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1 Introduction

Geometric engineering has become a standard tool for constructing and exploring quantum
field theories, especially in their strong coupling regimes. A large class of generically
strongly coupled QFTs in four dimensions is realized in M-theory by wrapping a stack
of M5-branes on a Riemann surface with defects. These constructions fit in the larger
framework of the class & program, in which 4d QFT's are obtained by dimensional reduction
of a 6d SCFT, generically with a partial topological twist. In this work we focus on the
case of the 6d (2,0) theory of type An—_1, which is the worldvolume theory on a stack of N
M5-branes. Depending on the choice of twist, the theories of class S can preserve N' = 2
or N' = 1 supersymmetry.! The A/ = 2 theories were first constructed in [1, 2], building on
work in [3]. A large class of N' = 1 theories of class S were constructed in [4, 5], building
on work in [6-8]. Strong evidence for the existence of these SCFTs is the construction of
their large-N gravity duals. The holographic duals of the A" = 2 theories were identified
in [9], and for the N' = 1 theories in [4, 5, 10, 11].

't Hooft anomalies provide crucial insight into the properties of QFTs, and are es-
pecially useful observables in the study of strongly coupled theories.? In an interacting
SCFT, anomalies are related to central charges by the superconformal algebra [12, 13]; in
a free theory, they directly specify the matter content. Thus, they provide a measure of
the degrees of freedom in a QFT. The anomalies of a d-dimensional QFT can be organized
in a (d + 2)-form known as the anomaly polynomial, which is a polynomial in the curva-
tures of background gauge and gravitational fields associated to global symmetries [14-16].
The geometric nature of anomalies makes them especially amenable to computation in
geometrically engineered constructions.

The 6-form 't Hooft anomaly polynomial for a 4d theory of class & depends on the
parent 6d theory, on the genus-g, n-punctured Riemann surface ¥, 5, used in the compact-
ification, and on the boundary conditions for the 6d theory at the punctures. The total

ICFT

anomaly polynomial can be decomposed as a sum of a “universal” or “bulk” term,

and of individual terms for each puncture [17],
CFT CFT(EQN) + Z CFT(PQ ) (11)

The bulk term IS¥T(3,.) depends on the surface only through its Euler characteristic,
X(Xgn) = —2(9 — 1) — n, and is insensitive to the choice of boundary conditions at the
punctures. This contribution for the ' = 2 theories of class S was first computed in [9]
using S-duality, and can be computed by integrating the 8-form anomaly polynomial of the
6d theory over the Riemann surface [4, 5, 7, 18].

The individual puncture contribution I$¥T(P,) depends on the choice of boundary
conditions at the puncture F,, and contains information about the 't Hooft anomalies of
the flavor symmetry associated to it. These contributions can be obtained by S-duality

and anomaly matching arguments [9, 19-21].

14d N = 4 is obtained by compactifying on a torus with no twist.
2Throughout, we refer to anomalies in background (rather than dynamical) gauge or gravity fields as ’t
Hooft anomalies.



The main goal of this paper is a first-principles derivation of the anomalies of the
N = 2 class S theories of type Ax_; from their geometric construction via M5-branes.
Using anomaly inflow in M-theory, we determine both the bulk term IgFT(Eg,n) and the
puncture term IEFT(PQ), for any regular puncture. Our analysis is inspired and motivated
by the holographic duals of these theories [9]. The present work is a follow up to [22],
where the results of the computation and main features of the derivation were presented.

The outline of the rest of the paper is as follows. In section 2 we provide an overview of
the main strategy used in the computation of the inflow anomaly polynomial. In section 3
we describe in greater detail the M5-brane setup, and we discuss the bulk contribution to
anomaly inflow. Section 4 is devoted to the discussion of the local geometry and G4-flux
configuration near a puncture. These data are used in section 5 to compute the puncture
contribution to anomaly inflow. In section 6 we compare the total inflow result with the
known CFT anomaly polynomial. In the conclusion we summarize our findings and discuss
future directions. Some technical aspects of our derivation are relegated to the appendices,

together with useful background material.

2 Outline of computation

Our goal is an anomaly-inflow derivation of the 't Hooft anomaly polynomial of 4d N = 2
class S theories with regular punctures. In this section we provide a summary and overview
of the strategy used in the main computations in this paper.

Anomaly cancellation for M5-branes in M-theory was analyzed in [23-28]. The quan-
tum anomaly generated by the chiral degrees of freedom localized on the M5-brane stack is
cancelled by a classical inflow from the 11d ambient space. In section 2.1, we briefly review
this mechanism and argue that it can be neatly summarized by introducing a 12-form char-
acteristic class T12. The class T;9 is related via standard descent relations to the classical
anomalous variation of the 11d action, see (2.7), (2.8) below. Upon integrating 72 along
the S$4 surrounding the M5-brane stack, one recovers the 8-form anomaly polynomial of
the 6d (2,0) theory of type An—1, up to the decoupling of center-of-mass modes.

In this work we study 4d theories obtained by considering an Mb5-brane stack with
worldvolume Wg = Wy x X4, where Wy is external 4d spacetime and ¥4, is a Riemann
surface of genus g with n punctures. In section 2.2, we consider the case without punctures,
and argue that the 6-form anomaly polynomial of the resulting 4d theory can be computed
by integrating Zi2 on a suitable 6d space Mg, which is an S? fibration over 0. In sec-
tion 2.3, we outline a two-step procedure for introducing punctures. Firstly, one constructs
a modified version of Mg, by excising n small disks from the Riemann surface, together with
the S fibers on top of them. Secondly, the “holes” in Mg are “filled” with new geometries
supported by non-trivial G4-flux. The latter encode all data about the punctures.

2.1 Anomaly inflow and the class Z;5

Consider a stack of N coincident M5-branes with a smooth 6d worldvolume Wg. The 11d
tangent bundle of the ambient space M, restricted to Wg, decomposes as

TMi1|w, = TWe ® NWe, (2.1)



where TWg, NWg are the tangent bundle and normal bundle to the Mb5-brane stack,
respectively. The normal bundle NWj is isomorphic to a small tubular neighborhood of
Wg inside M;;. From this point of view, the M5-brane stack sits at the origin of the R
fibers of N W, which encode the five directions transverse to the stack. The normal bundle
admits an SO(5) structure group. It induces an SO(5) action onto the degrees of freedom
on the brane; this is identified with the R-symmetry of the quantum field theory living on
the branes.

The Mb5-brane stack acts as a singular magnetic source for the M-theory 4-form flux
G4. The Bianchi identity dG, = 0 is modified to

dGy = 2w N 8°(y) dy* Ady® Ady® Ady* A dy® , (2.2)

where y4, A = 1,...,5, are local Cartesian coordinates in the R® fibers of NWs, and
8°(y) is the standard 5d delta function. The relation (2.2) should only be considered as a
schematic expression. As explained in [25, 26], (2.2) must be improved in two respects in
order to implement anomaly inflow.

In the first step, we regularize the delta-function singularity in (2.2). This is achieved
by excising a small tubular neighborhood B of radius € of the M5-brane stack. Next, we
introduce a radial bump function f(r), with r denoting the radial coordinate r? = §4 sydyB.
The function f is equal to —1 at r = ¢, and approaches 0 monotonically as we increase r.
The relation (2.2) is thus replaced by

dGy = 2w N df Avolgs . (2.3)

The 4-form volga is the volume form on the S* surrounding the origin of the R® transverse
directions, normalized to integrate to 1.
The second step is to gauge the SO(5) action of the normal bundle. This requires that
we replace N volgs with a multiple of the global angular form,
dGy

S =df AEs. (2.4)

Let us stress that, in our notation, we absorb the factor IV inside Ej,

Es=N. (2.5)
g4
The closed and SO(5) invariant 4-form E) is constructed with the coordinates y? and the
SO(5) connection Oap) on NWs. We refer the reader to appendix A.2 for the explicit
expression of Fj.
After excising a small tubular neighborhood B, of the M5-brane stack, the 11d space-
time M, acquires a non-trivial boundary Mg at r = €, which is an S* fibration over the

worldvolume W,

Mo = 0(M1 \ Be), S — My — W . (2.6)

The M-theory effective action Sy on Mg\ Be is no longer invariant under diffeomorphisms
and gauge transformations of the M-theory 3-form C3. The classical variation of the action



Sy under such a transformation takes the form

59
e [T, (2.7)
Mo

o

where Iﬂ]) is a 10-form proportional to the gauge parameters. By virtue of the Wess-
Zumino consistency conditions, the quantity Iﬂ)) is related via descent to a formal 12-form
characteristic class,

Ay =61y, dIY =T . (2.8)

We are adopting a standard descent notation, with the superscript (0), (1) indicating the
power of the variation parameter. The class Z;5 originates from the topological couplings
in the M-theory effective action, and is given by

112:—%E4/\E4/\E4—E4/\X3. (29)

We refer the reader to appendix A.4 for a review of the derivation, based on [25, 26].
In (2.9), X5 is the 8form characteristic class

Xg p1(TMy1)? — 4po(TMyy)| (2.10)

T 192

where T'M1; is the tangent bundle to 11d spacetime Mii, and p;(T'Mi1) denote its Pon-
tryagin classes. Let us stress that a pullback to Mg is implicit in (2.9).

The relevance of the 12-form characteristic class Z;5 stems from the fact that, upon
integrating it along the S transverse to the M5-brane stack, we obtain the inflow anomaly
polynomial of the 6d theory living on the stack [25, 26],

[inflow _ £4112 . (2.11)

Notice that (2.11) makes use implicitly of the fact that descent and integration over S*
commute. We offer an argument for the previous statement in appendix A.5.

The anomaly polynomial Iénﬂ"w cancels against the quantum anomalies of the chiral
degrees of freedom on the Mb5-brane stack. In the IR, the latter are organized into the
interacting degrees of freedom of the 6d (2,0) theory of type Ayx_;, together with one free
6d (2,0) tensor multiplet, related to the center of mass of the M5-brane stack. We may
then write

pipflow  JOFT | pdecoup _ (2.12)

where IE?FT is the anomaly polynomial of the interacting (2,0) theory, and I gecouD is the

anomaly polynomial of a free (2,0) tensor multiplet.

2.2 Four-dimensional anomalies from integrals of Z;5

The discussion of the previous subsection is readily specialized to the case in which the
M5-brane worldvolume is Ws = Wy x Y40, where W, is external 4d spacetime, and Y40
is a Riemann surface of genus g without punctures. In such a setup, the structure group



of the normal bundle NWj is reduced from SO(5) to SO(2) x SO(3) or SO(2) x SO(2),
for compactifications preserving 4d N' = 2 or N’ = 1 supersymmetry, respectively. A more
detailed explanation of this point is found in section 3.1 below.

The space Mg introduced in (2.6) is now an S fibration over W x 34,0- The connection
splits into an external part with legs on W4 and an internal part with legs on ;4. The
external part of the connection on NWj is a background gauge field for the continuous
global symmetries of the 4d field theory. When these background gauge fields are turned
off, the space My decomposes as the product of W, and a 6d space, denoted MZ=" to
emphasize that we are considering a setup with no punctures. The space M#=" is an $*

fibration over ¥, o,
S4 oy Mé},:ﬂ N Eg,o . (2.13)

It is fixed by the supersymmetry conditions of M-theory, as discussed in section 3.1. We
can now regard Mg as an Mg’“:ﬂ fibration over Wy,

Mgl:ﬂ — Mg — Wy . (214)

The topology of the above fibration encodes the information originally contained in (2.6).
We argue that the inflow anomaly polynomial I§ inflow { the 4d field theory is given by

v =/ Tia, (2.15)
Mn,:[]

with Z;5 given in (2.9). We should bear in mind that, in analogy with the uncompacti-
fied case, the inflow anomaly polynomial Ié“ﬂc'w balances against the contributions of an
interacting CFT as well as of decoupling modes,

pinflow  JOFT  pdecoup _ (2.16)

The decoupling modes are precisely those arising from the compactification of a free 6d
(2,0) tensor multiplet on X40. We stress that (2.16) generically fails in the case of emergent

Imﬂow

symmetries in the IR, in which case might not capture all the anomalies of the CFT.

