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Abstract—We present a principal-agent model of a one-shot,
shallow, systems engineering process. The process is ‘one-shot”
in the sense that decisions are made during one time step and that
they are final. The term ‘“shallow” refers to a one-layer hierarchy
of the process. Specifically, we assume that the systems engineer
has already decomposed the problem in subsystems, and that
each subsystem is assigned to a different subsystem engineer.
Each subsystem engineer works independently to maximize their
own expected payoff. The goal of the systems engineer is to
maximize the system-level payoff by incentivizing the subsystem
engineers. We restrict our attention to requirement-based system-
level payoffs, i.e., the systems engineer makes a profit only if
all the design requirements are met. We illustrate the model
using the design of an Earth-orbiting satellite system where the
systems engineer determines the optimum incentive structures
and requirements for two subsystems: the propulsion subsystem
and the power subsystem. The model enables the analysis of a
systems engineer’s decisions about optimal passed-down require-
ments and incentives for sub-system engineers under different
levels of task difficulty and associated costs. Sample results,
for the case of risk-neutral systems and subsystems engineers,
show that it is not always in the best interest of the systems
engineer to pass down the true requirements. As expected, the
model predicts that for small to moderate task uncertainties the
optimal requirements are higher than the true ones, effectively
eliminating the probability of failure for the systems engineer.
In contrast, the model predicts that for large task uncertainties
the optimal requirements should be smaller than the true ones
in order to lure the subsystem engineers into participation.

I. INTRODUCTION

The ubiquitous problem of schedule and cost over-runs
during the development of large-scale complex systems is
well documented within systems engineering literature [1].
Various remedies have been proposed to address these un-
sustainable trends, including, better methods and tools for
managing complexity, better incentive mechanisms, and tran-
sition from document-based systems engineering to model-
based systems engineering (MBSE). The research community
has related these trends to the fundamental way in which
systems engineering processes are carried out. Requirements
engineering, which is one of the foundational processes within
systems engineering, has been identified as a key source of
the inefficiency. Collopy, for example, argues that the use
of requirements in systems engineering is an ineffective way
of coordination between systems engineer and subsystems
engineers [2]. Therefore, there is a need within systems en-
gineering to model and analyze the requirements engineering
process.

There have been few efforts in addressing this need. By
modeling systems engineering processes as multi-disciplinary
design optimization problems, Collopy et al. show that us-
ing requirements within systems engineering processes cre-
ates design trade conflicts among different subsystems, re-
sulting in dead losses within the system [2]. Collopy and
Hollingsworth [1] espouse the use of value driven design
(VDD) as a better alternative to requirements engineering,
wherein, objectives for extensive attributes are passed down
instead of requirements. Their model is applicable for settings
where the incentives of the subsystem engineers are well
aligned with the objectives of the systems engineers. This
assumption may be valid when both the systems engineers
and sub-systems engineers are within the same organization.
If, on the other hand, the subsystems engineers are independent
decision makers with private information and driven by their
own objectives, their model is inappropriate, and superiority
of VDD is not clear.

To model realistic systems engineering processes, there is
a need to model interactive decisions of self-interested actors
using game theory. Vermillion and Malak [3] take initial steps
in that direction by modeling the interactions between a sys-
tems engineer and subsystems engineers using principal-agent
models. They adapt the generalized principal-agent model to
model the situation of a systems engineer delegating work
to subsystem engineers as a one-shot game. Their adaption
is primarily focused on incorporating behavioral aspects such
as deviations from expected utility maximization within the
general principal-agent model.

