rd × Rd → R relying on the
Bochner’s theorem:

k̂(x,y) = 〈ϕ(x), ϕ(y)〉 , ϕ : Rd → R
m.

The advantage of such a feature map becomes appar-
ent after applying the parametrization:

f̂(x) = 〈w, ϕ(x)〉 , w ∈ R
m. (6)

This parameterization can be considered as an ap-
proximate version of the reproducing property f(x) =
〈f, k(·,x)〉

Hk
: f ∈ Hk is changed to w ∈ Rm and

k(·,x) ∈ Hk to ϕ(x) ∈ Rm. (6) allows one to lever-
age fast solvers for kernel machines in the primal [(1)
or (4)]. This idea has been applied in a wide range
of areas such as causal discovery [15], fast function-
to-function regression [16], independence testing [41],
convolution neural networks [6], prediction and filter-
ing in dynamical systems [8], or bandit optimization
[13].

Despite the tremendous practical success of RFF-s, its
theoretical understanding is quite limited, with only a
few optimal guarantees [29, 23, 27, 14, 33, 31].

• Concerning the approximation quality of kernel val-
ues, the uniform finite-sample bounds of [18, 32]
show that
∥∥k − k̂

∥∥
L∞(Sm×Sm)

:= sup
x,y∈Sm

∣∣k(x,y) − k̂(x,y)
∣∣

= Op

(
|Sm|

√
logm

m

)
,

where Sm ⊂ Rd is compact, |Sm| is its diameter, m
is the number of RFFs, Op(·) means convergence in
probability. [29] recently proved an exponentially
tighter finite-sample bound in terms of |Sm| giving

∥∥k − k̂
∥∥
L∞(Sm×Sm)

= Oa.s.

(√
log |Sm|

m

)
, (7)

2As a recognition of its influence, the work [18] won the
10-year test-of-time award at NIPS-2017.



Zoltán Szabó, Bharath K. Sriperumbudur

where Oa.s.(·) denotes almost sure convergence.
This bound is optimal w.r.t. m and |Sm|, as it is
known from the characteristic function literature [5].

• In terms of generalization, [19] showed that
O(1/

√
n) generalization error can be attained using

m = mn = O(n) RFFs, where n denotes the num-
ber of training samples. This bound is somewhat
pessimistic, leaving the usefulness of RFFs open.
Recently [23] proved that O (1/

√
n) generalization

performance is attainable in the context of kernel
ridge regression, with mn = o(n) = O (

√
n logn)

RFFs. This result settles RFFs in the least-squares
setting with Tikhonov regularization.

• [27] has investigated the computational-statistical
trade-offs of RFFs in kernel principal component
analysis (KPCA). Their result shows that depending
on the eigenvalue decay behavior of the covariance
operator associated to the kernel, mn = O(n2/3)
(polynomial decay) or mn = O (

√
n) (exponential

decay) RFFs are sufficient to match the statistical
performance of KPCA, where n denotes the number
of samples. [33] proved a similar result showing that
mn = O (

√
n logn) number of RFFs is sufficient for

the optimal statistical performance provided that
the spectrum of the covariance operator follows an
exponential decay, and presented a streaming algo-
rithm for KPCA relying on the classical Oja’s up-
dates, achieving the same statistical performance.

• Results of similar flavour have recently been showed
in SVM classification with the 0-1 loss [31].

In contrast to the previous results, the focus of our
paper is the investigation of problems involving ker-
nel derivatives [see (4) and (5)]. The idea applied in
practice is to formally differentiate (6) giving

∂̂pf(x) := ∂pf̂(x) = 〈w, ∂pϕ(x)〉 , (8)

which is then used in the primal [(4)], and optimized
for w. From the dual point of view [(5)], this means
that implicitly the kernel derivatives are approximated
via RFFs. The problem we raise in this paper is how
accurate these kernel derivative approximations are.

Our contribution is to show that the same depen-
dency in terms of m and |S| can be achieved for kernel
derivatives as attained for kernel values (see (7)). To
the best of our knowledge, the tightest available guar-
antee on kernel derivatives [29] is

∥∥∂p,qk − ∂̂p,qk
∥∥
L∞(Sm×Sm)

= Oa.s.

(
|Sm|

√
logm

m

)
.

In this paper, we prove finite sample bounds on the ap-
proximation quality of kernel derivatives, which specif-

ically imply that

∥∥∂p,qk − ∂̂p,qk
∥∥
L∞(Sm×Sm)

= Oa.s.

(√
log |Sm|

m

)
.

(9)

The possibility of such an exponentially improved de-
pendence in terms of |Sm| is rather surprising, as
in case of kernel derivatives the underlying function
classes are no longer uniformly bounded. We circum-
vent this challenge by applying recent tools from un-
bounded empirical process theory [35].

Our paper is structured as follows. We formulate our
problem in Section 2. The main result on the approx-
imation quality of kernel derivatives is presented in
Section 3. Proofs are provided in Section 4.

2 PROBLEM FORMULATION

In this section we formulate our problem after intro-
ducing a few notations.