2.3 Inclusion of punctures

Let us now outline a general strategy for extending (2.15) to the case of a compactification
of an M5-brane stack on a Riemann surface Y, ,, of genus g with n punctures. Let F, be
the point on the Riemann surface where the o' puncture is located, for a = 1,...,n.
Our starting point is the space M»=Y as in (2.13). Let D, denote a small disk on the
Riemann surface, centered around the point P,. We can present the space M?=9 as

T
MP=0 = pPulky U Do x SY), (2.17)

where Mé’“lk denotes the space obtained from Mg‘zo by excising the small disk D, around
each point P,, together with the S* fiber on top of it. It follows that Mé’“]k is an S4

fibration over ¥ n,
St MM Ly (2.18)



To introduce punctures, we replace each term D, x S in (2.17) with a new geometry
X§ that encodes the puncture data. We denote the resulting space as Mg,

mn
Mg =M™ u | ) Xg . (2.19)

a=1

Smoothness of Mg constrains the gluing of X§ onto M. In analogy with (2.14), the
10d space Mg is an Mg fibration over external spacetime Wy,

Mg — Mg — Wy . (220)

Each local geometry X¢ in (2.19) is supported by a non-trivial G4-flux configuration, which
is encoded in the class E4 on Mig. The geometry X§', together with Ej near the puncture,
encodes the details of the puncture at P,. In contrast with (2.13), the space X§ is not an
5% fibration over a 2d base space.

The class Ey4 in 715 is understood as a globally-defined object on Mjg. In this work we
construct local expressions for F4, both in the bulk of the Riemann surface and near each
puncture, which are then constrained by regularity and flux quantization. These conditions
turn out to be enough to determine the inflow anomaly polynomial.

The structure of Ms in (2.19) implies that the total inflow anomaly polynomial can be

written as a sum of a bulk contribution, associated to Mé’“lk, and the individual contribu-
tions of punctures, associated to Xg',
mn
19t — [ Tip = 11O (Sy) + Y 1800 (Py), (221)
Mg a=1
where one has
[inflow (53 o) = / Ty,  IPov(p,) = / Ty - (2.22)
Mé)u]k Xék

Several comments are in order regarding the decomposition (2.21). First of all, we stress
that one should think of Mé’“lk as a space with boundaries. Accordingly, one has to assign
suitable boundary conditions at the punctures for the connection in the fibration (2.18).
Notice also that [17]

[irfov (53 ) = f Tz = /E ipflow (2.23)
q.m

bulk
M 6

where the integration over Mﬁb“]k is performed by first integrating along the S* fibers, and
then integrating on X, ,. The class I é“ﬂow is given by (2.11) and captures the anomalies of
the 6d (2,0) SCFT that lives on a stack of flat M5-branes.

The local geometry X&' and its G4-flux configuration are constrained by several con-
sistency conditions. As mentioned earlier, we must be able to glue the local geometry
X§ smoothly onto the bulk geometry Mg“lk. Moreover, the gluing must preserve all the
relevant symmetries of the problem (including the correct amount of supersymmetry). Sec-
tion 4 below is devoted to describing all the relevant features of the geometries X¢ and
associated E4 configurations that describe regular punctures for A’ = 2 class S theories.



3 Mb5-brane setup

This section is devoted to the description of the M-theory setup of a stack of N M5-branes
wrapping a Riemann surface ¥4, of genus g with n punctures. In particular, we recall
the properties of the normal bundle to the M5-branes in this scenario, and its role in
implementing a partial topological twist of the parent 6d (2,0) theory on Y, ,, which is
essential to preserve supersymmetry in four dimensions. We then discuss the properties of
the class E4 and of the S* fibration M#=0, introduced in (2.4) and (2.13). We proceed to
analyze Mg’“lk. This enables us to compute the bulk contribution to the inflow anomaly
polynomial Z*°% (%, ) according to (2.21).

3.1 Normal bundle to the M5-brane stack

The 11d tangent space restricted to the Mb5-brane worldvolume decomposes according
to (2.1). We are interested in the case in which the worldvolume Wg wraps a Riemann
surface ¥4 5, of genus g with n punctures. The tangent space to W decomposes according to

TWs=TWs & TSgn - (3.1)

The Chern root of T'Y, ;, is denoted t and satisfies

/ t=x2gn)=-2(g—1)—n. (3.2)
Yo

We consider setups preserving N' = 2 supersymmetry in four dimensions, in which
the structure group of NWj reduces from SO(5) to SO(2) x SO(3). Accordingly, NWs

decomposes in a direct sum,
NWs = Nso(2) @ Nso(a) » (3-3)

where Ngo(2) is a bundle over Wg with fiber R? and structure group SO(2), and Ngo(3) is
a bundle with fiber R? and structure group SO(3). Let 7 denote the Chern root of Ngo(g).
We can write

A= —i+n, (3.4)

where 7144 denotes the part of 71 depending on external spacetime. The part of 72 depending
on Y45, is fixed to be —t. This identification amounts to a topological twist of the parent
6d (2,0) Ay—_1 theory compactified on X, and is necessary to preserve 4d N' = 2 super-
symmetry [2]. The angular directions in the fibers of NW; are identified with the S* fiber
in (2.13), (2.18) in the absence of punctures and in the presence of punctures, respectively.

The decomposition (3.3) suggests a presentation of the S* as an S x S? fibration
over an interval with coordinate p € [0,1]. This is readily achieved by the following
parametrization of y4, A=1,...,5:

yP=rpgt?, @+ @)+ =1, i =rV1-p2e? . (35)

We use the symbol S&% for the 2-sphere defined by the second relation. The isometries of
.5'52] are related to the SU(2) g R-symmetry of the 4d theory. We refer the symbol Squ for the



circle parametrized by the angle ¢. Throughout this work, the angle ¢ has periodicity 2.
The isometry of Sé corresponds to the U(1), R-symmetry in four dimensions. As apparent
from (3.5), the circle Sé shrinks for p = 1, while the 2-sphere 552] shrinks for p = 0.

The gauge-invariant differential for the angle ¢ reads

Do =do— A, (3.6)

where A is the total connection for the bundle Ngg(2). The field strength of A is F = dA,
and F/(2m) is identified with the Chern character n. Both A and F can be split into
an internal part, with legs on the Riemann surface, and a part with legs along external

spacetime. We use the notation
.AZAE—I-Aqg., }-ZFE+F¢, (3.7)

where the first term is the internal piece, and the second is the external piece. Thanks

to (3.4), we have
F Fy,
/E s /E s —x(Xgn) - (3.8)

3.2 The form E, away from punctures

In this section we discuss the form FEj in the bulk of the Riemann surface, i.e. away from
punctures. As per the general discussion of subsection 2.3, the 4-form Fj is a closed form
invariant under the action of the structure group of the S* fibration Mé’“]k. It is natural
to exploit the decomposition (3.3) and use a factorized Ej of the form?®

Ey=8& A e? . (3.9)

Let us explain our notation. The form egz is the global, SO(3) invariant angular form for

the Ngo(3) bundle. If we turn off the Ng(3) connection, the form e} reduces to a multiple

of the volume form on S3. We normalize e} according to

/ e =1. (3.10)
Sa
Q2

The explicit expression for e;’ can be found in appendix A.2. The 2-form &, is closed and
gauge-invariant. We can write

(3.11)

The function y = 7(p) is constrained by regularity conditions. If we turn off all Ngg 5y and
Ngo(3) connections, E4 becomes proportional to the volume form on an S4. Regularity of
E, in the region where S? shrinks demands (0) = 0. The normalization of Ej, (2.5), then
fixes y(1) = 1. To summarize,

¥(0)=0, A(1)=1. (3.12)

3By writing down all possible terms compatible with SO(2) x SO(3) symmetry, one verifies that E, is
given by & A €3 up to the exterior derivative of a globally-defined 3-form.




Let us stress that, in our conventions, the integral of F,; over any 4-cycle must be
integrally quantized.? A trivial example of a flux quantization condition is (2.5), which
simply states that Fy counts the total number of M5-branes in the stack. A more interesting
example of flux quantization is the relation

f Ey = Nx(Sgn) . (3.13)
Eg,nxS!%

which follows from (3.8), (3.9), (3.11), and (3.12). In the integral above, ¥, x S4 denotes
the 4-cycle obtained by combining the Riemann surface and Sé, at fixed p = 1, where Sqlb
shrinks. Even though flux quantization conditions for Fj are straightforward in the bulk of
the Riemann surface, they will play an essential role in section 4 in constraining the local
puncture geometries and flux configurations.

3.3 The bulk contribution to anomaly inflow

In the previous section we have fixed a local expression for F, in the bulk of the Riemann
surface. We are therefore in a position to compute the bulk contribution IP#%(%, ) to
anomaly inflow, defined in (2.22). The derivation follows standard techniques, and makes
use of a result of Bott and Cattaneo [30]. We refer the reader to appendix A.6 for more
details. The result reads

. 1 .
IP" (Sy.0) = 75 X(Zgn) N? 7 1 (Nso(a)
1 n o
— o X(Sgn) N ™ [p1(TWa) +p1(Nso) — ()] . (3.14)

The notation 79 was introduced in (3.4). The quantities p, (TW,), p (Ngo(3)) are the first
Pontryagin classes of the tangent bundle to external spacetime, and the Ngo(3) normal
bundle, respectively.

The quantities 724 and p; (NSO(:;)) are given in terms of the 4d Chern classes as

ﬁ4d = 20{, pl(NSO(B)) =—4 Céq, (315)

where ¢] is a shorthand notation for the first Chern class of the 4d U(1), R-symmetry
bundle, while c£ is a shorthand notation for the second Chern class of the 4d SU(2)g
R-symmetry bundle. The bulk contribution to I%“ﬂow then takes the form

T (Sg.n) = — 5 X(Sgm) (AN = N) & o — = x(Sgm) N & [1(TW2) ~4()?] - (3.16)

4 Introduction of punctures

In this section we discuss punctures and analyze the properties of the local geometries X

introduced in section 2.3. This analysis can be carried out separately for each puncture.

“We take the components of the 3-form potential Cs to have mass dimension 3. The coupling of an
M2-brane to Cs is realized with a factor '/ ©3 in the path integral measure. The quantity fc4 G4/(2m) is
an integer for any 4-cycle C4, up to the effects discussed in [29], which are not relevant in our setup. The
fact that the flux of E4 is integrally quantized then follows from (2.4).

— 10 —



Therefore in what follows, we omit the puncture label a, and write Xg for X¢', X, for X',
and so on. We demonstrate that the puncture data are encoded in monopole sources for a
suitable circle fibration, and we analyze the form of E, in the vicinity of a puncture.

4.1 Warm-up: reformulation of a non-puncture

According to the strategy outlined in section 2.3, a non-trivial puncture can be described
by removing a small disk D from the Riemann surface and replacing D x S* with a new
geometry Xg. In order to gain insight into the properties of Xg for punctures, we first
analyze the case of a non-puncture, i.e. we set Xg = D x S* and seek a reformulation of
this trivial geometry that is best suited for generalizations to non-trivial spaces. We show
that X¢ = D x S* can be recast as an S&% fibration over a 4d space X4, which is in turn
a circle fibration over R3. We also provide a reformulation of the class E, that will prove
beneficial in the discussion of genuine punctures.

Geometry for the non-puncture. Our starting point is Xg = D x S%. The disk D is
parametrized by standard polar coordinates (ry, ). As usual, S? is realized as an Sé X 552]
fibration over the p interval. The line element on Xg is simply

d 2
ds*(Xe) = drd +r % + 1_—”&2 £ (1—p2) D¢+ p2ds*(S2), Dé=dé— Ag . (4.1)

We have recalled that Sé is fibered over the Riemann surface with a connection Ay.. For
simplicity, we have temporarily turned off all external connections. The connection Ay on
the disk D can be taken to be of the form

Ay =U(rg)dB, (4.2)

where the function U goes to zero as ry;, — 0 to ensure that Ay is defined at the center of
the disk. The 2d space spanned by ry, and p is a half strip in the (rx, ) plane, described by

>0, 0<p<l, (4.3)

see figure 1 plot (a). More precisely, the interior of the disk D corresponds to a region of
the form ry, < 7o, with 7¢ constant, which is the shaded region in figure 1 plot (a).

Let us introduce a new angular coordinate y, defined by
xX=9¢+p8. (4.4)

We can rewrite the line element (4.1) in the form
ds*(Xe) = ds*(X4) + p* ds*(S3) ,
ds*(X4) = ds*(Bs) + R DB,
2 s -4

dp
2 2
ds (BS):dTE—i_l—,uQ—i_ R?s

dx?, (4.5)
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where we have introduced

DB—df—Ldy, L— =1 RE=rd+(1+U)>2(1-p?).  (46)

We have reinterpreted Xg as an S?z fibration over a 4d space X4. The latter is in turn
written as an Sé fibration with connection L dx over the 3d base space Bs parametrized
by (rs, 1, x). We can make the following observations:

(i) The S3 shrinks on the locus (1 = 0,75 > 0), the thick black line in figure 1 plot (a).

