Geoinformatica (2019) 23: 1-36
https://doi.org/10.1007/510707-018-0329-2

@ CrossMark

Spatio-temporal access methods: a survey (2010 - 2017)

Ahmed R. Mahmood? - Sri Punni’ - Walid G. Aref’

Received: 11 January 2018 / Revised: 10 September 2018 / Accepted: 25 September 2018 /
Published online: 9 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

The volume of spatio-temporal data is growing at a rapid pace due to advances in location-
aware devices, e.g., smartphones, and the popularity of location-based services, e.g.,
navigation services. A number of spatio-temporal access methods have been proposed to
support efficient processing of queries over the spatio-temporal data. Spatio-temporal access
methods can be classified according to the type of data being indexed into the follow-
ing categories: (1) indexes for historical spatio-temporal data, (2) indexes for current and
recent spatio-temporal data, (3) indexes for future spatio-temporal data, (4) indexes for past,
present, and future spatio-temporal data, (5) indexes for spatio-temporal data with associ-
ated textual data, and (6) parallel and distributed spatio-temporal systems and indexes. This
survey is Part 3 of our previous surveys on the same subject (Mokbel et al. IEEE Data Eng
Bull 26(2):40-49, 2003; Nguyen-Dinh et al. IEEE Data Eng Bull 33(2):46-55, 2010). In
this survey, we present an overview and a broad classification of the spatio-temporal access
methods published between 2010 and 2017.

Keywords Spatio-temporal data - Indexing - Databases

1 Introduction

With the popularity of location-aware devices, e.g., smartphones and GPS devices, many
spatio-temporal applications have emerged, e.g., traffic analysis, and navigation applica-
tions. In these applications, moving objects periodically report their timestamped geo-
locations to a spatio-temporal database server. Then, the server stores these timestamped
location-updates for further processing. Some applications require the retention of the entire
history of the spatio-temporal data, e.g., security and surveillance applications. In contrast,

b4 Ahmed R. Mahmood
amahmoo @cs.purdue.edu

Sri Punni
svelagap @purdue.edu

Walid G. Aref
aref@purdue.edu

' Purdue University, West Lafayette, IN, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-018-0329-2&domain=pdf
http://orcid.org/0000-0001-8169-7775
mailto: amahmoo@cs.purdue.edu
mailto: svelagap@purdue.edu
mailto: aref@purdue.edu

2 Geoinformatica (2019) 23:1-36

other applications keep only the most recent history of the spatio-temporal data due to pri-
vacy agreements, e.g., cell phone companies cannot keep location data longer than specific
durations. An alternative class of applications needs to maintain only the current locations
of the moving objects, e.g., taxi and ride-sharing mobile applications. Applications, e.g.,
traffic analysis, may store additional information, e.g., the objects’ velocities and directions
in the spatio-temporal database server. This additional data is useful for predicting future
positions of moving objects. Several spatio-temporal access methods have been proposed
to speed-up query processing over spatio-temporal data. Nowadays, spatio-temporal data
can also be associated with textual content, e.g., tweets. New access methods have been
developed to index spatio-temporal data with associated textual content.

Pyramid [131 Merstrv[86]GeoTrend(85]
Linearized kd-trie [102] GAT[166] abr(53]
MOVIES[37] Sigdreel157]
Binary tree(64] Plar tree[104]

OCTvraaL% 9% "eig] e[152]

® Trajtree[112]

OUTH[167] TP-tree[57]

Chebyshev Polynomial[23] TRWLtreelS8] %

>0 IMORS[63] TP?R-tree[61] STLsE3)
>® RTR-tree[61] °
Liear Greedy[66] ‘Composite: Indoor[151]

PPR'"‘“V"D‘;&JM‘ Greedy[52) | "A-Treel100] RUM+-tree[171]

LUR:tree[68] FUR-tree[70] . RUM-free[153]

Trails-tree[88]
MR-tree[150] HR-tree[95]

Re-tree[133]
V3R-tree[134]
“tree[47]

UTR-treé[36]

MVB-tree
verlapped B-tree [20] (13] Gstree[69]

MON-tree[34] PRFIA3]

2+3R-tree 2-3 TR-Tre
[138] [96] m

KR*D—fru[ss] TTB-free[168]

R*-tree[14]

TB-free[106

190]
Hashing(128] SEB[129
11108}
TsB. T-tree(150] STR-treel106] ® yeriio0)
T 81
reel81] PR-tree[21]®
>,
TPR-tree[116] O °TPR[10. R-TPR+[45]
TPBar1s E. flpon TFST0)
Roep1s IRI132] '® TPROM[35] .
TPR-tree(t35H O (80) et Spead[?lasrgavmmng

Multiple TPR-trees[9]
GRID STAR[11® TPRUL73] D-Gridi155]

[101) Op,
g ZaT > PASTIS
[113]\“0
Twind 2TA[148]
LU Gridi154] Concurrent)y Updatable Tndex[118]

P'-tree[149.
v \\‘::quzn 11491
SFC-quadiree[31] AC-tree(29] |

ST-tree[79]

Overlapped Quadiree [143]

®TrajStore[32]
Q““d"” Firture Quadfree(136] 7 S TRIPES[103) o PH-tree164]
——305WST[126]_——»46ikil16!
B tree[161]
Dqu ineticsDuality[2] uBy Ctree(27] DITIR[22]
1651 SV-Model[30] -tree[27] © VotraeQlan)
patt T°B-tree[28] betltez]
o @—@
B reel120] TOSE:it[4] DTOSS[5]
5 = YOPEB-tree(76]
3al
ree 60T 13" -index[75] OSTCB - treel78] ICFMI[BEI
B-tree
[12] FMI[82]
[Em) H)MPB-tree[56]
= MO[114]
Predictive distance Table@/v.T'PARINET[“7]
ARINET107] TRIFL[137]
)
ot : STI6
) 1391

70-89 90 91 92 93 94 95 9 97 98 99 00 O 02 03 04 05 06 O7 08 09 10 11 12 13 14 15 16 17

@ Spatio-temporal index for the past ® Spatio-temporal index for the current @ Spatio-temporal index for the future
W Spatial access method @ Spatio-temporal index for the recent past [General Spatio-temporal index
[> Spatio-textual access method 4 Spatio-temporal texual index Omsmbmd or Paralle!

Fig. 1 The evolution of spatio-temporal access methods

@ Springer

Geoinformatica (2019) 23:1-36 3

In the past, we have surveyed spatio-temporal access methods that have been published
on or before 2003 [91], and then from 2003 to 2010 [99]. This survey is Part 3 of this series
of surveys that covers and classifies the new spatio-temporal access methods published
between the years 2010 and 2017. Spatio-temporal access methods that only apply existing
data structures in the context of spatio-temporal data are not covered in the survey. For
example, spatio-temporal access methods that simply use a loose quadtree [89, 144] are not
covered as they simply use an existing access method, in this case, a loose quadtree.

Figure 1 illustrates the spatio-temporal access methods developed between 2010 and
2017. Lines in the Figure indicate the relationship between a new spatio-temporal index
structure and the original index structure it has evolved from.

The rest of this paper proceeds as follows: Sections 2, 3, and 4 present an overview
of the spatio-temporal access methods for historical, current (and recent historical), and
future data, respectively. Section 5 surveys spatio-temporal access methods for indexing
data at all points in time. Section 6 overviews access methods for spatio-temporal and textual
data. Section 7 overviews parallel and distributed spatio-temporal indexes. Finally, Section 8
concludes the survey.

2 Indexing the past

In this section, we present an overview of the access methods for indexing historical spatio-
temporal data. Storing the entire historical data of moving objects is not feasible when
moving objects update their locations frequently due to the massive volume of this data.
To address this issue, moving objects may report location updates only when there is a
significant change in their location. Alternatively, sampling can be used to shrink the volume
of indexed spatio-temporal data. Linear or nonlinear interpolation can be used to reconstruct
trajectories from the sampled location data. We classify spatio-temporal access methods that
index past spatio-temporal data based on the approach adopted for handling the time and
the space dimensions, and whether or not the index accounts for the sequential nature of the
historical trajectories of the moving objects.

2.1 Multi-dimensional structures

In the category, space and time are handled as dimensions in the multi-dimensional space.
All dimensions of the indexed spatio-temporal data are treated similarly. In other words, for
the indexed spatio-temporal data, there is no distinction in the handling of the spatial and
the temporal dimensions.

PH-tree [164] The PH-tree (PATRICIA-hypercube-tree) is a multi-dimensional data struc-
ture that extends both the Quad-tree and the PATRICIA-trie to optimize the search
performance and the space utilization when indexing large amounts of multi-dimensional
data. A k-dimensional object has k attributes that represent the object’s position in the k-
dimensional space. The PH-tree follows the Quad-tree in that the PH-tree partitions the
space across all dimensions at any given node. However, instead of using an integer or a
floating point representation of the attributes of the indexed objects, the PH-tree serializes
the attributes of the indexed objects using binary representation. Objects are indexed in a
PATRICIA-trie-like approach that uses the binary bit-representation of the attributes of the

@ Springer

4 Geoinformatica (2019) 23:1-36

indexed objects. The PH-tree uses common prefixes among the bit representation of the
attributes to reduce the space required by the index. The PH-tree can be seen as a hyper-
cube of size 2F when indexing data with k dimensions. However, this hyper-cube is typically
sparse and the PH-tree automatically switches to a linear representation of the hyper-cube
that stores bit prefixes and pointers to children nodes when sparsity in the data is detected.

2.2 Overlapping and multi-version structures

In this category of spatio-temporal indexes, the treatment of the spatial dimensions is dif-
ferent from that of the temporal dimension. The idea behind this category of indexes is to
build a separate index for each time instance.

SMO-index [114] The focus of the Succinct Moving Object Index (SMO-index) is the
efficient processing of timestamp and interval spatio-temporal queries while reducing the
storage requirements of the index. In the SMO-index, both the data and the index are
stored compactly in the same structure without using external memory. The SMO-index
has two main components: (1) a time-ordered sequence of snapshots of the objects’ loca-
tions indexed by K 2_trees [19], and (2) a sequence of movement logs, where each log is
the time-ordered sequence of changes in the objects’ locations between consecutive snap-
shots. A Snapshot S is of the form < Tree, Leaves, Labels >, where Tree and Leaves
are bitmaps that represent the internal nodes and the leaves of the K?-tree, respectively.
Labels is an array of object identifiers. Instead of storing the absolute position of an object
at each time instance in the movement logs, movement in the horizontal and vertical axes
with respect to the previous location of the object is stored. The reason is to optimize the
storage needed by the movement logs. Timestamp and interval queries are processed by
accessing the snapshots and movement logs. Accessing a snapshot is similar to processing
a range query on a K >-tree.

2.3 Trajectory-oriented access methods

Trajectory-oriented access methods focus on answering topological and navigational
queries over trajectories. Topological queries focus on the locations visited during the move-
ments of the objects. In contrast, navigational queries focus on the information that can be
inferred from the movements of objects, e.g., the speed and the direction of an object.

TrajStore [32] The main idea behind TrajStore is to partition the trajectories (that result
from the movements of the objects) into sub-trajectories, and then cluster into disk pages the
trajectory segments that are spatially and temporally close to each other. TrajStore targets
to minimize the number of disk reads required for queries over specific spatial regions
with large time-intervals. An adaptive quadtree is used as a spatial index, where each cell
in the tree corresponds to multiple disk pages that contain the sub-trajectories in the area
covered by this cell. A sparse temporal index is associated with each cell. This temporal
index contains the least start-timestamp and the highest end-timestamp for each page within
a specific cell. These cells are recursively split and merged according to a cost function
that ensures optimal cell size and minimizes disk I/Os. Each cell is further compressed to
avoid redundancy in cases where many trajectories have approximately the same path in a
cell. Spatio-temporal range query processing is executed by first filtering the cells using the
spatial index, and then by retrieving the pages that overlap the temporal range of the query.

@ Springer

Geoinformatica (2019) 23:1-36 5

PARINET [107, 117] PARINET (short for PARtitioned Index for in-NEtwork Trajectories)
is an access method for retrieving the historical trajectories of moving objects over road
networks. PARINET partitions the road network and trajectory data based on the data dis-
tribution and the network topology. The time intervals for the trajectory data within each
partition are indexed using a B -tree. A Road-Partitioning table (RP, for short) is main-
tained to store information about the partitions of both the spatio-temporal data and the
road network. An entry of a partition, say P, within RP contains the list of road identifiers
covered by P and a pointer to the BT -tree of the time intervals in Partition P. A network-
constrained spatio-temporal range query Q is represented in the form (Qg, Q;), where Q;
is a list of road identifiers and Q; = [, t.], t; is the start-timestamp, and ¢, is the end-
timestamp of the query. The spatio-temporal range query Q is processed by first finding
the set of partitions that contain the road identifiers in the query. Then, a range scan is per-
formed on the B*-tree index of the selected partitions to identify the candidate moving
objects that overlap Q;. Each candidate is further filtered to check if it satisfies both spatial
and temporal conditions of Q.

T-PARINET [117] Temporal PARINET indexes trajectories by periodically creating new
PARINET indexes for specific time windows. A new PARINET is created when the per-
formance degradation and lifespan of the current index exceed specific thresholds. The
structure of the new PARINET is based on the expected data distribution and the expected
query load. A time-partitioning table is used to maintain the time window of each PARINET
and a pointer to the PARINET. A spatio-temporal range query Q is of the form (Qs, Q;),
where Qj is the spatial range of Q and Q; is the temporal range of the Q. If the temporal
range Q; = [ts, t.] of the query exceeds the time window of the current PARINET, Q; is
split into k intervals using the time-partitioning table. Then, the original query is converted
into a set of k queries that are executed on their corresponding PARINET indexes.

UTH [167] Trajectories may have uncertain portions. When moving objects report discrete
location updates to the spatial database server, there is no information about the object’s
movement between consecutive location updates, and hence the uncertainty in the trajec-
tory. A spatio-temporal index that accounts for this uncertainty assumes a specific model of
movement between location updates for the uncertain trajectories. The Uncertain Trajectory
Hierarchy indexes uncertain trajectories on road networks in the following way. UTH
assumes a time-dependent probability distribution for the uncertain movement between dis-
crete location updates. UTH consists of three main components: (1) an edge hash table,
(2) a movement R-tree (mR), and (3) a trajectory list. An edge in the road network can
be retrieved effectively from the edge hash table using the edge ID. For every edge, a 1D
movement R-tree (m R) is maintained. Movement R-trees index the time periods in which
the objects are moving on an edge. An entry in mR for an edge e(v;, v;) and an object a
moving on the edge is of the form [f., (v;), #14(v;)], where t., and #;4 are the earliest arrival-
time and latest departure-time of the associated vertex, respectively. This entry represents
the maximum time interval (M T I) for Object a while being on e. There is one entry for
each possible path of an object moving on Edge e. The trajectory list contains actual trajec-
tory data. In the trajectory list, trajectory samples are sorted by their timestamps per moving
object. Spatio-temporal range queries are processed in a filter-refine approach. First, edges
that overlap the spatial range of the query are identified, and the movement trees of edges are
queried to find candidate entries. Then, candidate entries are further refined by calculating
a qualification probability per entry. The qualification probability of an entry with respect

@ Springer

6 Geoinformatica (2019) 23:1-36

to a query represents the likelihood of the object to belong to the resultset of the query. The
qualification probability Q P; , quantifies the probability of Object a being within network
distance r from Query g. Candidate entries with qualification probability below a specific
threshold are removed from the query’s resultset. To find candidate edges, an expansion tree
ET(q,r) for Query g is created. This tree is rooted at ¢, and contains all the positions along
the edges of the road network that are within Distance r from g, where r represents the spa-
tial range of the query. Then, using UTH, the m R tree of every candidate edge within the
expansion tree is queried to find the entries with , € M T I. The candidate paths that are the
paths pointed at by these entries are further refined by calculating a qualification probability
and checking if the path qualification probability meets a specific threshold.