Notations: N := {0, 1, 2, . . .}, N+ := N\{0} and R

denotes the set of natural numbers, positive integers
and real numbers respectively. For n ∈ N, n! denotes
its factorial. Γ(t) =

∫∞
0 xt−1e−x dx is the Gamma

function (t > 0); Γ(n+1) = n! (n ∈ N). Let n!! denote
the double factorial of n ∈ N, that is, the product of all
numbers from n to 1 that have the same parity as n;
specifically 0!! = 1. If n is a positive odd integer, then

n!! =
√

2n+1

π Γ
(
n
2 + 1

)
. For n ∈ N, cn := cos(πn2 + ·) is

the nth derivative of the cos function. For multi-indices
p,q ∈ Nd, |p| =∑d

j=1 pj , v
p =

∏d
j=1 v

pj

j , and we use

∂ph(x) := ∂|p|h(x)
∂
p1
x1

···∂pd
xd

, ∂p,qg(x,y) := ∂|p|+|q|g(x,y)
∂
p1
x1

···∂pd
xd

∂
q1
y1

···∂qd
yd

to

denote partial derivatives. 〈a,b〉 =
∑d

i=1 aibi is the
inner product between a ∈ Rd and b ∈ Rd. aT is
the transpose of a ∈ Rd, ‖a‖2 =

√
〈a, a〉 is its Eu-

clidean norm, [a1; . . . ; aM ] ∈ R
∑M

m=1 dm is the concate-
nation of vectors am ∈ Rdm . Let S ⊂ Rd be a Borel
set. M

1
+ (S) is the set of Borel probability measures

on S. Λm = ⊗m
i=1Λ is the m-fold product measure

where Λ ∈ M
1
+ (S). Lr(S) is the Banach space of real-

valued, r-power Lebesgue integrable functions on S

(1 ≤ r < ∞). Λf =
∫
S
f(ω)dΛ(ω), where Λ ∈ M

1
+ (S)

and f ∈ L1 (S); specifically for the empirical mea-
sure, Λm = 1

m

∑m
i=1 δωi , Λmf := 1

m

∑m
i=1 f(ωi) where

ω1:m = (ωi)
m
i=1

i.i.d.∼ Λ and δω is the Dirac measure
supported on ω ∈ S. S∆ = {s1 − s2 : s1, s2 ∈ S}. For
positive sequences (an)n∈N, (bn)n∈N, an = O(bn) (resp.

an = o(bn)) means that
(

an

bn

)
n∈N

is bounded (resp.

limn→∞
an

bn
= 0). Positive sequences (an)n∈N, (bn)n∈N

are said to be asymptotically equivalent, shortly an ∼
bn, if limn→∞

an

bn
= 1. Xn = Op(rn) (resp. Oa.s.(rn))
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denotes that Xn

rn
is bounded in probability (resp. al-

most surely). The diameter of a compact set A ⊂ Rd

is defined as |A| := supx,y∈A ‖x− y‖2 < ∞. The nat-
ural logarithm is denoted by ln.

We continue with the formulation of our task. Let
k : Rd × Rd → R be a continuous, bounded, shift-
invariant kernel. By the Bochner theorem [24], it is
the Fourier transform of a finite, non-negative Borel
measure Λ:

k(x,y) = k̃(x− y) =

∫

Rd

e
√
−1ωT (x−y)dΛ(ω)

(a)
=

∫

Rd

cos
(
ω

T (x− y)
)
dΛ(ω) (10)

(b)
=

∫

Rd

[
cos
(
ω

Tx
)
cos
(
ω

Ty
)
+

sin
(
ω

Tx
)
sin
(
ω

Ty
)]

dΛ(ω),

=

∫

Rd

〈φω(x), φω(y)〉R2 dΛ(ω), (11)

where φω(x) = [cos
(
ω

Tx
)
; sin

(
ω

Tx
)
]. (a) follows

from the real-valued property of k, and (b) is a con-
sequence of the trigonometric identity cos(α − β) =
cos(α) cos(β) + sin(α) sin(β). Without loss of gen-
erality, it can be assumed that Λ ∈ M

1
+

(
Rd
)
since

k̃(0) = Λ
(
Rd
)
and the normalization k(x,y)

k̃(0)
yields

k(x,y)

k̃(0)
=

∫

Rd

cos
(
ω

T (x− y)
)
d

Λ(ω)

Λ (Rd)︸ ︷︷ ︸
=:P(ω), P∈M1

+(Rd)

.

Let p,q ∈ Nd. By differentiating3 (11) one gets

∂p,qk(x,y) =

∫

Rd

〈∂pφω(x), ∂
qφω(y)〉R2 dΛ(ω).

(12)

The resulting expectation can be approximated by the

Monte-Carlo technique using ω1:m = (ωj)
m
j=1

i.i.d.∼ Λ
as

∂̂p,qk(x,y) =

∫

Rd

〈∂pφω(x), ∂
qφω(y)〉R2 dΛm(ω)

=
1

m

m∑

j=1

〈
∂pφωj (x), ∂

qφωj (y)
〉
R2

= 〈ϕp(x), ϕq(y)〉R2m , (13)

where Λm = 1
m

∑m
j=1 δωj , and

ϕp(x) =
1√
m

(
∂pφωj (x)

)m
j=1

= ∂pϕ0(x) ∈ R
2m (14)

=
1√
m

(
ω

p

j

[
c|p|

(
ω

T
j x
)
; c3+|p|

(
ω

T
j x
)])m

j=1
.