(ii) In the (ryg,p) strip, the only point where the Df circle shrinks is (ryg, ) = (0,1),
where the dot-dashed blue line and the dashed red line meet in figure 1 plot (a).

(iii) The x circle in the 3d base space (which is specified in X, by DS = 0, as opposed
to df = 0) shrinks on the loci (ry = 0,0 < p < 1) and (¢ = 1,75 > 0), which
correspond to the dot-dashed blue line and the dashed red line in figure 1 plot (a),
respectively.

(iv) The function L is smooth in the interior of the (ry, p) strip. Moreover, L(rs, 1) =1 on
the locus (ry = 0,0 < p < 1), i.e. on the dot-dashed blue line. Similarly, L(ry,u) =0
on the locus (u = 1,7y > 0), i.e. on the dashed red line.

We see that L has a discontinuity at the point (ryx,p) = (0,1) where the Df circle
shrinks. The metric on X4 near this point can be modeled by a single-center Taub-NUT
space, showing that the D3 fibration has a monopole source. We write the Taub-NUT
metric as

ds*(TN) = V1 DB + V (dp? + dn® + p* dx?),
1/2
VP + (1= max)?

dDB = —xgsdV, V= (4.7)

where p, 7, x are standard cylindrical coordinates on R3. The factor 1/2 is related to the
fact that, in our conventions, 3 has periodicity 2w. The coordinates p, i are related to ry,

p by

1
p=reV1—p2, 7?:7}'Inax+§(7’%_1+ﬂ2); (4.8)

as verified by comparing ds?(X,) and ds?(TN) near (rg,p) = (0,1), with U = 0 for
simplicity.

The coordinate change (4.8) near (ry,pu) = (0,1) is a specific example of a general
class of maps with the qualitative features depicted in figure 1 plot (b). First of all, the
(ry, ) half strip is mapped to the quadrant in the (p,7n) plane with n > 0, p > 0. Second
of all, the thick black line is mapped to n = 0. Finally, the union of the dot-dashed blue
line and the dashed red line is mapped to the 7 semi-axis. The corner (ry,p) = (0,1) is
mapped to the point 17 = max on the 7 axis. The dot-dashed blue line is mapped to the
region 0 < n < Nmax, while the dashed red line is mapped to 1 > Mmax- Figure 1 plot
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Figure 1. The plot on the left depicts the (s, u) strip, with rs; on the horizontal axis, and u on
the vertical axis. Lines of constant p (solid, grey) and lines of constant ry (dashed, grey) are also
included. The plot on the right depicts the (p, ) quadrant, with p on the horizontal axis, and 1 on
the vertical axis. We include the image of lines of constant p and rs;. The shaded regions in both
plots correspond to the subregion ry < 1y, with ry constant.

(b) also shows the shaded region corresponding to the interior of the disk D in the new
coordinates (p, 7).
We have shown that the space Xg = D x 5S4 can be reformulated as an S?z fibration over
a space X4, which is in turn a non-trivial S}% fibration over R3, parametrized by cylindrical
coordinates (p, 7, x),
S% < Xg — Xy, Séf—>X4—>R3 . (4.9)

In the above discussion, we have not included the external connection A4 for ¢. If we turn
Ag on, (4.4) indicates that dx should be replaced everywhere by

Dx=dx—A; . (4.10)
In particular, we must replace dy with Dy inside Df, thus obtaining the quantity
DB =dB —LDx. (4.11)

The form FE4 for the non-puncture. As explained in section 3.2, the form E4 away
from punctures takes the form (3.9) with & given by (3.11). In light of the results of the
previous section, we seek a re-writing of & in terms of the 1-forms Dy and DS introduced
in (4.10), (4.11), respectively. We are thus led to consider the ansatz

Dy BE]

52=d[Y§—W— (4.12)

2

where Y, W are functions of p, 7. In order to match the above & with (3.11) we have
to set

Y(pm) =Ny [1=(1+U)L|,  W(pn)=Nv(1+U). (4.13)

5An example of a class of coordinate transformations from (rx, ) to (p,n) with the desired properties,
different from (4.8), is provided in (D.18).
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Along the n axis, Y is piecewise constant,

Y(0,n) — 0 for 0 <7 < max , (4.14)
' N for n > Nmax - )

In particular, Y is discontinuous at 17 = Wpax- In contrast, W is regular everywhere,
because both v and U are regular in the entire (ry, ) strip, or equivalently the entire
(p,m) quadrant. It is worth noting that

Finally, we observe that both ¥ and W wvanish at n = 0 for any p,
Y(p, 0) =0, W(p, 0) =0. (4‘16)

This is necessary to ensure regularity of Ey4, and follows from the fact that Y and W are
proportional to 7. Recall the factorized form (3.9) and that e} contains the volume form
on S%, which shrinks at 7 = 0.

Even though L and Y are discontinuous along the n axis at n = fmax, the form & is
smooth there. To check this, we write £ in the form

D F d
52:(dY+WdL+LdW)2—?f—(Y+LW)§—arwg. (4.17)

The terms dY and dL are a potential source of § function singularities,

dy = (+N) 6(n — Tmax) dn , dL = (—1) 6(n — Mmax) dn , (4.18)

where the prefactor of the § function is simply the jump of Y, L across nmax. As we can see,
the é function singularities cancel against each other in (4.17), by virtue of (4.15). Notice
also that the function Y 4+ L W is continuous along the 7 axis across the monopole location.

4.2 Local geometry and form F4 for a puncture

We are now in a position to discuss the geometry and the form F, for non-trivial punctures.
In this section we show that all puncture data are encoded in the fluxes of E, along the

non-trivial 4-cycles of the geometry Xg.

Geometry for a puncture. The reformulation of the non-puncture geometry of sec-
tion 4.1 provides a natural starting point for the construction of a genuine puncture ge-
ometry Xg, and determines the correct gluing prescription of Xg to Mg’“lk. We utilize the

same fibration structure (4.9), repeated here for the reader’s convenience:
Sh—Xe—Xa, Sz Xa—R. (4.19)

The space R? is again parametrized by cylindrical coordinates (p,m,x), and Ss% shrinks at
1n=0. The Sé fibration is of the form

DB =dB — Ldx, (4.20)
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but with a more general L(p,n) than in the non-puncture case. In the base space R?, the
relevant portion of the (p,n) quadrant is a region analogous to the shaded region in figure 1
plot (b). The unshaded region outside is identified with the bulk of the Riemann surface.

In the non-puncture case, the S}% fibration has only one unit-charge monopole source
located at 7 = Npmax- We now consider several monopoles and allow for charges greater
than one. More precisely, we consider a configuration with p > 1 monopoles, located at
(p,n) = (0,m4), a=1,...,p. The last monopole location is identified with Nmax, 7p = Tmax-
For uniformity of notation, we also define 7 := 0. The function L(p, n) is piecewise constant
along the n axis, with jumps across each monopole location 7,. We introduce the notation

L(0,n) =4q for Na—1 <N <7Na - (4.21)

We also demand
L(0,n)=0  for 1> = Nmax - (4.22)

This condition guarantees that, along the n axis for 7 > 7Mmax, the x circle in the base
(i.e. setting D3 = 0) coincides with the ¢ circle. This allows us to glue the local puncture
geometry to the bulk of the Riemann surface in a straightforward way.®

The charge of the monopole at n = 7, is measured by the discontinuity of the L
connection across 7 = 1,. If S? denotes a small 2-sphere of radius e surrounding 7 = 7, in
the base space spanned by (p,n,x), we have

dD N=7a+e€
LT e~ ta =i, (4.23)

where the quantity kq is a non-negative integer.” Combining (4.23) and (4.22) we imme-
diately derive the important relation

p
b, = Z Ky . (4.24)
b=a

Since kq > 1, the sequence {{,},_, is a decreasing sequence of positive integers. As a final
remark, the non-puncture geometry is recovered by setting p =1, k; = 1.

Orbifold singularities. A crucial aspect of the generalization from the non-puncture to
a genuine puncture is the possibility of a monopole charge k, > 1. In analogy with the
non-puncture case, in the vicinity of 5 = 7, the space X, is modeled by a single-center
Taub-NUT space TN, with charge k,. The latter has an R*/Z;_ orbifold singularity.
This singularity admits a minimal resolution in terms of a collection of k, — 1 copies
of CP'. Let ﬁka denote the resolved Taub-NUT space. In ﬁka? each CP! has self-
intersection number —2, and the CP!’s form a linear chain with intersection number +1
between distinct, neighboring CP'’s.

61t is also interesting to explore more general possibilities, in which the gluing involves a non-trivial
identification of circles. We briefly comment on this point in the conclusion.
"The sign is inferred from the non-puncture case. Supersymmetry demands that all monopole charges

carry the same sign.
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In the resolved geometry ﬁka? we use the symbol &, 1, I =1,...,k; —1 to denote the
Poincaré dual 2-forms to the CP! cycles resolving the singularity. The forms Wq,r satisfy

]N Bag NGy = —CpiFa), (4.25)
TN,

si(k“) on the r.h.s. denotes the entries of

where there is no sum over a and the symbol C}
the Cartan matrix of su(k,).

The form FE, for a puncture. Let us now discuss the structure of the form E, near a
puncture. We assume the factorized form (3.9) and the ansatz (4.12) for &;, repeated here
for convenience,

Ei=&Ned+..., Egzd[Y%—W%], (4.26)
where the dots represent terms associated to the flavor symmetry of the puncture, discussed
in subsection 4.2. In order to ensure regularity of F4, we must again demand that both
W (p,n) and Y (p,n) vanish at n =0, as in (4.16).

In order to analyze the properties of E4, we first have to study the non-trivial 4-cycles
in the puncture geometry Xs. Below we construct two families of 4-cycles, denoted {Co}5_,;
and {B,}Y_,. As we shall see, regularity of F; at the monopole locations implies that flux
configurations are labelled by a partition of N.

The 4-cycles {C,},_,. Foreacha=1,...,p—1, the 4-cycle C, is constructed as follows.
In the (p,7n) quadrant, pick an arbitrary point A, in the interior of the interval (7q, 77a+1)
along the 7 axis, and an arbitrary point B, with n = 0, p > 0, see figure 2. At the point
Ag, the x circle in the base, i.e. at D = 0, is shrinking. At point B,, 552] is shrinking. We
thus obtain a 4-cycle with the topology of an S4 by combining the arc A;B,, the x circle
in the base, and ng. The same construction can be repeated by selecting a point A, along
the n axis in the region 77 > 7pax. We denote the corresponding 4-cycle as Cp. Crucially,
by virtue of (4.22), the x circle in the base is nothing but ng for n > Nmax- It follows that

Cp~ St (4.27)

This observation allows us to fix a uniform orientation convention for all 4-cycles {Co}5_;:
we must choose the convention that ensures fc,, E; = +N, see (2.5).

To compute the flux of E4 through C,, with a = 1,...,p — 1, we enforce D3 = 0 at
point A4 by setting df8 = £4+1 dx. We then obtain

E, — Q { _ d_x__ _ B“_
1= [ End]Y +(L—lar)W[ A =~V + (L~ lar)W] " = Y(Ad) . (4.28)

‘a

In the second step, we used | 53 eg = 1, and we have recalled that y has periodicity 2.
In the final step, we utilized W(B,;) = 0, Y (B;) = 0 (which follow from (4.16)) and

L(As) = €a+1 (which follows from (4.21)). While (4.28) was derived under the assumption
a=1,...,p—1, it is verified that it also holds for a = p.
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Figure 2. A generic profile of monopoles. The arcs A;B, form part of the 4-cycle C,. The bubble
denotes the 2-cycle S;, which is part of the 4-cycle B,.

The computation (4.28) deserves further comments. First of all, since fCa E,; must be
quantized and the location of A, inside the interval (1,,7,+1) is arbitrary, we learn that
Y (p,n) is piecewise constant along the n axis. We introduce the notation

Y(O,T?):yaEZ for Ta <N < TMat1 a=1,...,p—1,

Notice that yg = 0, because Y vanishes at n = 0. Moreover, we can check that the
orientation we chose in (4.28) is consistent. Indeed, (4.28) holds for any choice of p and
kq, and in particular for the non-puncture. In that case, (4.14) shows that Y = N along
the n axis for 7 > Nmax. We thus recover the expected relation | ¢, Fa=+N.

