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ABSTRACT
Systems engineering processes coordinate the efforts of

many individuals to design a complex system. However, the
goals of the involved individuals do not necessarily align with
the system-level goals. Everyone, including managers, systems
engineers, subsystem engineers, component designers, and con-
tractors, is self-interested. It is not currently understood how this
discrepancy between organizational and personal goals affects
the outcome of complex systems engineering processes. To an-
swer this question, we need a systems engineering theory that
accounts for human behavior. Such a theory can be ideally ex-
pressed as a dynamic hierarchical network game of incomplete
information. The nodes of this network represent individual
agents and the edges the transfer of information and incentives.
All agents decide independently on how much effort they should
devote to a delegated task by maximizing their expected utility;
the expectation is over their beliefs about the actions of all other
individuals and the moves of nature. An essential component
of such a model is the quality function, defined as the map be-
tween an agent’s effort and the quality of their job outcome. In
the economics literature, the quality function is assumed to be
a linear function of effort with additive Gaussian noise. This
simplistic assumption ignores two critical factors relevant to sys-
tems engineering: (1) the complexity of the design task, and (2)
the problem-solving skills of the agent. Systems engineers es-
tablish their beliefs about these two factors through years of job
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experience. In this paper, we encode these beliefs in clear math-
ematical statements about the form of the quality function. Our
approach proceeds in two steps: (1) we construct a generative
stochastic model of the delegated task, and (2) we develop a re-
duced order representation suitable for use in a more extensive
game-theoretic model of a systems engineering process. Focus-
ing on the early design stages of a systems engineering process,
we model the design task as a function maximization problem
and, thus, we associate the systems engineer’s beliefs about the
complexity of the task with their beliefs about the complexity
of the function being maximized. Furthermore, we associate
an agent’s problem solving-skills with the strategy they use to
solve the underlying function maximization problem. We iden-
tify two agent types: “naı̈ve” (follows a random search strategy)
and “skillful” (follows a Bayesian global optimization strategy).
Through an extensive simulation study, we show that the assump-
tion of the linear quality function is only valid for small effort
levels. In general, the quality function is an increasing, concave
function with derivative and curvature that depend on the prob-
lem complexity and agent’s skills.

NOMENCLATURE
A(x,ω) Attribute function
CDF Cumulative distribution function
E Space of all possible effort levels
EI Expected improvement
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GP Gaussian process
KLE Karhunen-Loéve expansion
PCA Principal component analysis
PDF Probability density function
SE Systems engineer
SEP Systems engineering process
Q(e,θ ,ω) Quality function
X Space of candidate designs
e Effort level (an element of E)
m(x) Mean function of GP
k(x,x′) Covariance function of GP
sSE Subsystem engineer
x A candidate design (an element of X)
Θ Space of all possible agent types
Ω Sample space
θ Type of an agent (an element of Θ)
ω State of nature (an element of Ω)
F A σ -algebra of subsets of Ω

P Probability measure defined for all sets in F

1 INTRODUCTION
Systems engineering processes (SEP) require the coordina-

tion of a large number of individuals, e.g., managers, systems
engineers (SE), subsystem engineers (sSE), and contractors, to
establish the design, deployment, operation, and retirement of
complex systems [1, 2]. Naturally, these individuals are self-
interested, i.e., they have their personal agendas which are not
necessarily aligned with the system-level objectives. It has been
postulated that this discrepancy between organizational and per-
sonal goals may be one of the leading factors behind the increas-
ing cost overruns and delays in modern systems engineering [3].
However, to date, there is no comprehensive SEP theory which
models the effects of human behavior.

To account for human behavior, we have to model SEPs
within a game theoretic framework [4,5]. In particular, a SEP can
be viewed as a dynamic hierarchical network game. Each layer
of the hierarchy captures the interactions of a principal, e.g., the
manager, the SE, or a sSE, with several agents, e.g., the SE, sSEs,
component engineers, or contractors. At each iteration, the prin-
cipal assigns tasks to the agents encoded via performance-based
contracts. The agents, select how much effort to devote to their
tasks by maximizing their expected utility. Finally, they report
the product of their efforts back to the principal. Note that in this
hierarchy, the agent of a layer may be the principal of a subse-
quent layer. The goal of the principal at the top of the hierarchy,
presumably the owner of the system, is to select the contracts that
maximize the expected system-level utility. In the economics lit-
erature, this is known as the mechanism design problem [6].