While incorporating behavioral aspects within principal-
agent models is an important step forward, we believe that
there is still a lack of models that account for unique aspects
of systems engineering, specifically, the information available
to systems engineers, the state of technology, the uncertainty
in the ability to achieve specific outcomes, and the level of
difficulty of the tasks. To address this gap, we develop a
principal-agent model [4] of a simple systems engineering
process in which decisions are made once and all involved
individuals have their own private interests. Note that our
model is an oversimplification of real systems engineering
processes which are iterative and in which information and
outcomes flow back and forth between the systems engineer
and subsystem engineers until a final decision is made. Our
model should be considered as a first step towards modeling
full fledged systems engineering processes. Using our frame-



work, we study the optimal mechanisms within the class of
requirement-based incentives. We illustrate the model using a
satellite design case study with two subsystems: power and
propulsion. Specifically, we show how historical data can be
used to infer the parameters of our process model to this case
study.

The paper is organized as follows. We start Sec. II by
describing our systems engineering process model in general
terms and we cast the selection of subsystem incentives as
a mechanism design problem. In Sec. II.A, we justify some
assumptions for the nature of the subsystem engineers which
simplify the model. In Sec. I1.B, we focus the discussion on
the class of requirement-based incentives for all agents. In
Sec. II.C and II.D, we non-dimensionalize the equations and
we describe how the parameters can be inferred from readily
available historical data. In Sec. III, we apply the model to
the design of a spacecraft taking into account two subsystems
(power and propulsion). Finally, in Sec. IV, we present our
numerical study and in Sec. V our conclusions.

II. MODELING A SINGLE-SHOT, SHALLOW SYSTEMS
ENGINEERING PROCESS

We consider a model of a single-shot (evolves in one
time-step), shallow (considers one-layer interactions between
a systems engineer and multiple subsystem engineers) systems
engineering process. The systems engineer (SE) has already
decomposed the problem in [V subsystems. The SE assigns the
design of each subsystem to a subsystem engineer (sSE). Each
sSE designs independently to maximize their own expected
payoff, and returns the design outcome back to the SE. The
goal of the SE is to incentivize the sSEs to produce subsystem
designs that maximize the expected system-level payoff by
choosing appropriate contracts. We start by formulating the
problem of optimal subsystem contract design in its full
generality. Then, we make simplifying assumptions about the
form of the sSEs’ quality and utility functions, and, we study
the optimality requirement-based contracts.

Leti=1,..., N be alabel indexing the sSEs. The ¢-th sSE
chooses a normalized effort level e; € [0, 1]. This measures the
percentage of maximum effort that the sSE can allocate to this
specific project within a predefined time framework, e.g., in a
fiscal year. Second, the units of the effort depend on the nature
of the sSE. If the sSE is an individual that works for the same
organization as the SE, then the effort e; could be measured
in terms of the percentage of that the individual dedicates to
the project. Alternatively, if the sSE is an external contractor,
e.g., another company, then effort could be measured in terms
of the percentage of the available yearly resources that the
contractor dedicates to this particular project. We denote the
cost of effort to the sSE as ¢;(e;). In economic terms, ¢;(e;)
is an opportunity cost, i.e., the monetary gain the sSE could
receive, but forfeits, to participate in this particular project.

Let (2, F,P) be a probability space associated with random
states of nature. We model the design qualities that the ¢-th
sSE can produce as a stochastic process ¢;(e;,w). That is, the

quality function g;(e;,w) gives the design quality that the i-
th sSE can achieve by choosing an effort level e; if the state
of nature is w € (2. The quality function is normalized so
that zero corresponds to the quality of the current state-of-
the-art. Note that we have deliberately chosen to ignore the
dependence of ¢;(e;,w) on any private information. In other
words, we assume that the form of the quality function is
common knowledge.

Each of the sSEs enters a contract with the SE. The contracts
describe transfer functions, t;(q;), which specify the transport
of monetary funds from the SE to the sSE contingent on the
quality of the design that the sSE produces. Therefore, the
payoff to the sSE is:

7 (e, w) = t; (q; (e5,w)) — ¢ (&;) . (1)
We assume that the sSE selects an optimal effort level ex-
ante, i.e., before they observe the future state of nature w. If
we further assume that the sSE is risk-neutral, then rationality
implies that they should select their effort level by maximizing
their expected payoff:
e;" (t; (1)) = argmax E,, [m; (e;,w)] . (2)
e;€[0,1]
Note the dependence on the transfer function.

