PHYSICAL REVIEW D 99, 086020 (2019)

Class S anomalies from M-theory inflow
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We present a first principles derivation of the anomaly polynomials of 4d A/ = 2 class S theories of type
Apy_; with arbitrary regular punctures, using anomaly inflow in the corresponding M-theory setup with N
MS5-branes wrapping a punctured Riemann surface. The labeling of punctures in our approach follows
entirely from the analysis of the 11d geometry and G, flux. We highlight the applications of the inflow

method to the AdS/CFT correspondence.
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I. INTRODUCTION

"t Hooft anomalies are measures of degrees of freedom of
quantum systems that are preserved under renormalization
group flow. Thus, anomalies provide powerful tools for
exploring phases and nonperturbative regimes of quantum
theories.

In the last ten years, a new approach to studying quantum
field theories (QFTs) has emerged with the discovery of
N =2 class S superconformal field theories (SCFTs)
[1,2], where a large class of 4d N =2 SCFTs are
geometrically defined from reductions of 6d (2,0) SCFTs
on punctured Riemann surfaces. A choice of 6d SCFT and
boundary data at the punctures completely specifies a 4d
SCFT and its various protected sectors. A typical theory in
this class is non-Lagrangian and strongly coupled, and yet
it can be analyzed from the geometric construction. The
approach of the class S program has been generalized and
adopted for studying SCFTs in different dimensions with
varying amount of supersymmetry. The geometrization
program has become a standard tool in the study of QFTs.

A key feature of the class S program is the richness of the
variety of punctures on the Riemann surface. The anoma-
lies of AV =2 class S SCFTs in the presence of regular
punctures have been indirectly obtained from field theoretic
arguments [3-5]. However, a direct derivation of the
anomalies from the geometric definition of class &
SCFTs is lacking. In this paper we use anomaly inflow
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in M-theory to provide a first principles derivation, building
on [6]. Our procedure can be generalized to obtain the
anomalies of other classes of SCFTs with geometric
descriptions. Further, our prescription suggests a method
for extracting the exact anomalies of a holographic SCFT
from its gravity dual.

The ’t Hooft anomalies of a d-dimensional QFT are
neatly encoded in the (d + 2)-form anomaly polynomial.
In this paper we derive the anomaly polynomials of 4d
N =2 class S SCFTs with regular punctures engineered
from the 6d (2,0) Ay_; SCFTs. First, we describe the
relevant geometric setup from a stack of N M5-branes in
M-theory, and the inflow procedure. Then we provide a
novel description of the boundary data at punctures in terms
of the four-form flux of M-theory. Finally, we compute the
anomaly polynomial and discuss its implications for
holography. A companion paper [7] to this letter contains
more complete derivations and a broader study of the
results and their implications.

II. SETUP AND INFLOW

A 4d N = 2 class S theory of type Ay_, is engineered in
M-theory by taking the low-energy limit of a configuration
with N coincident M5-branes wrapping a punctured Riemann
surface. Let W¢ denote the 6d world volume of the M5-brane
stack inside the ambient 11d space M ;. The normal bundle to
W, denoted NWy, encodes the five transverse directions to
the stack and generically has structure group SO(5). We study
the case Wg = My x X ,, where M, is external spacetime
and X/, is a Riemann surface of genus g with n punctures.

We are interested in setups that preserve 4d N =2
supersymmetry (for M, = R"3). In this case, the structure
group of NW reduces from SO(5) to SO(2) x SO(3), and
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correspondingly NWy decomposes as NW¢ = Ngp3) ©
Nso(2)- The (universal cover) of SO(2) x SO(3) is iden-
tified with the U(1), x SU(2)g R-symmetry of the 4d field
theory. In summary, the tangent bundle to 11d spacetime
restricted on W decomposes as

TM,ly, =TM4 & TZ,, @ Nso) ® Nso)- (1)

The total space of the Ngq(,) fibration over £, is the
cotangent bundle 7*%, ,,, and is hyper-Kéhler. The twisting
of Ngo(2) over £, , implements a partial topological twist of

the 6d (2,0) Ay_; theory living on the stack. If 71 denotes the
Chern root of Ng¢(2), then

A =—1+2c, /): 1= x(Z,0) (2)

where ¢/ is the first Chern class of U(1),, 7 is the Chern root
of TX,,, and y(Z,,) = 2(1 — g) — n is the Euler character-
istic of the punctured Riemann surface. In order to specify
the 4d theory, we must supplement each puncture with
appropriate data, encoding the boundary conditions for the
6d theory. The puncture data is determined by the branch-
ing pattern of the MS5-branes which governs the flavor
symmetry of the 4d theory.