3By the dominated convergence theorem, the differen-
tiation is valid if

∫
Rd |ωp+q| dΛ(ω) < ∞.

Specifically, if p = q = 0 then (13) reduces to the
celebrated RFF technique [18]:

k̂(x,y) = 〈ϕ0(x), ϕ0(y)〉R2m ,

ϕ0(x) =
1√
m

(
cos
(
ω

T
j x
)
; sin

(
ω

T
j x
))m

j=1
.

Our goal is to prove that similar to p = q = 0 [(7)],
fast approximation of kernel derivatives [(9)] is attain-
able. Alternatively, we establish that the derivative
(see ϕp and (13)-(14)) of the RFF feature map (ϕ0) is
as efficient for kernel derivative approximation as ϕ0

for kernel value approximation.

3 MAIN RESULT

In this section we present our main result on the uni-
form approximation quality of kernel derivatives using
RFFs. Its proof is available in Section 4.

Theorem (Uniform guarantee on kernel deriva-
tive approximation). Suppose that k : Rd ×
Rd → R is a continuous, bounded and shift-
invariant kernel. For p,q ∈ Nd, assume Cp,q =√∫

Rd |ωp+q|2 ‖ω‖22 dΛ(ω)/σp,q < ∞ and for some

constant K ≥ 1, the following Bernstein condition
holds:
∫

Rd

|ωp+q|n
(σp,q)

n dΛ(ω) ≤ n!

2
Kn−2, n = 2, 3, . . . , (15)

where σp,q =
√∫

Rd |ωp+q|2 dΛ(ω). Let Lm =
√
6K

2
√
m
,

C1 = 14
√
6 ln(2) + 1, C2 = 36K[ln(2) + 1] and C3 =

7
√
6

(
1 +

√
π

ln
3
2 (2)

)
. Then for any t > 0 and compact

set S ⊂ Rd,

Λm

({
ω1:m :

∥∥∂p,qk − ∂̂p,qk
∥∥
L∞(S×S)

≥

σp,q

(
C3

√
d ln (16|S|Cp,q + 4)√

m
+

C1√
m

+
C2

m
+

+
24

√
6√

m

[√
t+

Lmt

2

])})
≤ 2e−t.

Remarks.

• Growth of |Sm|: The theorem proves the same de-
pendence on m and |Sm| as is known [see (9)] for
kernel values (p = q = 0). The result implies that

∥∥∂p,qk − ∂̂p,qk
∥∥
L∞(Sm×Sm)

m→∞−−−−→ 0 a.s.

if |Sm| = eo(m).
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• Requirements for p = q = 0: In this case σ0,0 =
1,

–
∫
Rd

|ω0+0|n
(σ0,0)

n dΛ(ω) = 1, thus (15) holds (K = 1).

– The only requirement is the finiteness of C0,0 =∫
Rd ‖ω‖22 dΛ(ω), which is identical to that im-
posed in [29, Theorem 1] for kernel values.

• L∞(S× S)-based Lr(S× S) guarantee: From the
theorem above one can also get (see Section 4) the
following Lr(S× S) guarantee, where r ∈ [1,∞).

Under the same conditions and notations as in the
theorem, for any t > 0

Λm
({

ω1:m :
∥∥∂p,qk − ∂̂p,qk

∥∥
Lr(S×S)

≥

σp,q

[
πd/2|S|d

2dΓ
(
d
2 + 1

)
] 2

r
(
C3

√
2d ln (16|S|Cp,q + 4)√

m
+

+
C1√
m

+
C2

m
+

24
√
6√

m

[√
t+

Lmt

2

])})
≤ 2e−t.

This shows that
∥∥∂p,qk − ∂̂p,qk

∥∥
Lr(Sm×Sm)

=

Oa.s.

(
m− 1

2 |Sm| 2dr
√
log |Sm|

)
. Consequently, if

|Sm| → ∞ as m → ∞ then ∂̂p,qk is a consistent
estimator of ∂p,qk in Lr(Sm × Sm)-norm provided

that m− 1
2 |Sm| 2dr

√
log |Sm| m→∞−−−−→ 0.

• Bernstein condition with [p;q] 6= 0: Next we
illustrate how the Bernstein condition in (15) trans-
lates to the efficient estimation of ‘not too large’-
order kernel derivatives in case of the Gaussian
kernel. For simplicity let us consider the Gaus-
sian kernel in one dimension (d = 1); in this case
Λ = N

(
0, σ2

)
is a normal distribution with mean

zero and variance σ2. Let r = p + q ∈ N+ and
denote the l.h.s. of (15) as

Ar,n(Λ) =

∫
R
|ω|rndΛ(ω)[√∫

R
|ω|2r dΛ(ω)

]n .

By the analytical formula for the absolute moments
of normal random variables

Ar,n(Λ) =

σnr(nr − 1)!!