To ensure that the sSEs are willing to participate in this
project, their optimal expected payoff must be positive. Oth-
erwise, the sSEs have no incentive to be part of the project
as their expected monetary benefit is smaller than their oppor-
tunity cost. Therefore, the SE must choose transfer functions
that enforce the participation constraints:

By, [mi (" (t: (1) ,w)] = 0, 3)

fore=1,...,N.
The SE obtains from each sSE the following design quali-
ties:

g (ti (), w) = qi (&;" (t: () ,w) . 4)

If V(qu,...,qn) is the net present value of any cash flows
that result from a system with subsystem qualities q, .. ., qn,
then the total payoff to the SE is:
7T(t () ,W) = V(ql* (tl () ,LU) P an* (tN () ,OJ))
&)

N
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where we defined t () = (¢1 (*), -+ ,tn (-)). Assuming that
the SE makes ex-ante, risk-neutral decisions, they must select
transfer functions that solve:

t* () =argmax E, [7 (t (-),w)], (6)
(")

subject to the N participation constraints defined in Eq. (3).
Of course, if the optimal expected payoff E,[m(t*(-),w)] is
negative, then the SE does not initiate the project in the
first place. In what follows, we study this mechanism design
problem by making specific assumptions for the form of the
SE value function, the sSEs’ quality functions and costs, and
the form of the possible transfer functions.



A. Assumptions about the subsystem engineers

The random field ¢;(e;,w) captures the common state of
knowledge about what is technologically possible in the design
quality of subsystem ¢. Using the Karhunen-Loéve expansion
[5], the random field ¢;(e;,w) can be written as:

Qi(eu ez + Z \/ fzk ¢zk 61 @)

where ¢?(e;) is the mean of the random field, Ay, ¢ix(e;) are
the eigenvalues and eigenvectors of its covariance function,
respectively, and the random variables &;;, are zero mean,
unit variance, and uncorrelated. Assuming stationarity of the
process, these quantities can, in principle, be estimated sta-
tistically from historical data of marginal investments versus
increases in product quality. As a first approximation, we trun-
cate the series at k£ = 1 keeping only the largest eigenvalue:

~ qL 61 + \/ 511 (bzl

Furthermore, we approximate the zero-mean and unit-variance
random variable &;; as a standard normal random variable &
(the standard normal is the maximum entropy distribution with
zero-mean and unit variance). We also assume that the first
eigenvector is approximately constant, ¢;;(e;) ~ const, and
we introduce the new variable o; = v/\;¢;1(e;). Without loss
of generality, we may take that o; > 0. Finally, we take the
first order Taylor expansion of ¢?(e;) = a;e;+O(e?), recalling
that we scale the quality so that zero corresponds to the current
state-of-the-art, which can be delivered without any effort.
This is reasonable since we are considering a one-shot systems
engineering process which, necessarily, takes place in a limited
amount of time. For larger timescales, we expect g;(e;,w)
to be curved: Concave for mature technologies, and convex
followed by concave for emerging technologies. Furthermore,
we take a; > 0 since more effort can only lead to increased
design quality. To summarize, we model the quality as:

qi(eh

¢ (ei,w) = aje; + 0;¢ (w), (®)

where a;,0; >0, and £ ~ N (0,1).

The parameter a; depends on the skills of the sSE as well
as on the maturity of the underlying technology. That is, a
skillful sSE produces a higher increase in quality from the
state-of-the-art than a less skilled sSE. Therefore, keeping the
maturity of the technology fixed, a; expected to grow as the
skills of the sSE are improved. Similarly, keeping the skills
of the sSE fixed, a; decreases as a function of the maturity of
the underlying technology. The more mature the underlying
technology is, the more difficult it becomes to obtain a given
increase in quality.