A critical component of any principal-agent model is the
quality function, defined as the stochastic map between an
agent’s effort and the quality of the product they deliver. To

be more precise, the quality function models the beliefs of the
principal about the effort-to-quality map, i.e., it models what the
principal thinks they can get if the agent decides to spend a given
amount of effort. For analytical convenience, the quality function
is usually taken to be a linear function of effort with some addi-
tive Gaussian noise [7]. This simplistic assumption is not suffi-
cient for capturing the beliefs about the outcome of an assigned
task within the context of a SEP. Focusing on the early design
stages of a SEP, the outcome of design tasks depends predomi-
nately on beliefs about the complexity of the underlying problem
and the problem-solving skills of the engaged agent.

The objective of this work is to mathematically model the
dependence of the quality function on a principal’s beliefs about
the task complexity and the problem-solving skills of an agent,
within the context of the early design stages of a SEP. We
achieve this in two steps: (1) constructing a generative stochas-
tic model of the delegated task, and (2) developing a reduced or-
der representation suitable for use in an extensive game-theoretic
framework. The generative model is essentially a random pro-
cess labeled by effort. Each sample from this random process
is a plausible effort-to-quality map. The reduced-order model is
a mathematically convenient approximation of this random pro-
cess constructed from multiple samples of effort-to-quality maps.

The details of the generative model are as follows. The de-
sign task assigned to an agent is modeled as a scalar function
maximization problem. An agent’s effort is measured in func-
tion evaluations used to solve this maximization problem. We as-
sume that the principal encodes their beliefs about the complex-
ity of the problem using a Gaussian process (GP) prior [8] over
the space of possible scalar functions, e.g., by selecting a suitable
mean and covariance function. We associate the problem-solving
skills of the agent with the maximization strategy they choose to
employ. We identify two agent types: “naı̈ve” and “skillful”.
The naı̈ve agent solves the maximization problem using random
search. The skillful agent solves the maximization problem us-
ing Bayesian global optimization [9,10]. That is, the naı̈ve agent
does not learn from past experience whereas the skillful agent
does learn. The naı̈ve approach has an alternative interpretation
as a parallel search representative of a scenario where there is
a team of engineers, all developing different ideas concurrently,
and the team gets together and decides on the best solution at
the end of the process. To obtain a plausible realization of the
effort-to-quality map, we sample a scalar function from the GP
prior and we simulate the behavior of the agent. Using exten-
sive sampling datasets, we constructed a reduced order model by
employing the Karhunen-Loève theorem [11].

The outline of the paper is as follows. In Sec. 2, we present
our methodology starting with the definition of the quality func-
tion. In Sec. 2.1, we model a design task as a function maxi-
mization problem. In Sec. 2.2, we model the state of knowledge
of the principal about the function that the agent is maximizing
and we define the concept of task complexity. Sec. 2.3 discusses
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the modeling of the problem solving skills of an agent. The re-
duced order model is presented in Sec. 2.4. In Sec. 3, we present
our numerical experiments and study the effect of complexity
and problem solving skills on the quality function. We conclude
in Sec. 4.

2 METHODOLOGY
Let (Ω,F ,P) be a probability space, where Ω is a sample

space, F is a σ -algebra of subsets of Ω, and P is a probability
measure. Elements of Ω are denoted by ω ∈ Ω. An ω ∈ Ω cor-
responds to a specific realization of everything that is random in
our models.

Consider the early design phase of a SEP and focus on an
agent that resides at the leaves of the hierarchy, i.e., of a com-
ponent engineer or a subcontractor. The behavior of these leaf
agents depends only on inputs from the immediately higher level
of the hierarchy and, thus, it is a natural starting point. The be-
havior of agents that lie at intermediate points of the SEP hierar-
chy should be defined recursively given inputs from even higher
levels and assuming that subordinate agents act optimally. Such
recursive constructions are the subject of on going research and
will not be discussed in this paper. We will construct a stochastic
model of the quality function of this leaf agent based on some
generic beliefs about the complexity of the task that is assigned
to them as well as their problem-solving skills. To this end, let
E = {0,1,2, . . .} be the space of possible effort levels that the
agent may choose, denoting a specific effort level by e ∈ E. Sim-
ilarly, let Θ = {“naı̈ve”,“skillful”} be the set of possible agent
types, denoting a specific type by θ ∈ Θ. For simplicity, let us
measure the quality characterizing the outcome of a design task
with a single real number, e.g., the utility/value of that design to
the principal allocating the task.