{
1 if nr is even√

2
π if nr is odd

[σ2r(2r − 1)!!]
n
2

=

(nr − 1)!!

{
1 if nr is even√

2
π if nr is odd

[(2r − 1)!!]
n
2

. (16)

Since Ar,n(Λ) does not depend on σ, one can assume

that σ =
√∫

R
|ω|2dΛ(ω) = 1 and Λ = N (0, 1).

Exploiting the analytical expression obtained for
Ar,n(Λ) one can show (Section 4) that for
– r = 1: (15) holds with K = 1 since A1,n(Λ) ≤ n!

2 .
– r = 2: K = 2 is a suitable choice in (15).
– r = 3 and r = 4: Asymptotic argument shows

that (15) can not hold.
It is an interesting open question whether one can
relax (15) while maintaining similar rates, and what
are the trade-offs.

• Higher-order derivatives: In the Gaussian exam-
ple we saw that (15) holds for r ≤ 2, but it is not sat-
isfied for r > 2. For kernels with spectral densities

proportional to e−ω2ℓ

(ℓ ∈ N+; the ℓ = 1 choice re-
duces to the Gaussian kernel), it turns out that (15)
is fulfilled with r ≤ 2ℓ-order derivatives; for com-
pleteness the proof is available in Section A (sup-
plement). In other words, kernels with faster de-
caying spectral densities can guarantee the efficient
RFF-based estimation of kernel derivatives, without
deterioration in the |S| and m-dependence.

• Difficulty: The fundamental difficulty one has to
tackle to arrive at the stated theorem is as follows.

By differentiating (10) one gets

∂p,qk(x,y)=

∫

Rd

ω
p(−ω)qc|p+q|

(
ω

T (x− y)
)
dΛ(ω).

By defining

gz(ω) = ω
p(−ω)qc|p+q|

(
ω

T z
)
, (17)

the error we would like to control can be rewritten
as the supremum of the empirical process

sup
x,y∈S

∣∣∂p,qk(x,y) − ∂̂p,qk(x,y)
∣∣= sup

z∈S∆

|(Λ− Λm)gz|,

where G := {gz : z ∈ S∆}. For p = q = 0 (i.e., the
classical RFF-based kernel approximation)

gz(ω) = cos
(
ω

T z
)

(z ∈ S∆)

which is a uniformly bounded family of functions:

sup
z∈S∆

‖gz‖L∞(Rd) ≤ 1.

This uniform boundedness is the classical assump-
tion of empirical process theory, which was exploited
by [29] to get the optimal rates. For p,q ∈ Nd\{0},
however, the functions gz are unbounded and so G
is no longer uniformly bounded in L∞ (Rd

)
. There-

fore, one has to control unbounded empirical pro-
cesses for which only few tools are available.

The key idea of our paper is to apply a recent tech-
nique which bounds the supremum as a weighted
sum of bracketing entropies of G at multiple scales.
By estimating these bracketing entropies and opti-
mizing the scale the result will follow. This is what
we detail in the next section.
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4 PROOFS

We provide the proofs of the results (main theorem and
its consequence, remark on the Bernstein condition for
Gaussian kernel) presented in Section 3. We start by
introducing a few additional notations specific to this
section.

Notations: The volume of A ⊆ Rd is defined
as vol(A) =

∫
A
1 dx. γ(a, b) =

∫ b

0
e−tta−1dt is

the incomplete Gamma function (a > 0, b ≥ 0)
that satisfies γ(a + 1, b) = aγ(a, b) − bae−b and

γ
(
1
2 , b
)
=

√
πerf

(√
b
)
, where erf(b) = 2√

π

∫ b

0
e−t2dt

is the error function (b ≥ 0). Let (F , ρ) be a met-
ric space. The r-covering number of F is defined
as the size of the smallest r-net, i.e., N(r,F , ρ) =
inf
{
ℓ ≥ 1 : ∃ (fj)ℓj=1 s.t. F ⊆ ∪ℓ

j=1Bρ(fj , r)
}
, where

Bρ(s, r) = {f ∈ F : ρ(f, s) ≤ r} is the closed ball
with center s ∈ F and radius r. For a set of real-
valued functions F and r > 0, the cardinality of the
minimal r-bracketing of F is defined as N[ ](r,F , ρ) =
inf{n ≥ 1 : ∃ {(fj,L, fj,U )}nj=1, fj,L, fj,U ∈ F (∀j) such
that ρ (fjL , fj,U ) ≤ r and ∀f ∈ F ∃j fj,L ≤ f ≤ fj,U}.
The proof of the main theorem is structured as
follows.

1. First, we rescale and reformulate the approxima-
tion error as the suprema of unbounded empirical
processes, for which bounds in terms of bracketing
entropies at multiple scales can be obtained.

2. Then, we bound the bracketing entropies via Lip-
schitz continuity.

3. Finally, the scale is optimized.

Step 1. It follows from (17) that,

‖gz‖ := ‖gz‖L2(Rd,Λ) =
√
Λg2z

≤
√∫

Rd

|ωp+q|2 dΛ(ω)

︸ ︷︷ ︸
=:σp,q

.