From the point of view of M-theory, the combined
system of the MS5-brane stack and the 11d bulk enjoys a
nonanomalous diffeomorphism invariance. The total sys-
tem is free from local anomalies in 11d due to a cancella-
tion between the anomaly generated by the chiral massless
degrees of freedom localized on W¢, and anomaly inflow
from the bulk.

The anomaly inflow from the bulk amounts to a classical
anomalous variation of the M-theory effective action under
11d diffeomorphisms, due to the presence of the MS5-
brane stack. The latter acts as a magnetic source for the
M-theory four-form G, with delta-function support on Wy,
dG, = 2xNoy,. In order to analyze anomaly inflow in the
supergravity approximation we must smooth out the delta-
function singularity [8,9]. This is achieved by cutting out a
small tubular neighborhood of the M5-brane stack. As a
result, we are now considering M-theory on a manifold
with a boundary M, = 0M;, which is diffeomorphic to
an $* bundle over Wy. The information about the original
delta-function source is translated into a smoothed-out G,
flux,

%:%—deEgo)—fE4, /E4:N. (3)
2 2m 54

The quantity f is a bump function that depends only on the
radial distance away from the MS5-brane stack, smoothly
interpolating between —1 at the boundary M, and 0 away
from it. The four-form E, is globally-defined, closed,

invariant under the action of the structure group of

NWg, and can be written locally as E, = dEéO). The
integral of E, over the $* surrounding the stack measures
the total magnetic charge N of the MS5-branes.

The anomalous variation of the M-theory effective action
is expressed as an integral over M, and is conveniently

formulated in the framework of descent, 6S = 27 f Mo A %3,

dI(li)) = 515(?, dIg(? = T7,. The formal quantity Z;, is a
twelve-form characteristic class constructed from E, and
given by

1
Iy= _8(E4)3 — Eyly. (4)

On the right-hand side we suppressed wedge products for
brevity, and we introduced the eight-form class /g, which is
defined in terms of the Pontryagin classes of TM; as

1

) —
8 192[

Pl(TM11)2—4P2(TM11)]- (5)
The inflow contribution to the anomaly polynomial of the
4d CFT is extracted by integrating 7, over the total space
of the $* bundle over ¥, ,, denoted M,

g.n>
= Al Iy, St Mg— X, (6)
6

Anomaly cancellation requires Iiﬁnf to cancel against the
CFT anomaly, up to decoupling modes, Zinf 4+ Z7CFT4
Igecoup 0.

To compute the integral in (6), we excise small disks
around each puncture on X, ,, together with the S* fibers on
top of them. We thus obtain a space My, which is an S§*
fibration over a smooth Riemann surface with n bounda-
ries. We replace the excised portions of Mg with suitable
local geometries X¢, with @ = 1, ..., n, glued smoothly to
M. This decomposition of M translates to

where P, denotes the a™ puncture on 2,1 We refer to
IP(X,,,) as the bulk contribution to Z}.

Each geometry X¢ is locally S x X§, where the S5
encodes the angular directions of Ngq(3), while X§ com-
prises the directions of the excised disk, together with the
fibers of Ngp(2) on top of it. More precisely, X is the local
space that models T*%, , in the vicinity of the puncture P,,.
Thus, the possible choices of X§ in M-theory encode the
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puncture data. The space X admits a U(1) isometry, which
is identified with the U(1) action on Ny in the bulk
of T°%, .