The parameter o; behaves in exactly the opposite way. A
skillful sSE produces design qualities that vary less, therefore
o; decreases as skill improves. On the other hand, we expect
that subsystem designs that depend on mature technologies
are more predictable, therefore o; decreases as technological
maturity increases.

Our final assumption is that the sSE’s cost grows linearly
with effort as:

ci (ei) = cieq, &)

where ¢; > 0. This assumption is reasonable for almost
all types of sSEs. In particular, when sSE is an individual
engineer, ¢; could be the average industry salary per unit effort.
For a contractor, c¢; could be the expected payoff per unit effort
of the next most profitable project that they could be engaging
in.
B. Optimal requirement-based incentives

We assume that the SE has N requirements, r1,...,7n,
one to be satisfied by each subsystem. These requirements
arise from the business case of the project. Mathematically,
the system design is successful if ¢; > r; foralli =1,..., N.
If the value of a successful system design is V), then the value
function of the SE is:

N
Vigr,....qn) = Vo [ [ H (g (10)

where H (+) is the Heaviside function:

1. ifx >
H(x):{ itz 20,

0, otherwise.

We restrict our attention to the study of requirement-based
transfer functions:

ti (qisp;) = i1 + Vs H(qi — ¢i3) - (1D

The first parameter, 1;;, specifies the amount that is going
to be paid simply for agreeing to participate in the project,
guaranteeing a design quality at least the same as the cur-
rent state-of-the-art. The second parameter, 1,5, specifies the
amount to be paid if the subsystem engineer meets specific
requirements. The third parameter, 1,3, specifies the require-
ment that the subsystem engineer has to meet. Note that the
optimal passed-down requirement is, in general, different than
the real requirement, r;.

We start with the optimal decision of the i-th sSE given a
fixed contract t; (¢;;%;). The payoff is:

= i1 + Vi H(aie; + 038 (w) — i3) —

To take the expectation over w, we use the following result:

B HO o)) =0 (2]

g

mi(ei,w) ci€;.

(12)

where ®(-) is the cumulative distribution function (CDF) of a
standard normal random variable. Taking the expectation over
w, we get:

E, [ﬂ'i(eu )] Pi1 —

So, the optimal effort level is:

e; (ti (1;)) = argmax {1/111 — cie; + in® (0@3) } '

61‘6[0,1]



We solve this problem using Brent’s method [6] as imple-
mented in SciPy [7].
The SE problem consists of maximizing:

N * . .
:VO H [} (aiei (tl ((;d)z)) B T’L)
17\’1
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N
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subject to the participation constraints:

By [m (¢ (- 9), w)]

—%‘3)

(14)

’(/}il + wi2¢ (aie"; (ﬁl (,0—1/17,)) B ’(/}13> _ Cie: (tl (7¢l)) Z O7
' (15)
and the bounds:
Yk > 0. (16)

for k = 1,2,3 and ¢ = 1,..., N. In practice, the optimal
solution is always within the following bounds:

0 < i1, 952 < 2¢4, and 1y — 303 < Pz <715+ 305 (17)

We solve this problem using the constrained optimization
by linear approximation (COBYLA) algorithm [8] as imple-
mented in [7].

C. Non-dimensionalization of the equations

Without loss of generality, we can pick all the subsys-
tem requirements to be r; = 1. This can be achieved by
appropriately scaling all a;’s and all o0;’s. In other words,
the quality function of each subsystem will be measured
in units of the corresponding business-imposed requirement.
Then, the inverse of the coefficient a;, can be interpreted as
the effort that needed to meet the subsystem requirement for
sSE if there is no uncertainty. We will consider two levels
of a;’s corresponding to different levels of subsystem design
difficulty: (i) (hard) a; = 1.5, (ii) (easy) a; = 2. Having scaled
the quality function in this way, the variance parameter o; can
also be interpreted as the amount of uncertainty in the quality
of the final design as a percentage of the requirement. We will
consider three levels of uncertainty: (i) (low) o; = 0.05, (ii)
(moderate) o; = 0.1, and (iii) (high) o; = 0.2.