Define fz(ω) := gz(ω)
σp,q

so that

‖fz‖ ≤ 1 ∀z ∈ S∆ ⇒ sup
f∈F

‖f‖ ≤ 1, (18)

where F := {fz : z ∈ S∆}. The target quantity can be
rewritten in supremum of empirical process form as

sup
x,y∈S

∣∣∂p,qk(x,y) − ∂̂p,qk(x,y)
∣∣ = sup

z∈S∆

|Λgz − Λmgz|

= σp,q sup
f∈F

|(Λ− Λm)f | =: σp,q ‖Λ − Λm‖F .

By the Bernstein condition [(15)] the following uniform

bound holds:

sup
fz:z∈S∆

Λ|fz|n ≤
∫

Rd

|ωp+q|n
(σp,q)

n dΛ(ω)

≤ n!

2
Kn−2 (n = 2, 3, . . .). (19)

The uniform L2(Λ) boundedness of F [(18)] with its
Bernstein property [(19)] imply by [35, Theorem 8]
that for all t > 0 and for all scale S ∈ N

Λm

({
ω1:m : sup

f∈F

∣∣√m(Λ− Λm)f
∣∣ ≥ min

S
ES (20)

+
36K√
m

+ 24
√
6

[√
t+

Lmt

2

]})
≤ 2e−t,

where

ES := 2−S
√
m+ 14

S∑

s=0

2−s
√
6Hs +

36KH0√
m

,

Lm :=

√
6K

2
√
m

, Hs := ln(Ns + 1),

Ns := N[ ](2
−s,F , ‖·‖),

H0 = ln(N0 + 1),

and N0 is the cardinality of the minimal gen-
eralized bracketing set of F . Formally, N0 =
N0(K) := inf{n ≥ 1 : ∃fj,L, fj,U ∈ F (j =
1, . . . , n), Λ |fj,L − fj,U |n ≤ n!

2 (2K)n−2 (n = 2, 3, . . .),
and for ∀f ∈ F , ∃j ∈ {1, . . . , n} such that fj,L ≤ f ≤
fj,U}.
Step 2. We continue the proof by bounding the en-
tropies H0 and Hs (s ≥ 1) in (20). Using (15) for the
envelope function F := supf∈F |f |, we get

Λ (Fn) = Λ

([
sup
f∈F

|f |
]n
)

= Λ

(
sup
f∈F

|f |n
)

≤
∫

Rd

|ωp+q|n
(σp,q)

n dΛ(ω) ≤ n!

2
Kn−2, n = 2, 3, . . .

Hence F also satisfies the weaker Bernstein condition:
Λ (Fn) ≤ n!

2 (2K)n−2 (n = 2, 3, . . .). Consequently,
one can choose N0 = 1 [35, remark after Definition 8],
and H0 = ln(N0 + 1) = ln(2).

Next we bound Hs (s ≥ 1). The F function class is
Lipschitz continuous in the parameters (fz1 , fz2 ∈ F):

|fz1(ω)− fz2(ω)|

=

∣∣
ω

p(−ω)qc|p+q|
(
ω

T z1
)
− ω

p(−ω)qc|p+q|
(
ω

T z2
)∣∣

σp,q

=
|ωp+q|

∣∣c|p+q|
(
ω

T z1
)
− c|p+q|

(
ω

T z2
)∣∣

σp,q

(a)

≤ |ωp+q|
σp,q

∣∣
ω

T (z1 − z2)
∣∣ (b)≤ |ωp+q|

σp,q
‖ω‖2

︸ ︷︷ ︸
=:G(ω)

‖z1 − z2‖2 ,
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where we used the Lipschitz property of u 7→ c|p+q|(u)
(with Lipschitz constant 1) in (a) and the Cauchy-
Bunyakovskii-Schwarz inequality in (b). Thus, by [36,
Theorem 2.7.11, page 164] for any δ > 0,

N[ ](δ,F , ‖·‖) ≤ N

(
δ

2 ‖G‖ , S∆, ‖·‖2
)
, (21)

where

‖G‖ =

√∫

Rd

G2(ω)dΛ(ω)

=

√∫

Rd

|ωp+q|2
σ2
p,q

‖ω‖22 dΛ(ω) =: Cp,q.

From Lemma 2.5 in [34] it follows that

N (r,M, ‖·‖2) ≤
(
2|M |
r

+ 1

)d

, ∀r > 0

for any compact M ⊂ Rd. Choosing M = S∆, δ = 2−s

and noting that |S∆| ≤ 2|S|, one can bound the l.h.s.
in (21) as

Ns = N[ ]

(
2−s,F , ‖·‖

)
≤ N

(
1

2s+1Cp,q
, S∆, ‖·‖2

)

≤
(
2s+3|S|Cp,q + 1︸ ︷︷ ︸

≤2sK̃|S|

)d
,

where K̃|S| = 8|S|Cp,q + 1. Thus for any s ≥ 1,

Hs = ln(Ns + 1) ≤ d ln
(
2sK̃|S| + 1︸ ︷︷ ︸
≤2s(K̃|S|+1)

)

≤ d
[
s ln(2) + ln

(
K̃|S| + 1

)]

≤ s d
[
ln(2) + ln

(
K̃|S| + 1

)]

︸ ︷︷ ︸
d ln(2K̃|S|+2)=:K|S|

.