Using these definitions, the quality function can be thought
as a random process

Q : E ×Θ×Ω → R,

i.e., as a collection of Borel measurable functions
{Q(e,θ , ·)}e∈E,θ∈Θ. Of course, not all such random pro-
cesses yield reasonable quality functions. Any explicit model
we construct should satisfy a minimum set of requirements:

1. Q(e,θ , ·) must have increasing paths in e, i.e., for all e1,e2 ∈
E with e1 < e2, we must have:

Q(e1,θ ,ω)≤ Q(e2,θ ,ω),

for all θ ∈ Θ, and for almost all ω ∈ Ω. This ensures that
the more effort an agent spends the better the quality of the
product of the task.

2. Q(e,θ ,ω) must be bounded above in probability, i.e., for all
ε > 0, there exists an M > 0 such that

P [{ω : Q(e,θ ,ω)> M}]< ε,

for all e ∈ E,θ ∈ Θ. This ensures that the outcome quality
cannot grow without bound no matter how much the effort
of the agent is, e.g., because of physical limitations in the
design.

We will now construct a generative model of Q(e,θ ,ω) that sat-
isfies these properties and, furthermore, it makes explicit the de-
pendence on task complexity and agent skills.

2.1 Modeling the Design Task as a Scalar Function
Maximization

Let us assume that the agent’s task is to maximize a scalar
function over a set of candidate designs. For clarity, let the set of
candidate designs be X = [0,1] (the ideas can easily be general-
ized to arbitrary sets.) The principal does not know exactly what
the agent’s objective function is. Nevertheless, let us assume that
the principal believes that the scalar function the agent is maxi-
mizing is a sample from of a random process A : X ×Ω →R. Let
us refer to A(x,ω) as the attribute function. Thus, the principal
believes that the agent is solving:

max
x∈X

A(x,ω), (1)

but they do not know exactly what A(x,ω) is.

2.2 Modeling the Beliefs of the Principal about the At-
tribute Function

To proceed, let us assume that the principal models the at-
tribute function A(x,ω) as a GP, i.e.,

A ∼ GP(m,k) , (2)

where m : X → R and k : X ×X → R are the mean and the co-
variance function, respectively. The choices of GP priors is moti-
vated by their successful application to human function learning
by Griffiths et al. [9]. The beliefs of the principal about the plau-
sible A(x,ω) are encoded in their choice of mean and covariance
functions. Of course, any particular choice is context-dependent
and the principal should make every effort to use any available
data to estimate them. However, to advance our study, let us as-
sume that principal’s beliefs are reflected by the choice:

m(x) = c

k(x,x′) = σ2
s exp

{
− (x−x′)2

2l2

}
,

(3)
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with signal strength σs and length-scale l. A constant mean
encodes the principal’s lack of knowledge about any particular
trend of the attribute function. The regularity of the covariance
function determines the regularity of sampled attribute functions,
see [12]. Here, our choice of the squared exponential covariance
function guarantees that the sampled attribute functions are in-
finitely differentiable with respect to x. The choice of the signal
strength controls the principal’s beliefs about the possible vari-
ations of the attribute function about its mean. Without loss of
generality, we may set c = 0 and σs = 1, after a suitable affine
transformation of the attribute function. Therefore, the only re-
maining parameter is the length-scale l. The length-scale of the
covariance function is a measure of the problem complexity. On
one hand, decreasing the length-scale, the fluctuations of the
attribute function increase, making the task of the agent more
difficult. On the other hand, increasing the length-scales yields
smoother attribute functions thus making the underlying task eas-
ier. Of course, there are other aspects of problem complexity
such as the number of dimensions, possible discontinuities, dis-
crete choices, etc. Those are not considered in this paper.