Finally, also without loss of generality, we may set V[, =
1. This can be achieved by appropriately scaling the transfer
functions and the opportunity costs of all sSEs. It amounts
to measuring all monetary quantities, in terms of the SE’s
maximum value. For the opportunity costs of the sSEs, we will
consider two levels: (i) (low) ¢; = 0.01, (ii) (high) ¢; = 0.05.

D. Extracting subsystem parameters from historical data

To study decision making in the context of a real ap-
plication, one needs to extract all parameters, a;,c;,oy,. ..,
from historical data. To this end, let ); denote the quality
of the i-th subsystem in physical units, and I; the cumulative
investment per firm on this technology. Historical data, say

= {(I;s, le)}s 1» of these quantities are readily available
for many technologies. We model the relationship between Q;
and I; as:

Qi = Qio + Ai(Li — Lo) + Xi&i(w),

where Q0 and I;o is the current state of these variables,
&(w) ~ N(0,1), and A; and X¥; are parameters to be
estimated from the all available data D;. We use a maximum
likelihood estimator [9] for A; and X;. This is equivalent to
least squares estimate for A;:

(18)

Si
A= argn}liin; [Qio + Ai(I;s — Iio) — Qm} , (19)

and to setting >; equal to the mean residual square error:

1
;= ZonJrA s = Tio) —
s=1

Qis)>.  (0)

N

Now, let ;- be the required quality for subsystem ¢ in
physical units. The scaled quality of a subsystem ¢;, can be
defined as:

Qz Q’LO

i = 21
4 er QZO ( )

with this definition, we get ¢; = 0 for the state-of-the-art, and
q; = 1 for the requirement. Substituting Eq. (18) in Eq. (21)
while making use of the maximum likelihood estimates for A;
and X;, we get
A; 2
G G = Qe T g )
From this equation, we see that the uncertain parameter of our
previous discussions, can be obtained from

(22)

X

Qir — Qo

Finally, let 7; and C; represent the time for which the
it sSE is to be hired and the cost of the engineer per
unit time, respectively. 7; is just the duration of the systems
engineering process we consider. The opportunity cost C; can
be read inferred from the balance sheets of publicly traded
firms related to the technology. We can now define the effort
variable e; as:

(23)

g; =

I; — Ijp
T,C;
From this and Eq. (22), we see that a; is given by:
T:C; A,
Qir — Qio’
III. ILLUSTRATIVE EXAMPLE: SPACECRAFT DESIGN
PROBLEM

(24)

€;, =

(25)

a; =

A. Spacecraft systems design

During the initial proposal phase of satellite development for
scientific applications, the principal investigator puts forward
an estimate of how the goals of the project will be achieved
through engineering means. These project goals concern the



overarching science objectives of the mission which corre-
spond to the instrument design at the heart the satellite.
However, in the process of successfully launching a scientific
instrument into space, all the necessary components to power
the instruments, actuate the spacecraft, and transmit data
must also be included in the satellite payload. These mission
requirements are translated to specific functional requirements
for each subsystem of the spacecraft.

Typically, a spacecraft consists of seven main sub-
systems [10], namely, electrical power subsystem (EPS),
propulsion, attitude determination and control (ADC), on-
board processing, telemetry, tracking and command (TT&C),
structures and thermal subsystems. For the proposed study,
we will focus our attention on two subsystems (N = 2):
EPS and propulsion. Simplifying the analysis, we assume
that the design of these subsystems will be assigned to two
(subsystem) engineers in a one-shot fashion. Note that, the
systems engineering process of the spacecraft is an iterative
process and the information and results are exchanged and flow
back and forth between the SE and sSEs in each iteration. Our
model is a very crude approximation of reality. The goal of the
SE is to optimally incentivize the sSEs to produce subsystem
designs that meet the mission’s requirements.