The identification (4.27) provides the boundary condition

yp=N. (4.30)

For any puncture, supersymmetry requires that the flux of F, through all the C, carry the
same sign. It follows that

Yo >0 for a=1,...,p—1. (4.31)

The 4-cycles {Ba}gzl. For a = 2,3,...,p, we can construct a 4-cycle B, as follows.
Consider the interval [1,_1,7,] on the 7 axis. The circle Sé shrinks at the location of
the monopole sources, but has finite size in the interior of [7,_1,7,]. As a result, we can
combine S}% and [1,_1,7] and obtain a 2-cycle S, with the topology of an S2, depicted
as a bubble in figure 2. The desired 4-cycle B, is then simply obtained as B, = S, x S3,
since SS% has finite size in the entirety of [1,—1,7,]. We can also construct a 4-cycle B;
by combining the interval [0,7;] with Sé and Sgl. In contrast with the case a = 2,...,p,
the S}% circle is not shrinking at the endpoint n = 0. However, S&% is shrinking there, and
therefore B is still a closed 4-cycle.
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The flux of E; through the cycles {B,}}_, is computed from (4.26) by selecting the
terms with one Dj factor,

Dp

o

By =— / e N dW A W (0,7) — W(0,7a—1) - (4.32)
B, a
We have recalled that e? integrates to 1 over S3, and that 8 has periodicity 2m. We have
also chosen an orientation for B,.

To argue in favor of our orientation convention, we specialize (4.32) to the case of the
non-puncture, p = 1, 11 = fJmax. In that case, the cycle B must be equivalent to S*, since
the latter is the only non-trivial 4-cycle in the non-puncture geometry. From (4.15), (4.16),
we immediately see that the r.h.s. of (4.32) evaluates to +N.

It follows from (4.32) that the jumps in the values of W between consecutive monopole
locations must be integers, by virtue of F4 flux quantization. Moreover, supersymmetry
demands that the flux of E; must have the same sign for all {B,}},_,. Consistency with
the non-puncture case requires that this sign must be positive. In conclusion, we can write

W(0,7q) = wa , Wg — We—1 € Lt , wo =0, (4.33)

where the last relation follows from (4.16). Notice that {wg}}_; is an increasing sequence

of positive integers.

Regularity of F4 and partition of IN. The quantities I and Y are piecewise constant
along the 7 axis, with jumps at the location of the monopoles. The total form Ey4, however,
must be regular everywhere along the 1 axis. The terms dL and dY in (4.17) are a potential

source of  function singularities in &£, since

=Y (fay1 — o) 5(n —na) dn . (4.34)

p
dY| - — Yau1) 6(n — ma) d, dL| _
p=0 ;(ya Ya 1) ("7 7?&) T p=0 2

The normalization of each é function at a given 7, is inferred from the jump of ¥, L across
Ta, see (4.29), (4.21) respectively. We can achieve a cancellation of each d(n — 7,) term
in (4.17) by demanding

0=va—Ya—1+wa (€a+1 - ga) = Ya — Ya—1 — Wa ka , (4-35)

where in the last step we made use of (4.23). We know from (4.16) that yo = 0. As a
result, we can use (4.35) to express the values of y, in terms of wq, kq,

a
Ya= ) wpkp . (4.36)
b=1

Moreover, we have also established that y, = N, see (4.30). Specializing (4.36) to a = p

we thus obtain a crucial sum rule for the flux data w,, kg,

p
N=> waka . (4.37)
a=1
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N = Zwa a lekl

(k1,k2,ks3) = (1,3,2)

(wy,wq, ws) = (2,3,6) wa X kg
(£1,€2,¢5) = (6,5,2)

(N1,N2,N3) = (12,17,23)

1.U3Xk3

Figure 3. An example of a flux configuration for N = 23 and associated Young diagram. The
configuration has p = 3 monopole sources with prescribed k,, w,. We highlighted the decomposition
of the Young diagram in rectangular blocks of dimensions w, X k.

Recall that {w,}}_, is an increasing sequence of positive integers, see (4.33). Moreover,
all k, are integer and positive. It follows that the relation (4.37) defines a partition of NV,
which can be equivalently encoded in a Young diagram. Figure 3 exemplifies the translation
of (4.37) into a Young diagram, in the conventions used throughout this work.

It is worth noting that, thanks to (4.35), the quantity Y + W L is continuous along
the n axis.® At the monopole location 1 = 7, it attains the value

a— a
(Y + WL)(0,7) = N, = Z wy kp + wq £y = Z(wb — wp_1) by . (4.38)

If we choose the last monopole a = p, we can use £, = k, (because L is zero on the 7 axis
for 7 > 7max) and the sum rule (4.37) to infer N, = N.

Flavor symmetry. In the case of the non-puncture, i.e. p = 1, k1 = 1, the space X4 does
not admit any non-trivial 2-cycles. As soon as we consider more than one monopole source
and /or monopole charges greater than one, however, the geometry X4 contains non-trivial
2-cycles. First of all, there are the 2-cycles {S,}}_, introduced above (4.32), which have
the topology of a 2-sphere and are obtained by combining the interval [1,—1, 7] along the
n axis with the D fiber direction. Let us stress once more that the DS circle does not
shrink at 79 = 0, and therefore the first interval [0,7;] combined with Sé does not yield
a 2-cycle. The second class of 2-cycles in X is the collection of resolution CP!’s at each
monopole source with k, > 1, introduced at the end of section 4.2 above.

The existence of non-trivial 2-cycles in X, allows us to include additional terms in Ej.

The total F, thus reads

p ka—l

E4—€2/\32 —i—Z—/\wa—i—ZZ aI/\waf, (4.39)

a=1 I=1

where & is as in (4.26). The quantities Fj, ﬁa, 1 are field strengths of 4d external con-
nections. The 2-form w, is the Poincaré dual in X4 of the 2-cycle &, while the 2-forms

8 As explained in appendix D, this quantity is the line charge density in the Gaiotto-Maldacena puncture
solutions [9].
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Wq,1 are the Poincaré duals of the resolution CP'’s at each monopole with k, > 2. (The
sum over I is understood to be zero if k, = 1.) The 4d connections F,, ﬁa,j in (4.39) are
interpreted as background gauge fields for the flavor symmetry associated to the puncture.
More precisely, (4.39) captures the Cartan subalgebra of the full lavor symmetry group
P
Gr=5]] U(ka)] . (4.40)

a=1

The connections ﬁa, 7 are in one-to-one correspondence with the Cartan generators of the
SU(kq) factor in G, while the F, correspond to the remaining U(1) factors.

The states associated to the non-Cartan generators of G are not visible in the super-
gravity approximation, since they originate from M2-branes wrapping the resolution CP'’s.
For the purpose of computing 't Hooft anomaly coefficients, however, the form E, contains
all necessary information.

5 Puncture contributions to anomaly inflow

As explained in section 2.3, the contribution of the a'® puncture to the total inflow anomaly
polynomial I, (i).“ﬂow (Py) is given by (2.22), with 72 given by (2.9). In this section we compute
the integral in (2.22), considering the two terms in Z;5 in turn. For notational convenience,

we suppress the puncture label a throughout the rest of this section.

5.1 Computation of the (F4)® term

The total expression for the form E4 near a puncture is given in (4.39), with & as in (4.26).
Our task is to identify the terms in (E4)3 that saturate the integral over the 6d space Xg,
which is an S3 fibration over Xy, see (4.9). The Bott-Cattaneo formula, reviewed in
appendix A.3, implies

1
A Q _
/52 (e2)” = 4P1(NSO(3)), /SE% ey =1, (5.1)

Q

while even powers of e? integrate to zero. It follows that

p P ko—1 5 2
1 F, S FaI .
(E1)* = -m(Nso(s )] (52)3+3/ E2N = Awa+ “NGag| - (5.2)

To proceed, we isolate the terms in (£5)3 that saturate the integration over X,

DB F
(52)3=—3f d[(Y+WL)2} naw A DX DB Es
X4 X4

5.3
2 2 2 ( )

The integration over the angles x, (3 is readily performed. (Recall that they both have
periodicity 2m.) The integral of the 2-form d[(Y + W L)*] A dW on the (p,n) plane is

discussed in detail in appendix B. Combining all elements, we arrive at

/. (e o N 22w — ) + 3 (Ve —wa k) (WE—wd)] . (54)

2
a=1
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Let us now turn to the second X, integral in (5.2). In this case, integration over X} is

saturated by considering terms quadratic in the 2-forms wg, @q,1,

P ka—1kp—1

/(E)3 —3F¢A!ZZZ (@), (b,7) 2“ %

a,b I=1 J=1
D P D Il
F, Fyg
Z +2ZZ Kaon g Mo | +oes (5:5)

where the coeflicients are

Kj(a,]),(b,‘}) = /X (Y + W L) Qa,j A ab,_)r ,
4

K:a.,b: (Y—i—WL)wa/\wb,
X4

Ka,®,0) = /X (Y +WL)w, AWy, - (5.6)
4

We have used the fact that the only relevant part of £ is the one with legs along external
spacetime, —(Y + W L) Fy/(2m).

The coefficients K4 1),3,7) are computed as follows. The 2-forms &, ; are associated
to the resolution CP'’s of the orbifold singularity at the '™ monopole. It follows that
K(a,1n),@,0) is only non-zero for a = b. As a result, the quantity ¥ + WL is evaluated at
(p,m) = (0,7m4), and gives a factor N, by virtue of (4.38). The integration over X4 reduces
to an integration over the resolved orbifold ﬁka and is performed using (4.25). We thus
have

su(kg)

Ka,1),(6,5) = —0ap Na Cp 5 (5.7)

A computation of the coefficients Kqp and K, 5,7y in (5.6) requires full control over the
intersection pairing among the 2-cycles S, and the resolution CP'’s, as well as over the
normalization of the 2-forms w,;. We refrain from a discussion of these coeflicients.

Let us summarize the final result of the computation of this subsection, using (3.15)
to express nld = Fy/(2m) and p1(Nso(3)) in terms of 4d Chern classes,

L( _251 2[232 w —w _1) +34a (No — wa £a) (’U"g_w?x—l)}
6
ka—1 (k)FI Fb
+6] ZNa 3 ok 22 Z Kap 22
a=1 I1,J=1 a,b=2 27{
p ky—1
F, FbJ
—1201222 a®) 57 N o - (5.8)
a=2 b=1 J=1

5.2 Computation of the F4 A Xg term

Recall from section 4.2 that the puncture geometry X, has an R*/Z,. orbifold singularity
at the location of each monopole of charge k, > 2. The singularity is modeled by a single-
center Taub-NUT space TNg,, which can be resolved to ﬁka- We use the notation X,g
for the space obtained from X4 by resolving all its orbifold singularities.
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With this notation, the relevant decomposition of the 11d tangent bundle, restricted
to the brane worldvolume, is

TMi|we = TW4 & Nso@) @ TX, - (5.9)

The above expression is motivated by the fact that the resolved space X is a local model
of the cotangent bundle to the Riemann surface in the vicinity of the puncture.
Let A;, Ao denote the Chern roots of T'X,. Since ¢; (TX4) = 0, we can write

Al=—Ag=:]\. (5.10)

In our geometry, the U(1) associated to the x circle is gauged with the 4d connection Ag.
In order to account for this fact, we shift the Chern roots of T'X},

A=A+ 1At AP = A LA (5.11)

where 7149 is the spacetime component of the Chern root of Nso(2) introduced in (3.4). We
see from (5.11) that it is the sum of Chern roots A; 4+ Ay that is shifted with +74d. This is
due to the definition of the angle x in terms of 3, ¢ — see (4.4). We can now compute the
shifted Pontryagin classes for TX,, including the contribution from the gauging with 74d

pl(TX4)tot (/\tot)Q + (/\tot)2 = (TX4) 4= ( f-ld)21

Pa(TXa)" = (AP (A2 =—1p1(TX4)(ﬁ4d)2, (5.12)

where p; (T)z;) is the first Pontryagin class of TX, before the 4d gauging is turned on.
Using (5.9), (2.10), and standard formulae for Pontryagin classes (A.10), we compute

1 . —_—
Xs = g [P1TWa) + P1(Nso@) — ()2 |p1(TXa) + ... . (5.13)

We have selected the terms with one p; (T)z;), with the dots representing the remaining
terms, which will not be important for the following discussion.