2.3 Modeling the Problem-solving Skills of the Agent
The agent solves the problem of Eq. (1) by repeatedly eval-

uating the attribute function at design points of their choice.
Each function evaluation counts as one unit of effort. Let Xi :
Θ×Ω → X be the random variables corresponding to the agent’s
query of the attribute function at effort level i = 1,2, . . . , and
Ai : Θ × Ω → R be the corresponding attributes they observe,
i.e.,

Ai(θ ,ω) := A(Xi(θ ,ω),ω), (4)

for θ ∈ Θ.
The random variables Xi are not necessarily independent

since at effort level i + 1, the agent may use all observations
(X1,A1), . . . ,(Xi,Ai) before they decide on Xi+1. Mathemati-
cally, this statement implies that the random variable Xi+1 must
be measurable with respect to the σ -algebra Fi generated by
(X1,A1), . . . ,(Xi,Ai) [13]. In other words, the random process
Xi must be adapted to the filtration {Fi}i∈E . The exact nature
of this process depends on the beliefs of the principal about the
skills of the agent, see Secs. 2.3.1 and 2.3.2 for specific choices
corresponding to a naı̈ve and a skillful agent.

In any case, we are now in the position to define mathemat-
ically the quality function Q(e,θ ,ω). It is:

Q(e,θ ,ω) = max
1≤i≤e

Ai(θ ,ω). (5)

Note that this definition does satisfy the two requirements for
the quality function that we posed at the beginning of Sec. 2,

namely that Q(e,θ ,ω) is an increasing function of e and that it is
bounded above in probability. Furthermore, we are here operat-
ing under the assumption that the agent returns the best attribute
they have found, i.e., that they are honest. Dishonest behavior,
e.g., putting a design in the back-pocket for later use, is not mod-
eled in this paper.

2.3.1 A Naı̈ve Agent The case θ = “naı̈ve” corre-
sponds to an agent that ignores past experience and simply
chooses function evaluations at random. Mathematically,

Xi(θ = “naı̈ve”)∼ U (X) , (6)

for all i = 1,2, . . . , where U (X) is the uniform distribution over
the space of feasible designs X .

2.3.2 A Skillful Agent The case θ = “skillful” corre-
sponds to an agent that learns from past experience and queries
the function trying to exploit what they have learned. The prob-
lem of how individuals acquire new knowledge is known as hu-
man function learning. Griffiths et al. [9] model human function
learning using a GP. Here we follow their approach. In particular,
we assume that the agent’s prior knowledge about the attribute
function A(x,ω) is captured by the GP prior of Eq. (2). In eco-
nomic terms, we assume that A(x,ω) is common knowledge for
the principal and the agent. It is also possible to model the case
in which the agent has private knowledge, but this is beyond the
scope of this paper.

Now, let i∈E and assume that the agent has already selected
i designs,

X1:i = (X1, . . . ,Xi), (7)

and they have observed the corresponding i attributes:

A1:i = (A1, . . . ,Ai). (8)

We assume that the agent updates their state of knowledge about
A(x,ω) by using Bayes rule to condition the prior GP of Eq. (2)
on the observed data X1:i and A1:i. The result is the posterior GP:

A|X1:i,A1:i ∼ GP(mi,ki) , (9)

where the posterior mean and covariance functions are given by:

mi(x) = m(x)+ k(x,X1:i)k−1(X1:i,X1:i)(A1:i −m(X1:i)) , (10)
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and

ki(x,x′) = k(x,x′)− k(x,X1:i)k−1(X1:i,X1:i)k(X1:i,x′), (11)

respectively (see Ch. 2 of [8]). In these formulas, we have ex-
tended the definition of the mean and the covariance functions so
that for any X1

1:i1 and X2
1:i2 , m(X1

1:i1) =
(

m
(
X1

1
)
, . . . ,m

(
X1

i1

))
,

and k
(

X1
1:i1 ,X

2
1:i2

)
is the Ri1×i2 matrix with (s, t)-element

k(X1
s ,X

2
t ).

Following the experimental results in [10] and [14], we as-
sume that a “skillful” agent selects Xi+1 by maximizing the ex-
pected improvement in the attribute function. Suppose that the
agent made a hypothetical query at x ∈ X and they observed the
attribute value a ∈ R. The improvement they would have gotten
over the observed attributes A1:i is

Ii(x,a) = max
{

0,a− max
1≤ j≤i

A j

}
. (12)

The expected improvement is obtained by taking the expectation
of Ii(x,a) over the agent’s beliefs about a as captured by the pos-
terior GP of Eq. (9), i.e.,

EIi(x) =
∫

Ii(x,a)N (a|mi(x),σ2
i (x))da, (13)

where σ2
i (x) = ki(x,x), and N(·|µ,σ2) is the probability den-

sity function of a Gaussian random variable with mean µ and
variance σ2. It is actually possible to carry out the integration
analytically [15] yielding:

EIi(x) =
(

mi (x)− max
1≤ j≤i

A j

)
Φ(Zi(x))+σi (x)φ (Zi(x)) , (14)

where

Zi(x) =
mi (x)−max1≤ j≤i A j

σi (x)
,

and φ and Φ are the probability density function (PDF) and the
cumulative distribution function (CDF) of standard normal, re-
spectively. Therefore, the information acquisition strategy fol-
lowed by the agent is assumed to be:

Xi+1(θ = “skillful”) = argmax
x∈X

EIi(x). (15)

2.4 Constructing a Reduced Order Model
The quality function random process Q(e,θ ,ω) is not ana-

lytically available. Unfortunately, this makes its use in a game-
theoretic context, e.g., for the study of Nash equilibria and opti-
mal mechanisms of SEPs, extremely difficult. To remedy the sit-
uation, we propose to use samples from Q(e,θ ,ω) to construct
a computationally efficient reduced order model. We outline this
proposal below.

Let us consider a particular type of agent, θ ∈ Θ. According
to the Karhunen-Loève theorem [11], if Q(e,θ ,ω) is square in-
tegrable for all e ∈ E, i.e., if E

[
Q2(e,θ ,ω)

]
< ∞, then it admits

the following representation:

Q(e,θ ,ω) = Q0 (e,θ)+
∞

∑
k=1

√
λk (θ)ξk(ω)φk (e,θ) , (16)

where Q0 (e,θ) is the mean of the random field, λk (θ) and
φk (e;θ) are the eigenvalues and eigenvectors of its covariance
function, respectively, and the ξk are uncorrelated zero mean and
unit variance random variables.

The idea is to estimate all these quantities involved in
Eq. (16) samples of the stochastic process Q(e,θ ,ω). This is
achieved through the following algorithm: (i) sample a plausible
attribute function from the GP specifying the beliefs of the prin-
cipal (see Sec. 2.2); (ii) using the sampled attribute function as
the underlying truth, simulate the behavior of an agent attempt-
ing to maximize it (see Sec. 2.3); and (iii) return the resulting
realization of the effort vs quality function (see Eq. (5)). To get
a practical model, we truncate Eq. (16) at M terms so that we
capture at least 90% of the spectral energy of the random field.
Since the effort levels are discrete, KLE is equivalent to principal
component analysis (PCA), which we carry out using the Python
package scikit-learn [16]. We approximate the probability den-
sity function of each ξk, i.e., pdf(ξk), using Gaussian mixture
model [17].

3 NUMERICAL RESULTS
We run exhaustive numerical simulations in to understand

the quality function dependence on task complexity and agent
skill. In all simulations, the GP prior, which represents the prin-
cipal’s state of knowledge about the attribute function (Sec. 2.2),
has a mean function m(x) = 2 and a signal strength σs = 1. We
consider four levels of different problem complexity as captured
by the covariance length-scale choices l = 0.005,0.01,0.05,
and 0.1, along with the two agent skill levels (naı̈ve and
skillful). That is, the total number of cases we simulate is
4 (complexity lvels)×2 (skill levels) = 8 (cases). For each case,
we take 50,000 Monte Carlo (MC) samples from the correspond-
ing random field {Q(e,θ ,ω)}1≤e≤40. Using these 50,000 sam-
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(a) Skillful, l = 0.005 (b) Skillful, l = 0.01

(c) Skillful, l = 0.05

FIGURE 1: Three random quality function samples (solid colored lines), the mean of all 50,000 sampled quality functions (solid black
line), and the 95% confidence levels (gray shaded area between the black dashed and dashed-dotted lines) for θ = skillful.

ples, we construct the reduced order model of Sec. 2.4 which we
proceed to compare systematically with them.

In Figs 1 and 2, we depict three random quality function
samples (solid colored lines), the mean of all 50,000 sampled
quality functions (solid black line), and the 95% confidence lev-
els (gray shaded area between the black dashed and dashed-
dotted lines) for θ = skillful and θ = naı̈ve, respectively. The
Figs 1a,1b, and 1c, and Figs 2a, 2b, and 2c are associated
with decreasing complexity since they correspond to length-scale
choices of l = 0.005,0.01, and 0.05, respectively. We observe
the following. First, all samples across every case are increasing
piecewise constant and bounded from above functions of e. Sec-
ond, the mean quality function (Q0 (e,θ)) is increasing and con-
cave showing a clear dependence on task complexity and agent

skill which we study in the next paragraph. Third, the uncer-
tainty is greater for small efforts, decreases mildly as the effort
level increases, albeit it seems to have a definite non-zero lower
bound. The latter is also discussed below.