B. Electrical power subsystem

The EPS is designed and configured to perform several
key functions, the primary being a continuous and reliable
source of peak and average electrical power for the life of
the mission. It consists of a power source, energy storage,
power conversion/distribution and power regulations and con-
trol equipment. Typically, for earth orbiting satellites, one
employs solar photo-voltaic arrays as a primary energy source
and batteries as secondary power storage units. Silicon solar
cells are the most commonly used photo-voltaic cells for space
applications because of their low cost and high availability.

In this study, the design quality of interest for the EPS
sSE is chosen to be the solar cell efficiency, i.e., ()1 is the
efficiency of Si-based solar photo-voltaic cells expressed as a
percentage value, and [; is the average cumulative investment
in solar cell research per firm. To estimate the relationship
between ()1 and I, we first considered the global trends of
commercial Si module efficiencies and cumulative investments
in solar-cell research over 2001-2008. Over this period, a total
of hundred solar cell research and development companies
received venture capital (VC) funding [11]. Based on this
information, we assume that, on average, thirteen companies
are participating in solar cell R&D every year.

The variation of commercial crystalline-Si module effi-
ciency (@1 (%) ) with time is taken from [12]. The trend
of cumulative global VC investment per firm (/; (millions
USD)) in crystalline Si-cell technology over time is obtained
from [11]. In 2008, the state-of-the-art was Q19 = 19% and
the cumulative investment per firm was I1op = 102.4 million
USD. A maximum likelihood fit of the parameters in Eq. (18)
results in a regression coefficient of A; = 0.035% per million

USD, and standard deviation ¥; = 0.15%. We can visualize
the data and the maximum likelihood fit in Fig. 1.
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Fig. 1: Spacecraft case study (EPS subsystem): Historical data
(2001-2008) of solar cell efficiencies vs cumulative investment
per firm. The solid line and the shaded area correspond to the
maximum likelihood fit of a linear regression model and the
corresponding 95% prediction intervals, respectively.

The cost parameter C; is estimated by considering the
total pay towards employees salaries over the number of
employees in R&D jobs in global PV industry. According
to the statistics [12], around 2,320 employees were involved
in such jobs by the end of 2008. The value of C; is the
median salary of a solar cell development engineer which
is approximately equal to 100,000 (0.1 million) USD based
on data from [13]. Substituting the values of (19, C7 and
A; in Eq. 25 yields the following relationship between the
parameters QQ1,, 77 and a;:

0.0035T11

a4 = ———

T Qu 19

The variation of required quality (efficiency) for sSE-1
(Q1, (%)) with respect to the time for which one person from

sSE firm is to be hired (7} years) is shown in Fig. 2, for two
different levels of EPS design difficulty.

(26)

C. Propulsion subsystem

Space propulsion systems essentially provide thrust to lift
the launch vehicle along with its payload from the launch pad
and place the payload into low-Earth orbit. They assist payload
transfer between lower and higher orbits or into trajectories
based on the type of mission. Finally, they provide thrust for
attitude control and orbit corrections [10]. Based on mission
profiles, performance requirements for propulsion systems
include thrust, total impulse, and duty cycle specifications for
which, the specific impulse and propellant density are the key
parameters.

Chemical combustion systems, which are the most common
systems for space applications can be divided into three basic
categories: liquid. solid and hybrid. The terminology refers
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Fig. 2: Spacecraft case study (EPS subsystem): Variation of
@1, (percentage efficiency) w.r.t 77 (time in years)

to the physical state of the stored propellants. In this study,
the design quality of interest (()2) for the propulsion sSE is
chosen to be the delivered specific impulse (I,,, measured in
seconds) of solid propellants. Specific impulse is defined as
the ratio of thrust to weight flow rate of the propellant and is a
measure of energy content of the propellants [10]. It signifies
the energy to thrust conversion efficiency. I is the cumulative
investment on chemical propulsion research and technology
by NASA over a period of ten fiscal years from 1979-1988.