We are now in a position to integrate F4 A Xg over Xg. The integral in the directions
of X, is saturated by p1 (TX,_I), while the integral on S?z is saturated by e? in the term
Ey N el in Ey. Tt follows that

1 ) _
Bu N Xs = 55 & [(TWh) + m(Nso) = (W97] [ (v + WD) m(TKa) . (514

Xe 4

We have already performed the integral over Sgl, and we have selected the only piece of &
which is relevant, i.e. the part with Fjy = 2174, The integral over X, localizes onto the

positions 1 = 7, of the monopoles,

L (Y + W L) p1 (TXa) = ZNG ]N p1(TTN,) - (5.15)

k
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We exploited the fact that the quantity Y + W L takes the value N, at (p,n) = (0,74),
see (4.38). The integrals of the individual classes p;(T'TN,) are evaluated making use of
the results of [31] for ALF resolutions of R*/Zy_.°

/N p1(TTNL,) =2k, . (5.16)
TNk,
In conclusion, we obtain
1 p
EsAXs= =Y Nakad] [pl(Tm) 4k 4@, (5.17)
Xg 24 P

where we have expressed the result in terms of ¢}, c& using (3.15).

6 Comparison with CFT expectations

In this section we first summarize the total result for the inflow anomaly polynomial, and
we then prove that it matches with the CFT expectation.
6.1 Summary of inflow anomaly polynomial

We can assemble the contribution I°%(P,) of the o' puncture to the inflow anomaly
polynomial, making use of (2.22) and the findings of the previous sections. The result reads

. 1 1 .
I (Ba) = (= 1) () |5 (6)° = 35 (W) — % (Bo) f of

+ Iénﬂw,ﬂavor(Pa) 1 (6.1)

where the anomaly coefficients are given in terms of the quantized flux data as

(ny — 1) ™1V (Py) = ZNaka,

P
. 1
pinflow(p ) — Z[ 2 (wd —wd_ 1)+€E(Na—wa€a)(w§—wﬁ_l)—gNaka ,
=1
- ol F F P F, F
Iénﬂow,ﬂavor(Pa): ?[_ZN Z Csu(kg) aI aJ+ Z ab_;/\_b
a=1 I.J=1 a,b=2

P P k-1 ﬁ
+QZZZK“(6J} 2T 2?1.] (6‘2)

a=2b=1 J=1

The coefficients Kqp, Kq 3,7y in Ig inflow, ﬂavor(Pa) are defined in (5.6). A minor comment
about our notation is in order. We have reinstated the puncture label a on the Lh.s. s of
the above equations. Strictly speaking, each puncture comes with its local data, and on

?Equation (12) in [31] gives the Euler characteristic x for a generic ALF space based on R*/T". Exploiting
self-duality of curvature, specializing to I' = Z;, using equation (23) in [31], and comparing with the value
of x given in equation (33) in [31], one reads out the integral of p;(TTNg,).
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the r.h.s. ’s we should write p®, kj, £5, and so on. We prefer to omit the label a from the
r.h.s. ’s of the above relations in order to avoid cluttering the expressions.
In the piece related to flavor symmetry, we expect an enhancement of the first term to

the second Chern class of the full non-Abelian SU(k,) factor in the flavor symmetry group,

ka—1 = p
_ ZN 3 coutta) Fut Fa; AL 53 N, e (SUR)) - (6.3)
a=1 I.J=1 2m a=1
The corresponding flavor central charge is
KSiy = —2 N, . (6.4)

For the sake of completeness, we also restate the bulk contribution of the Riemann

surface to the anomalies:
. 1
(ny — np) ™" (Sgn) = SX(Egn)NV, (6.5)

N () = <X (Sgn) AN® — N) (6.6)

We would now like to compare these expressions with the anomalies of the 4d SCFT. Our

results are summarized in (6.46)—(6.50).

6.2 Anomalies of the N = 2 class 8 SCFTs

The anomaly polynomial of any 4d N’ = 2 SCFT with flavor symmetry G can be written
in the form

1
& p1(TWy) | —ny & B — kg & cha(Gr) . (6.7)

1
IE¥T = () |3 (6)° - 35

This structure follows from the N’ = 2 superconformal algebra [12]. Here, chy(GF) is the
2-form part of the Chern character for Gr; for instance, cha(SU(m)) = —c2(SU(m)) (see
appendix A.1). The flavor central charge is defined in terms of the Gr generators T as

kG 0% = —2tr Ryr—pTOT". (6.8)

The parameters n, and nj correspond to the number of vector multiplets and hypermul-
tiplets respectively when the theory is free, and otherwise can be regarded as an effective
number of vector multiplets and hypermultiplets. These are related to the SCFT central
charges as a = 5;(5n + n4), and ¢ = 15(2ny + np).

An N = 2 theory of class S has two contributions to their anomalies, which we denote

in terms of the n, and nj parameters as

n T
O T, )+ ST T (s, ¢ SR . (69)

a=1 a=1
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The bulk terms are proportional to the Euler characteristic x of the Riemann surface,
1
(ny — 1) T (Sg,0) = —5 X(Bgn) (N 1), (6.10)

1 4 1
ng" ! (Sgm) = ) X(¥g.n) (§N3 - EN - 1) . (6.11)

These were computed in [7, 18] by integrating the 6d (2,0) anomaly polynomial over the
Riemann surface without punctures. The remaining terms in (6.9) depend on the local
puncture data, which we will now review.

A regular N = 2 puncture is labeled by an embedding p : su(2) — g. For g= Ay _1, p
is one-to-one with a partition of N, encoded in a Young diagram with N boxes. Consider

a Young diagram with p rows of length E;, with ¢ = 1,...,p. The partition is given as

P
N=>"¢. (6.12)
i=1

A puncture corresponding to this partition contributes a flavor symmetry G to the 4d
CFT, where G is the commutant of the embedding p,

ﬁ —
[TU®)|-
i=1

Gp=S5 (6.13)

The quantities k; are defined as

ki=lb—bip1, G

5
0, 0 = Z kj . (6.14)
=i

In order to write down nSh T (P,) it is also useful to introduce the notation

i i—1 P
ti=N;—Nisy, Ny=Ngp=N, Ni=) L;=> jkj+i» k. (6.15)
j=1 j=1 j=i

Notice the relation 2 f\}@ — Iﬂ\}iﬂ — Iﬂ\}i_l = Eg, which encodes the Ny = 2N, condition for the
vanishing of the § function in the dual quiver description [3].

The puncture contribution to the 't Hooft anomalies of the class & SCFTs can be
stated in terms of this data as follows:

1 - 1
(nv _ nh)CFT(Pa) = _§ ; Nik; + 5 , (6.16)
CFT A P
nC (Pa)z—Z(N - @)—ﬁN +35 (6.17)
i=1
KCFL —9N; . (6.18)



The last equation is the mixed flavor-R-symmetry contribution due to a factor SU(E’) of
the flavor group. These contributions were computed explicitly for the A, case in [9, 19],
with the general ADE formula derived in [20].1°

It will also be useful to note the following expressions for n,, np associated to a free
tensor multiplet reduced on a Riemann surface without punctures:

1 1
e T = (Sg0)s (g =) = 2 (Sg0) . (620)

These expressions can be found by dimensional reduction of the 8-form anomaly polynomial

of a single M5-brane — see appendix C for more details.

6.3 Relating inflow data to Young diagram data

The map between the data of the Young diagram and the inflow data is as follows. Consider
a profile with p monopoles. The monopole located at 7, on the n axis has charge

ka == Ea - fa_f_] 3 (6.21)

where we used (4.23) to express kq in terms of £,. Let us recast the sum rule (4.37) in

the form »
N = Z(wa —wa_q) Ly . (6.22)
a=1
We can interpret (6.22) as a partition of N determined by the Young diagram
Y = [(£)", (L) o (L) e et L () P R] (6.23)

We are using a notation in which Y is specified by giving the lengths of its rows. More
precisely, we list the distinct lengths £, in decreasing order. The exponent of £, is the
number of rows with length £,.

The map to the rows ¢; of the Young diagram that describes the CFT is

¢; = value of L along the 7 axis for n € (i — 1,17), i=1,2,...,wp. (6.24)
Equivalently, we can write
0 =4, foralli =wq_1+1,...,wg . (6.25)

Then, the sequence
(ly,02,... ,0p), p=wp . (6.26)

10 Another common notation uses the pole structure, a set of N integers p; defined by sequentially num-
bering each of the IV boxes in the Young diagram, starting with 1 in the upper left corner and increasing
from left to right across a row such that p; = i—(height of #’th box) [1]. These are related to the NV; as

i(?i —1)ps = é (4N® —3N? —N) — i(N2 — ND). (6.19)
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P i
N=> (wa—war)la=> b wy X £y
a=1 i=1
p=3, p=6
{wlu-":wp) :(27316)
(‘glu"':gp) :(67512)

(‘?’11"-:‘?‘5) = (6:615:2:272)

(tUQ — wl] X €2

(?.Ug — ?.Uz) X fg

Figure 4. The example of figure 3 is reformulated in terms of £,, l;. We highlighted the decom-

position of the Young diagram in rectangular blocks of dimensions (w, — wa—1) X £g-

is exactly the sequence of lengths of all rows of Y, this time listed with repetitions. The
total number of rows is equal to the quantity wy. Figure 4 shows the example considered
in figure 3, reformulating the partition of IV in terms of £, and E;

We can identify the monopole charge k, with the Fi‘c; as

_ {0 if i ¢ {wa}b_;,

k; (6.27)

ko if i =w,g, .

When this is nonzero, it corresponds to a location of a monopole, and equals a corresponding

kq. Therefore we can equivalently rewrite the flavor symmetry (6.13) as

Grp=S5

f] U(ka)] . (6.28)

In this way, the wvariables that run over number-of-monopoles and those that run
over number-of-rows are related by taking into account the multiplicity of rows of the
same length.

Before going on, we pause to go through several examples of puncture profiles, mapping
the Young diagram data to the inflow data and computing the anomaly contributions of the
punctures. We draw the corresponding Young diagrams for the case of N = 4 in figure 5.

Example 1: non-puncture. The Young diagram data that labels a non-puncture (no

flavor symmetry) is:
non-puncture : p=N, E;zl,__‘,N =1, (}cﬂizl,_“,N_l =0, kN = 1), N;—i. (6.29)
The corresponding inflow data is
non-puncture : p=1, ¢ =1, k=1, Ny=N, w;=N. (6.30)

For this case, the CFT answers (6.16)—(6.18) simplify to

(o — 1) FT(Paon) — —%(N _1), (6.31)

1 1
SFT (Pa) = LN - Ny 4 L. (632
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;o

Figure 5. The Young diagrams corresponding to the four discussed examples, drawn with N =4
boxes. From left to right, the preserved flavor symmetry is: 0, SU(4), U(1), SU(2).

This has the net effect of shifting x — x + 1, or in other words, the number of punctures n
from n — n — 1. This is exactly the behavior of a non-puncture, whose only contribution
is “filling” a hole on the Riemann surface.

We can compare with the inflow answer. Plugging in to (6.2), we obtain

(np — 127) P (o) = %N , (6.33)
1% (Poon) = % 4N®—N) . (6.34)

Comparing with the bulk inflow answers (6.5), (6.6), we observe agreement up to
O(1) terms.