Hence,

ES ≤ 14
S∑

s=1

2−s
√
6sK|S|

︸ ︷︷ ︸
14
√

6K|S|
∑

S
s=1 2−s

√
s

+2−S
√
m

+ 14
√
6 ln(2) +

36K ln(2)√
m

. (22)

Step 3. By (22), to control ES as a function of the
scale S, we study the behaviour of h(t) = 2−t

√
t. It

is easy to verify that h is monotonically decreasing on[
1

2 ln(2) ,∞
)
as its derivative

h′(t) =
1
2 t

− 1
2 2t −

√
t2t ln(2)

22t
≤ 0

on
[

1
2 ln(2) ,∞

)
. Using this monotonicity, one gets

h(s) ≤
∫ s

s−1
h(x)dx for any s such that 1

2 ln(2) ≤ s−1 ⇔
1

2 ln(2)+1 ≤ s, specifically for all 2 ≤ s since 1
2 ln(2) < 1.

Hence, applying change of variables (2−x = e−t, i.e.
x = t

ln(2) ) we arrive at

S∑

s=1

2−s
√
s = h(1)︸︷︷︸

1
2

+

S∑

s=2

h(s)︸︷︷︸
≤
∫ s
s−1

h(x)dx

≤ 1

2
+

∫ S

1

h(x)dx

=
1

2
+

1

ln
3
2 (2)

∫ S ln(2)

ln(2)

e−t
√
tdt

≤ 1

2
+

1

ln
3
2 (2)

∫ S ln(2)

0

e−t
√
tdt

=
1

2
+

1

ln
3
2 (2)

[√
π

2
erf(
√
S ln(2))− 2−S

√
S ln(2)

]
.

Plugging this estimate in (22) results in

ES ≤
√
m

2S
+ 14

√
6 ln(2) +

36K ln(2)√
m

+ 14
√
6K|S|×

×
(
1

2
+

1

ln
3
2 (2)

[√
π

2
erf
(√

S ln(2)
)
−
√
S ln(2)

2S

])

≤
√
m

2S
+ 14

√
6
√
K|S| ×

(
1

2
+

1

ln
3
2 (2)

√
π

2

)

+ C1 +
C2√
m

≤
√
m

2S
+ 14

√
6
√
d ln (16|S|Cp,q + 4)×

×
(
1

2
+

1

ln
3
2 (2)

√
π

2

)
+ C1 +

C2√
m

=: (∗),

where we used the fact that erf(b) ≤ 1 for any b ≥ 0,
2−S

√
S ≥ 0, C1 = 14

√
6 ln(2), C2 = 36K ln(2) and

K|S| = d ln
(
2K̃|S| + 2

)
= d ln (16|S|Cp,q + 4). Let us

choose the scale S such that 2−S√m ≤ 1, i.e. ln(m)
2 ln(2) ≤

S. In this case, by defining C3 = 7
√
6

(
1 +

√
π

ln
3
2 (2)

)
,

we have

(∗) = 1 + C3

√
d ln (16|S|Cp,q + 4) + C1 +

C2√
m
.

Combining this result with (20), we obtain

Λm

({
ω1:m : ‖Λ− Λm‖F ≥ C3

√
d ln (16|S|Cp,q + 4)√

m

+
C1 + 1√

m
+
C2 + 36K

m
+
24

√
6√

m

[√
t+

Lmt

2

]})
≤ 2e−t.

By redefining C1 and C2 as C1 = 14
√
6 ln(2) + 1,

C2 = 36K[ln(2) + 1] and taking into account the σp,q

normalization, the claimed result follows.



On Kernel Derivative Approximation with Random Fourier Features

The proof of the consequence is as follows. Let
r ∈ [1,∞) be fixed. Then

∥∥∂p,qk − ∂̂p,qk
∥∥
Lr(S×S)

=

=

(∫

S

∫

S

∣∣∣∂p,qk(x,y) − ∂̂p,qk(x,y)
∣∣∣
r

dxdy

) 1
r

≤
(∫

S

∫

S

∥∥∂p,qk − ∂̂p,qk
∥∥r
L∞(S×S)

dxdy

) 1
r

=
[∥∥∂p,qk − ∂̂p,qk

∥∥r
L∞(S×S)

vol2(S)
] 1

r

=
∥∥∂p,qk − ∂̂p,qk

∥∥
L∞(S×S)

vol
2
r (S).

Using the fact (which follows from [10, Corollary 2.55])

that vol(S) ≤ πd/2|S|d
2dΓ( d

2+1)
, we obtain

∥∥∂p,qk − ∂̂p,qk
∥∥
Lr(S×S)

≤

≤
∥∥∂p,qk − ∂̂p,qk

∥∥
L∞(S×S)

[
πd/2|S|d

2dΓ
(
d
2 + 1

)
] 2

r

.

Hence the main theorem implies the claimed Lr(S×S)
bound.

The result on the Bernstein condition for the Gaus-
sian kernel can be obtained as follows. Recall that the
goal is to check (15) and we apply the expression for
Ar,n(Λ) given in (16).