UTgrip [83] The Uncertain Trajectories GRID is designed to answer top-k similarity
queries over uncertain trajectories. The top-k similarity query identifies the k most-similar
trajectories to a query trajectory. UTg gy p is designed as a spatial-first index that partitions
the indexed space into uniform non-overlapping cells. Within a grid cell, say C, a 1D R-tree
is used to index the trajectories that overlap Cell C according to the probability of overlap
between the trajectories and C. Trajectories are partitioned into segments to be indexed in
UTgrip. Trajectory segments that span multiple grid cells are split at grid cell boundaries.
An indexed trajectory segment within a grid cell C consists of the trajectory identifier, the
time span of the trajectory segment, and the probability of overlap between the trajectory
and C. To avoid using complex probability functions to represent the probability of overlap
between trajectory segments and cells, the entire temporal range is split into small time-
intervals. Then, the probability of overlap between a trajectory and a grid cell is represented
as a sequence of pairs (¢, €), where ¢ is the average probability of overlap between a trajec-
tory and the grid cell in this small time-interval, and € is the maximum deviation between
the exact probability of overlap and ¢.

FMI [82] FootMark Index is used for the efficient processing of the time-period most-
frequent path query (TPMFP, for short). The TPMFP query identifies the most-frequent
path between a specific source location vy and a specific destination location vy during a
certain time period 7. This query is processed by creating a footmark graph G ¢ for vy dur-
ing T'. The footmark graph G ; is a sub-graph of the entire road-network graph G. The edge
weights of G ; represent the number of trajectories that pass through an edge in G and reach
vg during T'. Then, TPMFP from vy to vy is found from G y by using a dynamic program-
ming algorithm. The purpose of FMI is to filter the indexed trajectories according to vy and
T to construct the footmark graph. FMI consists of a BT -tree BT,, for each vertex, say v,
of the road-network graph G. The BT -tree for Vertex v; indexes the time at which the tra-
jectories reach v;. The leaf entries of the B -trees are of the form < tid,t, >, where tid
is the trajectory identifier, and #, is the time at which the trajectory tid reaches the vertex
v;. A hashmap from the vertices to their corresponding B -trees is maintained within FML
CFMI (Containment-Based Footmark Index) is an improved version of FMI that stores only
the dominant trajectories, i.e., the longest trajectories that share the same path with the other
contained trajectories and pass through vg during 7. The footmarks of the contained trajec-
tories are calculated by storing their starting locations with respect to their corresponding
dominant trajectory. This requires fetching only the dominant trajectories from disk. The
leaf entries of the BT-tree in CFMI are of the form < tid, t,, t,, did, sloc >, where tid is
the trajectory identifier, #; is the starting time of the trajectory tid, did is the identifier of
the dominant trajectory of tid, and sloc is the starting location of ¢id within the dominant
trajectory did.

@ Springer

Geoinformatica (2019) 23:1-36 7

TrajTree [112] The TrajTree index is developed to efficiently answer k-NN queries in large
trajectory databases. In the TrajTree, trajectories are represented as a sequence of trajectory
bounding-boxes by partitioning each trajectory into a large number of segments, where sub-
trajectories that are close to each other are grouped. The root of the TrajTree represents a
trajectory box sequence that is a sequence of bounding boxes constructed over the entire
spatial range covered by the indexed trajectories. The trajectories at the root are recursively
partitioned into different groups until a node is reached that contains less than » trajectories.
Leaf nodes in the TrajTree contain the trajectories (or the sub-trajectories) to be indexed
while non-leaf nodes contain trajectory box-sequences. A new trajectory is inserted into the
index by adding it to the trajectory box sequence that undergoes the minimum expansion
in volume. To increase the pruning power of the TrajTree, a set of d spatial points, termed
the vantage points, are distributed in the trajectory space. For every trajectory, a vantage
descriptor is maintained to store the distance between a trajectory and vantage points. These
vantage descriptors are later used to give an upper bound on the distance between a query
and the indexed trajectories.

TRIFL [137] TRIFL is an access method that is optimized for indexing trajectories in flash
storage. TRIFL is optimized for the specific nature of trajectory data that involves inser-
tions at high rates with infrequent deletions. To better fit the nature of flash storage, TRIFL
favors large-granularity I/Os over page-granularity I/Os. First, TRIFL performs spatial par-
titioning on the trajectory data. Then, the trajectory data that lies within a spatial partition
is indexed temporally. TRIFL uses Grid-based spatial partitioning that is based on the spa-
tial distribution of the trajectory data. For temporal indexing, TRIFL uses the following
two indexes: (1) the Append Only B+-tree (BAC+-tree) for indexing timely updates, i.e.,
updates that come with a timestamp that is greater than all the indexed timestamps, and
(2) the Time Interval Index (TII) for indexing deferred insertions, i.e., updates that have
a timestamp that is earlier than the current timestamp. The B4 +-tree is a variation of the
B+-tree that supports append-only operations and that has a page fill-factor of 100%. The
TII index splits the time domain into a set of time intervals. For every time interval within
the TII index, a list of trajectories that overlap this interval is maintained. Periodically, the
B49 +-tree and the TII index for a spatial partition are merged into a new B4 +-tree.

The trajectory-oriented access methods, discussed above, have been designed to handle
several important aspects of trajectory indexing, including (1) the efficiency of the index,
e.g., PARITNET and T-PARITNET, (2) the uncertainty in the objects’ locations, e.g., UTH,
and (3) the scalability in indexing the trajectory data, e.g., TrajStore.

3 Indexing the current and recent past data

In this section, we present an overview of the spatio-temporal access methods that deal with
queries about the current location or the recent history of the moving objects. We classify
these spatio-temporal access methods based on whether or not a recent history of an object
is maintained or only the current location of the moving object.

3.1 Indexing the current locations of moving objects
Many applications require online access to the current locations of moving objects, e.g.,

traffic analysis. Online access can be achieved by indexing the current locations of the
moving objects. Indexes that store the current location of a moving object often requires the

@ Springer

8 Geoinformatica (2019) 23:1-36

removal of the previous locations of the moving object every time the current location of
the moving object changes. The access methods that are presented in this section have been
proposed to index the current locations of moving objects.

PEB-tree [76] The Policy Embedded B*-tree is designed to index the current locations
of the moving objects while preserving the privacy of the users’ locations. To efficiently
achieve peer-wise privacy, i.e., protect the location of the user from unauthorized peers, the
PEB-tree accounts for both the location proximity of users and the rules that define pri-
vacy of users. The main idea of the PEB-tree is to generate an indexing key for each object.
The indexing key encodes both the location and the privacy policy information. In the PEB-
tree, users that are allowed to see each others’ locations and that are spatially close to each
other are stored adjacently in the index. The PEB-tree is based on the B*-tree [60] index.
Leaf nodes of the PEB-tree are of the form < PEB key, user_id, x, y, vy, vy, t, Pnt, >,
where P EB _key is the indexing key, (x, y) and (vy, vy) are the user’s location and veloc-
ity, respectively, at Time ¢ and Pnt, points to the user’s privacy policy. The PEB key is
calculated based on: (1) the timestamp of the user’s location, (2) a sequence value that is
calculated based on compatibilities among privacy policies of different users, and (3) the
z-curve value of the user’s location. This calculation of the P E B_key is a one-time process
and is performed offline when users are first registered. Insertion and deletion of objects in
the PEB-tree are similar to those for the B*-tree. To answer privacy-aware range queries, the
P E B _key of the range is computed by combining both the spatial range and privacy policy
constraints. To calculate the search range of the policy constraints, a list is maintained per
user to keep track of other users that have policies that are compatible with the list owner.

DIME [33] The Disposable Index for Moving objEcts (DIME, for short) maintains the cur-
rent locations of the moving objects. DIME has been designed to answer snapshot and
continuous spatial range queries on moving objects. The purpose of the spatial range query
is to identify moving objects inside a specific spatial range. This spatial range is defined
using a minimum bounding-rectangle (MBR). The main objective of DIME is to efficiently
support frequent updates of object locations as objects move. Processing location updates
in spatio-temporal indexes that have been developed prior to DIME requires expensive
delete operations. The delete operation is needed to remove the obsolete location after the
object moves to a new location. In DIME, instead of performing separate delete opera-
tions per location update, large portions of the expired index are removed. DIME maintains
multiple instances of a spatial index, e.g., the R*-tree. One instance is stored in main mem-
ory to consume the incoming updates. The remaining instances are maintained on disk.
The main-memory instance is periodically flushed to disk to create a new empty main-
memory instance, and the oldest disk-instance is disposed of, i.e., is deleted. The deleted
disk instance can never contribute to the resultset of any query because it gets removed after
the maximum duration between two consecutive updates is reached. The main advantage
of this index is that updates happen in main memory and no disk-based index-update oper-
ations are required. Also, expensive delete operations are grouped when disposing of the
oldest instance. One implication of DIME is that querying takes place over two data struc-
tures, the one in main-memory and the one in disk and results from both structures need to
be reconciliated.

RUM+-tree [171] The RUM+-tree extends the RUM-tree [125, 153] with an additional data

structure. The RUM-tree builds on the R-tree index, where it augments the R-tree with
a main-memory update memo for indexing the current locations of moving objects. The

@ Springer

Geoinformatica (2019) 23:1-36 9

additional structure in the RUM+-tree is a hash table on object identifiers apart from the
update memo. During an update, the leaf node of the object having the update is directly
located through the hash table. The main idea is to deal with updates locally in a bottom-
up manner, i.e., if the new location of the moving object still falls in the same MBR as
its old location, only the location of the object is updated within the leaf node. If the new
location of the moving object falls outside the old MBR, then a new version of this object is
inserted into the RUM+-tree. The old version of the object is removed lazily with the help
of the update memo. This addresses the limitation of the RUM-tree that location updates
are always inserted as new versions of the objects even if these updates occur in the same
MBR. One disadvantage of the RUM+-tree over the original RUM-tree is the maintenance
of the additional auxiliary hash table during object updates, and whose size is proportional
to the number of distinct object identifiers. The RUM-tree does not use the extra hash table
at the potential extra cost during update time.

Composite index for indoor moving objects [151] This index supports temporal changes
in the indoor space, and requires pre-computing the shortest distances in the indoor space.
The composite index has the following three layers: (1) the geometric layer that is composed
of a tree tier and a skeleton tier, (2) the topological layer, and (3) the object layer. The tree
tier indexes the indoor partitions, e.g., the rooms, the staircases, and the hallways, using an
R-tree-like index, where a leaf node represents a partition, say P, and contains a pointer to
a bucket containing the moving objects located in P. The skeleton tier is a graph contain-
ing information about the staircases. Graph nodes in the skeleton-tier represent entrances.
Edges connect entrances that belong to the same staircase or that are on the same floor. The
topological layer captures the connectivity between partitions. The object layer contains all
the moving objects’ buckets. A hash table, o-fable, is used to map each moving object to all
the partitions it overlaps with. Notice that for indoor moving objects, there is uncertainty in
the locations of the moving objects. A moving object may be estimated to overlap multiple
partitions. To process range and k-NN queries, the geometric layer is searched to identify
the candidate objects and partitions. Candidate moving objects are pruned by computing the
upper and lower distance-bounds between the moving objects and the query. Exact indoor
distance is computed only for the unpruned moving objects.

Sim-tree [157] The Sim-tree is a two-dimensional access method used for traffic simula-
tions over road networks. Spatial indexes are used in traffic simulations to store the locations
of moving objects. Traditional R-Tree-based indexes suffer from poor performance when
indexing objects that frequently update their locations as they move. The Sim-tree is a bal-
anced binary-tree that uses average object-densities over the road network to build the index.
This index studies the expected road-densities across the day, e.g., morning {pre-peak,
peak, and post-peak}, and then builds an index for every period by recursively decompos-
ing the space into two sections with almost equal densities. Building the Sim-tree using the
expected densities eliminates the need to re-balance the index and significantly improves
the simulation performance.

V-tree [121] This access method is designed to answer the snapshot KNN queries on the
current locations of objects. The distance metric used is the road-network distance. The
V-tree is a balanced f-ary tree that recursively partitions the graph of the road network,
where f is the fanout of a tree node. Leaf nodes in the V-tree contain subgraphs of the
road network and maintain the shortest-path distance between every pair of vertices in the
subgraph. Boundary vertices have edges between two sibling subgraphs. Sibling subgraphs

@ Springer

10 Geoinformatica (2019) 23:1-36

share the same parent node. Non-leaf nodes in the V-tree maintain the distances between
boundary nodes in their child subgraphs. Moving objects are indexed at the nearest leaf-level
vertex by storing the distance between the moving object and its nearest vertex. Updates to
the locations of moving objects either change the distance between the object and the vertex
or change the vertex to which the moving object is attached to. Leaf-level vertices that have
moving objects attached to it are called active vertices. KNN processing is performed by
finding the nearest active vertices to the location of the query in order to generate the kNN
list of moving objects.

The access methods, discussed above, that index the current locations of the moving
objects have been designed to handle various aspects in the maintenance of the current loca-
tion of moving objects including (1) efficiency, e.g., DIME and the RUM+-tree, (2) handling
of the movements of objects indoors, e.g., the composite index for indoor moving objects,
and (3) constraining the movement of objects over road-networks, e.g., the V-tree.

3.2 Indexing the recent past

In this category, we survey access methods for indexing the recent past for spatio-temporal
data. Many applications do not retain the entire historical spatio-temporal data but keep
track of only the recent history of the moving objects, e.g., due to privacy requirements. This
is achieved by maintaining a sliding window and deleting the expired entries periodically.

SWST [126] The Sliding Window Spatio-Temporal index supports indexing of limited-
history spatio-temporal data under a time-sliding window. SWST is designed as a two-
layered index that consists of a spatial grid index and a temporal index within every spatial
grid cell. The temporal index is based on the B*-tree index. Keys used in the BT-trees
embed both temporal and spatial information to improve the pruning power of SWST. Addi-
tionally, an isPresent memo structure is maintained per spatial cell. This memo stores a
histogram that identifies which temporal intervals have spatio-temporal data. Every spa-
tial grid cell maintains two B*-trees. Each BT -tree is responsible for indexing data for an
entire time-sliding window. One B -tree indexes incoming location-updates and the other
holds older updates. Sliding-window maintenance is performed as follows: when an entire
time-sliding window expires, the B -tree that holds old data is entirely removed, and a
new BT -tree is created to hold the newly incoming data. Query evaluation is performed by
identifying spatial grid cells that overlap the spatial range of the query. Then, the B -trees
within the candidate grid cells are accessed to identify the temporally overlapping objects.
The purpose of the isPresent memo is to reduce the number of accesses to the BT -trees
during query processing.