Example 2: maximal puncture. The puncture that preserves the maximal flavor
symmetry of Gp = SU(N) is known as a maximal puncture. In this case the tilde'd
variables that denote the Young diagram data are exactly equivalent to the un-tilde’d
variables from the geometry since there is both one monopole and one row, and are given by:

SU(N) p:]_? EIIN? kIIN? N]IN, ’UJIZI. (635)

The CFT answers are given by (6.16)—(6.18), which for the maximal puncture sim-
plify to
1
(ny — 13) ¥ (Prnax) = nSF T (Pax) = —§(N2 ~1). (6.36)

In comparison, the inflow result is
i ) 1
(ny — np) ™% (Ppay) = niM% (Ppay) = §N2 . (6.37)

Example 3: minimal puncture. The puncture profile that preserves the minimal flavor
symmetry of U(1) corresponds to a Young diagram with

Gr=UQ1): p=N-1, (=2, iy N-1=1),

_ _ - i (6.38)
(kv=1, kz. N—2=0, kyn-1=1), Nij=i+1.
Equivalently, in terms of the inflow data:
Gr=U(1): =2, (l1=2,42=1), (k1=1, ke =1),
F (1) P (€1 2=1), (ki 2 =1) (6.39)

(N]IQ?NQZN), ('wl:]_,TUg:N—]_).
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There are p = 2 monopoles, each with monopole charge 1.
The CFT anomalies (6.16)—(6.18) for the minimal puncture are

1y — 1) F L (Poin) = I +1), nSFT(P.,) = LN _en? —N+3). (6.40
2 v 6
Plugging the inflow data into (6.2), we once again find
1 .
1nﬂ0w (Pmm) + nCFT(Pmin) = E 3 n}lnﬂcm* (Pmin) + RSFT(Pmin) =0. (6-41)

Example 4: rectangular diagram. For even N, we can preserve SU(N/2) via:

Gr=SU(N/2): p=2, (LL=N/2, 5=N/2),

— _ _ _ (6.42)
(k1 =0, k2=N/2), (Ni1=N/2, No=N),
or equivalently, in terms of the inflow data:
GF:SU(N/Z) p:]_, gl :N/Z, k]IN/Q, Nl :N, w1:2. (643)
For this case, the CFT puncture anomalies are
1 1 5 1
(ny — nh)CFT(R-ECt) = —ZNQ —+ 5, RSFT(PI-ECTI) = —Zn2 —+ E . (6.44)
and the inflow puncture anomalies are
. 1 . 5
(n'v - nh)mﬂw(jjrect) = ZNQ, n;;nﬂw(‘Prect) = ZNQ . (6-45)

6.4 DMatching CFT and inflow results
Comparing (6.5)—(6.6) with (6.10)—(6.11), we see that our results for the bulk anomalies

can be summarized as
) 1
i o% (Sg.n) + RSFT(Eg,n) = 5X(Zgin) , (6.46)

Our results for anomalies due to a single puncture on the surface can be summarized as
1

lnﬂOW(P ) + RCFT(PQ) _ § : (648)
nMoV (P 4+ ngFT(Py) =0, (6.49)
kSt + kST =0 - (6.50)

We prove these relations in appendix E using the mapping discussed in the previous sub-
section. Then, adding up the contribution of all n punctures on the surface a la (6.9) gives

1nﬂ0w

1
+ nSFT = i 1IN (5,.0) = SX(T0). (6.51)

1nﬂ0w

+ nFT = pfree tensor(yy 0y —0 . (6.52)

We see that the inflow computation exactly cancels the CFT computation, up to the
contribution of a single free tensor multiplet over the Riemann surface that does not see
the punctures.
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7 Conclusion and discussion

In this work we have considered 4d N' = 2 class S theories obtained from compactifica-
tion of the 6d (2,0) theory of type Ay—1 on a Riemann surface ¥4, with an arbitrary
number of regular punctures. We have provided a first-principles derivation of their ’t
Hooft anomalies from the corresponding M5-brane setup. More precisely, we have shown
that anomaly inflow from the M-theory bulk cancels exactly against the CFT anomaly, up
to the decoupling modes from a free (2,0) tensor multiplet compactified on the Riemann
surface X4 0.

The inflow anomaly polynomial is obtained by integrating the characteristic class Z;9
over the space Mg. The latter is a smooth geometry supported by non-trivial G4-flux con-
figuration. In the absence of punctures Mg is an S* fibration over the Riemann surface,
but in the presence of punctures it acquires a richer structure. The topology of Mg and
the fluxes of G4 along non-trivial 4-cycles encode all the discrete data of the class & con-
struction. In particular, the partition of N that labels a regular puncture is derived from
regularity and flux quantization of G4 in the region of Mg near the puncture.

Our inflow analysis has interesting connections to holography. At large N, the holo-
graphic dual of an A" = 2 class S theory of type Ay_; with regular punctures is given
by the Gaiotto-Maldacena solutions of 11d supergravity [9]. These solutions are warped
products of AdS5 with an internal 6d manifold Mé’c’l, supported by a non-trivial G4-flux
configuration GEO]. The topology of M;?Dl coincides with the topology of Mg, and GE‘D]
is equivalent in coholomogy to E,, which is the class E, with the connections of exter-
nal spacetime turned off. We refer the reader to appendix D for more details. In other
words, the classical solution to two-derivative supergravity — which is valid at large N —
provides a local expression for the metric and flux that is representative of the topologi-
cal properties of the pair (Ms, E4) relevant to the inflow procedure — which gives results
that are exact in IN. This observation is particularly interesting in light of the fact that,
thanks to superconformal symmetry, the 't Hooft anomaly coefficients are related to the a,
c central charges of the CFT. Anomaly inflow thus provides a route to the exact central
charges, which in turn contain non-trivial information about higher-derivative corrections
to the effective action of the AdS5 supergravity obtained by reducing M-theory on Méml.
This circle of ideas admits natural generalizations to other holographic setups based on 11d
supergravity solutions that describe the near-horizon geometry of a stack of M5-branes,
including A/ = 1 constructions such as [4, 5]. The interplay between M5-brane geometric
engineering, anomaly inflow, and holography warrants further investigation.

We believe that the methods of this paper can be generalized to treat a larger class
of punctures. For instance, it would be interesting to identify the local geometry and Gy-
flux configuration for N/ = 2 irregular punctures. In that case, we expect a more subtle
interplay between bulk and puncture. This intuition is motivated by the fact that, in
setups with irregular punctures, the 4d U(1), symmetry results from a non-trivial mixing
of the Sé circle with a global U(1) isometry on the Riemann surface (which is necessarily
a sphere) [2].
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Our strategy can also be applied to regular (p,g) punctures in N' =1 class S [11, 17].
A (p,q) puncture preserves locally an SU(2) x U(1) R-symmetry, which is twisted with
respect to the SU(2) x U(1) R-symmetry in the bulk of the Riemann surface. We expect
that a regular (p, ¢) puncture is described by the same local geometry X¢ we constructed for
regular N” = 2 punctures. The gluing prescription of Xg onto Mg“lk, however, is different.
The space Xg is a fibration of a 2-sphere Sgunct onto the space X, spanned by (p,n, x, ).
In the usual case, Sgunct is trivially identified with S?z in the bulk. For a (p,q) puncture,

the angle x and the azimuthal angle of Sglmct are rotated in a non-trivial way before being
identified with the angle ¢ + 5 and the azimuthal angle of 552] in the bulk, respectively.

We also envision generalizations of our approach to a broader class of M-theory/string
theory constructions. Our findings reveal that the class 712 governs the anomalies of 4d
N = 2 theories obtained from compactification of the 6d (2,0) theory of type Ax_1. We
expect that the same class 719 also governs the anomalies of many other lower-dimensional
theories obtained from the same parent theory in six dimensions, including 4d N' = 1
theories of class S type, and 2d SCFTs from M5-branes wrapped on four-manifolds. It is
natural to conjecture that this framework still holds if we replace the 6d (2,0) theory of type
Apn—_1 with a different 6d SCFT that can be engineered in M-theory using M5-branes. For
example, one may consider the (2,0) theory of type Dy, whose anomalies were derived via
inflow in [28], (1,0) E-string theories, whose anomalies are studied in [32], or (1,0) SCFTs
describing M5-branes probing an ALE singularity, with anomalies analyzed in [33]. In each
case, a single characteristic class would govern the anomalies of both the parent 6d theory,
and of many lower-dimensional theories obtained via dimensional reduction of the former.
One can also consider generalizations of this framework to other brane constructions in

Type IIB/F-theory and (massive) Type IIA.

Finally, we emphasize that our description of punctures is different from and comple-
mentary to previous methods that use more field-theoretic tools. Indeed, the approach
developed here is more readily generalizable in M-theory and string theory, thus allowing
us to address a wider class of questions involving anomalies in geometrically engineered
field theories.
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A Global angular forms, Bott-Cattaneo formula, and Z,,

In this appendix we review some basic properties of global angular forms in odd-dimensional
sphere bundles, following [25, 26]. We also review a useful result of Bott and Cattaneo [30].
Next, we briefly review the derivation of Z;5. Finally, we explore the interplay between the
descent formalism and integrations along the fibers of the sphere bundle.

A.1 Conventions for characteristic classes
Consider a connection on a u(M) bundle with anti-Hermitian field strength F,. This can
be diagonalized by an element of U(M) as

A1

iy _ A2 . (A1)

or
For an su(M) bundle, )", A\; = 0. One can define a characteristic polynomial (also called
the total Chern class) as

c:det(l—i—%):l—i—cl—l—@—i—... (A.2)

Here the ¢j, are the 2k-form Chern classes, e.g.

ik L R - (wRYY . (A.3)

A= "o T on)2

Equivalently, we can write
=Y X, =3 ). (A.4)
i i<j
The Chern character is defined as

ch = tr; 4/ — dim(r) + ¢; + %(C% —2co) + ... (A.5)

Note that in our notation for a U(1) gauge field A, i4, = A, such that ¢; = F

E.
The field strength associated to a connection on a real so(2M) bundle can be written

0 M
-2 0
Feo _ 0 A . (A.6)
2 “X 0
The Pontryagin classes pj, are 4k-forms, e.g.
1 2 1 242 4
m= —m tI'Fso, P2 = m [(tran) — Ztran} . (A.T)
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These are packaged into a characteristic polynomial as

F.
p:det(l—l—z—::)=1+p1+p2+p3+... (A.8)

The Pontryagin classes can be written in terms of the Chern roots A; as

pr=Y_X, pa=) M\, .. (A.9)
J

i<j

Another useful set of identities relates the Pontryagin calsses of a Whitney sum of two
vector bundles ¥ = F; @ F> to the Pontryagin classes of the constituents, as

n(E) =pi1(Er) +pi(E2), p2(E) = p2(Er) + p2(E2) + p1(E1)p1(E-) . (A.10)

A.2 Global angular forms

Let £ be a real vector bundle of odd rank 2m + 1 over a base space B. The fiber of
£ over a point p € B is a copy of R?™*!  parametrized by Cartesian coordinates y*,
A=1,...,2m + 1, and equipped with the fiber metric §45. Let S(£) be the associated
sphere bundle. For our purposes, the latter is most conveniently thought of as the bundle
over B whose fiber over a point p is the unit S?™ sphere inside the R*™*! fiber of £ over
p. The sphere S?™ is defined by the relation

ot =1, (A.11)

where indices A, B, etc. are raised and lowered with d4p. We have included a hat as a
reminder that the coordinates 7 are henceforth understood to obey the constraint (A.11).
Working with these local coordinates, the non-triviality of the S(£) fibration is encoded

in the covariant differentials
Dt = di? — 048 g, (A.12)

@AB

where are the components of a s0(2m + 1) connection over the base space B. Notice

that the volume form on the fiber sphere is

1

W EAlu-AZm+1 yAl d’yA'Az FANRIEEAY dﬁA2m+1 ) (A.13)

volgam =
where we selected the prefactor in such a way that volgem integrates to 1. The form volgem
is closed but it is not invariant under the action of the SO(2m + 1) structure group of the
fibration. In this language, the global angular form is a 2m-form E5;, which is the unique
closed and gauge-invariant improvement of volgam. The class Fop, can be written as

Eom = m €A1 A2m41 yAl DﬁA2 ARERRA D@A2m+l + PZm(ﬁa DQ?F) ! (A‘14)

1
2ml! (4m)

where the corrective term Pay, (9, Dy, F') is a polynomial in 2, DgA, and FAB which are
the components of the field strength of the so(2m + 1) connection,

FAB — g8 _ 49 pn o P | (A.15)
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The corrective term Py, (7, Dy, F') is given explicitly for any m in [26]. Let us record here
only the full expressions for m =1 and m = 2,

1 . Ao .
E2 = e? = g |:EA1A2A3 DyAl DyA2yA3 — €4, A2A4 FA1A2 yAS] 3
1 ~ ~ ~ ~ A E A A -
Ei= [fAl...As Dt Dg*? D Djt 4% — 2 €4, ay FA442 Djs Dys gt

+ €A41... A5 FA1A2 FA3A4 ﬁAS} . (A]_G)

Clearly, the range of A indices in the first relation is from 1 to 3, and in the second is from
1 to 5. For brevity, we have suppressed wedge products. In the first relation we have made
contact with the notation e used in the main text for the global angular form for SO(3).
Let us stress that in writing down the above formula for F,; we have made the assumption
of an unbroken structure group SO(5). In the main text, the structure group is reduced,
and hence E, takes a different form, see (3.9).