Fig 3 depicts the mean quality function (Q0 (e,θ)) for all 8
cases. First note that the upper bound to the Q0 (e,θ) increases
with decreasing length-scale. This phenomenon is related to the
distribution of the maximum of Gaussian random fields on com-
pact domains [18]. Namely, the expectation of the maximum
of a Gaussian random field on a compact domain increases as
the length-scale decreases. To understand this phenomenon in-
tuitively, take into account that the samples from GP priors with
smaller length-scales have more opportunity to wiggle around
the compact domain and reach extreme values. Therefore, com-
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(a) Naı̈ve, l = 0.005 (b) Naı̈ve, l = 0.01

(c) Naı̈ve, l = 0.05

FIGURE 2: Three random quality function samples (solid colored lines), the mean of all 50,000 sampled quality functions (solid black
line), and the 95% confidence levels (gray shaded area between the black dashed and dashed-dotted lines) for θ = naı̈ve.

paring the absolute values of Q0 (e,θ) across different length-
scales is nonsensical. What is comparable across complexities
is the amount of effort required to exceed a certain percentage
of the maximum quality, e.g., the first effort level e∗ = e∗(ε) for
which Q0(e∗(ε),θ)/supe∈E Q0(e,θ) > 1− ε to become flat for
some ε > 0. Naturally, in Fig 3 we observe that the maximum
is reached later as complexity is increased. However, the mean
quality function is directly comparable across agent skill levels.
Comparing Fig. 3 (a) with (b), we observe that naı̈ve agents re-
quire more effort to reach the same quality for the same com-
plexity level.

Now, we focus on the reduced order model of Sec. 2.4. To
construct it, we perform PCA on 80% of the MC samples. The
remaining 20% of the MC samples are used for validation. We

present our results for length-scales l = 0.01 and 0.05, which
need 5 and 3 terms in the KLE to capture the 90% of spectral
energy, respectively.

In Figs 4 and 5, we show the PDFs of retained ξk’s for skill-
ful and naı̈ve agents, respectively. In all cases, the first KLE
component ξ1 is almost a perfect standard normal. However, for
the higher order terms we start observing distinct non-Gaussian
features. Also, the PDFs of the first three ξk’s, for both length-
scales and skill levels, are identical. It is only after the 4-th KLE
component that we start observing differences in the PDFs.

In Fig 6, we show the eigenvalues (λ ) and eigenfunctions
(φ ) of the reduced order model for the two length-scales. As ex-
pected, the eigenvalues decay faster for decreasing complexity.
However, we do not observe any significant differences across
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(a) Skillful

(b) Naı̈ve

FIGURE 3: The effect of problem complexity on the mean of
quality function (Q0 (e,θ)) for skillful and naı̈ve agents.

skills. The eigenfunctions (especially at lower orders) seem al-
most independent of skill, but the higher order ones do exhibit a
small variation as complexity changes. We outline and interpret
intuitively these findings below.

The first eigenfunction for both agent types and all complex-
ity levels is almost constant. That is, the first eigenfunction just
adds a constant to the mean quality function. Therefore, the first
eigenfunction captures the uncertainty in the maximum of the
underlying attribute function. Furthermore, taking into account
that the PDF of ξ1 is almost a perfect standard normal, we see
that the assumption of additive Gaussian noise is valid to first
order.

The higher order eigenfunctions are non-constant. However,
note that they have a bump at small efforts, but they converge to

FIGURE 4: The PDF of random variables ξ1, · · · ,ξ5 of reduced
order model for skillful and naı̈ve agents with l = 0.01.

zero as the level of effort increases. This bump is an indication
that these eigenfunctions capture uncertainties associated with
the agent’s search process. Furthermore, the higher the order of
the eigenfunction, the more effort is needed for the bump to ap-
pear. That is, the high order eigenfunctions capture uncertainties
in later stages of the search process. Consistent with this intuitive
interpretation, notice that the eigenfunction bumps move to the
left as complexity decreases. This is a reflection of the fact that
in less complex tasks critical discoveries occur earlier.