Trails-tree [87, 88] The trails-tree is a disk-based structure for indexing recent trajecto-
ries of moving objects. The trails-tree maintains a temporal sliding-window over indexed
data. The trails-tree addresses the performance limitations of SWST [126], and requires
a lower number of disk I/Os during update and query processing. The trails-tree extends
the RUM-tree [125, 153], and uses a 3D R-tree with an additional data structure named
the current memo. Indexed entries within the trails-tree are of the form (oid, x, y, ty, t.),
where o0id is the identifier of the moving object, (x, y) is the location of Object oid during
Time Period (¢, .). The trails-tree uses the current memo to maintain information about the
most-recent update of an object. Initially, all incoming updates are stored in the trail-tree as
(oid,x,y,t,, NOWTIME), where NOWTIME is a constant indicating that the exact

@ Springer

Geoinformatica (2019) 23:1-36 1

value of 7, is not known. The trails-tree employs a lazy-cleaning mechanism that maintains
the time-sliding window by removing expired objects and sets the proper 7, for old entries
with the help of the current memo. Query processing is performed using a filter-and-refine
approach. First, an initial resultset is retrieved by traversing the nodes of the trails-tree.
Then, this initial resultset is refined by removing the expired and non-current entries with
the help of the current memo.

4 Indexing the future

In this section, we discuss spatio-temporal access methods that predict the future positions
of moving objects. Various approaches are adopted to predict the future positions, e.g., using
historical data, using the objects’ reference locations and their velocities, or using proba-
bility distribution models. In this section, we classify the indexes based on the approach
adopted to predict the future locations of moving objects.

4.1 Indexing the future based on the underlying road-network

This category of spatio-temporal access methods predicts the future locations of moving
objects based on the underlying road network.

P-tree [57] The Predictive Tree supports predictive queries over moving objects without the
knowledge of the objects’ historical trajectories. The main idea behind the P-tree depends
on the connectivity of the underlying road-network. The P-tree assumes that moving objects
travel through the shortest path to reach their destination. A P-tree is built per moving object
as it starts a trip on the road network. The starting node of an object on the road-network
graph is deemed to be the root of the P-tree of the moving object. The P-tree of an object
consists of all the nodes that are reachable from the root node within a certain time frame
T following the shortest route. The probability of reaching a node is predicted based on a
probability assignment model. A node of the road-network graph will be added to a P-tree
only if the object’s probability exceeds a specific threshold P. For every node in the road-
network graph, a list of the objects predicted to be present at this node is maintained with
their probabilities and travel time cost, i.e., the estimated travel time, to reach this node from
the current location. When the location of an object is updated, the new location becomes
the new root of the P-tree. Nodes that are not reachable from the new root are pruned from
the P-tree. The P-tree will be extended to add new nodes that are reachable from the new
root within a specific probability threshold. A new P-tree will be created if the new location
of the object deviates from the estimated shortest-path route. With every modification of the
P-tree, the probabilities of nodes are re-computed and the list of predicted objects associated
with each node in the road-network graph is updated accordingly. Spatial range and kNN
queries are processed using the list of predicted objects at the qualifying nodes, and this list
is manipulated according to the type of query issued.

4.2 Indexing the future based on historical data

This category of spatio-temporal access methods predicts the future location of a moving
object based on the history of movements of the object.

@ Springer

12 Geoinformatica (2019) 23:1-36

Prediction distance table [62] This indexing technique supports server-side processing of
predictive range queries based on the mobility statistics extracted from historical trajecto-
ries. The main idea behind this technique is to use the turning patterns at the level of the
individual moving objects. Initially, each moving object shares the most probable turning
pattern for each vertex containing mobility statistics with the server. A moving object sends
an update to the server only if there is a change in the most probable turning pattern for
any of its vertices. The region covered by the road network is partitioned into a grid con-
taining m x n cells. For each cell, say c, the set of cells, say S, that intersect the predicted
paths are identified along with the estimated travel times from c to every cell in S. This
is performed for every object as the mobility statistics differ for the different objects. The
minimum travel times among all objects between two cells, say ¢; and ¢}, i.e., Dp(c;, ¢;)
is stored in the prediction distance table. An entry in the prediction distance table is of the
form [c;, cj, h‘], where h° is the minimum travel-time between ¢; and c;. A hash table for
destination cells is also maintained, where the key to the hash table is the destination cell
identifier, i.e., cj. This hash table stores a pointer to a BT -tree-like sorted container with
key i ‘ and with value being the origin cell i.e., ¢;. When there is a new turning pattern for an
object, say o, there will be an update to the prediction distance table only if any D, (c;, c;)
computed for Object o is less than the existing value for [c;, ¢;]. This indexing approach
supports predictive range queries that are processed using the hash table by first identifying
the candidate origin cells whose destination cells fall in the query range. Candidate entries
from the hash table are refined by pruning the cells whose Prediction Distance 4 ° is lower
than the predictive distance range specified in the query.

Concurrently updatable index [118] This index structure uses separate indexes for the
spatial and temporal domains. The spatial domain is indexed using a grid-based index [48],
where each cell of the grid has pointers to the moving objects or queries that intersect the
cell. There are also pointers to objects that might intersect the cell with a probability that
exceeds a specific threshold. Operations on various cells can be performed concurrently
without depending on the other cells. The temporal index partitions the objects into buckets,
where each bucket represents a time interval, and stores objects or queries that belong to
this time interval. A Bucket is deleted when the lifespan of this bucket exceeds a specific
duration. When a bucket gets deleted, objects belonging to that bucket are also deleted from
the spatial index. Updates from moving objects are classified into two types: general updates
and temporal updates. A general update happens when there is a change in the path adopted
by the moving object, and this takes place by deleting the old trajectory and inserting the
new trajectory. A temporal update does not involve a change in the spatial location, and
hence does not affect the spatial index. However, a temporal update means that there is a
change in the time of events associated with the object. If a temporal update results in a
change of a temporal bucket, then a new pointer is added to the new bucket, and the pointer
pointing to the old bucket is deleted.

4.3 Indexing the future based on velocity partitioning
When dealing with predictive queries, the velocities of the moving objects significantly
affect query performance. This indexing approach accounts for the skew in velocity

distribution of the moving objects to improve query performance.

DVA [98] This velocity partitioning technique is based on partitioning the velocity domain
according to the Dominant Velocity Axes (DVAs, for short). The dominant velocity axes are

@ Springer

Geoinformatica (2019) 23:1-36 13

the ones in which most of the objects’ velocities are parallel to. DVAs are computed using
a combination of Principal Components Analysis (PCA, for short) and k-means cluster-
ing [84]. The coordinate space is transformed according to DVAs. A moving object index,
e.g., the TPR*-tree [135], or the B*-tree [60], is created based on each DVA. A moving
object is inserted into the index with the closest DVA. A threshold is defined per DVA to
determine whether an object belongs to it or not. If the threshold is not met, the object is
inserted into an outlier index that uses the regular coordinate system. Before processing a
spatio-temporal range query, the query range is transformed into the coordinate space of all
DVAs. Query results are obtained by querying all indexes of all DVAs and combining the
results.

Speed partitioning using dynamic programming [156] The main idea in this partition-
ing technique is to partition the index based on the velocities of the moving objects such
that the expansion of the query search space is minimized thereby improving the query per-
formance. Unlike other speed-partitioning techniques that rely on heuristics, this technique
computes an optimal partitioning using a dynamic programming algorithm. First, the speed
domain is partitioned into k optimal-parts. Then, objects are also partitioned into k index
structures according to their speed values. Each partition can be further decomposed into
four quadrants based on the directions of the moving objects. This indexing technique is
structured into three components: (1) the speed analyzer that computes the optimal speed-
partitioning by analyzing the data from the moving objects, (2) the index controller that
partitions a user’s query, forwards the query partitions into their corresponding index parti-
tions, and combines the partial query results received from each index partition, and (3) the
index partitions, where the actual processing of queries takes place. When a moving object
updates its location or velocity, the index controller determines whether the object should
be inserted into a different partition or not. This decision is based on the current speed of
the object. Partitions are updated periodically because locations and speed distributions of
the continuously moving objects keep changing over time.

D-Grid [155] The Dual space Grid is an in-memory data structure that indexes the mov-
ing objects based on both velocity and location. The D-Grid prunes the queries’ search
space using the associated velocity information. Answering predictive spatio-temporal
range queries using a query window enlargement rectangle (, OwER, for short) suffers from
the drawback of missing some slow-moving candidate objects that may not be part of the
enlarged query window. The reason is that the maximum velocity of the moving objects is
used to compute OQwER. The D-Grid addresses this issue by partitioning the objects based
on their velocity information, and representing the velocity space as a uniform grid termed
v-grid. Bach v-grid cell is associated with a location grid termed the /-grid. Each [-grid cell
points to a doubly-linked list of buckets. These buckets store the data of an object, i.e, the
object’s location and velocity. Similar to the U-Grid [123], D-Grid contains a hash-based
secondary index on object identifiers that provides direct access to the objects to handle
object updates. Local updates are performed by just updating the current cell. In contrast,
non-local updates, i.e., the ones that span multiple cells, are performed by marking the
object in its previous location as invalid and inserting the new location update into a new
grid cell. All invalid objects are deleted using a lazy garbage-cleaning mechanism when the
number of invalid objects within an [-grid cell exceeds a predefined threshold. Predictive
range and kNN queries are processed by first computing the QwER using the velocity his-
togram. Then, for each v-grid cell that intersects the OQwER, a range search is performed
using the enlarged query window of the corresponding /-grid cell.

@ Springer

14 Geoinformatica (2019) 23:1-36

4.4 Time-parameterized future indexing

This category of access methods depends on indexing the objects based on parametric rect-
angles. The boundaries of a parametric rectangle at a specific timestamp, say ¢, are defined
using a function of the current location of the moving object, ¢, and the velocity of the
moving object.

OST-tree [139] The Obfuscating Spatio-Temporal data tree (OST-tree, for short) has been
designed to preserve the privacy of spatio-temporal data. The OST-tree extends the TPR-
tree [116] with spatial and temporal obfuscation. Spatial obfuscation is achieved by
enlarging the spatial range in which a moving object is projected to be located inside. Tem-
poral obfuscation enlarges the temporal range a specific object can be located inside. For
example, the obfuscated location of an object located in (x, y) at timestamp ¢ is the rectan-
gle (Xmin, Ymin»> Xmax> Ymax) Within the temporal range (f,in, tnax). The OST-tree accounts
for the spatial and temporal obfuscation parameters into the function defining the parametric
rectangles. The spatial obfuscation parameter defines the enlargement of the projected spa-
tial location of the user within the parametric rectangles. Similarly, the temporal obfuscation
parameter defines the enlargement in the temporal range within the parametric rectangles.

GG TPR-tree [71] The Grid-based Grouping time parametrized tree (GG TPR-tree, for
short) has been designed to optimize the performance of the TPR-tree [116] for objects mov-
ing over specific paths, e.g., road networks. The GG TPR-tree predicts the future locations
of the moving objects. The key idea is to group compatible objects into clusters and treat
the objects as groups not individually. Compatible objects have similar velocities, move on
the same network edge, and are located close to each other. The GG TPR-tree makes use of
the fact that compatible objects tend to have similar behavior with respect to their projected
future locations. This behavior changes at the intersection points of the underlying network.
Initially, the GG TPR-tree handles objects individually. Then, once compatible objects are
detected, they are grouped together. To prevent the deterioration in performance of the GG
TPR-tree, the indexed objects get regrouped when the objects are no longer compatible.

HTPR*-tree [44] The History TPR*-tree (HTPR*-tree, for short) has been designed to
extend the abilities of the TPR*-tree [135] to support historical queries. The TPR*-
tree [135] supports queries on current and future locations of moving objects. The main
difference between the HTPR*-tree and the TPR*-tree is that the HTPR*-tree keeps track
of the creation and update times of the moving objects within the leaf nodes of the HTPR*-
tree. This allows the HTPR*-tree to support historical queries over the indexed objects. The
HTPR*-tree is able to efficiently support frequent updates of moving objects by using a
bottom-up update approach. The bottom-up update approach uses auxiliary memory struc-
tures, i.e., a hash table, a main memory bit vector, and a direct access table. The hash table
locates the leaf nodes of the HTPR*-tree that contain the most-recent update of the moving
object. The direct access table identifies parent nodes within the HTPR*-tree. The bit vector
indicates whether or not the leaf nodes are full. During an update within the HTPR*-tree,
instead of searching the index in an expensive top-down approach, the HTPR*-tree uses the
auxiliary memory structure to reduce the number of updates needed for the update based on
the following rules: (1) if the incoming update lies outside the boundaries of the root node
of the HTPR*-tree, the top-down approach is used, and (2) the hash table and the bit vector
are used to identify the leaf node containing the previous location information of the mov-
ing object. If the incoming update is located inside the previous leaf node, the direct access

@ Springer

Geoinformatica (2019) 23:1-36 15

table is used to update and tighten the boundaries of the parent nodes all the way to the root
of the tree. Otherwise, the top-town insertion is used.

TPRuv-tree [42] The Time Parametric R-tree with Uncertain Velocities (TPRuv-tree, for
short) has been designed to answer the Continuous k Nearest Neighbor query for objects
moving on road networks (CKNN, for short). In this query, it is required to report the k
objects that have the highest likelihood to be close to the query’s focal point in an upcom-
ing temporal range, e.g., within the next [1-5] minutes. The likelihood of closeness is used
instead of the exact distance because TPRuv-tree does not assume that moving objects have
fixed velocities. Both the data objects and the query point are continuously moving over
the road network. An uncertain velocity is represented by a velocity range [Vmin, Umax],
where v,,i, and vy, are the minimum and maximum velocities of a moving object, respec-
tively. The distance interval between a moving object and a query is calculated based on the
object’s minimum velocity, the object’s maximum velocity, the object’s direction, and the
direction of the query. The distance interval [d,,in,, dnax] represents how close the object to
the query point, where d,,;, is the minimum possible distance and dj,,x is the maximum
possible distance. Objects are assigned closeness likelihood scores based on their distance
intervals. TPRuv-tree is structured as a two-layered index. The top layer of TPRuv-tree is
composed of an R-tree index that is used to store the spatial information of the underly-
ing road network. Leaf nodes of the R-tree point to the lower layer of the index. Each leaf
node contains a direct access table that contains the information of edges contained in the
leaf node’s MBR. An entry in the direct access table contains the edge identifier, the edge’s
speed limit, a list of neighboring edges, and a list of objects moving on that edge. TPRuv-
tree is only updated when objects move from one edge to another. In TPRuv-tree, distance
intervals of moving objects change as objects move across edges because the direction and
the speed of the objects change according to the edge. Hence, the overall temporal range of
the query is split into temporal subintervals. Within each temporal subinterval, objects do
not change the edges they move on. The result of the CkNN query is reported per subinter-
val based on the closeness likelihood scores of objects. These scores are calculated using
the objects’ distance intervals per temporal subinterval.

S€TPR*-tree [97] The Shared Execution TPR*-tree (S*TPR*-tree, for short) is a disk-based
index that is designed to optimize the performance of both the range and kNN queries over
moving objects. The main observation behind the S TPR*-tree is that the moving objects
tend to have frequent updates and indexes that are optimized for handling frequent updates
tend to have poor query performance. To address this issue, the S“TPR*-tree uses shared
query execution along with lazy insertions and deletions to maintain efficient query perfor-
mance while supporting frequent updates. The S TPR*-tree uses a main-memory buffer that
contains a main-memory TPR*-tree [135] to receive incoming updates. The S*TPR*-tree
uses a disk-based TPR*-tree to persist the updates of moving objects. Also, the S“TPR*-tree
uses a main-memory deletion hash-table to store all the delete operations that are reported by
the moving objects. Batched insertion and deletions are subsequently reflected in the disk-
based TPR*-tree. Only one main-memory page is allocated for batch query-processing. The
S¢TPR*-tree uses a shared query-execution algorithm that ensures that any disk page that is
relevant to a batch of queries is loaded to the buffer only once. The shared query-execution
algorithm rearranges the steps for processing the queries into group queries that read a disk
page only once. All the incoming insertions are held in the main-memory TPR*-tree. When
the main-memory buffer is full, updates in the main-memory TPR*-tree are inserted into
the disk-based TPR*-tree. To reduce the number of disk I/Os for the disk-based insertions,

@ Springer

16 Geoinformatica (2019) 23:1-36

the S*TPR*-tree adopts a proximity-ordered insertion approach. In this approach, the main-
memory TPR*-tree is traversed in depth-first order. During this traversal, the encountered
objects are added into an insertion list. The depth-first ordered traversal in the main-memory
TPR*-tree ensures a proximity-ordered insertion into the disk-based TPR*tree, and reduces
the overall number of disk I/Os needed to merge the main-memory TPR* tree with the
disk-based TPR*tree.