A.3 Bott-Cattaneo formula

The Bott-Cattaneo formula [30] gives the integral of any power of the global angular form
Es,, along the S?™ fiber directions. The formula reads

[ng (Eom)2+2 =0, [ng (Bapm) 2t = 272 [pm(g)]

S 5=0,1,2,... (A7)
The symbol pp,(€) denotes the standard Pontryagin classes of the vector bundle £. Let us

stress that we are using conventions in which Eoy, integrates to 1 on the S?™ fibers. (In
the mathematics literature, Eay, usually integrates to 2.)

A.4 Derivation of Z;5

In this subsection we summarize the arguments of [25, 26] leading to the introduction of
the characteristic class Zi2. Our starting point is the Bianchi identity (2.4), repeated here
for convenience,

dGy
o = df NEy . (A.18)
Since the r.h.s. is non-zero, the standard relation G4 = dC5 is modified to
Ga _ dCs (0) (0)
—=——df NE. dE;’ = E, . A19
2 2 fAEy 3 4 ( )
Let us stress that E:go) is not gauge-invariant under SO(5) transformations. Indeed, de-
scent gives

SE” = dE" | (A.20)

Since G4 must be gauge-invariant under SO(5) transformations, C3 must acquire an anoma-
lous gauge variation under SO(5) transformations,

0C4 (1)
—— =—df NEy"' . A.21
2 f 2 ( )
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The above relation suggests an improvement of C3, denoted 63, whose anomalous gauge
variation is a total derivative,

Cs O3 (0)
B_B_ R
2 2w FE3™,

> :d[—ng”} . (A.22)

Given the gauge transformation law of 53, the following quantity is gauge invariant,

Gy, dCs; dCs (0)
—=——=—>"—dfNE;’ —fE,. A.23
2 2w 2 f 3 fEa ( )
Recall that, upon regularizing the delta-function singularity in the Bianchi identity
for G4, we excise a small tubular neighborhood B¢ of radius € of the M5-brane stack.
The 11d M-theory effective action is now formulated on a spacetime with a boundary
S% < X390 — Ws. The only relevant terms are the topological couplings C3G4G, and

Cslg, where Iy is the characteristic class (2.10). More precisely,
S_MD/ [_103G4G4_%18:|1 (A24)
2r Jmu\B

where we suppressed wedge products for brevity. Notice that we have replaced Cs with

53, and accordingly G, with 64. The gauge variation of the effective action is

&:_M :/ [_1 5C3G4 Gy 6C3 IS] :/ d[—fE:‘,”} [_1 %—Is} . (A.25)
mw Mi1 \Be 6 2 2 Mii \Be 6 2

We may now collect a total derivative, and recall d(M11 \ Be) = Xio, see (2.6). The

boundary is located at fixed radial coordinate r = ¢, and therefore we can set f = —1. We
thus arrive at o
oSu _ / ESV [ _L1GaGa Is} . (A.26)
2w X10 6 27

Since Xy sits at »r = €, we can set f = —1 and df = 0 in (A.23). The term dC3/(27)
in (A.23) is topologically trivial and is neglected. We conclude that

i) 1
oM _ / Eél) [ — —FEsFE4 — Ig] = / I{(l)) . (A‘QT)
2w X0 6 X1o0

Since both F, F, and Ig are closed and gauge-invariant 8-forms, the 10-form Iﬂ)) satisfies
the descent equations

1
ﬂglll) = 53{%(1)) : dzﬂ)) =T = s EsEsEy — Ey Iy . (A.28)

A.5 Descent formalism and integration along S? fibers

In order to connect (A.27) to the anomaly polynomial of the theory living on the M5-brane
stack, we have to perform the integral over X1g in two steps: we first integrate along the
5S4 fiber, and then integrate along the worldvolume Wps. To carry out this program, we
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need to choose a representative of Iﬂ]) that is globally defined on the S* fibers (but not
necessarily on Ws). Let us write E4 as

Ey=volgi + Zy,  Z4=dz)”, (A.29)

where volgs is the ungauged volume form on S* (normalized to 1) and Z, collects all the
terms proportional to the connection © or its field strength F'. Notice that Z4 is closed,
but not gauge-invariant. We can write Z4 = ngO), where Z:go) is globally defined on the
5S4 fibers, is not gauge invariant, and vanishes if the connection © is set to zero. We can
perform descent of the class (E4)? using quantities that are globally defined on S*. Indeed,
one has

(0) (1)

(B2 = B (Ba+volsa) 2", [(Ea)*| " = Ba(Ba +2volsa) 2" 6757 . (A.30)
To check the above descent relations, it is useful to recall that

vol2s =0,  0=06E; = dvolga +d6Z,  volgsdvolga =0 . (A.31)

Thanks to the fact that all quantities in (A.30) are globally defined on S*, we can make
sense of the following formal manipulations. First of all, let us write the descent relations
for (E4)® by splitting the differential into the internal S* part and the external part,

(D)? 5[(}34)3] @ _ (dext + dint) [(E4)3](1) - (A32)

(B2)* = (dext + dins) | (E1)*]
Let us integrate both these relations on S%. Since [(E4)3] © and [(E4)3] @ are globally
defined on S%, we can invoke Stokes’ theorem, and drop the diy; terms. We thus arrive at

/54(}32)3 = dext /34 [(E‘l)ﬂ (0)’ 5/34 [(Eal)ﬂ @ = lext /54 [(E4)3](1) . (A.33)

The above relations establish that descent and S* integration commute.

By a similar token, we perform descent on the F4[s term as
(Bals)® = B, 19, (BgIs)D = B IV . (A.34)

Since the E, factor is left intact, these quantities are globally defined on S%, and we can
repeat the above argument to show that descent and S? integration commute.

In this paper we also consider setups of the form Mg — X 9 —+ Wy. The space Mg
is a smooth compact manifold. The gauge variation that enters the descent relations has
a gauge parameter that depends on W, only. In this case, the main observation is that
it is possible to find a representative of IS)) that is globally defined on Mg. Omnce such
a representative is found, we can repeat the argument from (A.32) to (A.33), with S*
replaced by Mg, and conclude that descent and integration over Mg commute.
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A.6 Computation of II"f(X, )

In this subsection we compute I (3, ;) = [}pux Z12. Let us first consider the term (Ej)3
6
in Z;2. We can use the Bott-Cattaneo formula (A.17) to integrate over S,

1
f - (Ey)® = g (NSO(a))/ (&2)3, (A.35)
Mg" [,u.]xSqlbeg‘n

where we have denoted schematically the residual four directions of integration. The rele-
vant terms in (£2)? are

(&) > N?*(2m) 3 d(v*) D¢ F2 > 2 N3 (2m) 2 d(v*) Dp Fy F; . (A.36)

This is readily integrated recalling v(0) = 0, (1) =1, ng Fy = —2mx(Xgn). We thus get

1 F,
i Yo
/Mé:ulk(E4) =3 N x(Xgn) P1(Nso(s)) o - (A.37)

We can now turn to the term E4 Xg in Z;5. The integral over the S* fibers of Mg“lk is
saturated by F4; D N volga,

/ EyXg=N / X5 . (A.38)
M‘Ij:mlk Eg,n

To evaluate the class Xg we need the decomposition of the 11d tangent bundle restricted
to the brane worldvolume,

TMI]'W{; = TW4 ) ng,n ) NSO(Z) & NSO(S) . (ABQ)

Recall that the Chern root of ¥, is £, the Chern root of Ngo(g) is = —t 474, We can
now use repeatedly the standard relations for the Pontryagin classes of a sum of bundles,
given in (A.10). We obtain

]. [l A
XS = E n4d [pl(TW4) +m (NSO(3)) — (n‘id)ﬂ +..., (A40)

where we have only included the terms with one 7 factor. We then have
1 ) )
/Mrbu]k E4 XS = E N X(EQ‘,H) n4d [pl (TW4) +p1(NSO(3)) — (n4d)2] . (A41)
6

Using the definition of Zi2, (2.9), and the partial results (A.37), (A.41), we recover the
expression (3.14) for I'™ (X, ) given in the main text.

B Evaluation of the integral for the (E4)® term

In the computation of the anomaly inflow from the cubic term (E4)3 in the puncture
geometry we encounter the following 2-form in the (p,n) plane,

wy = —3d[(Y +LW)2] AdW . (B.1)
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Thmax

m

= }p

Figure 6. The region R in the (p,n) plane. We also depict the boundary &R with its positive

(counterclockwise) orientation.

Let us integrate wy in the shaded region R in the (p,7n) plane depicted in figure 6,

/w2:/ wi,  w :=3Wd[(Y+LW)2]. (B.2)
R IR

The boundary OR consists of two arcs and two segments. The form w; evaluated on the
horizontal segment gives zero, because W = 0 for n = 0. Moreover, w; is zero on the vertical
segment. This can be seen noticing that, at p = 0 for n > Nmax, we have Y + LW = N
constant. It follows that the integral receives contributions from the two arcs only.!! Notice
that the contribution from the large arc does not go to zero as we increase the size of the
arc. The interpretation is the following. The large arc represents the bulk contribution
to (E4)3, which is already accounted for separately in our discussion. The small arc is
identified with the contribution to (E;)? localized at the puncture.

Crucially, the integral of w; along the small arc tends to a finite value as the arc gets
closer to the interval (0, 7max) along the 7 axis. The limiting value of [ w; on the small arc
is extracted as follows.

Let us split the interval (0, max) into the sub-intervals (7q—1,7.). Recall that L and

Y are constant in each (7a—1,7q) interval. As a result,

N="a
/ 3Wd[(Y+WL)2} - [Lw2(2LW+3Y)] . (B.5)
(Ma—1,7a) 1=Na—1
Unstead of wi, one may consider
wo=d&, a1=-3(Y+LW) dw . (B.3)

In this case, however, we get a non-zero contribution from the vertical segment, since, taking the limit
p — 0 with fixed 17 > 7max, one finds
1~ —3N?dW . (B-4)

A contribution from the vertical segment of R spoils the separation between bulk and puncture contribu-
tions to the integral. Therefore, &y is not a viable choice, and we must use ws.
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Recall that, as n — 7, from below, Y is constant, L = £,, W — wg, and Y + LW — N,.
It follows that the constant value of Y in the (74—1,7,) interval must be Y = N, — w, £,.
As a result,

[LW22Lw +3v)] T 202 (Wl — wd_y) + 30a (Na — wala) (w2 —w?_,). (B.6)
N=Ma—1
We conclude that
P
/wl =— Z [26’3 (w3 —w3_;) + 34, (Ng — wa by) (w2 —wi_))| . (B.7)
a=1

Notice that an additional minus sign originates from the fact that R is positively oriented
if considered counterclockwise, which induces the negative orientation along the 7 axis.

One might wonder if the integral on the small arc can pick up contributions localized
at the monopoles. Let us introduce coordinates R,, 17, via

N="mne+ RaTa, p=Ra\/1-72, —1<7,<1. (B.8)

Restricted on R, = const, the form w; reads

w = —3Wo, [(Y n LW)Q] drq

:ara[—3W(Y+LW)2]dTa—|—3(Y—|—LW)267aWdTa. (B.9)

This quantity has to be integrated from 7, = —1 to 7, = 1. The first term gives clearly

[— 3W (Y + LW)Q] (B.10)

Ta=1
¥
Ta=—

and this quantity goes to zero as R; — 0, because both W and Y + L W are continuous
across 1) = 7)q (even though their derivatives have a discontinuity). In order to analyze the
second term in w;, we notice that

W = wg + Ra(ar + a2 7) + O(R2), (B.11)

where a1 2 are constant depending on monopole data. The quantity (Y + L W)? has a finite
value as R, — 0,

(Y +LW)?2 = N2+ O(R,) . (B.12)
At leading order in R, we thus have
3(Y +LW)?0, Wdr, = —-3N2R,aydr, . (B.13)

This quantity has a non-zero integral on [—1,1], but it is suppressed by the explicit
factor of R;. In summary, we do not expect any localized contributions to [w; from
monopole sources.
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C Free tensor anomaly polynomial

In this appendix we dimensionally reduce the anomaly polynomial of a single M5-brane on a

Riemann surface ¥4 0 with no punctures. The starting point is the 6d anomaly polynomial

1

Ig= —
5748

1 2
[P2(VWe) — a(TWe) + (W) —ma(rw0)) | . (c)
The bundles TWg, NWg decompose as
TWe=TW,y & ng,g s NWg = NSO(Z) 35] NSO(S) . (02)

As usual, the Chern root of T3, is t, and the Chern root of Nso(g) is 1 = —f + 4,
Making use of (A.10), and collecting all terms linear in t, we arrive at

-

t . N N
Is O — [ — 27 p1 (Nso3)) — 2 (;Dl(NSO(s)) —p1(TWy) + (n‘ld)Q)} . (C.3)

Upon integration over X,q, the factor t is replaced with x(2g,0). Making use of the
identifications (3.15), we get the final result,

1 . 1 1 1
Igee tensor __ §X(Eg,0) ch Céq — Ex(zg,ﬂ) [g (C‘D-?' -5 €11 (TW4)] . (C4)

In the parametrization (6.7) given in terms of ny x, we have equivalently

1
ngee tensor __ _E X(Eg,o) ’ ngee tensor __ 0. (05)

D Review of Gaiotto-Maldacena solutions

In this appendix we briefly review the Gaiotto-Maldacena (GM) solutions [9], and we
clarify their connection with the inflow setup in the presence of punctures discussed in the
main text.