Finally, in Fig 7, we compare the distribution of the
Q(e,θ ,ω) at effort levels e = 20 and 40 of reduced order model
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FIGURE 5: The PDF of random variables ξ1, · · · ,ξ3 of reduced
order model for skillful and naı̈ve agents with l = 0.05.

with those of the 20% MC samples that we set aside. The re-
sults obtained with the reduced order model match closely those
obtained with the MC samples. As expected, the reduced or-
der model slightly underestimates the variance. In Fig 8, we
show the Q0 (e,θ) and 95% lower and upper confidence levels
of Q(e,θ ,ω) alongside some sample functions with the reduced
order random model, with l = 0.01 and 0.05. Our results matches
with those from MC samples shown in Figs 1 and 2, albeit infor-
mation about the “high frequency” behavior of the agent has been
coarse grained.

4 CONCLUSIONS
We modeled the quality function of a leaf agent in the early

design stages of the SEP hierarchy as a stochastic process. Our
approach relies on the assumption that the design task assigned
to an agent can be modeled as a scalar maximization problem.
We explicitly captured the principal’s beliefs about the task com-
plexity and problem-solving skills of an agent. We studied two
types of agents, a skillful agent who follows the Bayesian opti-
mization algorithm in solving the maximization problem, and a
naı̈ve agent who searches randomly in the design space to solve
the maximization problem. Finally, we constructed a reduced or-
der model based on the KLE of the quality function that can be
used in an extensive game-theoretic model of the SEP.

Note that our model does not aspire to predict the problem-

solving behavior of real designers. Rather, we are investigating
the mathematical implications that different information acquisi-
tion strategies have in the form of the quality function. However,
assuming that real designers do maximize a well-defined mathe-
matical function, we can conclude that the quality function corre-
sponding to a naı̈ve/skillful agent provides a lower/upper bound
to the quality that should be expected by a real person lacking
any domain-specific knowledge. In all other cases, the model is
only a crude approximation of real agent behavior which may,
nevertheless, be adequate for posing and solving the mechanism
design problem.

We found that the common assumption that the quality func-
tion is linear with additive Gaussian noise is insufficient. We
showed that, the quality function is an increasing concave func-
tion and that the derivative and curvature depend on the problem
complexity and problem-solving skills of the agent. The deriva-
tive of this function is large at early stages of the effort, and it
becomes smaller as the effort level increases for both skillful and
naı̈ve agents. The derivative at early stages of effort is lower for
a naı̈ve agent than that for a skillful agent. We also saw that the
eigenfunctions of the reduced order model can be interpreted in
the following way. The first eigenfunction is a constant that cap-
tures the uncertainty about the maximum possible quality value.
The higher order eigenfunctions capture the uncertainty about
the search process. We demonstrated that the statistical proper-
ties of the reduced order model match those of the MC samples
of the full-blown stochastic process closely, albeit the fine details
are coarse-grained. Therefore, we conclude that one may use the
reduced order model in a principal-agent representation of the
SEP.

There remain several open questions. First, we assumed that
the agent starts the maximization problem from scratch. Usually,
a designer may already know a lot about the attribute function
and this information may or may not be available to the prin-
cipal. However, we anticipate that our framework is easily ad-
justed to this case. Second, we assumed that the agent has only
one information source, i.e., that there is no alternative way to
gain information about the attribute. Such alternative sources of
information could be simulations of varying complexity or build-
ing prototypes. Third, our account of complexity is quite restric-
tive as we have not covered all the possibilities such as varying
design dimensions, covariance smoothness, and the existence of
discrete choices. Finally, we did not discuss the quality function
associated with design tasks requiring the discovery of the Pareto
efficient frontier of multi-objective optimization problems. All
these open questions are the subjects of ongoing research.
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(a) l = 0.01 (b) l = 0.05

FIGURE 6: The eigenvalues (λ ) and eigenfunction (φ ) of the reduced order model that capture more than 90% of spectral energy of the
random field for skillful and naı̈ve agents with l = 0.01 and 0.05. Note, only first 3 eigenfunctions out of 5 are shown for l = 0.01.
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(a) Skillful, l = 0.01 (b) Naı̈ve, l = 0.01

(c) Skillful, l = 0.05 (d) Naı̈ve, l = 0.05

FIGURE 8: Three random quality function samples (solid colored lines), the mean of all 10,000 sampled quality functions from reduced
order random model (solid black line), and the 95% confidence levels (gray shaded area between the black dashed and dashed-dotted
lines). The first and the second columns correspond to θ = skillful and θ = naı̈ve, respectively.
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