The access methods above use the time-parametrized approach to index the moving
objects under various scenarios including (1) maintaining user privacy, e.g., the OST-tree,
(2) indexing the moving objects in road networks, e.g., the TPRuv-tree, and (3) supporting
the frequent updates of moving objects, e.g., the S“TPR*-tree.

5 Indexing the past, the present, and the future

In this section, we study a class of spatio-temporal indexes that index the spatio-temporal
data at all points in time, i.e., the past, current, and future times.

PASTIS [113] The PArallel Spatio-Temporal Indexing System is an in-memory index that
supports past-, present-, and future-time queries. The history of the moving objects is main-
tained in a table termed Location that stores the location, velocity, and timestamp of the
moving objects. The spatial domain is partitioned into uniform grid cells, and is ordered
using the Z-order space-filling curve. Each grid cell has a partial temporal-index that con-
sists of a lookup table containing entries for time intervals over the past N days. Data older
than N days is stored on disk. Each entry in the lookup table contains a compressed bitmap
(CBmap, for short) that identifies the moving objects that have been in a specific grid cell
at a given time interval, and a hashmap termed Hm-RIDList. Hm-RIDList associates each
moving object with a list of record identifiers that locate the actual movement records of
the moving object in the Location table. For an update of an object with Timestamp ds;,
the interval lookup table is checked to determine if ds; maps to an existing interval, and if
so, then the corresponding bitmap and hashmap entries are updated. If ds; maps to a non-
existing interval, then a new interval is initialized. The predicted locations are computed
for a location update according to the projected velocity and the current location of the
moving object. The predicted locations are stored in a new hashmap, termed P Hm, that is
maintained to answer predictive queries. The processing of range queries is performed by
bitwise ORing of the temporal bitmaps of the objects in cells that are fully covered by the
spatial range of the query. For partially-covered cells, the RIDLists of the moving objects
are traversed to determined if the objects are located inside the query range.

6 Spatio-temporal and spatio-textual indexing

Recently, many applications have emerged that deal with text data, where the text data is
associated with spatial and temporal attributes. Examples of these applications include the
analysis of microblogs and the processing of activity trajectories. Microblogs, e.g., tweets,
contain a set of keywords, a timestamp, and a spatial attribute that represents the loca-
tion of the user. Activity trajectories associate keywords to the spatio-temporal trajectories
of users. These keywords represent the activities performed by users at specific locations.
These applications may require the filtering or ranking of objects based on their spatial,
temporal, or textual properties. One approach to index spatio-temporal text data is to use an

@ Springer

Geoinformatica (2019) 23:1-36 17

existing spatio-temporal index, and extend it to include text data. Alternatively, one can use
an existing spatio-textual index, and extend it to include the temporal dimension. One of the
earliest spatio-textual indexes is the structure proposed by Aref and Samet [8]. This index
combines the spatial pyramid [131] with the bitmap index to answer queries about the fea-
tures of map data, e.g., Where are the “Corn fields” located? Spatio-temporal and textual
data can be modeled as individual objects, e.g., tweets, or a related sequence of objects, e.g.,
activity (textual) trajectories. In this section, we survey the indexing techniques proposed to
answer spatio-temporal and textual queries. We classify spatio-temporal and textual indexes
based on their adopted data model, i.e., individual objects or textual trajectories.

6.1 Indexing individual objects

This category of spatio-temporal and textual indexes handles objects individually. Most of
the access methods in this category are designed to answer aggregate analytical queries over
spatio-temporal and textual data, e.g., identifying the most-frequent keywords in specific
locations. Other types of spatio-temporal and textual indexes that handle individual objects
address continuous queries over streamed spatio-temporal and textual data.

AFIA [127] The Adaptive Frequent Item Aggregator (AFIA, for short) is designed to iden-
tify the top-k frequent terms, i.e., keywords, in a specific spatio-temporal range. This index
uses a grid-based approach [6] with uniform and fixed cell-sizes. Spatial grids of multiple
granularities are used to partition the indexed space, where each grid cell per granular-
ity stores a summary of the most-frequent terms in that cell. For temporal support, new
instances of grid cells are created periodically. Also, temporal cells are also created at mul-
tiple time-granularities, and each spatial grid-cell maintains frequencies of terms for all
supported temporal granularities, e.g., hour, day, week, and month. To process a query with
a specific spatio-temporal range, the query range is partitioned into several coarser regions,
and the aggregates from these regions are combined to get the final top-k result. Also, this
index changes the size of the summaries dynamically to adapt to changes in the number of
frequent terms within grid cells.

Mercury [86] Mercury uses a partial in-memory pyramid [8] to support top-k spatio-
temporal-textual queries over microblogs under constrained memory. The pyramid structure
is a multi-level partitioning of the indexed space. In the spatial pyramid, each cell at Level i
is partitioned into four equal cells in the subsequent level, i.e., Level i + 1. Each pyramid cell
maintains a list of the microblogs that have arrived in the spatial range of the cell during the
past T time units. Microblogs within a cell are ordered according to their arrival timestamps.
To reduce the insertion overhead, microblogs are periodically bulk-inserted into Mercury
using a main-memory buffer. To avoid an extremely deep pyramid, a pyramid cell is split
only if its content spans at least two quadrants. This check is performed by maintaining per
pyramid cell a 4-bit variable, termed SplitBits. Cells are merged only when three of the four
sibling cells are empty to avoid having redundant split and merge operations. Deletion of
the expired microblogs is performed either during the insertion of new microblogs or during
a periodic deletion. Top-k microblogs are identified by computing the scores of the indexed
microblogs according to a ranking function of the spatial proximity of the microblog to the
location of the query and the time recency of the microblog. The query-processing algo-
rithm uses a priority queue of the pyramid cells being searched to visit the pyramid cells
according to a ranking function that depends on the spatial proximity between the cell and
the location of the query and the timestamp of the most recent microblog in every pyramid

@ Springer

18 Geoinformatica (2019) 23:1-36

cell. Also, during query processing, a list of the top-k microblogs is maintained. This list is
sorted in the order of the scores of the microblogs, and gets updated as the pyramid cells are
being visited.

AP*-tree [149] The AP -tree (Adaptive spatial-textual Partition tree) indexes the queries
and not the spatio-textual data objects. It is designed to index and answer a multiplicity
of continuous moving spatio-textual filter queries at the same time. A spatio-textual filter
query is defined using a spatial range and an associated set of keywords. A moving spatio-
textual filter query continuously changes its location over time because the query issuer
may be moving in space and needs to continously retrieve the updated query answer as it
changes its location. In this type of query, it is required to identify the spatio-textual data
objects that are located inside the spatial range of the query and that contain all the query
keywords. A spatio-textual object is defined using a spatial point location and an associated
set of keywords. A continuous spatio-textual filter query progressively runs over streams of
spatio-textual data objects. The AP -tree is an f-ary in-memory index, where continuous
queries are recursively partitioned. Partitioning the indexed queries in an AP -tree node is
either spatial or textual. The type of partitioning is based on a cost function that chooses the
best partitioning approach. Nodes partitioned spatially are termed s-nodes while those that
are partitioned textually are termed k-nodes. The AP™-tree is adaptive to the movement of
queries, and adds extra cost in the direction of movement of the queries to reflect the query
movement-patterns. For efficient insertion and deletion, a list of queries in each leaf node
is maintained as a hashmap structure, termed the s-list. Each incoming data object has an
expiration time. Active objects are augmented to the leaf nodes that contain the relevant
queries in a list, termed the m-list. One disadvantage of storing the data objects along with
the continuous queries is the duplication of thr stored data objects. The reason is that data
objects will be stored in all the leaf nodes that have relevant queries. For a query, say Q, a list
of the leaf nodes that overlap Q is maintained to handle efficiently the location updates of
the continuously moving queries. When queries move, they need to be re-evaluated. This re-
evaluation is performed incrementally by reporting either positive updates (i.e., the addition
of new output data objects), or negative updates (i.e., the deletion of the expired output data
objects).

GeoTrend [85] GeoTrend is an access method for identifying the trending keywords within
recent microblogs in a specific spatial region. GeoTrend adopts a hybrid spatio-textual
and temporal data structure that builds on the incomplete pyramid structure [8] for spatial
indexing. In every cell in the pyramid, a textual index is maintained. This textual index
is a hash table that stores aggregate statistics of the keywords in the microblogs over the
past time-period, say T. The length of the time duration T depends on the availability of
main memory. The aggregate statistics of a keyword, say %, is a set of N counters. Each
counter stores the number of microblogs containing Keyword k for a partial time-interval
of length % GeoTrend uses an expiration technique to evict the obsolete aggregates. When
the index is under high workload, GeoTrend adopts a load-shedding technique that evicts
the less-important aggregates that are less likely to contribute to any query answer. The
main difference between GeoTrend and Mercury [86] is that Mercury searches for individ-
ual microblogs while GeoTrend uses aggregates over microblogs to identify the trending
keywords.

R-trees with STLs [3] This disk-based index provides exact answers to the top-k Frequent
Spatio-Temporal query (the kFST query, for short). This query identifies the most-frequent

@ Springer

Geoinformatica (2019) 23:1-36 19

terms in a specific spatio-temporal range. This index extends the nodes of a multi-
dimensional R-tree with sorted terms lists (STL, for short). An STL of an R-tree node, say
N, is a list that contains the frequencies of terms of the objects covered by Node N. This
list is sorted based on the frequencies of terms. To improve the query performance, STLs
are added to both leaf and internal nodes of the underlying R-tree. To reduce the memory
overhead of the index, STLs store the frequencies of the most frequent A terms, where A is
estimated analytically.

6.2 Indexing textual trajectories

This category of spatio-temporal and textual indexes addresses the sequential nature of tex-
tual (also termed, activity) trajectories. These indexes answer several interesting similarity
queries over textual trajectories.

GAT [166] The Grid index for Activity Trajectories (GAT) has been designed to address the
Activity Trajectory Similarity Query (ATSQ, for short). ATSQ is represented by a set, say
S, of location points, where each point has an associated set of activities. The answer to this
query is the k most-similar activity trajectories to S. Activity trajectories are represented
as an ordered sequence of spatio-temporal location updates, where each location update is
associated with a (possibly empty) set of activities. A matching activity trajectory contains
all the activity keywords of the query at close proximity to the query’s location points. GAT
is composed of a multi-level grid, i.e., a pyramid, where every grid cell at Level i covers
four cells at Level i + 1. A hierarchal inverted cell list (HICL) that maintains an inverted list
of activity keywords for every level in the multi-level grid. This inverted list maintains, for
every activity keyword «, a list of grid cells that contain trajectory updates involving «. The
size of HICL can grow extensively due to the large number of indexed activity keywords
and their posting lists. Hence, HICL may not fit entirely in the main memory. To address
this issue, parts of HICL that represent the top levels of the multi-level grid are kept in main
memory, and parts of HICL that represent the lower levels of the multi-level grid are stored
on disk. Within every cell in the multi-level grid, and for each activity, an inverted trajectory
list (ITL, for short) is maintained to keep track of trajectory identifiers (IDs, for short) that
contain that activity. Also, GAT maintains a trajectory activity sketch (TAS, for short) to
summarize the activities per trajectory to efficiently prune trajectories that do not match the
required activities of the query. ATSQ is processed by first using HICL to identify candidate
leaf-level grid cells that are closest to the location of the query. Then, candidate cells are
checked using ITL to validate candidate trajectories. TAS is used to efficiently ensure that
the trajectories contain the query keywords.

RAC-tree [29] RAC-tree has been proposed to answer the Ranking-based Activity
Trajectory Search query (RTS, for short). RTS is composed of a spatial location, a set of
keywords that represents the activities specified by the query, and a threshold on the travel
distance of the retrieved trajectories. Similar to the Activity Trajectory Similarity Query
(ATSQ, for short) [166], RTS retrieves the k-most relevant activity trajectories, and needs
to cover all query keywords. In RTS, if a user is searching for activity trajectories that
involve the keyword “restaurant”, the ranking of the restaurant is considered alongside
with the spatial proximity between the location of the query and the locations of the tra-
jectory. Hence, the main difference between ATSQ and RTS is that RTS takes into account
the ranking of the activities. The RAC-tree is based on a quad-tree partitioning of the spa-
tial locations of the indexed trajectories. Leaf nodes of the RAC-tree contain the locations

@ Springer

20 Geoinformatica (2019) 23:1-36

of the trajectories, the activity keywords, and the rankings of the activities. A non-leaf node
within the RAC-tree contains a summary of the activity keywords covered with the non-
leaf node. The RAC-tree is traversed to identify the candidate trajectories while using the
keyword summary-information to efficiently prune the non-relevant index nodes. Candidate
trajectories are subsequently refined to identify the final resultset of the query.

GKR [90] The Grid and KR*-tree index is a hybrid index structure that combines SETI [25]
for indexing the trajectories of moving objects and the KR*-tree [55] for indexing spatio-
textual objects. Similar to SETI, GKR uses a grid to partition the space into uniform disjoint
cells and to store the content of these cells into separate disk pages. Each disk page is
associated with a set of keywords from the trajectory segments stored in it. Disk pages of a
grid cell are organized using the KR*-tree. A KR*-tree contains a structure that associates
index nodes with keywords, and organizes disk pages according to their temporal properties.
Spatio-temporal and textual queries of the form Q = (R, T,), where R specifies the
spatial range, T is the time interval, and v is a set of keywords, are processed by first finding
candidate grid-cells that overlap R. Then, the corresponding KR*-trees of the candidate
grid-cells are traversed to find nodes whose timestamp overlaps 7 and contain a keyword
from Set . The corresponding disk-pages of these nodes are further filtered in two steps to
discard false-positive trajectory segments in the spatio-temporal dimensions and to remove
trajectory segments that do not fully cover the set of query keywords .

IFST [90] The Inverted File with Spatio-Temporal order index (IFST, for short) is based on
SFCQuad [31], and extends SFCQuad to support the temporal dimension. IFST consists of
two main structures: (1) an inverted file that contains the trajectory’s segment-identifiers per
keyword, and (2) a spatio-temporal structure to index the segments according to their spatio-
temporal properties. The spatio-temporal index is composed of a quad-tree that indexes the
trajectory segments according to their spatial locations using the Z-curve ordering. A leaf
node in the quad-tree contains an R*-tree to index the timespan of trajectory segments.
The inverted lists are split into blocks and are compressed before storing them on disk.
To process a spatio-temporal and textual query of the form Q = (R, T, v), the underly-
ing quad-tree is traversed to identify the nodes that overlap R. For a qualified quad-tree
leaf node, the corresponding R*-tree is traversed to identify segment identifiers that have a
timespan that overlaps 7. The inverted index is used to find the segment identifiers for the
keywords contained in ¥ . Then, similar to GKR [90], a two-step filter is used to obtain the
final result.