The most general solution to 11d supergravity preserving 4d N/ = 2 superconformal
symmetry takes the form

4(dp+v)2  9,D (

X —6A
ds?, = K23 €2 [4dsid55 +y?e™® ds?gg + I—y8,D —

dy? + P (daf + dm%))} :
G$M = 2 kvolg2 A [(dgﬁ +v)d(y? e_sx) 4y (1 —y? 6_63;) dv — % dyel dzy A d;t:g] , (D.1)

where k is a normalization constant, dsids5 is the metric on the unit-radius AdSs, ds§2 is
the metric on the round unit-radius S, volgz is the corresponding volume form, the angle
¢ has periodicity 2w, and the function A and the 1-form v are determined in terms of the
function D = D(y, z1,x2) via

—6X OyD

1
= sy V=5 (0uDdn — 0, D) (D2)
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The function D is required to satisfy the Toda equation
(62, +02,)D+ 02" =0. (D.3)

In the class S context, the metric in (D.1) is interpreted as the near-horizon geometry of
a stack of M5-branes wrapping a compact Riemann surface, parametrized by local coor-
dinates x1, 2. In the case of a Riemann surface with no punctures and genus g > 1, the
relevant solution to the Toda equation (D.3) is

p_ 4(N*—¢?

C T U-a-ap

(D.4)
With this choice of D, the directions z;, x2 parametrize a hyperbolic space of constant
negative curvature. The Riemann surface is realized as usual by taking a discrete quotient
of this hyperbolic space. The coordinate y parametrizes the interval [0, N|, with the round
S? shrinking at y = 0, and the ¢ circle Squ shrinking at y = N. It follows that v, Sqlb, 52
parametrize the S¢ surrounding the M5-brane stack. From the function D in (D.4), we

compute
GE’M K volg2 2y° 2y° GEM
9 = (do +v) dy2 TNZ FZ L N? dv|, [g4 o = 8tk N . (D.5)

In order to identify the quantity N with the integer counting the number of M5-branes in
the stack, we need to choose k = (87)™!, in accordance with our conventions for G4-flux
quantization (which are different from the conventions of [9]).

In the inflow setup, the S* surrounding the M5-brane stack is written as an Sé X 552]
fibration over the p interval [0,1]. Clearly, Sé is identified with the ¢ circle in the GM
solution (D.1), S is identified with the round S? in (D.1), and p is identified with y/N.
Furthermore, the connection v in the GM solution is identified with the internal part Ay
of the connection A on the Ngg(y) bundle, v = —Ay, cfr. (3.6), (3.7). By a similar token,
the GM 4-form flux G$M is identified with the angular form E, in (3.9) with all external
4d connections turned off. More precisely,

GM
G4

o = E4 in cohomology , (D.6)

where the bar over 4 is a reminder that all 4d connections are switched off.

In order to describe a Riemann surface with punctures, one has to allow for suitable
singular sources in the Toda equation (D.3) for D. The o™ puncture is described by a
source that is a delta-function localized at a point (z{',z5) in the z1, 23 directions. The
profile of the source in the y direction on top of the point (z{',z5) encodes the detailed
structure of the puncture. In studying the local geometry near the o' puncture, it is useful
to introduce polar coordinates ry, 3 via

xy —af =rycosf, To— x5 =rysinf . (D.7)

In a sufficiently small neighborhood of the puncture, a rotation of the angle 8 is a sym-
metry. Thus, in the study of local puncture geometries one assumes an additional U(1)
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rotation symmetry associated to . Crucially, for a generic punctured Riemann surface
this symmetry does not extend to a bona fide isometry of the full solution.

The analysis of solutions to the Toda equation (D.3) with additional U(1) symmetry is
best performed by means of the Backlund transformation. The coordinates (ry,y) and the
function D = D(ry,y) are traded for new coordinates (p, n) and a new function V' = V(p, )
determined implicitly by the relations

ré el = p?, y=p0o,V, logry, =0,V . (D.8)

The source-free Toda equation (D.3) is mapped to the source-free, axially symmetric

Laplace equation for V,
1
p By(pB,V)+ 8V =0. (D.9)

The coordinate i parametrizes the axis of cylindrical symmetry, while p is identified with
the distance from the axis, and 8 with the angle around the axis.
The 11d metric and 4-form flux (D.1) are written in terms of p, n, V as

13 2V"V 2V 2V
:| [4 dSQAdSS + T dS%z —+ V (dp2 4+ d?}.Q + 2 - — p2 dx?)

V-V
202V -V 2V V' 2
VA 2V -V

VA
2V

ds?| = k*/3 [

2V2V” A%
G,_‘EMzgmolsmd[— = dx+(n— X )dﬁ], (D.10)

where we used the notation V = p9,V, V' =0,V and so on, and we introduced
X=90+8, A=QV-V)V'+({V'). (D.11)

In the presentation (D.1), the S? shrinks at y = 0. After the Bicklund transformation,
this condition is translated into the boundary condition V(p,n = 0) = 0.

A puncture is described by a suitable source for the Laplace equation (D.9), delta-
function localized at p = 0 and with non-trivial charge density profile A(n) along the 7
axis. The charge density profile A(n) is related to V' via

A(n) = i V(p,m) - (D.12)

The analysis of [9] identifies the correct form of A(n) corresponding to a regular puncture.
Suppose the puncture is labelled by the partition of IV determined by

P
N=>nmks, O<m<m<---<mp, hka>1, (D.13)
a=1

where 7, and k, are integers. The corresponding charge profile A(7) is then the continuous

piecewise linear function satisfying

No+La(n—"7a) Ta—1 <71 <10, 4 ot
'\(n):{ €a=Zkb, Nazznbkb‘i‘naga:
"’?>'-'?p= b=a b=1

(D.14)
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where 19 := 0. The explicit solution for V' with this source and satisfying the boundary
condition V(p,n = 0) = 0 reads

V(p,m)=Nlogp+>» [M(na,ka) +M(_7?aa_ka)] : (D.15)

a=1

where

M("'?a: ka) = % kq [(7}' - na.) log (7? — Mg + \/92 + (7? - "'?a)g) - \/:G'2 + (?? - %)2} . (D'lﬁ)

The 11d metric determined by this choice of V' according to (D.10) is regular, up to orbifold
singularities of the form R*/Z;_ in the four directions (p,n, x, 3), located along the 7 axis
at 7 = 7). Moreover, the form of V ensures that all fluxes of G$M /(27) are integrally
quantized, if we set kK = (87)~! as below (D.5).

The simplest case is p = 1, corresponding to a partition of the form N = n; k;. In this
situation the coordinate transformation relating (rx,y) to (p,n) takes the form

_ 3 - o1k1/2
_|m ﬂ1+m} : y:%[\/p2+(n+??1)2—\/P2+(??—??1)2 .

Y
n+m+vp?+ (n+m)? a7
A7
with inverse

1+ 2N y? D.18
n_l 2/k1 k_l’ P= 2/k1 ! ( . )

and the function D reads

—242/k1 2 .2

Dosy) _ Ars” T (N" ) (D.19)

k(-2

If we choose k1 = 1, ;3 = N, corresponding to the non-puncture, we recover the expected
function D as in (D.4).

Let us now relate the puncture GM solutions to our inflow setup. First of all, as
already anticipated by our notation, the Backlund transformation (D.8) can be regarded
as a specific realization of the coordinate change from the (rx, p) strip to the (p, ) quadrant
discussed in section 4.1 and visualized in figure 1. Indeed, one verifies that the coordinate
transformation (D.18) has the qualitative features depicted in figure 1. Second of all, in the
metric in (D.10) we recognize an S}% fibration over the 3d space (p,n,x), with x = ¢+ 5 as
in the general discussion of section 4.1. The 3d base space is axially symmetric. Because
of backreaction effects, its metric deviates from the flat metric on R3, but one verifies that
the quantity 2V/ (2V—V) tends to 1 as p — 0. It follows that the x circle in the base space
shrinks along the n axis in a smooth way. This was the crucial point in the discussion of
section 4.1. The connection L for the Sé fibration, introduced in (4.20), is readily read off
from (D.10),

S
p= 2. (D.20)
2V -V
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Using this explicit expression and (D.15) it is easy to verify that L is piecewise constant
along the 7 axis, with jumps located at n = 7,. The value of L along the interval (1,-1,7,)
is given by £, as in (D.14), which matches exactly with the general relation (4.24) derived
in section 4.2 without reference to the fully backreacted picture.

We can also match the GM 4-form flux in (D.10) with the class Ej4 in the vicinity of
the puncture. It is straightforward to compare (D.10) to (3.9), (4.12), and infer

2y ¥
yww-%, A

(D.21)

Using these explicit expressions, together with (D.20), one can verify that Y and W satisfy
the general properties discussed in section 4.2 without reference to the IR geometry. In
particular, Y is piecewise constant along the 7 axis, and Y + L W is continuous along the
axis. Moreover, one verifies that the quantity V V’ / A goes to zero at the positions 1 = 7.
This means that, in the GM solutions,

Wg = W(O, na) = na . (D.22)

Of course, the identification of w, and 7, is consistent with the fact that, in the GM
solutions, the locations 7, are all integer. Using w, = 7, we also see a direct match of
the expression of N, in (D.14) with the expression (4.38) in section 4.2. In conclusion,
the identification (D.6), established earlier in the absence of punctures, is also valid for
puncture geometries. Crucially, even if all 4d connections are turned off, the class Fy is
non-trivial, and encodes the data that label the puncture.

E Proof of matching with CFT anomalies

In this appendix we explicitly prove the results (6.48)—(6.50). First, let us evaluate

The quantity k; is only nonzero at the location of a monopole, which occurs at i = w,. At
that location i = wyg, k; = kg, and N; = Ng. Then, we can replace

P P
> Niki = Naka, (E.2)
i=1 a=1

and the sum simplifies to

; 1
(ny — nh)mﬂc’w (Py) + (ny — nh)CFT (Pa) = 3" (E.3)
Next, we wish to evaluate
P
2
A (B -+ n§TT(P) = 3 5 6 (0 = wd0) + o (Ve — ) (u — )
a=1

5 (E.4)

- §Noka| =30 (N7 8) — g4 5

i=1
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To do this, first note the useful relation
N; =N, + La(i —wg) forall i =wg_q1,...,w, . (E.5)

It follows from (E.5) and (4.38) that

Ny — Ny —~ = .
Ea — G.iﬂ.l — N,',: — N‘i—]: 1€ [T.Ua—l,wa] . (EG)

Wq — Wa—1
We now re-write the sum over i as a sum over a as
P _ p Wa
S (VP -N) == Y (M- Vet tali - wa)) (E.7)
i=1 a=1 i=wg—1+1

Next, we substitute (E.7) into (E.4), pull out a factor of (w, — wg—1)¢, where possible in
order to make use of the first equality in (E.6), and perform the sum over i. This gives:

p
1 1 1 1
(E.4) = Z(gfa(Na —Ng_1) + §1\:;3(1 + 2w,) — 51\!3_1(1 +2wa-1) = <kalNa

a=1 (E8)
Wq Wag—1 2 2 .
These sums simplify to
s 1 1
(E4) =) (EEG(NG — Ny ) — 6kaNa) +35 (E.9)
a=1
1 & 1
=5 Z (bas1Ng — €aNoy) + 5 (E.10)
a=1
1
- § N (E.].].)
where in the second line we used k, = £, — {,4+1. Thus we have shown
. 1
n;}“ﬂow(Pa) + nSFT(PQ) =3 (E.12)

Together, (E.3) and (E.12) give the results (6.48) and (6.49) claimed in the main text. The
matching of the flavor central charges (6.4) and (6.18) follows from the aforementioned fact
that at i = w,, N; = N, and k; = k,., and elsewhere k; is zero.
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