• For r = 1:

A1,n(Λ) =

∫

R

|ω|ndΛ(ω)

= (n− 1)!!

{
1 if n is even√

2
π if n is odd

≤ (n− 1)!! ≤ (n− 1)! ≤ n!

2
,

where the last inequality is equivalent to 2 ≤ n.
Hence, (15) is satisfied with K = 1.

• For r = 2: In this case nr is even and A2,n(Λ) =
(2n−1)!!

3
n
2

by (16). For (15), it is enough (Kn−2 ≤ Kn)

that for some K ≥ 1 and for n = 2, 3, . . .

A2,n(Λ) ≤
n!

2
Kn ⇔ (2n− 1)!!︸ ︷︷ ︸

2n√
π
Γ(n+ 1

2 )

≤ n!︸︷︷︸
Γ(n+1)

1

2

(√
3K
)n

(a)⇐ 2n√
π
≤ 1

2

(√
3K
)n

⇔ 2√
π
≤
(√

3K

2

)n

. (23)

In (a) we used that Γ
(
n+ 1

2

)
≤ Γ(n+ 1) for n ≥ 2.

(23) holds e.g. with K = 2 since 1 < 2√
π
<

√
3.

• For r = 3: Let us restrict n to even numbers (n = 2ℓ,

ℓ ∈ N+) in (15). By (16), A3,n(Λ) = (3n−1)!!

(5!!)
n
2

, and

(15) can be written as

(6ℓ− 1)!!

15ℓ︸ ︷︷ ︸
23ℓ√

π
Γ(3ℓ+ 1

2 )
1

15ℓ

≤ (2ℓ)!

2
K2ℓ−2, ∀ℓ ∈ N

+.

Using the bound, Γ
(
3ℓ+ 1

2

)
≥ Γ (3ℓ) = (3ℓ − 1)!,

we have that
(

8

15

)ℓ
1√
π
(3ℓ− 1)! ≤ (2ℓ)!

2
K2ℓ−2, ∀ℓ ∈ N

+

should also hold. By the Stirling’s formula u! ∼√
2πu

(
u
e

)u
, we have

(
8

15

)ℓ√
2π(3ℓ− 1)√

π

(
3ℓ− 1

e

)3ℓ−1

≤
√
2π(2ℓ)

2

(
2ℓ

e

)2ℓ

as ℓ → ∞. Taking ln(·) yields

ln(l.h.s.) = ℓ ln

(
8

15

)
+ ln

(√
2π(3ℓ− 1)

)

+ (3ℓ− 1) [ln(3ℓ− 1)− 1] + ln
(
1/

√
π
)

∼ (3ℓ− 1) ln(3ℓ− 1),

ln(r.h.s.) = ln
(√

2π(2ℓ)
)
− ln(2) + 2ℓ[ln(2ℓ)− 1]

∼ 2ℓ ln(2ℓ).

Since ln(l.h.s.) is asymptotically larger than
ln(r.h.s.), (15) can not hold.

• For r = 4: nr is even, A4,n(Λ) = (4n−1)!!

[7!!]
n
2

by (16),

and (15) is equivalent to

(4n− 1)!!︸ ︷︷ ︸
22n√

π
Γ(2n+ 1

2 )

≤ n!

2
Kn−2

(√
7× 5× 3

)n
.

By using the Γ(z + 1) = zΓ(z) recursion, we obtain

Γ

(
2n+

1

2

)
=

(
2n− 1

2

)

︸ ︷︷ ︸
1.

(
2n− 3

2

)

︸ ︷︷ ︸
2.

· · ·
(
n+

3

2

)

︸ ︷︷ ︸
n−1.︸ ︷︷ ︸

≥(n−1)n−1

×

× Γ

(
n+

3

2

)
≤ n!︸︷︷︸

Γ(n+1)

Kn−2
︸ ︷︷ ︸

K−1Kn−1

.

Since Γ
(
n+ 3

2

)
> Γ(n + 1) for all n ∈ N+ and

f(n) = nn grows faster than g(n) = Kn for any
fixed K, (15) can not be satisfied for all n ≥ 2.
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Supplement

In Section A we prove our remark on the validity of the
Bernstein condition for higher-order derivatives in the
case of kernels with faster spectral decay. The result
extends the example of Gaussian kernels detailed in
the main part of the paper.

A BERNSTEIN CONDITION FOR

HIGHER-ORDER DERIVATIVES

We prove that in the case of kernels with spectral den-

sity decaying as fΛ(ω) ∝ e−ω2ℓ

(ℓ ∈ N+), the Bernstein
condition (15) holds for r ≤ 2ℓ-order derivatives. This
example extends the case of Gaussian kernels where
ℓ = 1 and r ≤ 2. Let ℓ ∈ N+ and the spectral mea-
sure associated with kernel k be absolutely continuous
w.r.t. the Lebesgue measure with density

fΛ(ω) = cℓe
−ω2ℓ

for some cℓ > 0. fΛ is positive and we determine cℓ as:

1 =

∫

R

fΛ(ω)dω =

∫

R

cℓe
−ω2ℓ

dω = 2cℓ

∫ ∞

0

e−ω2ℓ

dω

=
cℓ
ℓ

∫ ∞

0

e−yy
1
2ℓ−1dy =

cℓ
ℓ
Γ

(
1

2ℓ

)
⇒

cℓ =
ℓ

Γ
(

1
2ℓ

)

where we used y = ω2ℓ, ω = y
1
2ℓ , dω = 1

2ℓy
1
2ℓ−1dy and

the pdf of the Gamma distribution (b = 1, a = 1
2ℓ )

g(y; a, b) = ba

Γ(a)y
a−1e−by, (y > 0, a > 0, b > 0) from

which it follows that
∫ ∞

0

ya−1e−bydy =
Γ(a)

ba
. (24)

Consequently, one obtains

Ar,n = Ar,n(Λ) =

∫
R
|ω|rndΛ(ω)[√∫

R
|ω|2r dΛ(ω)

]n =

Γ( rn+1
2ℓ )

Γ( 1
2ℓ )[

Γ( 2r+1
2ℓ )

Γ( 1
2ℓ )

]n
2

by using (24) with b = 1, a = r+1
2ℓ and the value of cℓ:

∫

R

|ω|rdΛ(ω) =
∫

R

|ω|rcℓe−ω2ℓ

dω

= 2cℓ

∫ ∞

0

ωre−ω2ℓ

dω =
cℓ
ℓ

∫ ∞

0

e−yy
r
2ℓ y

1
2ℓ−1dy

=
cℓ
ℓ
Γ

(
r + 1

2ℓ

)
=

Γ
(
r+1
2ℓ

)

Γ
(

1
2ℓ

) .

Next we assume that r ≤ 2ℓ is fixed and apply induc-
tion to prove (15).

• For n = 2, by definition Ar,2 = 1 (∀r ∈ N+).
• The induction argument is as follows. By the induc-
tive assumption it is sufficient to show the existence
of Kr ≥ 1 such that

Br,n :=
Ar,n+1

Ar,n
≤ (n+ 1)Kr (25)

since Ar,n ≤ n!
2 K

n−2
r and

Ar,n+1

Ar,n
≤ (n+1)Kr imply

Ar,n+1 ≤ (n+1)!
2 Kn+1−2

r . By defining cr :=
Γ( 2r+1

2ℓ )
Γ( 1

2ℓ )
,

we obtain

Br,n =
Γ
(

r(n+1)+1
2ℓ

)

Γ
(

1
2ℓ

)
(cr)

n+1
2

Γ
(

1
2ℓ

)
(cr)

n
2

Γ
(
rn+1
2ℓ

) =
Γ
(

r(n+1)+1
2ℓ

)

√
cr Γ

(
rn+1
2ℓ

)

=
Γ
(
rn+1
2ℓ + r

2ℓ

)
√
cr Γ

(
rn+1
2ℓ

)
(a)

≤ Dr,n

Γ
(
rn+1
2ℓ + 2ℓ

2ℓ

)
√
cr Γ

(
rn+1
2ℓ

)

(b)
= Dr,n

1√
cr

rn+ 1

2ℓ

(c)

≤ Dr,n
1√
cr

2ℓn+ 1

2ℓ︸ ︷︷ ︸
n+ 1

2ℓ

< Dr,n
n+ 1√

cr
.

Indeed,
– (a): The Gamma function has a global minima

on the positive real line at zmin ≈ 1.46163, it is
strictly monotonically decreasing on (0, zmin) and
strictly monotonically increasing on (zmin,∞).
The latter implies

Γ(z1) ≤ Γ(z2) for zmin ≤ z1 ≤ z2. (26)

Let us choose z1 = rn+1
2ℓ + r

2ℓ and z2 = rn+1
2ℓ +

2ℓ
2ℓ . z1 ≤ z2 since r ≤ 2ℓ. With this choice (26)
guarantees (a) with Dr,n = 1 if

zmin

(d)

≤ n+ 2

2ℓ
=

rn+ 1

2ℓ
+

r

2ℓ

∣∣∣∣
r=1

≤

≤ rn+ 1

2ℓ
+

r

2ℓ
= z1.

If ns := ⌈2ℓzmin − 2⌉ ≤ n, then (d) holds. This
means that (a) holds with

Dr,n = 1 if ns ≤ n.

For the remaining n = 2, . . . , ns − 1 values, (a) is

fulfilled with equality using Dr,n :=
Γ( rn+1

2ℓ + 2ℓ
2ℓ )

Γ( rn+1
2ℓ + r

2ℓ )
.

– (b): We applied the Γ(z + 1) = zΓ(z) property.
– (c): It follows from r ≤ 2ℓ.

To sum up, we got that

Br,n ≤ Dr,n√
cr

(n+ 1), with

Dr,n =




1 if ns ≤ n
Γ( rn+1

2ℓ + 2ℓ
2ℓ )

Γ( rn+1
2ℓ + r

2ℓ )
n = 2, . . . , ns − 1

.
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Thus, one can choose

Kr = max

(
Dr,2√
cr

, . . . ,
Dr,ns−1√

cr
,

1√
cr
, 1

)

in (25).