I0C-tree [54] The Inverted OC-tree (the IOC-tree, for short) answers spatio-temporal and
textual filter queries on trajectories. The IOC-tree is based on an inverted index, where query
processing is performed by filtering the indexed data using a keyword-first strategy. In the
IOC-Tree, each keyword has an octree [59] that is built by recursively dividing the spatio-
temporal space into eight nodes. Leaf nodes are encoded using the 3D Morton code [92],
where non-empty leaf nodes are stored on disk in a one-dimensional structure ordered by
Morton codes. A signature is also maintained per octree node that contains a summary of the
trajectory information within that node. This signature is used to filter out the non-qualifying
nodes, and the signature gets updated during the insertion/deletion of trajectories. Exact
trajectory information per non-leaf nodes is stored on disk. Query processing is performed
by dividing the nodes into three types: (1) nodes that do not satisfy the spatio-temporal
constraint, (2) nodes that are partially covered by the spatio-temporal range of the query,
and (3) nodes that are fully-covered by the spatio-temporal range of the query. After the

@ Springer

Geoinformatica (2019) 23:1-36 21

signature test is performed to filter out the non-qualifying nodes, candidate trajectories are
loaded from disk, and are validated to get the final result.

GiKi [165] The Grid index Keyword index (GiKi, for short) has been designed to answer
the Approximate Keyword Query of Semantic Trajectories(AKQST, for short). The input to
AKQST is a set of keywords, where it is required to retrieve the k most-relevant seman-
tic trajectories or sub-trajectories. A semantic trajectory (or sub-trajectory), i.e., an activity
trajectory, needs to cover all the query keywords while having the shortest travel-distance.
Coverage of keywords in AKQST is based on approximate keyword-matching, e.g., to toler-
ate any misspelled keywords. The relevance of trajectories is defined as a function of (1) the
aggregate travel-distance of the trajectory, and (2) the similarity between the trajectory key-
words and the query keywords. GiKi consists of a Semantic Qaud-tree (SQ-tree, for short)
and a Keyword-Reference Index (K-Ref, for short). The SQ-tree is constructed based on a
multi-level grid-partitioning of the indexed activity-trajectories. Grid cells that overlap the
trajectories are used to build the spatial quad-tree within the SQ-tree. A non-leaf node in
the SQ-tree contains (1) an identifier of the corresponding grid cell in the multi-level grid,
(2) pointers to children nodes of the quad-tree, and (3) a signature of all the keywords cov-
ered within the corresponding grid cell in the multi-level grid. The signature of keywords is a
MinHash [160] of all the keywords covered by the quad-tree node. A MinHash signature of
the keywords is calculated by generating multiple hash-functions over all the n-grams [50]
of all the keywords covered by a quad-tree node. The n-gram of a string, say S, is a set of
strings similar to S that is calculated by introducing wild-card characters in S. For example,
the 3-gram of “Box” is { “##B, #Bo, Box, ox$, x$$”}. A leaf node in the SQ-tree contains
the keyword signature and pointers to the indexed trajectories. K-Ref is a textual index that
is maintained per trajectory to speed up the computation of the string edit-distance. In K-
Ref, K-means clustering is used to identify the keyword clusters per trajectory. For every
cluster, a reference keyword is chosen. These reference keywords are considered as repre-
sentatives of the clusters of keywords. Then, keywords of a trajectory are indexed based on
their distance to the reference keywords using a B™-tree. AKQST is processed by using the
SQ-tree and K-Ref to identify candidate trajectories that have keywords similar to the query
keywords. Then, the relevance of the candidate trajectories is calculated to identify the k
most-relevant trajectories.

IRWI-tree [58] The IRWI-tree is designed for indexing spatio-textual trajectories. The
IRWI-tree is able to efficiently answer the sequenced spatio-temporal and textual query over
trajectories. A sequenced spatio-temporal and textual query, say g, searches for trajectories
that satisfy a sequence of spatio-temporal and textual range queries g1, g2, * - - , ¢n, €.8., tO
retrieve objects that take the bus in the morning and the train in the afternoon. The IRWI-
tree is a hybrid index that combines an R-tree index with an inverted list. Leaf entries in
the IRWI-tree are of the form of trajectory units [/, L, Seg], where I is the interval of the
entry, L is the textual content of the entry, and Seg is the spatial location of the indexed
trajectory unit. Internal nodes of the IRWI-tree contain summaries of the trajectory units in
the leaf level. Sequenced spatio-temporal and textual queries are answered by splitting the
sequenced query into multiple simple queries that are processed in parallel starting at the
root of the IRWI-tree. Only trajectories that satisfy all simple queries in the proper order are
reported in the resultset of the query.

ITB-tree [168] The Inverted Trajectory Bundle-tree (ITB-tree, for short) is designed to
answer a variation of the top-k spatial-keyword similarity query on activity trajectories. The

@ Springer

22 Geoinformatica (2019) 23:1-36

parameters of this query are a spatial location and a set of keywords. In this query, it is
required to retrieve the k most-relevant activity trajectories. The relevance of activity trajec-
tories is defined as a function of (1) the spatial proximity between the activity trajectories
and the location of the query, (2) the number of query keywords contained in the activity
trajectory, and (3) the popularity of activity points in the trajectory. The popularity of an
activity trajectory point, say P, is measured based on the number of other trajectories vis-
iting P. In other words, an activity trajectory is popular when it contains points that are
frequently visited by other trajectories. The ITB-tree extends the Trajectory Bundle-tree (the
TB-tree, for short) [106] for indexing spatio-temporal trajectories. The TB-tree is a hierar-
chical spatio-temporal structure that ensures that all trajectory points in a leaf node belong
to the same trajectory. When a trajectory spans multiple leaf nodes, these leaf nodes get con-
nected by a doubly-linked list. The ITB-tree adds an inverted list to the nodes of the TB-tree.
A leaf node in the ITB-tree contains trajectory points and an inverted list for all keywords
indexed in this node. Trajectory points in the posting lists are sorted based on their popular-
ity. Also, for each keyword, say w, two flags are maintained to indicate whether or not w
appears in the previous or the subsequent leaf nodes in the connected doubly-linked list. In
the ITB-tree, a non-leaf node, say N, maintains an inverted list for all the keywords covered
by N. This inverted list maintains the maximum popularity for any keyword covered by N.

Multi-index [145] The multi-index is a combination of heterogeneous traditional access
methods for indexing symbolic trajectories of moving objects. A symbolic trajectory is a
sequence of units. A unit consists of a time interval and a label. A label is a symbolic textual
description of the location visited or the action performed during the time interval of the
unit. For example, the sequence of street names visited by a moving object constitute the
labels of a symbolic trajectory. More than one label can exist for the same moving object to
describe its movement, e.g., the transportation mode, the districts, and the points of interest
visited. Fabio et al. [145] adopt an expressive pattern-matching-based query language to
query symbolic trajectories. One example query is to identify the moving objects that have
visited specific points of interest at a specific sequence or at specific time intervals. To
efficiently support pattern-matching-based queries, the multi-index is adopted. The multi-
index combines the following structures to index labels based on the labels’ data types:
(1) A trie to index strings, (2) a 2D R-tree to index points and rectangles, (3) a 1D R-tree to
index time intervals, and (4) a B*-tree to index numeric data.

2TA [148] Wang et al. have introduced the 2TA algorithm to answer the Exemplar Textual
Query (ETQ, for short). Similar to the Activity Trajectory Similarity Query (ATSQ) [166],
ETQ retrieves the k most-relevant activity trajectories. However, ETQ does not require the
retrieved trajectories to cover all the query keywords. The relevance of the retrieved tra-
jectories depends on a function of (1) the spatial proximity between the locations of the
query points and the locations of the trajectory points, and (2) the number of shared key-
words between the query and the trajectory. 2TA uses the spatial grid and the inverted list
to answer ETQ. The spatial grid is used to identify the candidate trajectory-points based on
spatial proximity. The inverted list is used to keep track of trajectory points per keyword.
2TA uses the spatial grid and the inverted list data structures to search activity trajectories
and rank them to answer ETQ.

ST-tree [79] The ST-tree is designed to answer semantic-aware similarity queries on

activity trajectories. Instead of adopting exact or approximate keyword matching, the
semantic-aware similarity query considers the semantic similarity between the keywords

@ Springer

Geoinformatica (2019) 23:1-36 23

representing the activities of the trajectories. For example, Keywords “Gym” and “Exercise”
have high semantic-similarity. This query attempts to identify the k most-relevant activity-
trajectories to a specific set of keywords and spatial locations. Relevance is defined as a
function of (1) the spatial proximity between the locations of the trajectories and the loca-
tions of the query, and (2) the semantic similarity between the keywords representing the
trajectories’ activities and the keywords of the query. To measure the semantic similarity
of the keywords, Latent Dirichlet Allocation (LDA, for short) [17, 159] is used to map the
keywords of activities into a high-dimensional vector that represents the semantics of the
keywords. The ST-tree integrates the quad-tree with Locality Sensitive Hashing (LSH, for
short) [49]. LSH is used to reduce the dimensions of the LDA representation and to ensure
that relevant activity trajectories are assigned to the same bucket with high probability. In
the ST-tree, activity trajectories are first indexed using a quad-tree. Every leaf node in the
quad-tree points to an LSH structure for each trajectory point indexed by this leaf node.
Query processing in the ST-tree uses the quad-tree to find the candidate trajectories that are
close to the location of the query. Then, LSH is probed to identify the semantically-similar
activity-trajectories.

The indexes discussed above support various important trajectory similarity queries over
textual trajectories. These trajectory queries employ multiple cost functions that measure
the relevance of the textual trajectories to the query.

7 Parallel and distributed spatio-temporal access methods

The current scale of spatio-temporal data being generated has made centralized indexes less
suited to support the needs of spatio-temporal applications. The performance of centralized
indexes is restricted by the resources of a single machine. This has led to the development of
parallel and distributed spatio-temporal access methods to scale up the processing of spatio-
temporal queries. There are two main approaches for designing scalable spatio-temporal
access methods; (1) As extensions to general-purpose scalable systems, and (2) As stan-
dalone indexes. An Index that extends a general-purpose system often integrates a traditional
spatio-temporal index into the general-purpose scalable system. In contrast, a standalone
index does not build on an existing system. In this section, we highlight the main parallel
and distributed spatio-temporal access methods.

7.1 Indexes that extend general-purpose scalable systems

This category of spatio-temporal access methods builds on an existing general-purpose
scalable system. The main advantage of this approach is to inherit the scalability and
fault-tolerance features of the underlying general-purpose scalable system. General-purpose
scalable systems can be classified into batch and streaming systems. Batch systems, e.g.,
Hadoop [38] and Spark [163] require minutes or even hours to process large amounts of
data. Streaming systems, e.g., Storm [140] process data in real-time with minimal latency.
In this section, we highlight the main spatio-temporal indexes that extend general-purpose
scalable systems.

DSI[162] The Dynamic Strip Index (DSI, for short) is a distributed structure to support the
processing of kNN queries over moving objects. DSI partitions the two-dimensional space
into two sets of non-overlapping strips (vertical and horizontal strips). DSI is realized on top
of the Storm streaming system [140]. DSI maintains the current locations of moving objects

@ Springer

24 Geoinformatica (2019) 23:1-36

within the strips. Strips have a lower and an upper bound on the number of objects they con-
tain. When a strip has more objects than the upper bound, the strip splits. Conversely, when
a strip has fewer objects than the lower bound, the strip attempts to merge with neighbor
strips. Using horizontal and vertical strips simplifies the splitting and merging operations.
Strips are assigned to distributed processes, and a single worker process can have more
than one strip. Splitting and merging of strips guarantee that there will be no overloaded or
under-utilized processes. To answer kNN queries using DSI, candidate strips are identified
to calculate local kNN resultsets. Then, the global kNN resultset is aggregated over all the
local kNN resultsets.

QaDR-tree [53] The QaDR-tree is a distributed index designed to support spatio-temporal
range queries over spatio-temporal data inside Hadoop [38]. Hadoop is a distributed
cluster-based big data processing system. The QaDR-tree belongs to spatio-temporal access
methods for the past. The QaDR-tree is a two-layered index that is composed of a global-
index layer and a local-index layer. The global-index is based on a 3D quad-tree, i.e., an
octree [59, 89]. The dimensions of the 3D quad-tree are the space and time dimensions.
The 3D quad-tree partitions the spatio-temporal data into blocks. The size of a data block
is set to 60MB that is smaller than the total size of each Hadoop data block that is 64MB.
This extra space is allocated for the local index to be stored with the spatio-temporal in
each of the Hadoop data blocks. The local index used is a 3DR-tree. To answer a spatio-
temporal range query, the global 3D quad-tree is consulted to identify the relevant Hadoop
data blocks. Then, the local 3DR-tree within each of these blocks is used to identify the
final query results.

ST-hadoop [7] Spatio-Temporal Hadoop is a distributed framework for storing, indexing,
and querying spatio-temporal data. ST-Hadoop builds on the SpatialHadoop [41] system.
SpatialHadoop extends the Hadoop MapReduce [38] system with spatial constructs, i.e., a
spatial query language and spatial indexes. Indexing of spatio-temporal data in ST-Hadoop
is performed using the following phases: (1) sampling and (2) bulk-loading. In the sam-
pling phase, a MapReduce [38] job scans the spatio-temporal data, and keeps a sample of
the data in main memory. This sample guides the indexing of all data in the bulk-loading
phase. Spatio-temporal indexing in ST-Hadoop is a temporal-first index, where data is first
partitioned into temporal slices, then a spatial index is built for every temporal slice. The
boundaries of the temporal slices are estimated from the sample, and can be either time-
driven or data-driven. In time-driven slicing, the temporal ranges of the slices are fixed, e.g.,
each slice spans one month. In data-driven slicing, slices hold the same amount of data, and
the temporal ranges of slices may not be the same. To further improve the performance of
ST-Hadoop, a hierarchical temporal index is built on top of the temporal ranges of the slices.
Spatial indexing within a slice uses traditional spatial indexes that already exist in Spatial-
Hadoop, i.e., the Grid, the R-tree, and the KD-tree. Bulk-loading uses a MapReduce job to
scan the spatio-temporal data and indexes the data according to the temporal slices.

DTR-tree [146] The Distributed Trajectory R-tree (DTR-tree, for short) is a realization of
the R-tree index on top of Apache Spark [163]. Apache Spark is a general-purpose dis-
tributed big-data system. The DTR-tree indexes trajectories and activity trajectories using
distributed R-trees based on the trajectories’ spatial attributes. The DTR-tree is organized
in a global-local setup, where a global R-tree is maintained to provide a partitioning over
the indexed trajectory-data. Leaf nodes of the global R-tree represent children R-trees that

@ Springer

Geoinformatica (2019) 23:1-36 25

are stored in distributed machines. In the DTR-tree, trajectories are indexed based on their
spatial locations using two-dimensional R-trees.

DMTR-tree [15] The DMTR-tree index is designed to support the skyline trajectory query
over activity trajectories. The parameters of the skyline trajectory query are a trajectory start
location, a trajectory end location, a set of keywords, and a distance threshold. In the skyline
trajectory query, it is required to identify the set of skyline trajectories that are not dominated
by other trajectories in any of the following dimensions: (1) the spatial proximity, and (2) the
query keywords contained in the trajectory. The DMTR-tree uses the DTR-tree [146] with
a separate inverted list to keep track of the trajectories that contain the popular keywords.