Trends in delivered specific impulse (Q2 (sec.)) and in-
vestments by NASA (I3 (millions USD)) in chemical propul-
sion technology with time are obtained from [14] and [15],
respectively. The state-of-the-art solid propellant technology
corresponds to a (Yoo value of 252 sec. and I5g value of 149.1
million USD. In this case, the maximum likelihood fit of the
parameters results in a regression coefficient of A; = 0.0133
sec. per million USD, and standard deviation 5 = 0.12 sec.
The corresponding data and the maximum likelihood fit are
illustrated in Fig. 3

The value of C» in this case is approximately same as that
of C1, i.e., Co = 100,000 USD according to the data obtained
from [16]. Substituting the values of ()29, C5 and A, in Eq. 25
yields the following relationship between the parameters Q2;,
T5 and as:

0.0013T%

QQT — 252

Fig. 4 shows the variation of required specific impulse
for sSE- 2 (@2, (sec.)) with time for which one propulsion
engineer has to be hired (7> years) for two different levels of
subsystem design difficulty.

27)
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IV. RESULTS

We present numerical examples of one-shot SE processes
with two identical sSEs (N = 2). We investigate 4 different
cases consisting of all possible combinations of two difficulty
levels (easy (a; = 2) vs hard (a; = 1.5)) and sSE opportunity
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Fig. 3: Spacecraft case study (propulsion subsystem): His-
torical data (1979-1988) of specific impulse of solid mono-
propellants vs cumulative investment per firm. The solid line
and the shaded area correspond to the maximum likelihood
fit of a linear regression model and the corresponding 95%
prediction intervals, respectively.

+2.52e2
= a,=1.5(Hard
0.008 g (Hard)
a, = 2.0 (Easy)
—~ 0.006
9
[0}
L
« 0.004
o~
o
0.002
0.000
0 2 4 6 8 10
T, (years)

Fig. 4: Spacecraft case study (propulsion subsystem): Variation
of Q2 (Specific impulse) w.r.t T, (time in years)

cost levels (Ilow (¢; = 0.01) vs high (¢; = 0.05)). For each
case, we consider three scenarios with different uncertainty
levels: 0 = 0.05, 0.1, and 0.2. For each scenario, we obtain the
optimal contract 0™ by solving the mechanism design problem
of Sec. II within the class of requirement-based incentives.
Finally, we study the sensitivity of the SE’s expected payoff
on the passed-down requirement by changing the values of
13 in the range [0, 2]. All numerical results can be found in
Fig. 5 and its captions. Specifically, Figs. 5a, 5b, 5c, and 5d
include the results for a hard-task—low-cost-sSE, hard-task—
high-cost-sSEs, easy-task—low-cost-sSE, and easy-task—high-
cost-sSE, respectively. The optimal contracts of each scenario
can be read from the captions of the associated subfigures.



We start by commenting on the properties of the payment
amounts ¥}, and vj,. We will refer to 1} as the partic-
ipation payment, i.e., the fixed payment made to the sSE
independently of the design outcome, and to ¢}, as the bonus
payment, i.e., the payment made to the sSE if the passed-down
requirements are met in our one-shot systems engineering
model. First, we observe that across all the scenarios the
participation payment increases as uncertainty grows. This
makes sense, since the sSE is expected to ask for a higher
certain gain to accept a higher risk task. Counter-intuitively,
the bonus payment is independent of the uncertainty level.
Second, for a fixed opportunity costs the participation payment
decreases with increasing task difficulty while the bonus pay-
ment behaves in the opposite way (it increases with increasing
task difficulty). This means that for harder tasks the SE hedges
themselves by shifting some of the participation payment to
the bonus. Finally, as the opportunity cost increases, both the
participation and bonus payments increase.