III. BULK CONTRIBUTION TO INFLOW

To write E,, we realize S* as an Sj x S, fibration over an
interval with coordinate u € [0, 1], with S}, S associated
to Nso@)» Nso), respectively, see (1). At u =0, S2
shrinks, while at y =1, S}/) shrinks. The Ngp(;) bundle

is captured by D¢p = d¢p — A, where A is a connection with
field strength d A = 2z, see (2). Using this notation, the
general E, reads

D
E4—N[dy/\2—¢—yﬁ NG (8)
y

The function y depends on p only, satisfies y(0) =0,
y(1) =1, and has no zeros within the interval (0,1), but
is otherwise arbitrary. The two-form €5 is the closed,
SO(3)-invariant completion of the volume form on S3,
normalized to integrate to 1. The overall normalization in
(8) is fixed by (3).

The class I3 on M is obtained via the decomposition of
p1(TM ), po(TM ;) under (1), using standard formulas for
Pontryagin classes of direct sums of vector bundles. Notice
that P1(T2g,n) =7, P1(Nso(2)> = 7*, while P1(Ns0(3)) =
—4cR, where cf is the second Chern class of SU(2). The
only terms in Ig that can contribute to the integral over M
are those linear in 7,

L3erld(eh)? + 4ck — py(TM)] - (9)

Iy = —
8748

We are now in a position to compute the integral of 7,
over MG. To this end, it is useful to recall the Bott-Cattaneo

formula [10] [q (')’ = —cf. The result reads
i 1 (c))’ eipi(TMy)
T0(Z,) = s Ny(Z ——
6 ( g,n) 7 )(( g,n) 3 12
1
_8(4N3 - N))((Zg,n>ciC§' (10)

The quantity Zp(%,,) coincides with the dimensional
reduction along X, of the inflow eight-form anomaly
polynomial for a stack of MS5-branes [6].

IV. PUNCTURE GEOMETRY AND FLUX

To introduce the ath puncture, we excise a portion of M
of the form D, x §*, where D,, is a small disk centered at
P, with polar angle 3. We replace D, x S* with a space X?,
which admits an SO(3) x U(1)? isometry inherited from
54 % Sy € $* and S C D,,.

The space X§ is given as a fibration of S% over a 4d space
X¢, which is modeled by an S}, fibration over R’. We use
cylindrical coordinates (p,7,y) on R3, with # the axial
coordinate, p the radial coordinate, and y the azimuthal
angle, related to ¢, by y = ¢ + p. The circle S}{ shrinks
along the 5 axis in the base space R?, while S% shrinks
atn = 0.

The S}} fibration admits monopole sources located
along the n axis at n =1, a=1,...,p, at which Sy
shrinks. The space X{ corresponds to a small region that
surrounds the interval [0, 7,] on the 7 axis. The S fibration
is captured by

Dp = dp — Ldy, Sp o X§ - R (11)

L is a function of p, i that approaches a piecewise constant
function of 5 for p — 0. Denote the piecewise constant
values of L by
L=2¢,

for 1,1 <n <n4; £p1=0. (12)

The charge k, of each monopole is measured by

dD
/ﬁ:ka:fu—fuﬂez, (13)
S

2 21
a

for S2 the 2-sphere surrounding the monopole in R3.

Since the space X{ is a local model for 7%, in the
neighborhood of the puncture P,, its geometry is con-
strained. In particular, k, > O for all a, so that the £, are a
sequence of decreasing integers. Furthermore, the local
geometry near each monopole is an ALF hyper-Kihler
space, modeled by a single-center Taub-NUT space with
charge k,, denoted TN, . This space has an R*/ Zy,
orbifold singularity which can be resolved to yield a
smooth hyper-Kéhler space "l/"Nka.

Now we discuss Ej in the geometry X¢. The most general
form of E, compatible with the symmetries is

Ey=d(YDy—WDB)AeQ+E, Dy=dy—A, (14)

where the gauging of y with the connection A is inherited
from ¢, D3 denotes Df as in (11) with dy — Dy, and E is
a flavor contribution discussed below. The field strength
dA in the puncture region only receives contributions from
the term 2¢/ in (2). The quantities Y, W are functions of p,
and are constrained by flux quantization of E,. They vanish
at n = 0, where S3, shrinks.