DITIR [22] DITIR is a distributed index for indexing and querying trajectory data in real-
time. It supports the ingestion and indexing of trajectory data at high rates. DITIR is built
on top of Apache Storm [140]; a distributed data streaming system. DITIR uses an inser-
tion server to index the incoming trajectory-data, and a query server to handle the incoming
queries. DITIR stores data in a distributed file system in temporal chunks. The insertion
server builds data chunks as in-memory B+-trees. The key of a B+-tree entry is the Z-value
of the geo-location of an incoming data-entry. The B+-trees are periodically flushed into
a distributed file system. To avoid spending time on node splits during B+-tree insertions,
DITIR uses template-based B+-tree indexing. In template-based indexing, it is assumed that
the spatial distribution of data (and the distribution of the Z-values) does not change sig-
nificantly between consecutive data chunks. DITIR uses the structure of the B+-tree from a
previous chunk as a template to index a subsequent chunk. The query server maintains meta-
data about chunks in the distributed file system to improve search performance in DITIR.
The metadata includes an R-tree that stores the spatial ranges of the various chunks.

The parallel and distributed access methods, discussed above, extend general-purpose
scalable systems with spatio-temporal indexing abilities. These indexes often inherit the
performance, scalability, and fault-tolerance properties of the underlying general-purpose
scalable system.

7.2 Standalone parallel and distributed spatio-temporal indexes

This category of spatio-temporal access methods does not depend on an existing general-
purpose scalable system. In this section, we highlight the main standalone parallel and
distributed spatio-temporal access methods.

TwinGrid [122] The TwinGrid index maintains the current locations of update-intensive
moving objects. It uses two separate grid-based memory-resident indexes for handling
queries and updates so that both can be processed in parallel without interference. The
updates index, also termed the writer store, is a memory-resident write-only structure that
contains the most up-to-date copy of the data. The reader-store is a read-only index that
contains a near up-to-date snapshot of the earlier index. The entire memory-resident writer-
store, i.e., the updates index, is copied periodically. The duration between two successive
copies is called the cloning period. Copying is performed using the memcpy system call
from the write-store to the reader-store while pausing updates. Therefore, the query results
are not up-to-date with the maximum staleness of the cloning period. The structure of
TwinGrid extends the uniform grid-based structure [123]. Each grid cell does not store
data but contains a pointer to a linked list of buckets where data is actually stored. Also,
TwinGrid uses a secondary-index structure that indexes objects based on their identifiers,

@ Springer

26 Geoinformatica (2019) 23:1-36

and has direct access to the data of an object based on a bucket pointer, and a pointer to the
object within the bucket. These pointers prevent the need to scan an entire cell or bucket dur-
ing updates. TwinGrid supports multi-threading by maintaining multiple queues, one queue
per thread. These queues contain the incoming updates as well as the queries that are being
processed.

PGrid [124] The Parallel Grid (PGrid, for short) indexes the current locations of moving
objects. PGrid uses a locking mechanism that handles both the queries and the updates con-
currently, thereby providing up-to-date query results. PGrid has a structure that is similar to
that of TwinGrid [122], where queries are served by a primary uniform grid [6] and a sec-
ondary index that handles updates in a bottom-up fashion [70]. Each object, say o, in PGrid
can have up to two versions at a time; one representing o’s previous location and the other
for o’s current location. The previous version of an object is maintained to ensure correct
query answers even during an update of a moving object. The indexed entry of a moving
object contains the update timestamp to identify the latest version of the object’s location,
the object identifier, and the location of the moving object. A new location update logically
deletes the old version. The actual deletion of the old version happens with the subsequent
update to the object. Both the primary and the secondary indexes are modified concurrently.
Locking is used at both the object and the grid-cell levels. A latch-based optimistic lock-free
index traversal (OLFIT, for short) [24] and a single-instruction multiple-data (SIMD, for
short) technologies are used for parallel and atomic object reads and writes within PGrid.

MPB-tree [56] The Multi-dimensional Parallel Binary Tree (the MPB-tree, for short)
indexes four-dimensional spatio-temporal data. The four dimensions are x, y, z, and time.
The MPB-tree consists of four binary trees, one binary tree per dimension, and a shared
memory-pool that stores the intervals of the four dimensions. Each binary tree is a Triangular
Binary Tree (the TB-tree, for short) that uses a triangular decomposition strategy similar to
that in the Triangular Decomposition Tree (the TD-tree, for short) [130]. The TD-tree is a
temporal index that uses a two-dimensional representation for temporal intervals, and per-
forms triangular decomposition of the indexed intervals. A TB-tree node stores the triangle
covered by the node, pointers to the left and right children nodes, and an interval pointer-
array that contains pointers to intervals in the shared memory-pool. A shared memory-pool
entry contains the following items: (1) the identifier of the spatio-temporal object, (2) an
offset from which the object is stored in the file, and (3) an interval array that stores the
four intervals of the 4D MBR of the object. Each interval is pointed to by a leaf node in the
corresponding TB-tree. An interval is inserted into the MPB-tree through four parallel TB-
tree insertions. The four insertions correspond to the indexed four dimensions, where every
dimension has its own TB-tree. Leaf nodes in the TB-tree have a maximum capacity thresh-
old. If the leaf node chosen for the insertion of an interval pointer exceeds the maximum
capacity, the leaf node is split by recursively decomposing the node’s triangle into smaller
sub-triangles using a triangular-decomposition strategy. A spatio-temporal range-query is
divided into four parallel interval-queries that are executed on their corresponding TB-trees.
Each interval query is transformed into a 2D rectangular region, and the query result con-
sists of all the intervals that occur within this rectangle. Thus, a 4D MBR is transformed into
four 2D rectangles and each of the four rectangular regions is an input to the corresponding
TB-tree in each dimension.

ToSS-it [4] The Throwaway Spatial Index Structure (ToSS-it, for short) indexes the cur-
rent locations of moving objects on a distributed server. The main idea behind ToSS-it is to

@ Springer

Geoinformatica (2019) 23:1-36 27

exploit the underlying parallel and distributed architecture by building a new index when-
ever there is a location change instead of updating the old index. This eliminates the need to
maintain a centralized update-tracking buffer to maintain updates that are not yet reflected
into the index. This improves the scalability of the system. ToSS-it uses a Voronoi dia-
gram [119] that is distributed over the multiple nodes. The Voronoi diagram is constructed
in a distribute-first-build-later fashion by first distributing all the objects across the cloud
servers while maintaining their spatial locality. The initial distribution of the data is per-
formed using a centralized server. Then, local Voronoi diagrams (LVD, for short) are built at
each server. LVDs decompose the space into disjoint polygons. The generation of the LVDs
utilizes all the available cores of the CPUs to further partition the objects at each node. A
hierarchical Voronoi index structure is also built at each server to speed up query process-
ing. A query, say ¢, can by submitted to one node, say N, that will then find the nodes
I N, that intersect the query region and forward the query to these nodes. The query is run
in parallel in the I N, nodes using LVDs. Partial results of the query at each node are sent
back to N, for aggregation. D-ToSS [5] is an enhanced version of ToSS-it, where D-ToSS
does not require a centralized server when partitioning data across the nodes.

STIG [39] The goal of Spatio-Temporal Indexing using GPUs (STIG, for short), is to
support the processing of interactive spatio-temporal range queries that require multiple
point-in-polygon (PIP, for short) tests. STIG belongs to spatio-temporal access methods
that index the past/historical spatio-temporal data. A single index is used to simultaneously
filter spatio-temporal data over multiple dimensions to reduce the number of costly PIP
operations. STIG leverages the parallelism provided by the parallel processors in GPUs to
concurrently execute multiple PIP tests that are independent of each other. STIG is a gen-
eralization of a kd-tree with k = 2 x s 4+ m, where s represents the spatial dimension, and
m represents other attributes, e.g., the temporal dimension. This index is designed for data
with multiple spatial and temporal attributes, e.g., taxi logs with pick-up and drop-off loca-
tions and times. STIG consists of two parts: internal nodes of the kd-tree, and leaf nodes. A
leaf node stores a pointer to a leaf disk-block and a k-dimensional box that bounds all the
records in that block. STIG clusters the points along the k dimensions to speed up query
processing and to maximize the utilization of the underlying GPUs. STIG does not support
updates, and has to be rebuilt periodically when new records are added to the database.

Elite [152] Elite is an access method for spatio-temporal trajectories. Elite supports par-
allel updates of moving objects and query processing over multiple compute nodes. Elite
addresses both range and nearest-neighbor queries. Spatio-temporal data is distributed
across multiple nodes based on the spatio-temporal locality of the data. Data is indexed at
the local and global levels. Data in each node is indexed using a local index. A global index
coordinates the communication among the multiple local indexes. Elite consists of the fol-
lowing three layers: (1) the skip-list layer, (2) the torus layer, and (3) the oct-tree layer. The
skip-list and torus layers constitute the global index while the oct-tree layer constitutes the
local indexes. The oct-tree [59] in each local index stores the trajectory locations and main-
tains a hash table. The hash-table maps the identifier of a trajectory to the oldest and the
most-recent locations of the trajectory. The most-recent location of the trajectory is main-
tained to efficiently insert the incoming trajectory-updates. Every trajectory location has a
pointer to the successive trajectory-location. Both the oldest location of the trajectory and
the successor pointers are used for traversing the entire trajectory. The torus layer consists
of chained tori, where each torus is a cluster of nodes. Each node in a torus maintains a
routing table that contains the IP addresses and the data ranges of the neighboring nodes.

@ Springer

28 Geoinformatica (2019) 23:1-36

The information in the routing table is used for communication among nodes in the torus.
The skip-list layer contains a doubly-linked skip-list [111], where each node in the skip-list
corresponds to a torus cluster. The key of a skip-list node consists of the temporal inter-
val of the torus cluster and a pre-assigned consecutive [P-address segment. The IP-address
segment serves as a pointer to the torus cluster. For communication between two tori, one
torus node picks a random IP-address from the IP-address segment of its linked torus. Then,
the picked random node performs intra-torus communication to find the destination node.
This communication is needed to pass query information. Spatio-temporal range queries are
evaluated by first identifying the torus nodes that overlap the query region. All candidate
torus-nodes run the corresponding sub-queries in parallel. The local indexes are traversed
to identify trajectories that overlap the query region. Idle torus-nodes get allocated to each
of the candidate nodes to perform further resultset refinement. Query results from all these
nodes are merged to compose the final result.

The spatio-temporal indexes, discussed above, use several techniques to improve the
scalability of spatio-temporal data processing without depending on existing general-
purpose scalable systems. These indexes implement their own scalability and fault-tolerance
methodologies.

8 Conclusion

This survey is Part 3 of a series of two other surveys [91, 99] that collectively cover the
spatio-temporal access methods developed up to 2017. In the years 2010 to 2017, new cate-
gories of spatio-temporal access methods have been developed, namely, (1) spatio-temporal
access methods for indexing the recent past, (2) spatio-temporal access methods with text
support, and (3) parallel and distributed spatio-temporal access methods. Spatio-temporal
indexes for the recent past supports the limited retention of the data. Spatio-temporal and
textual indexes have been developed due to the ubiquity of GPS-enabled smartphones and
their applications. Social networks, e.g., as in Twitter [142], generate text data that is associ-
ated with the location where text is produced. The concept of activity (or textual) trajectories
has been introduced to represent trajectories that have a textual description associated with
the trajectory points. Also, several interesting spatio-temporal and textual similarity queries
on textual trajectories have been proposed. Spatio-temporal and textual indexes integrate a
spatial or a spatio-temporal index with a textual index. Due to the massive scale of spatio-
temporal data, there has been a large body of research that targets the development of
parallel and distributed spatio-temporal indexes. Many parallel and distributed spatio-temporal
access methods have been realized inside a general-purpose big-data processing system.

Acknowledgements This work has been partially supported by the National Science Foundation under
Grant Number III-1815796.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Abdelguerfi M, Givaudan J, Shaw K, Ladner R (2002) The 2-3TR-tree, a trajectory-oriented index
structure for fully evolving valid-time spatio-temporal datasets. In: ACM-GIS, pp 29-34

@ Springer

Geoinformatica (2019) 23:1-36 29

10.

11.

12.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the nineteenth

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp 175-
186. ACM

. Ahmed P, Hasan M, Kashyap A, Hristidis V, Tsotras VJ (2017) Efficient computation of top-k fre-

quent terms over spatio-temporal ranges. In: The international conference on management of data
(SIGMOD’17), pp 1227-1241

. Akdogan A, Shahabi C, Demiryurek U (2014) ToSS-it: A cloud-based throwaway spatial index struc-

ture for dynamic location data. In: The IEEE international conference on mobile data management
(MDM’14), pp 249-258

. Akdogan A, Shahabi C, Demiryurek U (2016) D-toSS: A distributed throwaway spatial index structure

for dynamic location data. IEEE Trans Knowl Data Eng (TKDE) 28(9):2334-2348

. Akman V, Franklin WR, Kankanhalli M, Narayanaswami C (1989) Geometric computing and uniform

grid technique. Comput Aided Des 21(7):410-420

. Alarabi L, Mokbel MF (2017) A demonstration of ST-hadoop: A mapreduce framework for big spatio-

temporal data. The Proceedings of the VLDB Endowment (PVLDB’17) 10(12):1961-1964

. Aref WG, Samet H (1990) Efficient processing of window queries in the pyramid data structure. In: Pro-

ceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pp 265-272

. Atluri V, Adam NR, Youssef M (2003) Towards a unified index scheme for mobile data and cus-

tomer profiles in a location-based service environment. In: Workshop on next generation geospatial
information (NG2i’03). Citeseer

Atluri V, Guo Q (2005) Unified index for mobile object data and authorizations. In: European
symposium on research in computer security, pp 80-97. Springer

Atluri V, Shin H (2007) Efficient security policy enforcement in a location based service environment.
In: IFIP Annual conference on data and applications security and privacy, pp 61-76. Springer

Bayer R, MCCReight E (1972) Organization and maintenance of large ordered indexes. Acta Informat-
ica 1:173-189

. Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996) An asymptotically optimal multiversion

B-tree. Intern J Very Large Data Bases (VLDB Journal) 5(4):264-275

. Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R*-tree: An efficient and robust access

method for points and rectangles. SIGMOD Rec 19(2):322-331

. Belhassena A, HongZhi W (2017) Distributed skyline trajectory query processing. In: Proceedings of

the ACM Turing 50th Celebration Conference-China, p 19. ACM

. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM

18(9):509-517

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation.] Machine Learn Res 3(Jan):993-1022
Bok KS, Seo DM, Shin SS, Yoo JS (2004) TPKDB-Tree: An index structure for efficient retrieval of future
positions of moving objects. In: International conference on conceptual modeling, pp 67-78. Springer
Brisaboa NR, Ladra S (2009) Navarro, g.: k2-trees for compact web graph representation. In: The
international symposium on string processing and information retrieval, vol 9, pp 18-30

Burton FW, Kollias JG, Matsakis D, Kollias V (1990) Implementation of overlapping B-trees for time
and space efficient representation of collections of similar files. Comput J 33(3):279-280

Cai M, Revesz P (2000) Parametric R-tree: An index structure for moving objects. In: International
conference on management of data and advances in data management (COMAD’00)

CaiR, LuZ, Wang L, Zhang Z, Fu TZ, Winslett M (2017) DITIR: Distributed Index for high throughput
trajectory insertion and real-time temporal range query. The Proceedings of the VLDB Endowment
(PVLDB’17) 10(12):1865-1868

Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In: International
conference on management of data (SIGMOD’04), pp 599-610. ACM