Let us focus on the optimal passed-down requirements
(1]5). Across all scenarios, the optimal passed-down require-
ment increases as the uncertainty becomes larger. This is an
example of the SE attempting to increase the probability of the
actual requirement being met as uncertainty increases. More-
over, we observe that the optimal passed-down requirement is
independent of the opportunity cost. This is due to the fact
that the SE value function is requirement-based. Furthermore,
we observe that for easy tasks, captions of Figs. 5c and 5d,
the optimal passed-down requirement is always greater than
the actual requirement r; = 1. This result can be intuitively
understood as follows. Since the task is easy, the sSE will
definitely reach the actual requirement with sufficient effort,
even in the presence of significant uncertainties. By setting
the requirement threshold higher than the actual one, the SE
forces the sSE to use more effort, effectively increasing the
probability of success to almost certainty. In contrast, for hard
tasks, Figs 5a and 5b, the optimal passed-down requirements
are lower than the actual system requirement. Since the task is
hard, there is a high probability that the SSE may not be able
to achieve a very high passed-down requirement. To lure the
sSEs to participate, the SE needs to lower the passed-down
requirements below the actual threshold. At a first glance, this
may look like the SE will not be able to gain a positive
expected payoff. However, due to uncertainty in the final
outcome, there is a significant probability that the sSE will
produce better than the requested result.

Naturally, we observe that the expected SE payoff is in-
creasing as the opportunity costs go down and that it decreases
as the task difficulty increases. For easy tasks, the expected
SE payoff decreases as the uncertainty increases, Figs. 5S¢ and
5d. On the contrary, for hard tasks the expected SE payoff
increases as a function of the uncertainty, Figs. 5a and 5b. As
we saw in the previous paragraph, this makes sense for a hard
task that, an increase in uncertainty makes it more likely that
the actual requirement is met.

V. CONCLUSION

We presented a principle agent model of a one-shot, shallow
systems engineering process. We assumed that all agents are
risk neutral and, thus, they maximize their expected payoff.
We modeled the quality function of subsystem engineers as
a linear function of effort plus some Gaussian noise. Using
a spacecraft design case study, we demonstrated how the
parameters of our model can be estimated from historical
data. Finally, we posed the optimal mechanism design problem
within the class of requirement-based incentives.

Our one-shot model of systems engineering process chal-
lenges the intuitive belief that one should ask for higher
requirements as the design task becomes more difficult. Our
model predicted that for a hard task, the optimal passed-down
requirement should be less than the actual requirement. The
reason is that in this way the sSE is lured into participation
while the SE may still meet the requirement because the design
outcome may actually be better than anticipated. Our result
does not mean that this common belief is wrong. After all,
it is a very simple model, capturing only one iteration of
systems engineering process. This result may change if the
quality function is not linear or if the design quality noise
becomes skewed. Even if the modeling choices were spot on,
at the present stage, it is too simple to be truly descriptive.
There may be mechanisms beyond the ones included in our
model that incentivize the SE to ask for a requirement higher
than what our model predicts? One reason is that they may
underestimate the difficulty of the task. Another reason is that
they may want to hedge themselves against dishonest behavior
of sSEs, e.g., the sSE may put a design on their back pocket for
later use. Third, the systems engineering process may be taking
place iteratively and asking for a higher requirement may be an
effective way to probe what is possible. From the perspective
of the sSE, why would they accept to participate in a hard task
with an exceedingly high requirement? Of course, they may
also underestimate the difficulty of the task. Alternatively, they
may be offered a participation payment that is high enough so
that they do not care that it is impossible to meet the passed-
down requirement. Finally, they may believe that they will
be able to renegotiate the contract in the future, especially if
the SE has a history of doing so. All these intricacies, and
many more, are not captured by our model. They are topic of
on going research towards a theoretical foundation of systems
engineering design that accounts for human behavior.
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