We start by defining the relevant cycles. There is a four-
cycle B, for a=1,...,p, consisting of the interval
(Ma-1:14) at p =0, Sy, and S. For a > 2, S) shrinks at
the endpoints of [17,_;,7,] and thus we also have a two-
cycle S,, depicted in Fig. 1.
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FIG. 1. A generic profile of monopoles. The C, arcs form part
of the four-cycle C,. The bubble denotes the two-cycle S,, which
is part of the four-cycle 5,,.

Next, consider the arc C, connecting a point on the p axis
to a point within the (y,,7,.) interval, with
a=1,...,p—1,as depicted in Fig. 1. The arc C,, together
with S5 and the combination of S, and S, that shrinks along
(MasMat1), gives the four-cycle C,. The arc C,, in Fig. 1,
combined with Sy, and g, gives a four-cycle C, that is
equivalent to the bulk S$*.

Supersymmetry requires the flux of E, through the C,
and B, cycles to respectively carry the same sign. We
choose the orientations such that [; E, and [, E, are
positive, and we find

/ E4 = W(O’ na) - W(Ov na—l) =W = Wa1 (15)

a

such that wy = 0 and {w, }”_, is an increasing sequence of
positive integers.
The flux [, E, equals Y evaluated at the endpoint of the

C, arc on the 5 axis. Since the endpoint can be freely
moved within (17,,7,.1), Y is piecewise constant along the
n axis, and takes non-negative integer values,

Y(0.7) =y, € Zsy forn, <n<mng.  (16)
Although Y is discontinuous along the # axis, £, must be
continuous. This condition gives y, — y,_1 = w,k,,

Ya = za:wbkb’ N = zp:wakw (17)
b=1 a=1

where y, = 0 and we used C,, = S*. Continuity of E, thus
implies the partition of N labeling a regular puncture.
For each nontrivial two-cycle in X¢, we can turn on an
additional contribution to Ej4 of the form w A F, for  the
Poincaré dual of the two-cycle and F the field strength of a
background U(1) connection on M. One such two-cycle is
S, depicted in Fig. 1, with Poincaré dual denoted w,.
Additional two-cycles are introduced upon resolving the

orbifold singularities at the monopoles. The resolved space
"I:Nku admits k, — 1 two-cycles, with Poincaré duals
{é)a_,}lf”:_ll. Their intersection pairings give the Cartan
matrix C*%) of gu(k,),

/~ Bay A gy = —CH1), (18)
™,

The flavor terms in E, are thus

Eg :iwu /\Q—f—z
e 2r

a=1

ko—

—_

Fa]
19
5. (19

PN
1

~
Il

where F, and F «.1 are 4d field strengths. Equation (19) only
captures the Cartan subgroup of the full 4d flavor
group Gr = S[[T/_, U(k,)].

The class I3 in the puncture geometry is computed using
the decomposition TM; = TM4 @ Ngo;3) @ TX3. The
Pontryagin classes of TX{ are given in terms of the
Chern roots A, 4y as p(TX§) =7+ 23, po(TX3) =
2223. To account for the gauging of the angle y in (14),
the Chern roots are shifted by ¢/,

A = A+, Ay = A+ cf. (20)
The relevant terms of Iy are
1
Iy = - [4(c])* +4c5 — pr(TMy)]py (TXG) + -+ (21)

96

where p;(TX%) is understood before the shift (20). The
total p;(TX{) decomposes into a sum of p; (TN, ) terms,
which satisfy fﬁ\l pl("mka) =2k, [11].

k(l

V. CFT COMPARISON

We now have the necessary components to compute
IM(P,) = [y« Iy in (7). We use the standard parametri-
6

zation of Zg for 4d N/ = 2 SCFTs

(ci)*  cip(TMy)
Zs = (n, — —
—n,cick +> keien(G), (22)
G

where n, and n;, are the effective numbers of vector

multiplets and hypermultiplets respectively, and ks is the

flavor central charge of a factor G of the 4d flavor group.
A direct computation of the integrals yields

(nll - nh)inf(Pa) =3 Z Nkg, (23)
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P
1
mt fZ _ ——-N k
P = 3[40 - i) gk,
=+ fa(Na - Wa£a>(W3 - szz—l):| ’ (24)

a

Ny=) (wy=wp1)lp  (25)

b=1

k?l];(ka) = —2N,,

Note that there is an enhancement of the k, — 1 Cartan
components to the second Chern class of the full non-
Abelian SU(k,) factor in Gp.