Cha SK, Hwang S, Kim K, Kwon K (2001) Cache-conscious concurrency control of main-memory
indexes on shared-memory multiprocessor systems. In: The Proceedings of the VLDB Endowment
(PVLDB’01), vol 1, pp 181-190

Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with SETL In: The
biennial conference on innovative data systems research (CIDR’03)

Chen JD, Meng XF (2007) Indexing future trajectories of moving objects in a constrained network. J
Comput Sci Technol 22(2):245-251

Chen N, Shou LD, Chen G, Dong JX (2008) Adaptive indexing of moving objects with highly variable
update frequencies. J Comput Sci Technol 23(6):998-1014

Chen S, Ooi BC, Tan KL, Nascimento MA (2008) ST2B-tree: A self-tunable spatio-temporal b+-tree
index for moving objects. In: International conference on management of data (SIGMOD’11), pp 29—
42. ACM

@ Springer

30

Geoinformatica (2019) 23:1-36

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Chen W, Zhao L, Jiajie X, Zheng K, Zhou X (2014) Ranking based activity trajectory search. In:
International conference on web information systems engineering, pp 170-185. Springer

Chon HD, Agrawal D, El Abbadi A (2001) Storage and retrieval of moving objects. In: International
conference on mobile data management (MDM’01), pp 173—-184. Springer

Christoforaki M, He J, Dimopoulos C, Markowetz A, Suel T (2011) Text vs. space: efficient geo-search
query processing. In: The ACM international conference on information and knowledge management
(CIKM’11), pp 423-432

Cudre-Mauroux P, Wu E, Madden S (2010) Trajstore: an adaptive storage system for very large
trajectory data sets. In: The international conference on data engineering (ICDE’10), pp 109-120. IEEE
Dai J, Lu CT (2011) DIME: Disposable Index for moving objects. In: The IEEE international
conference on mobile data management (MDM’11), vol 1, pp 68-77

De Almeida VT, Giiting RH (2005) Indexing the trajectories of moving objects in networks. Geoinfor-
matica 9(1):33-60

Ding X, Lu Y, Ding X, Zhao N, Wei Q (2007) An efficient index for moving objects with frequent
updates. In: International conference on wireless communications, networking and mobile computing
(wicom’07), pp 5951-5954. IEEE

Ding Z (2008) UTR-Tree: An index structure for the full uncertain trajectories of network-constrained
moving objects. In: International conference on mobile data management (MDM’08), pp 33-40. IEEE
Dittrich J, Blunschi L, Salles MAV (2009) Indexing moving objects using short-lived throwaway
indexes. In: International symposium on spatial and temporal databases, pp 189-207. Springer
Dittrich J, Quiané-Ruiz JA (2012) Efficient big data processing in hadoop mapreduce. Proceedings of
the VLDB Endowment (PVLD’12) 5(12):2014-2015

Doraiswamy H, Vo HT, Silva CT, Freire J (2016) A GPU-based index to support interactive spatio-
temporal queries over historical data. In: The IEEE international conference on data engineering
(ICDE’16), pp 1086-1097

Elbassioni K, Elmasry A, Kamel I (2003) An efficient indexing scheme for multi-dimensional moving
objects. In: International conference on database theory, pp 425-439. Springer

Eldawy A, Mokbel MF (2015) Spatialhadoop: a mapreduce framework for spatial data. In: The IEEE
international conference on data engineering (ICDE’15), pp 1352-1363

Fan P, Li G, Yuan L, Li Y (2012) Vague continuous k-nearest neighbor queries over moving objects
with uncertain velocity in road networks. Inf Syst 37(1):13-32

Fang Y, Cao J, Peng Y, Wang L (2008) Indexing the past, present and future positions of moving
objects on fixed networks. In: International conference on computer science and software engineering,
vol 4, pp 524-527. IEEE

Fang Y, Cao J, Wang J, Peng Y, Song W (2011) HTPR*-Tree: An efficient index for moving objects to
support predictive query and partial history query. In: International conference on web-age information
management (WAIM’11), pp 26-39. Springer

Feng J, Lu J, Zhu Y, Mukai N, Watanabe T (2007) Indexing of moving objects on road network using
composite structure. In: International conference on knowledge-based and intelligent information and
engineering systems, pp 1097—1104. Springer

Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta
informatica 4(1):1-9

Frentzos E (2003) Indexing objects moving on fixed networks. In: International symposium on spatial
and temporal databases, pp 289-305. Springer

Ghanem TM, Hammad MA, Mokbel MF, Aref WG, Elmagarmid AK (2007) Incremental evaluation of
sliding-window queries over data streams. IEEE Trans Knowl Data Eng (TKDE) 19(1):57-72

Gionis A, Indyk P, Motwani R et al (1999) Similarity search in high dimensions via hashing. In: The
Proceedings of the VLDB Endowment (PVLDB’99), vol 99, pp 518-529

Gravano L, Ipeirotis PG, Jagadish HV, Koudas N, Muthukrishnan S, Srivastava D et al (2001) Approx-
imate string joins in a database (almost) for free. In: The Proceedings of the VLDB Endowment
(PVLDB’01), vol 1, pp 491-500

Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14:47-57
Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal
objects. In: International conference on extending database technology, pp 251-268. Springer

Han L, Huang L, Yang X, Pang W, Wang K (2016) A novel spatio-temporal data storage and index
method for ARM-based hadoop server. In: International conference on cloud computing and security,
pp 206-216. Springer

Han Y, Wang L, Zhang Y, Zhang W, Lin X (2015) Spatial keyword range search on trajectories. In: The
international conference on database systems for advanced applications (DASFAA’15), pp 223-240

@ Springer

Geoinformatica (2019) 23:1-36 31

55.

56.
57.
58.
59.
60.
61.
62.
63.
64.
. Kollios G, Gunopulos D, Tsotras VJ (1999) On indexing mobile objects. In: Proceedings of the eigh-
66.
67.
68.
69.
70.
71.
72.
73.
74.

75.

76.
71.
78.

79.

80.

81.
82.

Hariharan R, Hore B, Li C, Mehrotra S (2007) Processing spatial-keyword (SK) queries in geographic
information retrieval (GIR) systems. In: The international conference on scientific and statistical
database management (SSDBM’07), pp 16-16

He Z, Kraak MJ, Huisman O, Ma X, Xiao J (2013) Parallel indexing technique for spatio-temporal
data. ISPRS J Photogramm Remote Sens 78:116-128

Hendawi AM, Bao J, Mokbel MF, Ali M (2015) Predictive tree: an efficient index for predictive queries
on road networks. In: The IEEE international conference on data engineering (ICDE’15), pp 1215-1226
Issa H, Damiani ML (2016) Efficient access to temporally overlaying spatial and textual trajectories.
In: The IEEE international conference on mobile data management (MDM’16), vol 1, pp 262-271
Jackins CL, Tanimoto SL (1980) OCT-Trees and their use in representing three-dimensional objects.
Comput Graphics and Image Process 14(3):249-270

Jensen CS, Lin D, Ooi BC (2004) Query and update efficient b+-tree based indexing of moving objects.
In: The Proceedings of the VLDB Endowment (PVLDB’04), pp 768-779

Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space.
In: International symposium on spatial and temporal databases, pp 208-227. Springer

Jeung H, Yiu ML, Zhou X, Jensen CS (2010) Path prediction and predictive range querying in road
network databases. Intern J Very Large Data Bases (VLDB J) 19(4):585-602

Kim KS, Kim SW, Kim TW, Li KJ (2003) Fast indexing and updating method for moving objects on
road networks. In: International conference on web information systems engineering workshops, pp
34-42. IEEE

Knuth D (1973) The art of computer programming

teenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp
261-272. ACM

Kollios G, Tsotras VJ, Gunopulos D, Delis A, Hadjieleftheriou M (2001) Indexing animated objects
using spatiotemporal access methods. IEEE Trans Knowl Data Eng (TKDE) 13(5):758-777

Kumar A, Tsotras V], Faloutsos C (1998) Designing access methods for bitemporal databases. IEEE
Trans Knowl Data Eng (TKDE) 10(1):1-20

Kwon D, Lee S, Lee S (2002) Indexing the current positions of moving objects using the lazy update
R-tree. In: International conference on mobile data management (MDM’03), pp 113-120. IEEE

Le TTT, Nickerson BG (2008) Efficient search of moving objects on a planar graph. In: International
conference on advances in geographic information systems (SIGSPATIAL’08), p 41. ACM

Lee ML, Hsu W, Jensen CS, Cui B, Teo KL (2003) Supporting frequent updates in R-trees: a bottom-up
approach. In: The Proceedings of the VLDB Endowment (PVLDB’03), pp 608-619

Liang Y (2011) A efficient indexing maintenance method for grouping moving objects with grid. pp
486492 Elsevier

Liao W, Tang G, Jing N, Zhong Z (2006) VTPR-Tree: An efficient indexing method for moving objects
with frequent updates. In: International conference on conceptual modeling, pp 120-129. Springer
Lin B, Mokhtar H, Pelaez-Aguilera R, Su J (2003) Querying moving objects with uncertainty. In:
Vehicular technology conference (VTC’03), vol 4, pp 2783-2787. IEEE

Lin B, Su J (2005) Handling frequent updates of moving objects. In: International conference on
information and knowledge management, pp 493-500. ACM

Lin D, Jensen CS, Ooi BC, Saltenis S (2005) Efficient indexing of the historical, present, and future
positions of moving objects. In: International conference on mobile data management (MDM’05), pp
59-66. ACM

Lin D, Jensen CS, Zhang R, Xiao L, Lu J (2011) A moving-object index for efficient query processing
with peer-wise location privacy. The Proceedings of the VLDB Endowment (PVLDB’11) 5(1):37-48
Lin D, Zhang R, Zhou A (2006) Indexing fast moving objects for kNN queries based on nearest
landmarks. Geoinformatica 10(4):423-445

Lin HY (2009) Indexing the trajectories of moving objects. International multi-conference of engineers
and computer scientists

Liu H, Xu J, Zheng K, Liu C, Du L, Wu X (2017) Semantic-aware query processing for activity trajec-
tories. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
pp 283-292. ACM

Liu Z, Liu X, Ge J, Bae H (2005) Indexing large moving objects from past to future with PCFI+-index.
In: International conference on management of data and advances in data management (COMAD’05),
pp 131-137

Lomet D, Salzberg B (1989) Access methods for multiversion data, vol 18. ACM

Luo W, Tan H, Chen L, Ni LM (2013) Finding time period-based most frequent path in big trajectory
data. In: The international conference on management of data (SIGMOD’13), pp 713-724

@ Springer

32

Geoinformatica (2019) 23:1-36

84.

85.

86.

87.

88.

89.

90.

91.

92.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

. Ma C, Lu H, Shou L, Chen G (2013) KSQ: Top-K similarity query on uncertain trajectories. IEEE
Trans Knowl Data Eng (TKDE) 25(9):2049-2062

MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations.
In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp
281-297

Magdy A, Aly AM, Mokbel MF, Elnikety S, He Y, Nath S, Aref WG (2016) GeoTrend: Spatial trending
queries on real-time microblogs. In: The ACM international conference on advances in geographic
information systems (SIGSPATIAL’16), p 7

Magdy A, Mokbel MF, Elnikety S, Nath S, He Y (2014) Mercury: a memory-constrained spatio-
temporal real-time search on microblogs. In: The IEEE international conference on data engineering
(ICDE’14), pp 172-183

Mahmood AR, Aly AM, Kuznetsova T, Basalamah S, Aref WG (2018) Disk-based indexing of recent
trajectories. ACM Transactions on Spatial Algorithms and Systems (TSAS) 4(3):7.1-7.27

Mahmood AR, Aref WG, Aly AM, Basalamah S (2014) Indexing recent trajectories of moving
objects. In: The ACM international conference on advances in geographic information systems
(SIGSPATIAL’14), pp 393-396

Meagher DJ (1980) OCTRee encoding: A new technique for the representation, manipulation and dis-
play of arbitrary 3-d objects by computer. Electrical and Systems Engineering Department Rensseiaer
Polytechnic Institute Image Processing Laboratory

Mehta P, Skoutas D, Voisard A (2015) Spatio-temporal keyword queries for moving objects. In: The
ACM international conference on advances in geographic information systems (SIGSPATIAL’15), p 55
Mokbel MF, Ghanem TM, Aref WG (2003) Spatio-temporal access methods. IEEE Data Eng Bull
26(2):40-49

Morton GM (1966) A computer oriented geodetic data base and a new technique in file sequencing.
International Business Machines Company, New York

. Mukai N, Feng J, Watanabe T (2004) Heuristic approach based on lambda-interchange for VRTPR-
tree on specific vehicle routing problem with time windows. In: International conference on industrial,
engineering and other applications of applied intelligent systems, pp 229-238. Springer

Mukai N, Feng J, Watanabe T (2004) Indexing approach for delivery demands with time constraints.
In: Pacific rim international conference on artificial intelligence, pp 95-103. Springer

Nascimento MA, Silva JR (1998) Towards historical R-trees. In: Symposium on applied computing, pp
235-240. ACM

Nascimento MA, Silva JR, Theodoridis Y (1999) Evaluation of access structures for discretely moving
points. In: Spatio-temporal database management, pp 171-189. Springer

Nguyen T, He Z, Chen YPP (2012) SeTPR*-tree: Efficient buffering for spatiotemporal indexes via
shared execution. Comput J 56(1):115-137

Nguyen T, He Z, Zhang R, Ward P (2012) Boosting moving object indexing through velocity
partitioning. The Proceedings of the VLDB Endowment (PVLDB’12) 5(9):860-871

Nguyen-Dinh LV, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003-2010).
IEEE Data Eng Bull 33(2):46-55

Ni J, Ravishankar CV (2005) PA-Tree: A parametric indexing scheme for spatio-temporal trajectories.
In: International symposium on spatial and temporal databases, pp 254-272. Springer

Nievergelt J, Hinterberger H, Sevcik KC (1984) The grid file: an adaptable, symmetric multikey file
structure. ACM Trans Database Syst (TODS) 9(1):38-71

Orenstein JA, Merrett TH (1984) A class of data structures for associative searching. In: Proceedings of
the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems (PODS), pp 181-190.
ACM

Patel JM, Chen Y, Chakka VP (2004) STRIPES: An efficient index for predicted trajectories. In: The
international conference on management of data (SIGMOD’04), pp 637-646

Patroumpas K, Sellis T (2009) Monitoring orientation of moving objects around focal points. In:
International symposium on spatial and temporal databases, pp 228-246. Springer

Pelanis M, Saltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of
moving objects. ACM Trans Database Syst (TODS) 31(1):255-298

Pfoser D, Jensen CS, Theodoridis Y et al (2000) Novel approaches to the indexing of moving object
trajectories. In: The Proceedings of the VLDB Endowment (PVLDB’00), pp 395-406

Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2010) PARINET: A tunable access method for in-network
trajectories. In: The IEEE international conference on data engineering (ICDE’10), pp 177-188. IEEE
Porkaew K, Lazaridis I, Mehrotra S (2001) Querying mobile objects in spatio-temporal databases. In:
International symposium on spatial and temporal databases (SSTD’01), pp 59-78. Springer

@ Springer

Geoinformatica (2019) 23:1-36 33

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

133.

134.

Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002) Query indexing and veloc-
ity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans
Comput 51(10):1124-1140

Procopiuc CM, Agarwal PK, Har-Peled S (2002) Star-tree: an efficient self-adjusting index for moving
objects. In: Workshop on algorithm engineering and experimentation, pp 178—193. Springer

Pugh W (1990) Concurrent maintenance of lists. In: Dept. of computer science, university of maryland,
college park

Ranu S, Deepak P, Telang AD, Deshpande P, Raghavan S (2015) Indexing and matching trajecto-
ries under inconsistent sampling rates. In: The IEEE international conference on data engineering
(ICDE’15), pp 999-1010

Ray S (2014) Towards high performance spatio-temporal data management systems. In: The IEEE
international conference on mobile data management (MDM’14), vol 2, pp 19-22

Romero M, Brisaboa N, Rodriguez MA (2012) The SMO-index: A succinct moving object structure
for timestamp and interval queries. In: Advances in geographic information systems, pp 498-501
Saltenis S, Jensen CS (2002) Indexing of moving objects for location-based services. In: International
conference on data engineering (ICDE’02), pp 463—472. IEEE

Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously mov-
ing objects. In: International conference on management of data (SIGMOD’00), vol 29, pp 331-342.
ACM

Sandu Popa I, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. Intern
J Very Large Data Bases (VLDB J) 20(5):643-669

Schmiegelt P, Behrend A, Seeger B, Koch W (2014) A concurrently updatable index structure for
predicted paths of moving objects. Data Knowl Eng 93:80-96

Senechal M (1993) Spatial tessellations: Concepts and applications of voronoi diagrams. Science
260(5111):1170-1173

Seo DM, Song SI, Park YH, Yoo JS, Kim MH (2008) Bdh-tree: A B+-tree based indexing method
for very frequent updates of moving objects. In: International symposium on computer science and its
applications (CSA’08), pp 314-319. IEEE

Shen B, Zhao Y, Li G, Zheng W, Qin Y, Yuan B, Rao Y (2017) V-Tree: Efficient KNN search on mov-
ing objects with road-network constraints. In: The IEEE international conference on data engineering
(ICDE’17), pp 609-620

Sidlauskas D, Ross K, Jensen C, Saltenis S (2011) Thread-level parallel indexing of update intensive
moving-object workloads. Adv Spatial Temporal Database 6849:186-204

Sidlauskas D, Saltenis S, Christiansen CW, Johansen JM, Saulys D (2009) Trees or grids?: indexing
moving objects in main memory. In: The ACM international conference on advances in geographic
information systems (SIGSPATIAL’09), pp 236-245

Sidlauskas D, Saltenis S, Jensen CS (2012) Parallel main-memory indexing for moving-object query
and update workloads. In: The international conference on management of data (SIGMOD’12), pp
37-48

Silva YN, Xiong X, Aref WG (2009) The RUM-tree: supporting frequent updates in R-trees using
memos. Intern J Very Large Data Bases (VLDB J) 18(3):719-738

Singh M, Zhu Q, Jagadish H (2012) SWST: A disk based index for sliding window spatio-temporal
data. In: The IEEE international conference on data engineering (ICDE’12), pp 342-353

Skovsgaard A, Sidlauskas D, Jensen CS (2014) Scalable top-k spatio-temporal term querying. In: The
IEEE international conference on data engineering (ICDE’14), pp 148-159

Song Z, Roussopoulos N (2001) Hashing moving objects. In: International conference on mobile data
management (MDM’01), pp 161-172. Springer

Song Z, Roussopoulos N (2003) SEB-Tree: An approach to index continuously moving objects. In:
International conference on mobile data management (MDM’03), pp 340-344. Springer

Stantic B, Topor R, Terry J, Sattar A (2010) Advanced indexing technique for temporal data. Computer
Science and Information Systems 7(4):679-703

Tanimoto S, Pavlidis T (1975) A hierarchical data structure for picture processing. Comput Graphics
Image Process 4(2):104-119

. Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with unknown

motion patterns. In: International conference on management of data (SIGMOD’04), pp 611-622. ACM
Tao Y, Papadias D (2001) Efficient historical R-trees. In: The international conference on scientific and
statistical database management (SSDBM’01), p 0223. IEEE

Tao Y, Papadias D (2001) MV3R-tree: A spatio-temporal access method for timestamp and interval
queries. In: The Proceedings of the VLDB Endowment (PVLDB’01), pp 431-440

@ Springer

34

Geoinformatica (2019) 23:1-36

135.

136.

137.

138.

139.

140.
141.
142.
143.
144.

145.

146.
147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

Tao Y, Papadias D, Sun J (2003) The TPR*-tree: An optimized spatio-temporal access method for
predictive queries. In: International conference on very large data bases (PVLDB’03), pp 790-801.
VLDB endowment

Tayeb J, Ulusoy O, Wolfson O (1998) A quadtree-based dynamic attribute indexing method. Comput J
41(3):185-200

That DHT, Popa IS, Zeitouni K (2015) TRIFL: A generic trajectory index for flash storage. ACM Trans
Spatial Algorithm Syst 1(2):6

Theodoridis Y, Vazirgiannis M, Sellis T (1996) Spatio-temporal indexing for large multimedia
applications. In: International conference on multimedia computing and systems, pp 441-448. IEEE
To QC, Dang TK, Kung J (2011) OST-Tree: An access method for obfuscating spatio-temporal data
in location based services. In: International conference on new technologies, mobility and security
(NTMS’11), pp 1-5. IEEE

Toshniwal A, Taneja S et al (2014) Storm@ twitter. In: The international conference on management
of data (SIGMOD’14), pp 147-156

Tung HDT, Jung YJ, Lee EJ, Ryu KH (2004) Moving point indexing for future location query. In:
International conference on conceptual modeling, pp 79-90. Springer

(2018) Twitter. https://twitter.com

Tzouramanis T, Vassilakopoulos M, Manolopoulos Y (1998) Overlapping linear quadtrees: a spatio-
temporal access method. In: International symposium on advances in geographic information systems,
pp 1-7. ACM

Ulrich T (2000) Loose octrees. Game Programming Gems 1:434-442

Valdés F, Giiting RH (2017) Index-supported pattern matching on tuples of time-dependent values.
Geolnformatica 21(3):429-458

Wang H, Belhassena A (2017) Parallel trajectory search based on distributed index. Inf Sci 388:62-83
Wang L, Zheng Y, Xie X, Ma WY (2008) A flexible spatio-temporal indexing scheme for large-scale
GPS track retrieval. In: International conference on mobile data management (MDM’08), pp 1-8. IEEE
Wang S, Bao Z, Culpepper JS, Sellis T, Sanderson M, Qin X (2017) Answering top-k exemplar tra-
jectory queries. In: The IEEE international conference on data engineering (ICDE’17), pp 597-608.
IEEE

Wang X, Zhang Y, Zhang W, Lin X, Wang W (2015) AP-Tree: Efficiently support location-aware
publish/subscribe. Intern J Very Large Data Bases (VLDB J.) 24(6):823-848

Xu X, Lu JHW (1990) RT-tree: An improved R-tree indexing structure for temporal spatial databases.
In: The international symposium on spatial data handling, pp 1040-1049

Xie X, Lu H, Pedersen TB (2013) Efficient distance-aware query evaluation on indoor moving objects.
In: The IEEE international conference on data engineering (ICDE’13), pp 434-445. IEEE

Xie X, Mei B, Chen J, Du X, Jensen CS (2016) Elite: an elastic infrastructure for big spatiotemporal
trajectories. Intern J Very Large Data Bases (VLDB J) 25(4):473-493

Xiong X, Aref WG (2006) R-trees with update memos. In: The IEEE international conference on data
engineering (ICDE’06), pp 22-22

Xiong X, Mokbel MF, Aref WG (2006) LUGRid: Update-tolerant grid-based indexing for moving
objects. In: International conference on mobile data management (MDM’13), p 13

Xu X, Xiong L, Sunderam V (2016) D-grid: an in-memory dual space grid index for moving object
databases. In: The IEEE international conference on mobile data management (MDM’16), pp 252-261
Xu X, Xiong L, Sunderam V, Liu J, Luo J (2015) Speed partitioning for indexing moving objects. In:
The international symposium on spatial and temporal databases (SSTD’15), pp 216-234

Xu Y, Tan G (2014) Sim-Tree: indexing moving objects in large-scale parallel microscopic traffic
simulation. In: ACM Conference on principles of advanced discrete simulation (PADS) (SIGSIM’ 14),
pp 51-62

YAN Qy, MENG Fr (2004) Multiple version TPR-tree. Comput Eng Design 10:057

Yan X, Guo J, Lan Y, Cheng X (2013) A biterm topic model for short texts. In: Proceedings of the 22nd
international conference on World Wide Web, pp 1445-1456. ACM

Yao B, Li F, Hadjieleftheriou M, Hou K (2010) Approximate string search in spatial databases. In: The
IEEE international conference on data engineering (ICDE’10), pp 545-556. IEEE

Yiu ML, Tao Y, Mamoulis N (2008) The Bdual-tree: Indexing moving objects by space filling curves
in the dual space. Intern J Very Large Data Bases (VLDB J) 17(3):379-400

Yu Z, Liu Y, Yu X, Pu KQ (2015) Scalable distributed processing of k nearest neighbor queries over
moving objects. IEEE Trans Knowl Data Eng (TKDE) 27(5):1383-1396

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S,
Franklin MJ et al (2016) Apache spark: a unified engine for big data processing. Commun ACM
59(11):56-65

@ Springer

https://twitter.com

Geo

informatica (2019) 23:1-36 35

164

165

166

167

168

169

170

171

. Ziaschke T, Zimmerli C, Norrie MC (2014) The PH-tree: A space-efficient storage structure and multi-
dimensional index. In: The international conference on management of data (SIGMOD’14), pp 397-
408

. Zheng B, Yuan NJ, Zheng K, Xie X, Sadiq S, Zhou X (2015) Approximate keyword search in semantic
trajectory database. In: The IEEE international conference on data engineering (ICDE’15), pp 975-986.
IEEE

. Zheng K, Shang S, Yuan NJ, Yang Y (2013) Towards efficient search for activity trajectories. In: The
IEEE international conference on data engineering (ICDE’13), pp 230-241. IEEE

. Zheng K, Trajcevski G, Zhou X, Scheuermann P (2011) Probabilistic range queries for uncertain trajec-
tories on road networks. In: The international conference on extending database technology (EDBT’11),
pp 283294

. Zheng K, Zheng B, Xu J, Liu G, Liu A, Li Z (2016) Popularity-aware spatial keyword search on activity
trajectories. World Wide Web 4(20):749-773

. Zhou P, Zhang D, Salzberg B, Cooperman G, Kollios G (2005) Close pair queries in moving object
databases. In: Proceedings of the 13th annual ACM international workshop on Geographic information
systems, pp 2-11. ACM

. Zhu 'Y, Ren X, Feng J (2006) NCO-Tree: A spatio-temporal access method for segment-based tracking
of moving objects. In: International conference on knowledge-based and intelligent information and
engineering systems, pp 1191-1198. Springer

. Zhu Y, Wang S, Zhou X, Zhang Y (2013) RUM+-Tree: A new multidimensional index supporting
frequent updates. In: The international conference on web-age information management (WAIM’13),
pp 235-240

Ahmed R. Mahmood is a Ph.D. candidate at the Department of Computer Science, Purdue University. His
research interests are spatial, spatial-keyword, and distributed stream processing. He is the first place winner
of the 2017 ACM SIGSPATIAL student research competition. He has been awarded the Purdue CS Teaching

Fell

owship, the Teaching Academy Graduate Teaching Award, and the Raymond Boyce Graduate Teacher

Award. Ahmed is the main designer and developer of Tornado; the first distributed spatial-keyword stream
processing system. For more information, please visit: http://www.cs.purdue.edu/homes/amahmoo.

@ Springer

http://www.cs.purdue.edu/homes/amahmoo

36 Geoinformatica (2019) 23:1-36

Sri Punni is currently a software engineer at Amazon Inc. She received her master’s degree from the Com-
puter Science Department, Purdue University. She received her Bachelor degree in computer science from
Vellore Institute of Technology, India. Her research interests are in the area of spatial and spatio-temporal
data indexing techniques.

Walid G. Aref is a professor of computer science at Purdue. His research interests are in extending the
functionality of database systems in support of emerging applications, e.g., spatial, spatio-temporal, graph,
biological, and sensor databases. He is also interested in query processing, indexing, data streaming, and
geographic information systems (GIS). Walid’s research has been supported by the National Science Foun-
dation, the National Institute of Health, Purdue Research Foundation, Qatar National Research Foundation,
CERIAS, Panasonic, and Microsoft Corp. In 2001, he received the CAREER Award from the National Sci-
ence Foundation and in 2004, he received a Purdue University Faculty Scholar award. Walid is a member of
Purdue’s CERIAS. He is the Editor-in-Chief of the ACM Transactions of Spatial Algorithms and Systems
(ACM TSAS), and an editorial board member of the Journal of Spatial Information Science (JOSIS), and
has served as an editor of the VLDB Journal and the ACM Transactions of Database Systems (ACM TODS).
Walid has won several best paper awards including the 2016 VLDB ten-year best paper award. He is a Fel-
low of the IEEE, and a member of the ACM. Between 2011 and 2014, Walid has served as the chair of the
ACM Special Interest Group on Spatial Information (SIGSPATIAL).

@ Springer

	Spatio-temporal access methods: a survey (2010 - 2017)
	Abstract
	Abstract
	Introduction
	Indexing the past
	Multi-dimensional structures
	PH-tree phtree

	Overlapping and multi-version structures
	SMO-index SMOIndex

	Trajectory-oriented access methods
	TrajStore Trajstore
	PARINET popa2010parinet,PARINET
	T-PARINET PARINET
	UTH UTH
	UTGRID utgrid
	FMI FMI
	TrajTree TrajTree
	TRIFL TRIFL

	Indexing the current and recent past data
	Indexing the current locations of moving objects
	PEB-tree PEBTree
	DIME DIME
	RUM+-tree rum+
	Composite index for indoor moving objects indoor
	Sim-tree simtree
	V-tree vtree

	Indexing the recent past
	SWST SWST
	Trails-tree TRAILS,TRAILStsas

	Indexing the future
	Indexing the future based on the underlying road-network
	P-tree PredictiveTree

	Indexing the future based on historical data
	Prediction distance table PredDistanceTable
	Concurrently updatable index ConcurrentIndex

	Indexing the future based on velocity partitioning
	DVA velpart
	Speed partitioning using dynamic programming speedpart
	D-Grid DGrid

	Time-parameterized future indexing
	OST-tree ost
	GG TPR-tree ggtpr
	HTPR*-tree htprstar
	TPRuv-tree tpruv
	SeTPR*-tree setpr

	Indexing the past, the present, and the future
	PASTIS PASTIS

	Spatio-temporal and spatio-textual indexing
	Indexing individual objects
	AFIA scalabletopk
	Mercury mercury
	AP+-tree APTree
	GeoTrend geotrend
	R-trees with STLs stl

	Indexing textual trajectories
	GAT zheng2013towards
	RAC-tree chen2014ranking
	GKR GKRIFST
	IFST GKRIFST
	IOC-tree IOCTree
	GiKi zheng2015approximate
	IRWI-tree trwitree
	ITB-tree zheng2016popularity
	Multi-index valdes2017index
	2TA wang2017answering
	ST-tree liu2017semantic

	Parallel and distributed spatio-temporal access methods
	Indexes that extend general-purpose scalable systems
	DSI dsi
	QaDR-tree han2016novel
	ST-hadoop sthadoop
	DTR-tree wang2017parallel
	DMTR-tree belhassena2017distributed
	DITIR ditir

	Standalone parallel and distributed spatio-temporal indexes
	TwinGrid TwinGrid
	PGrid PGrid
	MPB-tree MPBTree
	ToSS-it TossIt
	STIG STIG
	Elite Elite

	Conclusion
	References