The partition of N in (17) defines a Young diagram with
rows {Z;}" . where 7, = ¢, for w,_, +1<i<w, We
define k; = #; — ¢, and N; = Y Z;. Tt follows that
(23)—(24) are equivalently written as

(ro=m)" () =5 NE 0o
WP =YW - I )

We can also read off ni™ (%,,) from (10),

1

(nv - nh)inf<zg,n) = EN)((Zg.n)v (28)
WS, = (N = Nr(S,). (29

According to (7), the total ni", nitf are

Htf = nv h gn + anf . (30)

These quantities can now be compared to the known CFT
answers [4], as presented in [6]. We find

1

nint 4+ G = EZ(Zg.o), m + T =0, (31)
kisnzf}(ka) + kgz]j{ka) =0. (32)

The inflow and CFT contributions cancel, up to minus the
anomaly of a free 6d (2, 0) tensor multiplet reduced on a
genus-g Riemann surface X, with no punctures. We
identify this free tensor multiplet with the center-of-mass
mode of the M5-brane stack. Our results show that this
mode is insensitive to the presence of punctures.

VI. CONCLUSION AND APPLICATIONS
TO HOLOGRAPHY

In this paper we provided a first principles derivation of
the anomaly polynomials of 4d N =2 Ay_; class S
theories with arbitrary regular punctures, using anomaly

inflow in the corresponding M-theory setup with N M5-
branes wrapping a punctured Riemann surface.

In our approach, the puncture data are entirely specified
by the topological properties of the 11d geometry and G4
flux in the vicinity of the puncture. Remarkably, the
anomaly inflow cancels exactly the known anomalies of
the 4d SCFTs, up to the contribution of the center-of-mass
free tensor multiplet on the M5-brane stack.

Our method for analyzing N = 2 regular punctures is
generalizable to irregular punctures and setups with less
supersymmetry. Many interesting QFT's can be realized via
branes probing geometries in string theory and M-theory. In
such cases, inflow can be a robust tool to compute
anomalies, and therefore provides a handle on nonpertur-
bative aspects of these QFTs.

We conclude with a discussion of applications to
holography. An important motivation for our analysis of
the local puncture geometry and E, flux comes from the
holographic M-theory duals of ' =2 and ' = 1 class S
theories with punctures [3,12]. In particular, the fibration
in (11) is related to and inspired by the Bécklund transform
of [3]. The solutions are warped products of AdSs with an
internal space Mi°' with four-form flux G°l.

We observe that the topological properties of M2°! in [3]
are the same as those of M in (6). Furthermore,

Ghol _
24 = E; incohomology, (33)
T

where E, is E4 with all 4d connections turned off and G}°!
is the four-form flux of [3]. In the bulk of %, E, = S§*, but
E, is nontrivial in the puncture geometry and encodes the
puncture labelling.

Kaluza-Klein reduction of 11d supergravity on M
yields a 5d gauged supergravity model with an AdSs
vacuum. The full reduction ansatz requires a G that
captures the fluctuations of the AdS5 gauge fields beyond
the linearized level. E, is a natural candidate for construct-
ing such an ansatz [9].

In the solutions of [3] the classical objects M, Gi!
provide the exact topological data of Mg, E, to all orders
in N. This data determines the E, and /g needed to carry
out the inflow procedure, which (subtracting the O(1)
contribution of decoupling modes) yields the exact
anomaly coefficients of the dual SCFT. This route to the
exact a and c central charges bypasses a computation with
the AdSs effective action, which would require a detailed
knowledge of higher-derivative corrections.

An interesting question is whether (33) extends to more
general AdSs solutions in M-theory, with varying amount
of supersymmetry. If so, we may use inflow and classical
data of the supergravity solution to access exact anomaly
coefficients, providing a systematic way to compute quan-
tum corrections in AdSs.
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